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Our goal is to contribute cutting edge research to the wider ecosystem:

e Research staff published 38 papers last year

e Collaborated across 40+ institutions and organizations
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| currently work on designing large scale
language models that are efficient,
multilingual, reliable and trustworthy.

If any of these topics are interesting the talk,
happy to discuss after the talk.



Today | will be giving a talk about a paper | recently released with a very
boring title, but which grapples with topics that are at the center of
computer science progress.

On the Limitations of Compute
Thresholds as a Governance Strategy.

Sara Hooker

Abstract

At face value, this essay is about understanding a fairly esoteric governance tool called
compute thresholds. However, in order to grapple with whether these thresholds will achieve
anything, we must first understand how they came to be. This requires engaging with a
decades-old debate at the heart of computer science progress, namely, is “bigger always
better?’ Hence, this essay may be of interest not only to policymakers and the wider public
but also to computer scientists interested in understanding the role of compute in unlocking
breakthroughs. Does a certain inflection point of compute result in changes to the risk profile
of a model? This discussion is increasingly urgent given the wide adoption of governance
approaches that suggest greater compute equates with higher propensity for harm. Several
leading frontier AI companies have released responsible scaling policies. Both the White
House Executive Orders on Al Safety (EO) and the EU AI Act encode the use of FLOP
or “floating-point operations” as a way to identify more powerful systems. What is striking
about the choice of compute thresholds to-date is that no models currently deployed in
the wild fulfill the current criteria set by the EO. This implies that the emphasis is often
not on auditing the risks and harms incurred by currently deployed models — but rather
is based upon the belief that future levels of compute will introduce unforeseen new risks.
A key conclusion of this essay is that compute thresholds as currently implemented are

shortsighted and likely to fail to mitigate risk. Governance that is overly reliant
on compute fails to understand that the relationship between compute and risk is highly
uncertain and rapidly changing. It also overestimates our ability to predict what abilities
emerge at different scales. This essay ends with recommendations for a better way forward.



https://arxiv.org/abs/2407.05694

There are policy implications to this work, but today | will focus on the
technical aspects of this paper.

You, see to understand whether compute thresholds make sense — we need
to grapple with a question which has been a decades old debate at the
heart of computer science progress “is bigger always better?”

On the Limitations of Compute
Thresholds as a Governance Strategy.

Sara Hooker

Abstract

At face value, this essay is about understanding a fairly esoteric governance tool called
compute thresholds. However, in order to grapple with whether these thresholds will achieve
anything, we must first understand how they came to be. This requires engaging with a
decades-old debate at the heart of computer science progress, namely, is “bigger always
better?” Hence, this essay may be of interest not only to policymakers and the wider public
but also to computer scientists interested in understanding the role of compute in unlocking
breakthroughs. Does a certain inflection point of compute result in changes to the risk profile
of a model? This discussion is increasingly urgent given the wide adoption of governance
approaches that suggest greater compute equates with higher propensity for harm. Several
leading frontier Al companies have released responsible scaling policies. Both the White
House Executive Orders on Al Safety (EO) and the EU AI Act encode the use of FLOP
or “floating-point operations” as a way to identify more powerful systems. What is striking
about the choice of compute thresholds to-date is that no models currently deployed in
the wild fulfill the current criteria set by the EO. This implies that the emphasis is often
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The role of model scale and
data in recent
breakthroughs



A “bigger is
better” race in
the number of
model
parameters has
gripped the
field of machine
learning.
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https://arxiv.org/pdf/1605.07678.pdf
https://openai.com/blog/ai-and-compute/

This characterizes both vision and NLP tasks.
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Link here [Sharir et al. 2020]



https://www.sciencedirect.com/science/article/pii/S0743731518308773
https://arxiv.org/pdf/2004.08900.pdf

And involves large increases in both model and dataset sizes:

200 1.4
Billion Trillion
3 30
I\Tilll%?] Billion  Billion ‘
| . »
13 y.o. BERT RoOBERTa GPT-3 Chinchilla
Human (2018) (2019) (2020) (2022)

Number of tokens involved in training.
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This has been formalized by Rich Sutton as the “bitter lesson’

The Bitter Lesson

Rich Sutton

March 13, 2019 In a punch to the ego
hehiggetiemeniiofomberalion 7 s olheseydis il ppeiiaiol htlerngeompliion e of every computer
contired exponendally llgcot poruntof computatin,Most Al e s ben onducid s e computtion scientist out there,

performance) but, over a slightly longer time than a typical research project, massively more computation inevitably becomes . .
available. Seeking an improvement that makes a difference in the shorter term, researchers seek to leverage their human W h at S u tto ] IS S ayl ] g
knowledge of the domain, but the only thing that matters in the long run is the leveraging of computation. These two need

not run counter to each other, but in practice they tend to. Time spent on one is time not spent on the other. There are . .
psychological commitments to investment in one approach or the other. And the human-knowledge approach tends to | S th at Sy m b O I | C
complicate methods in ways that make them less suited to taking advantage of general methods leveraging computation.

Th les of AI hers' belated 1 i f this bitter 1 , and it is instructive t i f thy H
mértepv:;r:irr:;x;y examples of Al researchers' belated learning of this bitter lesson, and it is instructive to review some of the methOdS that COd Ify

In computer chess, the methods that defeated the world champion, Kasparov, in 1997, were based on massive, deep search. At
the time, this was looked upon with dismay by the majority of computer-chess researchers who had pursued methods that h u m a n k n OWl e d g e

leveraged human understanding of the special structure of chess. When a simpler, search-based approach with special
hardware and software proved vastly more effective, these human-knowledge-based chess researchers were not good losers.

They said that “brute force" search may have won this time, but it was not a general strategy, and anyway it was not how h ave n Ot WO rke d a S
people played chess. These researchers wanted methods based on human input to win and were disappointed when they did

well as letting a model

A similar pattern of research progress was seen in computer Go, only delayed by a further 20 years. Enormous initial efforts .
went into avoiding search by taking advantage of human knowledge, or of the special features of the game, but all those | e a n p atte n S fo ri tS e |f
efforts proved irrelevant, or worse, once search was applied effectively at scale. Also important was the use of learning by self
play to learn a value function (as it was in many other games and even in chess, although learning did not play a big role in
the 1997 program that first beat a world champion). Learning by self play, and learning in general, is like search in that it
enables massive computation to be brought to bear. Search and learning are the two most important classes of techniques for
utilizing massive amounts of computation in Al research. In computer Go, as in computer chess, researchers' initial effort was
directed towards utilizing human understanding (so that less search was needed) and only much later was much greater
success had by embracing search and learning.




Is Sutton right?



|s Sutton rig ht? Different regimes of scale appear to induce emergent abilities.
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https://arxiv.org/pdf/2206.07682.pdf

For example, requires larger and larger models to take advantage of
instruction fine-tuning.

Average zero-shot accuracy

on held-out tasks (%)

70 : .
Instruction tuning

60

Untuned model
50

40

30

0.4B 2B 8B 688 137B

Model Size (# parameters)

Instruction tuning only improves performance on unseen tasks for models of certain size.

= Cohere For AI



https://ai.googleblog.com/2021/10/introducing-flan-more-generalizable.html

Throwing compute at a problem is still
widely favored:

- More de-risked vs more difficult
approaches of crafting new optimization
techniques

- Fits into industry quarterly planning
cycles - hard to justify deviating from
the predictable path of gains.

= Cohere For AI



However, many data points exist to
suggest that training compute alone
IS not sufficient.



Models at the same capacity have been getting far more

performant over time.
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Models under 13B on
the llm open
leaderboard over
time.

Hooker 2024



https://arxiv.org/abs/2407.05694v1

Smaller models frequently outperform far larger models.
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All models over 13B
(grey) that
underperform the
best daily model
under 13B submitted
to the llm open
leaderboard (green).

Hooker 2024
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A key limitation of blindly
following “the bitter
lesson” is that the
relationship between
compute and

performance properties

M is not well understood.
N



In fact, we observe a highly uncertain relationship between

compute and performance.



In fact, we observe a highly uncertain relationship between

compute and performance.

Data quality compensates for need for compute

Architecture plays a significant role in determining scalability
Post-training optimization reduces need for training time compute.
Diminishing returns to adding more weights.

Many redundancies between weights

We can remove most weights after training.

Most weights necessary for representing a small fraction of the



Data quality compensates
for the need for compute.



Recent work finds smaller amounts of higher quality data removes the
need for a larger model.

There is increasing
evidence that efforts to
better curate training
corpus, including
deduping, pruning data
and increasing the
available training corpus
size can compensate for
the need for larger
networks and/or improve
training dynamics.

= Cohere For AI

% train examples with % valid with
dupintrain dupinvalid dupin train

C4 3.04% 1.59% 4.60%
RealNews 13.63% 1.25% 14.35%
LMIB 4.86% 0.07% 4.92%
Wiki40B 0.39% 0.26% 0.72%

Table 2: The fraction of examples identified by
NEARDUP as near-duplicates.

Lee et al. 2022

d Scaling Laws

Allocating compute when repeating

Parameters

Final test loss

Tokens
(Epochs)

Figure 1: Return and cation when repeating data. (Left): Loss of LLMs (4.2B parameters)
scaled on repeated data decays predictably (§6). (Right): To maximize performance when repeating,
our data-constrained scaling laws and empirical data suggest training smaller models for more epochs

in contrast to what assuming Chinchilla scaling laws [42] hold for repeated data would predict (§5).
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https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00447/109285
https://arxiv.org/pdf/2107.06499.pdf
https://arxiv.org/pdf/2305.16264.pdf
https://arxiv.org/pdf/2305.16264.pdf

This fundamentally changes the notion of the axes of capacity — that
instead of just more training time, more weights. That the quality of the

data can imply less training time or less weights are needed.

1;
Model size

Shifts out the production
possibilities frontier - a
given improvement in data
quality increases output for
any given model size,

e training time combination.

Improved data
quality

Training time

= Cohere For AI



Our recent work focuses on effective data pruning for pretraining
internet scale.

When Less is More:
Investigating Data Pruning for Pretraining
LLMs at Scale

Initial Data Apply Pruning Algorithm Pruned Data
Max Marion Ahmet Ustiin Luiza Pozzobon
. Cohere for AI Cohere for AI Cohere for AI
/D N\ é- 3 Keep/Bg\ttom maxwell@cohere.com ahmet@cohere.com luiza@cohere.com
7 2 " ‘ Alex Wang Marzieh Fadaee Sara Hooker
—— 1 L= B Cohere Cohere for AI Cohere for AT
—— 29 F=——= 82 Pretrain on Dg alexwang@cohere.com marzieh@cohere.com sarahooker@cohere.com
— or
— 23 =—— 383
Keep Middle
Abstract
strac
/ Large volumes of text data have contributed significantly to the development of large language
- . . models (LLMs) in recent years. This data is typically acquired by scraping the internet, leading
r_‘ . . or to pretraining datasets comprised of noisy web text. To date, efforts to prune these datasets down
—— Keep Top to a higher quality subset have relied on hand-crafted heuristics encoded as rule-based filters. In
— D this work, we take a wider view and explore scalable estimates of data quality that can be used to
— Zp b—x 8, —/ systematically measure the quality of pretraining data. We perform a rigorous comparison at scale
i i of the simple data quality estimator of perplexity, as well as more sophisticated and computationally
R Pruning metrics intensive estimates of the Error L2-Norm and memorization. These metrics are used to rank and

prune pretraining corpora, and we subsequently compare LLMs trained on these pruned datasets.
Surprisingly, we find that the simple technique of perplexity outperforms our more computationally
expensive scoring methods. We improve over our no-pruning baseline while training on as little
as 30% of the original training dataset. Our work sets the foundation for unexplored strategies in
automatically curating high quality corpora and suggests the majority of pretraining data can be
removed while retaining performance.

[[Marion et al. 2023]]



https://arxiv.org/abs/2309.04564

We can improve over our
no-pruning baseline while
training on as little as 30% of
the original training dataset.

= Cohere For AI

When Less is More:
Investigating Data Pruning for Pretraining
LLMs at Scale

Luiza Pozzobon
Cohere for AI
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Ahmet Ustiin
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Cohere for AI
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Sara Hooker
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Abstract

Large volumes of text data have contributed significantly to the development of large language
models (LLMs) in recent years. This data is typically acquired by scraping the internet, leading
to pretraining datasets comprised of noisy web text. To date, efforts to prune these datasets down
to a higher quality subset have relied on hand-crafted heuristics encoded as rule-based filters. In
this work, we take a wider view and explore scalable estimates of data quality that can be used to
systematically measure the quality of pretraining data. We perform a rigorous comparison at scale
of the simple data quality estimator of perplexity, as well as more sophisticated and computationally

intoncive actimatac nf tha Brrar T.9 Narm ond momarizatinn Thaca matrice avre nicad +n vanls and

[[Marion et al. 2023]]
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Data pruning is a valuable optimization at multiple stages of training
pipeline — here we also show promising results in preference training.

We reduce instances of indecisive
(or “tie”) outcomes by up to 54%
compared to a random sample
when focusing on the top-20
percentile of prioritized instances.

This helps save valuable human

feedback for the most important
instances.

= Cohere For AI

Which Prompts Make The Difference?
Data Prioritization For Efficient Human
LLM Evaluation

Meriem Boubdir Edward Kim Beyza Ermis
Cohere for AI Cohere Cohere for AI
meri.boubdir@gmail.com edward@cohere.com beyza@cohere.com
Marzieh Fadaee Sara Hooker
Cohere for AI Cohere for Al
marzieh@cohere.com sarahooker@cohere.com
Abstract

Human evaluation is increasingly critical for assessing large language models, capturing linguis-
tic nuances, and reflecting user preferences more accurately than traditional automated metrics.
However, the resource-intensive nature of this type of annotation process poses significant chal-
lenges. The key question driving our work: is it feasible to minimize human-in-the-loop feedback
by prioritizing data instances which most effectively distinguish between models? We evaluate sev-
eral metric-based methods and find that these metrics enhance the efficiency of human evaluations
by minimizing the number of required annotations, thus saving time and cost, while ensuring a
robust performance evaluation. We show that our method is effective across widely used model
families, reducing instances of indecisive (or “tie”) outcomes by up to 54% compared to a random
sample when focusing on the top-20 percentile of prioritized instances. This potential reduction in
required human effort positions our approach as a valuable strategy in future large language model
evaluations.

[[Boubdir et al. 2023]]



https://arxiv.org/pdf/2310.14424.pdf

Relationship between
welghts and performance is
not well understood.



1. Diminishing returns to adding parameters. Millions of parameters
are needed to eek out additional gains.

ImageNet Top-1 Accurac
Model | Parameters” | Features | Image Size | Paper | Public Checkpoint” I 1
Inception v1° [69] 5.6M 1024 224 132 69.8
BN-Inception? [34] 10.2M 1024 224 74.8 74.0
Inception v3 [70] 21.8M 2048 299 78.8 78.0
Inception v4 [68] 41.1M 1536 299 80.0 80.2
Inception-ResNet v2 [68] 54.3M 1536 299 80.1 80.4
ResNet-50 v1¢ [29, 26, 25] 23.5M 2048 224 76.4 732
ResNet-101 v1 [29, 26, 25] 42.5M 2048 224 719 76.4
ResNet-152 v1 [29, 26, 25] 58.1M 2048 224 N/A 76.8 !
DenseNet-121 [31] 7.0M 1024 224 75.0 74.8
DenseNet-169 [31] 12.5M 1024 224 | 762 76.2 Almost
DenseNet-201 [31] 18.1M 1024 224 | 714 773 double the
MobileNet v1 [30] 3.2M 1024 224 70.6 70.7
MobileNet v2 [61] 2.2M 1280 224 | 720 71.8 amount of
MobileNet v2 (1.4) [61] 4.3M 1792 224 | 74.7 75.0 weights for a
NASNet-A Mobile [84] 4.2M 1056 224 74.0 74.0 . 0
NASNet-A Large [84] 84.7M 4032 331 | 827 82.7 gainin 2%
points.

Table: Kornblith et al., 2018 [Kaplan + 2020]



https://arxiv.org/pdf/1805.08974.pdf
https://arxiv.org/pdf/2001.08361.pdf

2. Redundancies Between Weights

Predicting Parameters in Deep Learning

Denil et al. find that a small
o el Ranent - Nondo de o set of weights can be used to

1University of Oxford, United Kingdom
2Unj 4 T4 : . . .
University of British Columbia, Canada (o)
3Université de Montréal, Canada / p red I Ct 9 5 o OT wel g tS IN t e
4Facebook Inc., USA
{misha.denil,nando.de.freitas}@cs.ox.ac.uk
laurent.dinh@umontreal.ca network.

ranzato@fb.com

Abstract

We demonstrate that there is significant redundancy in the parameterization of
several deep learning models. Given only a few weight values for each feature it
is possible to accurately predict the remaining values. Moreover, we show that not
only can the parameter values be predicted, but many of them need not be learned
at all. We train several different architectures by learning only a small number of
weights and predicting the rest. In the best case we are able to predict more than
95% of the weights of a network without any drop in accuracy.

[[Denil et al., 2014]]



https://arxiv.org/abs/1306.0543

3. Most weights can be removed after training is finished (while only
losing a few % in test-set accuracy!)

Bl baseline Bl variational dropout
B magnitude pruning random pruning
0.80 .
With 90% of
0.75
. 0'70 the weights
B o o5 removed, a
o 0'60 ResNet-50 only
- 0'55 loses ~3% of
2 050 performance
- oas (for certain
0'40 pruning
0.5 0.6 0.7 0.8 0.9 1.0 methods).
Sparsity

[[The State of Sparsity in Deep Neural Networks, 2019, Gale, Elsen, Hooker]]



4. Across a variety of settings and modalities, we find that removing weights
causes models to loss performance on the long-tail. The majority of weights
(90% of all weights) are used to memorize very rare examples in the dataset.

CelebA Attribute % of Training Set

100

% of Training Set

When we
remove weights
models lose
performance on
rare examples.

~< Cohere For AI [[Hooker et al. 2019, Hooker, Moorosi et al, 2020]]



https://arxiv.org/abs/1911.05248
https://arxiv.org/pdf/2010.03058.pdf

Compute does not capture
the algorithmic
breakthroughs that have led
to large gains in performance
over last 5 years.



Key algorithmic improvements which have relatively
limited compute cost but huge impact on
performance:

= Cohere For AI



Key algorithmic improvements which have relatively
limited compute cost but huge impact on
performance:

1. Multi-task 2. Instruction 3. Preference
training fine tuning training

= Cohere For AI



There has been renewed interest in the types of data that
lead to powerful zero shot abilities — performing well on
completely unseen tasks.

Q Tell me a story about a wizard fish who goes to boarding school
' underwater.

!a There once was a fish with a special gift,
A wizard in his own right, so wise and deft.
He lived in an underwater school,
Where students gathered from far and wide.

Each day, the wizard fish would cast

A spell to protect the school from harm.
He'd conjure up a shield so strong and vast,
Keeping them all safe from any storm.

But one day, a fierce shark appeared,
With an army of evil fish, they'd been hired.
They came to destroy the wizard fish's school,

And take over the underwater rule.

The wizard fish knew he had to act,

So he gathered his friends, ready for the attack.
With his magic, he created a plan,

To outsmart the shark and win the game.




Two ingredients have been particularly important at
leading to breakthroughs in performance on zero and

few shot tasks:

1.

Instruction tuning - 2. Integrating human
Structuring multi-task feedback about
fine-tuning data as preferences

questions and
answers



Multi-task fine-tuning moves to a single global model - train on
multiple tasks at once.

3 Fine-tuning

Fine-tuned model

which are of considerable biological interest.

.
.
We wish to suggest a structure for the salt of deowyrbose .
.
\/ nucleic acid (DNA). This structure has novel features s
Text :

ex

Small labeled

datacet

[ "translate English to German: That is good."

Topic: Biology (97%)

"Das ist gut."

"not acceptable”

“cola sentence: The
course is jumping well."

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county."

Prediction Figure 1: A diagram of our text-to-text framework. Every task we consider—including

Finetuning on a single

task

—_—

translation, question answering, and classification—is cast as feeding our model
text as input and training it to generate some target text. This allows us to use the
same model, loss function, hyperparameters, etc. across our diverse set of tasks. It
also provides a standard testbed for the methods included in our empirical survey.
“T5” refers to our model, which we dub the “Text-to-Text Transfer Transformer”.

Finetuning on many
different tasks



Why is this a big deal — it transitions from having custom
models for each task to having a single task-general model that
can perform a lot of tasks, which only require zero or few
examples

Model for
sentiment analysis

Single model
trained on

Model for topic
categorization

multi-task
finetuning

Model for toxicity
mitigation
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s-Aya

What Is Instruction
Fine-Tuning?

Instruction Fine-Tuning (IFT) is a form of model training that enables models to better understand
and act upon instructions. It is based on the idea that we can use everyday language to ask a model
to perform a task and in return the model generates an accurate response in natural language.

Training

Summarize the
follow Solve 2 + 2
SR Write a short S
paragrg what film won the

2023 Oscar as best
film?

Accelerating multilingual Al through open science cohere.com/research/aya



This combination — of multitask training and instruction
style improves zero shot performance.

(o]
o

Held-out clusters

g |t Commonsense

70 / 63.5
61.9
550 59.3 59.2 6038 —Average
43.9/‘-/_‘—‘_"‘/ ki
50 747‘::’06#4 > Open-domain QA

Performance (%)
on held-out cluster

30
# clusters: 1 2 3 4 5 6 7
(#datasets): (11) (20) (26) (30) (34) (37) (39)

.0 : ‘. X S
@’S\O ,b\\o oo((\Q . Go \@* QQO ‘OY‘
X X

Clusters used for instruction tuning

Finetuned language models are
zero-shot learners (Wei et al., 2021).



Preference training aligns model behavior with human feedback
by upweighting answers that humans find more meaningful in a
third stage of optimization.

Prompt:

What are the 3 most common gasses in earth’s atmosphere?

LM Giuts: Gather feedt?ack -> train
The atmosphere of Earthisa The atmosphere is commonly m O d e 1 t O a 1 1 g n W 1 t h
A Eatagravty.e bywoke ety e feedback.

The air that surrounds the The atmosphere of Earth is
e planet Earth contains various Q the layer of gases, generally

Sases Hitcom.. aeelio g Upweight answers that
Human Feedback humans find more

@ 0-0-0-0 — [Eramany|  meaninoful
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We recently established new state-of-art in multilingual — by
applying preference training on top of Aya 8b IFT.

Preference
Optimized (RLHF)
Aya 23 outperforms
llama 3, gemma,
mistral and
original Aya base.

Beats widely used
models across
languages covering
half the world’s
population! &

= Cohere For AI

RLHF Can Speak Many Languages:
Unlocking Multilingual Preference
Optimization for LLMs

John Dang Arash Ahmadian Kelly Marchisio
Cohere For AI Cohere & Cohere For AI Cohere
johndang@cohere.com arash@cohere.com kelly@cohere.com
Julia Kreutzer Ahmet Ustiin Sara Hooker
Cohere For AI Cohere For AI Cohere For AI
juliakreutzer@cohere.com ahmet@cohere.com sarahooker@cohere.com

Abstract

Preference optimization techniques have become a standard final stage for training state-of-art large
language models (LLMs). However, despite widespread adoption, the vast majority of work to-date
has focused on first-class citizen languages like English and Chinese. This captures a small fraction
of the languages in the world, but also makes it unclear which aspects of current state-of-the-art
research transfer to a multilingual setting. In this work, we perform an exhaustive study to achieve
a new state-of-the-art in aligning multilingual LLMs. We introduce a novel, scalable method for
generating high-quality multilingual feedback data to balance data coverage. We establish the
benefits of cross-lingual transfer and increased dataset size in preference training. Our preference-
trained model achieves a 54.4% win-rate against Aya 23 8B, the current state-of-the-art multilingual
LLM in its parameter class, and a 69.5% win-rate or higher against widely used models like Gemma-
1.1-7B-it, Llama-3-8B-Instruct, Mistral-7B-Instruct-v0.3. As a result of our study, we expand the
frontier of alignment techniques to 23 languages covering half of the world’s population.

Dang et al. 2024
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Other algorithmic improvements which result in gains in
performance without increasing training compute:

= Cohere For AI



Other algorithmic improvements which result in gains in
performance without increasing training compute:

1.

Models
enabled
with tool

use

2. Retrieval
augmented
models

3.
Chain-of-thought

4. Best-of-n
sampling

= Cohere For AI

5. Distillation of
synthetic data

6. Increasing
context length




The role of architecture.



Overnight in 2012, everyone
switched to deep neural networks.

Perseverance over
decades led to the
breakthrough of deep
neural networks in 2012

computer vision. \\\\\\\\\\\\\\\\

1964 2017
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2012: Convolutional Neural Networks

What aspects of the architecture improve efficiency?

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.



Efficiency gains:

Shared weights

shared weight
kernels/filters that
slide across the input
image. convolutions
to capture local
patterns and features.
This sharing of
weights reduces the
number of
parameters in the
network

Pooling
Operations

Max-pooling and
average pooling
operations reduce the
spatial dimensions of
the feature maps,
drastically reducing
feature space.

Hierarchical
Feature
Extraction:

Each subsequent
layer builds upon the
features learned by
previous layers.



2017: The Transformer, the
culmination of a rich history of
language modelling

What aspects of the architecture improve efficiency?

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*

Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* ELukasz Kaiser*
Google Research University of Toronto Google Brain
1llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* ¥
illia.polosukhin@gmail.com
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Efficiency gains:

Self-Attention
Mechanism:

Self-attention
layers ensure that
the model can
handle
variable-length
sequences,
making it
well-suited for
language data.

Parallelizable Nature:

Process all the tokens in the
input sequence in parallel.
Parallel processing
capability allows for faster
training and inference
compared to recursive or
sequential models, which
process tokens sequentially.

Lack of Recursion:

Transformers utilize
position embeddings to
encode the relative
positions of tokens in
the input sequence. This
approach allows the
model to capture the
order of words without
relying on recursive
connections.



Architecture + algorithmic innovation
determine rate of return for compute.
So compute alone does not tell the
story of our field.



What is often missed In this
statement Is that our architectures
also represent the ceiling in what is

achievable through scaling.



Point of comparison: our Brain is incredibly energy efficient.

Has over 85 billion neurons but runs on the
energy equivalent of an electric shaver

Key design choices to embed efficiency:
Specialized pathways

Simulate much of what we “see”

Log scale vision




Some aspects of what we do with deep neural networks is

painfully inefficient.

- We do not have adaptive compute.
Typically we see all examples same
amount of time during training.

- Global updates mean all prior
information is erased.

- Empirical risk minimization means
while we optimize for average
performance, it takes considerable
more compute to model rare or
infrequent artefacts.




Empirical risk minimization means we optimize to
reduce average error:

This means it takes
more capacity or
longer training to
learn rare features.

Majority of features are
learnt early in training.
Despite this most of
training focuses on
long-tail.

Majority of features
can be learnt using
small models. Scaling
of size primarily
benefits small tiny
part of distribution.



Work with colleagues over last few years has focused on

understanding what is lost and gained as we vary model size.

CHARACTERISING BIAS IN COMPRESSED MODELS
What Do Compressed Deep Neural Networks Forget?

Sara Hooker *
Sara Hooker *  Aaron Courville ~ Gregory Clark ~ Yann Dauphin  Andrea Frome Google Research
Google Brain MILA oogle Google Brain  Google Brain shooker0google. con

leng Moorosi *
Google Research
nyalleng@google. com

Gregory Clark

oogle
gregoryclarkOgoogle. con

Emily Denton
Google Research

Samy Bengio
Google Research
AbStract dentoneegoogle. com

bengiotgoogle. con
Deep neural network pruning and quantization techniques have demonstrated it is
possible to achieve high levels ression with s
icant ABSTRACT
differences in how different classes and images are impacted by e compression
techniques. We find that models with radically different numbers of weighis have
comparable top-line performance metrics but diverge considerably in behavior
on a narrow subset of the dataset. This small subset of data points, which we
rm Pruning Identified Exemplars (PIES) are systematically more impacted by the
inioduction of sparsity. Compression disproportionately impacts model perfor-
ance on the unden'epr:xm:d long-tail of the data distribution. PIEs over-index
on atypical or noisy images that are far more challenging for both humans and
P dur work provides intuition into the role of capacil
and the trade-offs incurred by compression. An understanding of
this disparate impact s critical given the widespread deployment of compressed
‘models in the wild.

y and widespread use of pruning and quantization is driven by the severe resource
constraints of deploying deep neural networks to environments with strict mmv ‘memory and energy
requirements, These techniques achieve high levels of compression with negligible impact on top-line
‘metrics (top-1 and top-S accuracy). However, overall accuracy hides disproportionately high errors
on a small subset of examples; we call this subset Compression Identified Exemplars (CIE). We
further establish that for CIE examples, compression amplifies g algorithmic bias. Pruning
disproportionately impacts performance on underrepresented features, which often coincides with
considerations of fairess. Given that CIE is a relatively small subset but a great contributor of error
in the model, we propose its use as a human-in-the-loop auditing tool to surface a tractable subset
of the datast forfuter inspecion orannotation by a domin exper. We provide ualtive and
quantitative support that C/E surfaces the most challenging examples in the data distribution for
human-in-the-loop ’mdmng

The Low-Resource Double Bind: An Empirical Study of Pruning for
Low-Resource Machine Translation

Orevaoghene Ahia

reva.ahia@gmail.com Mas
jkreutz

Abstract

A “bigger is better” explosion in the num-
ber of parameters in deep neural networks has
made tncresinlychallnging to make -
networks accessible in compute-

esrred emironment Compression tech-
niques have taken on renewed importan

way to bridge the gap. However, evaluation of
the trade-offs incurred by popular compression
techniques has been centered on high-resource.
datasets. In this work, we instead consider
the impact of compression in a data-limited
regime. We introduce the term low-resource
double bind to refer to the co-occurrence of
data limitations and compute resource con-
straints. This is 2 common setting for NLP for
low-resource languages, yet the trade-offs in

Julia Kreutzer
‘Masakhane NLP Google Research

Intriguing Properties of Compression on Multilingual Models

ejic

Sara Hooker

khane NLP
regoogle. com

shooker@google.com
Abstract

Malilingual models ae oficn paricularly de-

scalng to generslize t0 3 grow-

ing number of langusges. Compression tech-
are widely reled upon to reconcile the

Figure 1: Cost of mobile data by country per language
rank according to the taxonomy by Joshi et al. (2020).

disproportionately impact the performance of
lowresource languages.

. . Sebastian Gehrmann Sara Hooker
Google Research, Brain Google Research Cohere For Al Google Rese:
gehrnannegoogle.con  sarahookerécohere.con  jkreutzer@google.con

Kelechi Ogue Orevaoghene Ahia
University of Waterloo  University of Washington
kjoguejieumaterloo.ca oahia€cs.washington.edu  lekeonilude@gnail.com

Julia Kreutzer
arch

‘while maintaining comparable aggregate perfor-
mance are widely used, such as quantzation (Shen

al., 2020), compression (Michel ctal, 2019; La-
gunas etal,, 2021) and distillation (Tsai etal., 2019;
Sanh etal., 2019; Pu etal., 2021).

e keroiics languages, can
be fr more scvere (Hooker ot 1, 201; loker
etal, 2020; Ahia et al, 2021). Dispariies in re-

source availabiliy. This makes compression al the
sary, but also motivates a thorough con-

sideration of the subsequent impact of compression
ization.

In this work, we develop an experimental frame-
‘work o investigatethe impactof compression dur.

tuning of pre-trained multilingual mod-
el which we apply to Named Entity Recognition

[Hooker et al. 2019, Hooker, Moorosi et al, 2020,

Ahia et al. 2021,
2024]]
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Pruning Identified
Exemplars (PIEs)

Data points where predictive
behavior diverges between a
population of independently
trained compressed and
non-compressed models.

plastic bag

Non-PIE PIE




ImageNet test-set.
True label?




toilet seat

PIE

Non-PIE




ImageNet test-set.
True label?
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ImageNet test-set.
True label?







ImageNet test-set.
True label?




matchstick

Non-PIE PIE




Noisy Data Points Atypical Data Points or

- Datais improperly Challenging Exemplars
structured which corrupts - Underrepresented
information vantage points (the

- Mislabelled long-tail of the dataset)
- Severely corrupted - Image classification
- Multi-object entails fine grained task

Misuse of parameters to

Valuable use of parameters to
represent these data points.

represent these data points.

“Bad memorization” “Good memorization”




Noisy PIEs improperly structured multi-object images for
single-image classification.

—
-
.

True Label:
wine bottle

True Label:
desktop computer

True Labél:

groom
Non-Pruned:
Non-Pruned: red iR Non-Pruned:
screen Pruned: wine groom

Pruned: monitor bottle Pruned: suit



Noisy PIEs Corrupted or incorrectly labeled data.

True Label:

True Label: True Label:
restaurant envelope tub
Non-Pruned: Non-Pruned: Non-Pruned:
meat loaf
dumbbell cauldron

Pruned: guacamole
Pruned: maraca Pruned: wok



Atypical PIEs unusual vantage point or rare example

True Label:

True Label: True Label:
toilet seat bathtub plastic bag
Non-Pruned: Non-Prunsd: Non-Pruned:
i gown
toilet seat bathtub
: Pruned: plastic
Pruned: folding Pruned: cucumbe b P

chair r



PIEs over-index on the long-tail of underrepresented
attributes.

CelebA Attribute PIE Representation

= 2
2 Q" e
?“go
0- {Peb.'e.:e . = "‘Izbo,. . ?%-uoau-'-o
20 40 60 80

% of the Training Set

Attribute Proportion of CelebA Training Data vs. relative representation in PIE



It is worth emphasizing this finding: We lose the long-tail when we
remove the majority of all training weights.

Put differently, we are using the majority of our weights to encode a useful
representation for a small fraction of our training distribution.

_
| | | | |
0% 90 %
Overparameterized Model with 90%
Dense Model weights removed

Google



When we scale models, we are paying an enormous cost to learn a small
slice of the distribution.

CelebA Attribute % of Training Set
100
@
w
o
£
£
&
=
s
2
o 2508 ea®
J (\6"6\%\(5&.‘%\%\6
(\o“»\o v\o“
Celeb-A Low Frequency Sub-Groups
Y ={Blond, N
Non-Blond} y 1 ;
Training set: x
162,770

Non-Blond Male Non-Blond Female Blond Female  Blond Male Blond Old

66,874 71,628 22,880 1,387 4,037

44% 41% 14% 0.85% 2.48%

Figure 1: Most natural image datasets exhibit a long-tail distribution with an unequal frequency of attributes in the
training data. Below each attribute sub-group in CelebA, we report the share of training set and total frequency count.

Google [[Hooker et al. 2019, Hooker, Moorosi et al, 2020]]
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So, where do we go from here.



How should we make better use of
capacity? How do we avoid the cost
of representing the long-tail?



Directions that we have been working on:

Data pruning or Weighting Specialized/adaptive compute

“Spending more capacity on the “Routing capacity to avoid

data points we care about” applying all weights to every
example”




Data pruning.

Noisy Data Points
- Datais improperly
structured which corrupts

mfo';\r/palt'gn” 4 Can we identify and
- ISlabelle remove these noisy
- Severely corrupted data points?
- Multi-object

- How do we do this
at scale?

Misuse of parameters to
represent these data points.

“Bad memorization”




Much of our recent work over the last year has focused on
data pruning, prioritization of examples.

When Less is More:
Investigating Data Pruning for Pretraining
LLMs at Scale

Max Marion Ahmet Ustiin Luiza Pozzobon
Cohere for AT Cohere for AI Cohere for AI
maxwellQcohere. com .com lui e.com
Alex Wang Marzieh Fadaee Sara Hooker
Cohere Cohere for AI Cohere for AI
al e.com marzi e.com sarahooker@cohere. con
Abstract
Large volumes of text data have contributed signi to the of large language

models (LLMs) in recent years. This data is typically acquired by scraping the internet, leading
to pretraining datasets comprised of noisy web text. To date, efforts to prune these datasets down
to a higher quality subset have relied on hand-crafted heuristics encoded as rule-based filters. In
this work, we take a wider view and explore scalable estimates of data quality that can be used to
systematically measure the quality of pretraining data. We perform a rigorous comparison at scale
of the simple data quality estimator of perplexity, as well as more sophisticated and computationally
intensive estimates of the Error L2-Norm and memorization. These metrics are used to rank and
prune ining corpora, and we compare LLMs trained on these pruned datasets.
Surprisingly, we find that the simple technique of perplexity outperforms our more computationally
expensive scoring methods. We improve over our no-pruning baseline while training on as little
as 30% of the original training dataset. Our work sets the foundation for unexplored strategies in
automatically curating high quality corpora and suggests the majority of pretraining data can be
removed while retaining performance.

" .
w“Aya Dataset: An Open-Access Collection
for Multilingual Instruction Tuning

Shivalika Singh®!, Freddie Vargus®!, Daniel D’souza®!, Bérje F. Karlsson®2,
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Which Prompts Make The Difference?
Data Prioritization For Efficient Human
LLM Evaluation

Meriem Boubdir Edward Kim Beyza Ermis
Cohere for AI Cohere Cohere for AI
meri.boubdir@gmail.com edward@cohere. com beyza@cohere. com
Marzieh Fadaee Sara Hooker
Cohere for AI Cohere for AI
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Abstract

Human evaluation is increasingly critical for assessing large language models, capturing linguis-
tic nuances, and reflecting user preferences more accurately than traditional automated metrics.
However, the resource-intensive nature of this type of annotation process poses significant chal-
lenges. The key question driving our work: is it feasible to minimize human-in-the-loop feedback
by prioritizing data instances which most effectively distinguish between models? We evaluate sev-
eral metric-based methods and find that these metrics enhance the efficiency of human evaluations
by minimizing the number of required annotations, thus saving time and cost, while ensuring a
robust performance evaluation. We show that our method is effective across widely used model
families, reducing instances of indecisive (or “tic”) outcomes by up to 54% compared to a random
sample when focusing on the top-20 percentile of prioritized instances. This potential reduction in
required human effort positions our approach as a valuable strategy in future large language model

Pretraining Scale

[[Marion et al. 2023]]

Instruction Finetuning Pruning
and Dataset Weighting

[[Singh et al. 2023]]

Prioritizing human
annotation

[[Boubdir et al. 2023]]
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Removing, reprioritizing, generating synthetic data has become a
crucial pipeline step of achieving state of art performance.

Critical Learning Periods: Leveraging Early
Training Dynamics for Efficient Data Pruning

Everlyn Asiko Chimoto'?? Jay Gala'® Orevaoghene Ahia'®
Julia Kreutzer” Bruce A. Bassett?> Sara Hooker’

1Cohere For AI Community —*University of Cape Town, South Africa
3 African Institute for Mathematical Sciences “South African Astronomical Observatory
5Mohamed bin Zayed University of Artificial Intelligence
SUniversity of Washington 7Cohere For Al

Abstract

Neural Machine Translation models are extremely data and compute-hungry. However, not all data
points contribute equally to model training and generalization. Data pruning to remove the low-
value data points has the benefit of drastically reducing the compute budget, without a significant

-’
=?Aya 23: Open Weight Releases to Further
Multilingual Progress

Viraat Aryabumi*!, John Dang!, Dwarak Talupuru?,
Saurabh Dash', David Cairuz?, Hangyu Lin?, Bharat Venkitesh?,
Madeline Smith!, Jon Ander Campos?, Yi Chern Tan?,
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Abstract

This technical report introduces Aya 23, a family of multilingual language models. Aya 23 builds
on the recent release of the Aya model [Ustiin et al., 2024], focusing on pairing a highly performant
pre-trained model with the recently released Aya collection [Singh et al., 2024]. The result is
a powerful multilingual large language model serving 23 languages, expanding state- of-art

drop in model performance. In this paper, we propose a new data pruning techni Ch.
Across Time (CAT), that leverages early model training dynamics to identify the most relevant
data points for model performance. We benchmark CAT against several data pruning teck

to approxi half of the world’s

RLHF Can Speak Many Languages:
Unlocking Multilingual Preference
Optimization for LLMs

John Dang Arash Ahmadian Kelly Marchisio
Cohere For AI Cohere & Cohere For AI Cohere
johndang@cohere . com arash@cohere. com kelly@cohere.com

Sara Hooker
Cohere For AI
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Abstract

Preference optimization techniques have become a standard final stage for training state-of-art large
language models (LLMs). However, despite widespread adoption, the vast majority of work to-date
has focused on first-class citizen languages like English and Chinese. This captures a small fraction
of the languages in the world, but also makes it unclear which aspects of current state-of-the-art
rescarch transfer to a multilingual setting. In this work, we perform an exhaustive study to achieve
a new state-of-the-art in aligning multilingual LLMs. We introduce a novel, scalable method for

nerating high-quality multilingual feedback data to balance data coverage. We establish the

The Aya model covered 101 languages whereas Aya 23 is an experiment in depth vs breadth,
exploring the impact of allocating more capacity to fewer langusges that are included during

including COMET-QE, LASER and LaBSE. We find that CAT outperforms the benchmarks on
Indo-European languages on multiple test sets. When applied to English-German, English-French
and English-Swahili translation tasks, CAT achieves comparable performance to using the full
dataset, while pruning up to 50% of training data. We inspect the data points that CAT selects

. Aya 23 outperforms both previous massively multilingual models like Aya 101 for
the languages it covers, as well as widely used models like Gemma, Mistral and Mixtral on an
extensive range of discriminative and generative tasks. We release the open weights for both the 8B
and 35B models as part of our continued i for ing access to multilingual progress.

Leveraging early
training signal
[[Chimoto et al. 2023]]

Data pruning +
synthetic data

[[Arvadumi et al. 2024]]

benefits of cross-lingual transfer and increased dataset size in preference training. Our preference-
trained model achieves a 54.4% win-rate against Aya 23 8B, the current state-of-the-art multilingual
LLM in its parameter class, and a 69.5% win-rate or higher against widely used models like Gemma-
L1-7B-it, Llama-3-8B-Instruct, Mistral-7B-nstruct-v0.3. As a result of our study, we expand the
frontier of ali 0231 covering half of the world’s population.

Preference training
synthetic data.

Dang et al
2024
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High quality synthetic data also reduces training time and

improves performance.

We recently released Aya 8b
— a best in class small
multilingual model which
outperforms Gemma,

Llama 3 and Mistral.

Most of the gains came
from distillation of synthetic
data from larger more
performant models.

= Cohere For AI

Aya-23-8B vs
Aya-101

Aya-23-8B vs
Gemma-1.1-7B-it

Aya-23-8B vs
Mistral-7B-Inst-v0.3

Aya-23-8B vs
Llama-3-8B-Inst.

Aya-23-35B vs
Mixtral-8x7B-Inst.

% Win Rates

[[Aryadumi et al. 2024]]
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We have also done work on “active inheritance,” moving
optimization to the data space to guide model behavior
towards non-differentiable objectives.

Only very
recently
feasible to do
this -
historically
steering data
collection far
too expensive.
Dataset treated
as static.

= Cohere For AI

LLM See, LLM Do: Guiding Data Generation
to Target Non-Differentiable Objectives

Luisa Shimabucorof Sebastian Ruder Julia Kreutzer
Cohere For AI Cohere Cohere For Al
Marzieh Fadaee' Sara Hookerf
Cohere For AI Cohere For AI
Abstract

The widespread adoption of synthetic data raises new questions about how models generating
the data can influence other large language models (LLMs) via distilled data. To start, our work
exhaustively characterizes the impact of passive inheritance of model properties by systematically
studying the consequences of synthetic data integration. We provide one of the most comprehensive
studies to-date of how the source of synthetic data shapes models’ internal biases, calibration and
generations’ textual attributes and preferences. We find that models are surprisingly sensitive
towards certain attributes even when the synthetic data prompts appear “neutral.” which invites the
question whether this sensitivity can be exploited for good.

Our findings invite the question can we ezplicitly steer the models towards the properties we want at
test time by exploiting the data generation process? This would have historically been considered

infeasible due to the cost of collecting data with a specific characteristic or objective in mind.

However, improvement in the quality of synthetic data, as well as a shift towards general-purpose
models designed to follow a diverse way of instructions, means this question is timely. We propose

B N A, S T T COU. RPN . NN LY CNT 2 P . [ T N AN . N 2 NI T RN .. 1 A T

Shimabucoro et

al. 2024


https://arxiv.org/pdf/2407.01490
https://arxiv.org/pdf/2407.01490

S pec] alized 2 . Specialized/adaptive compute

and / or “Routing capacity to avoid
. . applying all weights to every
Adaptive example”

compute



Ad aptive Atypical Pata Points or
Challenging Exemplars
compute - - Underrepresented

spend more time \ vantage points (the

on the data :ong—tailI of ’F?ie dfataset)
: - Image classification
Fa)gg]tf wecare entails fine grained task
Ut.

Valuable use of parameters to
represent these data points.

“Good memorization”



Our recent work on Mixtures of Experts is focused on
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Abstract

The Mixture of Experts (MoE) is a widely known neural architecture where an ensemble of specialized
sub-models optimizes overall performance with a constant computational cost. However, conventional
MoEs pose challenges at scale due to the need to store all experts in memory. In this paper, we
push MoE to the limit. We propose extremely parameter-efficient MoE by uniquely combining MoE
architecture with lightweight experts.Our MoE architecture outperforms standard parameter-efficient
fine-tuning (PEFT) methods and is on par with full fine-tuning by only updating the lightweight
experts — less than 1% of an 11B parameters model. Furthermore, our method generalizes to unseen
tasks as it does not depend on any prior task knowledge. Our research underscores the versatility
of the mixture of experts architecture, showcasing its ability to deliver robust performance even
when subjected to rigorous parameter constraints. Our code used in all the experiments is publicly
available here: https://github.com/for-ai/parameter-efficient-moe.
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Full model fine-tuning? Costly for large model sizes
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MoEs style architecture with
ultra-lightweight experts
Mixture of IA3 vectors (MoV) or
LoRA adapters (MoLoRA), as
experts.

During fine-tuning, only
vectors/experts and routers are
updated for each layer.



Performance of a Mixture of “Ultra-Lightweight” Experts
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Parting thoughts.



Modern computer science as
a field has only existed
for the last 77 years.
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It is very possible that the next breakthrough will require a
fundamentally different way of modelling the world

with a different combination of hardware, software and
algorithm.

1950’s 2012 What next?



It is the least interesting thing to throw compute at a problem.
Increasingly, we should justify additional complexity and bend
scaling curves by focusing on efficiency.

1950’s 2012 What next?
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Key takeaways:

e We are spending a disproportionate amount of
capacity learning the long tail.

e A more viable path forward is adaptive capacity -
spending more time on the parts of the data
distribution we want to learn (either data pruning,
data selection — or in formulation of algorithms
(moe))

e Thereis a ceiling to returns from compute — we are
currently building a ladder to the moon.



Questions?
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Feel free to reach out if any of these ideas is
relevant to work you are doing..

Final takeaways:

Recent breakthroughs in NLP -
combination of changes in
optimization, scale (of both data and
weights)

Key challenge - efficiency of our
chosen representation. The
relationship between weights and
generalization is not well understood.

Promising directions of improving
efficiency - includes both algorithmic,
hardware-software and data space.

Tension between theoretical and
practical motivations - some
cherished theoretical technigues do
not produce speed ups.
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