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Cohere For AI
Exploring the unknown, together.

Open Science

● Research Lab
● Publications
● Scholars 

Program

 Forum

● Fireside Chats
● Technical Talks
● Guest Series
● AI Policy/Safety 

● Cross-institutional 
collaborations

● Open science 
initiatives

Research



Fundamental research on critical areas like efficiency, LLMs at 
scale, safety, hardware/software interaction.



● Research staff published 38 papers last year
● Collaborated across 40+ institutions and organizations
● Released state-of-art models for massively multilingual Aya and C4AI 

Command-R

Our goal is to contribute cutting edge research to the wider ecosystem:



Research 
support for 
compute.

https://txt.cohere.com/c4ai-research-gr
ants/



I currently work on designing large scale 
language models that are efficient, 
multilingual, reliable and trustworthy. 

If any of these topics are interesting the talk, 
happy to discuss after the talk.



Today I will be giving a talk about a paper I recently released with a very 
boring title, but which grapples with topics that are at the center of 
computer science progress.
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https://arxiv.org/abs/2407.05694


There are policy implications to this work, but today I will focus on the 
technical aspects of this paper. 

You, see to understand whether compute thresholds make sense – we need 
to grapple with a question which has been a decades old debate at the 
heart of computer science progress “is bigger always better?”
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https://arxiv.org/abs/2407.05694


Today:

The role of 
capacity: Why 

we are 
building a 
ladder to 

moon.

Promising 
directions of 

research 

Multilingual – 
why it is an 
interesting 
problem.



The role of model scale and 
data in recent 
breakthroughs



A “bigger is 
better” race in 
the number of 
model 
parameters has 
gripped the 
field of machine 
learning.

Canziani et al., 2016, Open AI 2019  

https://arxiv.org/pdf/1605.07678.pdf
https://openai.com/blog/ai-and-compute/


This characterizes both vision and NLP tasks.

Link here [Sharir et al. 2020]

https://www.sciencedirect.com/science/article/pii/S0743731518308773
https://arxiv.org/pdf/2004.08900.pdf


And involves large increases in both model and dataset sizes:

link

Number of tokens involved in training.

https://babylm.github.io/


This has been formalized by Rich Sutton as the “bitter lesson”

In a punch to the ego 
of every computer 
scientist out there, 
what Sutton is saying 
is that symbolic 
methods that codify 
human knowledge 
have not worked as 
well as letting a model 
learn patterns for itself



Is Sutton right?



[Wei et al. 2022]

Few shot prompting 
performance

Finetuning and few 
shot.

Is Sutton right? Different regimes of scale appear to induce emergent abilities.

https://arxiv.org/pdf/2206.07682.pdf


For example,  requires larger and larger models to take advantage of 
instruction fine-tuning.

link

https://ai.googleblog.com/2021/10/introducing-flan-more-generalizable.html


Throwing compute at a problem is still 
widely favored:

- More de-risked vs more difficult 
approaches of crafting new optimization 
techniques

- Fits into industry quarterly planning 
cycles – hard to justify deviating from 
the predictable path of gains.



However, many data points exist to 
suggest that training compute alone 

is not sufficient.



Models at the same capacity have been getting far more 
performant over time.

Models under 13B on 
the llm open 

leaderboard over 
time.
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https://arxiv.org/abs/2407.05694v1


Smaller models frequently outperform far larger models.

Hooker 2024

All models over 13B 
(grey) that 

underperform the 
best daily model 

under 13B submitted 
to the llm open 

leaderboard (green).  

https://arxiv.org/abs/2407.05694v1


A key limitation of blindly 

following “the bitter 

lesson” is that the 

relationship between 

compute and 

performance properties 

is not well understood.



In fact, we observe a highly  uncertain relationship between 
compute and performance.



In fact, we observe a highly  uncertain relationship between 
compute and performance.

1) Data quality compensates for need for compute

2) Architecture plays a significant role in determining scalability

3) Post-training optimization reduces need for training time compute.

4) Diminishing returns to adding more weights.

5) Many redundancies between weights

6) We can remove most weights after training.

7) Most weights necessary for representing a small fraction of the 

dataset.



Data quality compensates 
for the need for compute.



Recent work finds smaller amounts of higher quality data removes the 
need for a larger model. 

There is increasing 
evidence that efforts to 
better curate training 
corpus, including 
deduping, pruning data 
and increasing the 
available training corpus 
size can compensate for 
the need for larger 
networks and/or improve 
training dynamics. Kreutzer at al. 2022

Lee et al. 2022 

Muennighoff et al. 
2023

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00447/109285
https://arxiv.org/pdf/2107.06499.pdf
https://arxiv.org/pdf/2305.16264.pdf
https://arxiv.org/pdf/2305.16264.pdf


This fundamentally changes the notion of the axes of capacity – that 
instead of just more training time, more weights. That the quality of the 
data can imply less training time or less weights are needed. 

Training time

Model size
Shifts out the production 
possibilities frontier – a 
given improvement in data 
quality increases output for 
any given model size, 
training time combination.

Improved data 
quality



[[Marion et al. 2023]] 

Our recent work focuses on effective data pruning for pretraining 
internet scale.

https://arxiv.org/abs/2309.04564


We can improve over our 
no-pruning baseline while 
training on as little as 30% of 
the original training dataset.

[[Marion et al. 2023]] 

https://arxiv.org/abs/2309.04564


Data pruning is a valuable optimization at multiple stages of training 
pipeline – here we also show promising results in preference training.

We reduce instances of indecisive 
(or “tie”) outcomes by up to 54% 
compared to a random sample 
when focusing on the top-20 
percentile of prioritized instances.

This helps save valuable human 
feedback for the most important 
instances.

[[Boubdir et al. 2023]] 

https://arxiv.org/pdf/2310.14424.pdf


Relationship between 
weights and performance is 

not well understood.



1. Diminishing returns to adding parameters. Millions of parameters 
are needed to eek out additional gains.

Table: Kornblith et al., 2018 

Almost 
double the 
amount of 
weights for a 
gain in 2% 
points.

[Kaplan + 2020]

https://arxiv.org/pdf/1805.08974.pdf
https://arxiv.org/pdf/2001.08361.pdf


2. Redundancies Between Weights

Denil et al. find that a small 
set of weights can be used to 
predict 95% of weights in the 
network. 

[[Denil et al., 2014]] 

https://arxiv.org/abs/1306.0543


3. Most weights can be removed after training is finished (while only 
losing a few % in test-set accuracy!)

[[The State of Sparsity in Deep Neural Networks, 2019, Gale, Elsen, Hooker]]

With 90% of 
the weights 
removed, a 
ResNet-50 only 
loses ~3% of 
performance 
(for certain 
pruning 
methods).



4. Across a variety of settings and modalities, we find that removing weights 
causes models to loss performance on the long-tail.  The majority of weights 
(90% of all weights) are used to memorize very rare examples in the dataset. 

[[Hooker et al. 2019, Hooker, Moorosi et al, 2020]] 

When we 
remove weights 
models lose 
performance on 
rare examples. 

https://arxiv.org/abs/1911.05248
https://arxiv.org/pdf/2010.03058.pdf


Compute does not capture 
the algorithmic 

breakthroughs that have led 
to large gains in performance 

over last 5 years.



Key algorithmic improvements which have relatively 
limited compute cost but huge impact on 
performance:



Key algorithmic improvements which have relatively 
limited compute cost but huge impact on 
performance:

1. Multi-task 
training

2. Instruction 
fine tuning

3. Preference 
training 



There has been renewed interest in the types of data that 
lead to powerful zero shot abilities – performing well on 
completely unseen tasks.



Two ingredients have been particularly important at 
leading to breakthroughs in performance on zero and 
few shot tasks:

1. Instruction tuning – 
Structuring multi-task 
fine-tuning data as 
questions and 
answers 

2. Integrating human 
feedback about 
preferences



Multi-task fine-tuning moves to a single global model – train on 
multiple tasks at once.

Finetuning on a single 
task

Finetuning on many 
different tasks



Why is this a big deal – it transitions from having custom 
models for each task to having a single task-general model that 
can perform a lot of tasks, which only require zero or few 
examples

Model for 
sentiment analysis

Model for toxicity 
mitigation

Model for topic 
categorization

Single model 
trained on 
multi-task 
finetuning
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cohere.com/research/ayaAccelerating multilingual AI through open science

Instruction Fine-Tuning (IFT) is a form of model training that enables models to better understand 
and act upon instructions. It is based on the idea that we can use everyday language to ask a model 
to perform a task and in return the model generates an accurate response in natural language. 

Summarize the 
following text:

A B C D

Solve 2 + 2

The answer is 4

Write a short 
paragraph about X

Having both a pet 
bird and a 

What film won the 
2023 Oscar as best 
film?

Everything Everywhere 
All at Once

What Is Instruction 
Fine-Tuning?

Base 
model

Training

Instruct 
model



This combination – of multitask training and instruction 
style improves zero shot performance.

Finetuned language models are 
zero-shot learners (Wei et al., 2021).



Preference training aligns model behavior with human feedback 
by  upweighting answers that humans find more meaningful in a 
third stage of optimization.

Gather feedback -> train 
model to align with 
feedback.

Upweight answers that 
humans find more 
meaningful.



We recently established new state-of-art in multilingual – by 
applying preference training on top of Aya 8b IFT.

Preference 
Optimized (RLHF) 
Aya 23 outperforms 
llama 3, gemma, 
mistral and 
original Aya base.

Beats widely used 
models across 
languages covering 
half the world’s 
population! 🌎

Dang et al. 2024

https://arxiv.org/abs/2407.02552


Other algorithmic improvements which result in gains in 
performance without increasing training compute:



Other algorithmic improvements which result in gains in 
performance without increasing training compute:

1. Models 
enabled 
with tool 

use

2. Retrieval 
augmented 

models

3. 
Chain-of-thought

4. Best-of-n 
sampling

5. Distillation of 
synthetic data

6. Increasing 
context length



The role of architecture.



1964 2017

2012

Overnight in 2012, everyone 
switched to deep neural networks.

Perseverance over 
decades led to the 
breakthrough of deep 
neural networks in 
computer vision. 



2012: Convolutional Neural Networks
What aspects of the architecture improve efficiency?
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Efficiency gains:

Shared weights

shared weight 
kernels/filters that 
slide across the input 
image. convolutions 
to capture local 
patterns and features. 
This sharing of 
weights reduces the 
number of 
parameters in the 
network

Pooling 
Operations

 Max-pooling and 
average pooling 
operations reduce the 
spatial dimensions of 
the feature maps, 
drastically reducing 
feature space.

Hierarchical 
Feature 
Extraction:

Each subsequent 
layer builds upon the 
features learned by 
previous layers.



2017: The Transformer, the 
culmination of a rich history of 
language modelling
What aspects of the architecture improve efficiency?

53



Efficiency gains:

Self-Attention 
Mechanism:

Self-attention 
layers ensure that 
the model can 
handle 
variable-length 
sequences, 
making it 
well-suited for 
language data.

Parallelizable Nature:

Process all the tokens in the 
input sequence in parallel. 
Parallel processing 
capability allows for faster 
training and inference 
compared to recursive or 
sequential models, which 
process tokens sequentially.

Lack of Recursion:

Transformers utilize 
position embeddings to 
encode the relative 
positions of tokens in 
the input sequence. This 
approach allows the 
model to capture the 
order of words without 
relying on recursive 
connections.



Architecture + algorithmic innovation 
determine rate of return for compute. 
So compute alone does not tell the 

story of our field.



What is often missed in this 
statement is that our architectures 
also represent the ceiling in what is 

achievable through scaling.



Point of comparison: our Brain is incredibly energy efficient.

Has over 85 billion neurons but runs on the 
energy equivalent of an electric shaver

Key design choices to embed efficiency:
Specialized pathways
Simulate much of what we “see”
Log scale vision



Some aspects of what we do with deep neural networks is 

painfully inefficient.

- We do not have adaptive compute. 
Typically we see all examples same 
amount of time during training. 

- Global updates mean all prior 
information is erased.

- Empirical risk minimization means 
while we optimize for average 
performance, it takes considerable 
more compute to model rare or 
infrequent artefacts.



Empirical risk minimization means we optimize to 
reduce average error:

This means it takes 
more capacity or 
longer training to 
learn rare features.

Majority of features are 
learnt early in training. 
Despite this most of 
training focuses on 
long-tail.

Majority of features 
can be learnt using 
small models. Scaling 
of size primarily 
benefits small tiny 
part of distribution.



Work with colleagues over last few years has focused on 
understanding what is lost and gained as we vary model size. 

[[Hooker et al. 2019, Hooker, Moorosi et al, 2020, 
Ahia et al. 2021, Ogueji et al. 2022, Marchisio 
2024]] 

https://arxiv.org/abs/1911.05248
https://arxiv.org/pdf/2010.03058.pdf
https://arxiv.org/abs/2110.03036
https://arxiv.org/abs/2211.02738
https://arxiv.org/pdf/2407.03211
https://arxiv.org/pdf/2407.03211


Pruning Identified 
Exemplars (PIEs) 

Data points where predictive 
behavior diverges between a 
population of independently 
trained compressed and 
non-compressed models.



ImageNet test-set.
True label?





ImageNet test-set.
True label?





ImageNet test-set.
True label?





ImageNet test-set.
True label?





Atypical Data Points or 
Challenging Exemplars
- Underrepresented 

vantage points (the 
long-tail of the dataset)

- Image classification 
entails fine grained task
 

Valuable use of parameters to 
represent these data points.

“Good memorization”

Noisy Data Points
- Data is improperly 

structured which corrupts 
information
- Mislabelled
- Severely corrupted
- Multi-object 

Misuse of parameters to 
represent these data points.

“Bad memorization”



Noisy PIEs improperly structured multi-object images for 
single-image classification.



Noisy PIEs Corrupted or incorrectly labeled data.



Atypical PIEs unusual vantage point or rare example



PIEs over-index on the long-tail of underrepresented 
attributes.

Attribute Proportion of CelebA Training Data vs. relative representation in PIE



0 % 90 %

Overparameterized 
Dense  Model

Model with 90% 
weights removed

Put differently, we are using the majority of our weights to encode a useful 
representation for a small fraction of our training distribution.

It is worth emphasizing this finding: We lose the long-tail when we 
remove the majority of all training weights.



[[Hooker et al. 2019, Hooker, Moorosi et al, 2020]] 

When we scale models, we are paying an enormous cost to learn a small 
slice of the distribution.

https://arxiv.org/abs/1911.05248
https://arxiv.org/pdf/2010.03058.pdf


So, where do we go from here.



How should we make better use of 
capacity? How do we avoid the cost 

of representing the long-tail?



Data pruning or Weighting

“Spending more capacity on the 
data points we care about”

Directions that we have been working on:

1.
.

Specialized/adaptive compute

“Routing capacity to avoid 
applying all weights to every 

example”

2.
...
.



Data pruning.

Noisy Data Points
- Data is improperly 

structured which corrupts 
information
- Mislabelled
- Severely corrupted
- Multi-object 

Misuse of parameters to 
represent these data points.

“Bad memorization”

Can we identify and 
remove these noisy 
data points?

- How do we do this 
at scale?



Much of our recent work over the last year has focused on 
data pruning, prioritization of examples.

[[Marion et al. 2023]] 

Pretraining Scale

[[Boubdir et al. 2023]] 

Prioritizing human 
annotation

Instruction Finetuning Pruning 
and Dataset Weighting

[[Singh et al. 2023]] 

https://arxiv.org/abs/2309.04564
https://arxiv.org/pdf/2310.14424.pdf
https://arxiv.org/pdf/2310.14424.pdf


Removing, reprioritizing, generating synthetic data has become a 
crucial pipeline step of achieving state of art performance.

[[Chimoto et al. 2023]] 

Leveraging early 
training signal

Data pruning + 
synthetic data

[[Aryadumi et al. 2024]] 

Preference training 
synthetic data.

Dang et al. 
2024

https://arxiv.org/pdf/2405.19462
https://arxiv.org/abs/2405.15032
https://arxiv.org/abs/2407.02552
https://arxiv.org/abs/2407.02552


High quality synthetic data also reduces training time and 
improves performance. 

We recently released Aya 8b 
– a best in class small 
multilingual model which 
outperforms Gemma, 
Llama 3 and Mistral. 

Most of the gains came 
from distillation of synthetic 
data from larger more 
performant models.

[[Aryadumi et al. 2024]] 

https://arxiv.org/abs/2405.15032


We have also done work on “active inheritance,” moving 
optimization to the data space to guide model behavior 
towards non-differentiable objectives.

Shimabucoro et 
al. 2024

Only very 
recently 
feasible to do 
this – 
historically 
steering data 
collection far 
too expensive. 
Dataset treated 
as static.

https://arxiv.org/pdf/2407.01490
https://arxiv.org/pdf/2407.01490


Specialized 
and/or 

Adaptive 
compute

Specialized/adaptive compute

“Routing capacity to avoid 
applying all weights to every 

example”

2.
.



Atypical Data Points or 
Challenging Exemplars
- Underrepresented 

vantage points (the 
long-tail of the dataset)

- Image classification 
entails fine grained task
 

Valuable use of parameters to 
represent these data points.

“Good memorization”

Adaptive 
compute – 
spend more time 
on the data 
points we care 
about.



Specialized/adaptive compute

“Routing capacity to avoid 
applying all weights to every 

example”

[[Zadouri et al. 2023]] 

Our recent work on Mixtures of Experts is focused on 
Specialized/Adaptive compute.

https://arxiv.org/pdf/2309.05444.pdf


        Full model fine-tuning? Costly for large model sizes

● MoEs style architecture with 
ultra-lightweight experts 

● Mixture of IA3 vectors (MoV) or 
LoRA adapters (MoLoRA), as 
experts.

● During fine-tuning, only 
vectors/experts and routers are 
updated for each layer.



Performance of a Mixture of “Ultra-Lightweight” Experts

● Our method 
outperforms standard 
PEFT methods like IA3 
or LoRA. 

● Using a mixture of 
IA3 style vectors 
(MoV), we update just 
0.68% of the model 
parameters, boosting 
performance by 
14.57% over its 
counterpart IA3.



Parting thoughts.



1950

2022

Modern computer science as 
a field has only existed 
for the last 77 years.



P 92

It is very possible that the next breakthrough will require a 
fundamentally different way of modelling the world 

with a different combination of hardware, software and 
algorithm.

1950’s 2012 What next?



P 93

It is the least interesting thing to throw compute at a problem. 
Increasingly, we should justify additional complexity and bend 

scaling curves by focusing on efficiency. 

1950’s 2012 What next?



Key takeaways:

● We are spending a disproportionate amount of 
capacity learning the long tail.

● A more viable path forward is adaptive capacity – 
spending more time on the parts of the data 
distribution we want to learn (either data pruning, 
data selection – or in formulation of algorithms 
(moe))

● There is a ceiling to returns from compute – we are 
currently building a ladder to the moon.



Intriguing Properties of Quantization at Scale Arash 
Ahmadian, Saurabh Dash, Hongyu Chen, Bharat 
Venkitesh, Stephen Gou, Phil Blunsom, Ahmet Üstün, Sara 
Hooker [[paper link]]

When Less is More: Investigating Data Pruning for 
Pretraining LLMs at Scale Max Marion, Ahmet Üstün, 
Luiza Pozzobon, Alex Wang, Marzieh Fadaee, Sara Hooker 
[[paper link]]

Pushing Mixture of Experts to the Limit: Extremely 
Parameter Efficient MoE for Instruction Tuning
Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermiş, 
Acyr Locatelli, Sara Hooker [[paper link]]

Which Prompts Make The Difference? Data 
Prioritization For Efficient Human LLM Evaluation
Meriem Boubdir, Edward Kim, Beyza Ermis, Marzieh 
Fadaee, Sara Hooker [[paper link]]

Feel free to reach out if any of these ideas is 
relevant to work you are doing..

Final takeaways:

Recent breakthroughs in NLP - 
combination of changes in 
optimization, scale (of both data and 
weights)

Key challenge - efficiency of our 
chosen representation. The 
relationship between weights and 
generalization is not well understood.

Promising directions of improving 
efficiency – includes both algorithmic, 
hardware-software and data space.

Tension between theoretical and 
practical motivations – some 
cherished theoretical techniques do 
not produce speed ups. 
.
Email: sarahooker@cohere.com

Questions?

https://arxiv.org/abs/2305.19268
https://arxiv.org/pdf/2309.04564.pdf
https://arxiv.org/pdf/2309.05444.pdf
https://arxiv.org/abs/2310.14424

