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Shameless Advertising

This is a technical lecture that lays out mathematical foundations
you need for a deep understanding of language models (of any
size).

If you or someone you know wants a broad tutorial for thinking
about language models, without math, take a look at “Language
Models: A Guide for the Perplexed” (Serrano et al., 2023).
There’s also a talk video on my website.
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Motivation I: Autocomplete

You’re in the middle of writing an email or text message, and the
system predicts your next . . .

The heart of the language modeling task: what is the next word
likely to be, given the preceding ones?
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Motivation II: Conversation

You ask a question, and the system responds with an answer, like
in a dialogue with another person.

4 / 150



Motivation III: Other Text-Output Applications

Other tasks that have text (or speech) as output:

I transcription of speech-audio to text

I translation from one language to another

I conversational systems

I document summarization

I image captioning

I optical character recognition

I spelling and grammar correction

If we’re mapping inputs i to word sequences w, then:

w∗ = argmax
w

Faithfulness(w; i) + Fluency(w)

Language models can provide a “fluency” score.

5 / 150



Motivation IV: Science

If we have two theories about language, A and B, and

Surprise(A; Data) < Surprise(B; Data),

then A is the preferred theory.

Language models can give us a notion of “surprise.”
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Very Quick Review of Probability

I Event space (e.g., X , Y)—in this lecture, discrete

I Random variables (e.g., X, Y )

I Typical statement: “random variable X takes value x ∈ X
with probability p(X = x), or, in shorthand, p(x)”

I Joint probability: p(X = x, Y = y)

I Conditional probability: p(X = x | Y = y)

I Always true:
p(X = x, Y = y) = p(X = x | Y = y) · p(Y = y)
= p(Y = y | X = x) · p(X = x)

I Sometimes true: p(X = x, Y = y) = p(X = x) · p(Y = y)

I The difference between true and estimated probability
distributions
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Notation and Definitions

I V is a finite set of (discrete) symbols (words or characters);
V = |V|

I V∗ is the (infinite) set of sequences of symbols from V
I In language modeling, we imagine a sequence of random

variables X1, X2, . . . that continues until some Xn takes the
value “8” (a special end-of-sequence symbol).

I V† is the (infinite) set of sequences of V symbols, with a
single 8, which is at the end.
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The Language Modeling Problem

Input: training data x = 〈x1, . . . , xN 〉 in V†

I Sometimes it’s useful to consider a collection of observations,
each in V†, but it complicates notation.

Output: a function p : V† → R

Think of p as a measure of plausibility.
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Questions to Answer

1. How do we quantitatively evaluate language models?

2. How do we build language models?

3. How do we use language models?
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Probabilistic Language Model

We let p be a probability distribution, which means that

∀x ∈ V†, p(x) ≥ 0∑
x∈V†

p(x) = 1

Advantages:

I Interpretability

I We can apply the maximum likelihood principle to build a
language model from data
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Maximum Likelihood Principle/Estimation

Let x be your observations (data).

If P is the set of probability distributions that are consistent with
your assumptions about the data, then the distribution you should
choose is:

pMLE = argmax
p∈P

p(x)
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Maximum Likelihood Principle/Estimation

Let x be your observations (data).

If P is the set of probability distributions that are consistent with
your assumptions about the data, then the distribution you should
choose is:

pMLE = argmax
p∈P

p(x)

In practice, we usually let P be a family of probabilistic models
with parameters θ and choose:

θMLE = argmax
θ

p(x;θ)
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MLE Example

Let x be a sequence of N observed coin flips, i.e., drawn from
{h, t}+.
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Let x be a sequence of N observed coin flips, i.e., drawn from
{h, t}+.

Assumption: a single coin flipped repeatedly, so the observations
are independent and identically distributed. The probability that
the coin comes up heads is θ.

p(x; θ) =

N∏
i=1

θ1{xi=h} · (1− θ)1{xi=t}

θMLE = argmax
θ∈[0,1]

p(x; θ)

=

∑n
i=1 1 {xi = h}

N
=

countx(h)

N
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MLE Example

Let x be a sequence of N observed coin flips, i.e., drawn from
{h, t}+.

Assumption: a single coin flipped repeatedly, so the observations
are independent and identically distributed. The probability that
the coin comes up heads is θ.

p(x; θ) =

N∏
i=1

θ1{xi=h} · (1− θ)1{xi=t}

θMLE = argmax
θ∈[0,1]

p(x; θ)

=

∑n
i=1 1 {xi = h}

N
=

countx(h)

N

For binomial (and more generally, multinomial) event-based
probabilistic models, the MLE equates to “count and normalize.”
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Evaluation of Language Models

We should prefer a language model that is less “surprised” by new
data that wasn’t used to build it. This could be data that’s drawn
from the same distribution as the training data, or it could be from
a different distribution.

1. Probability of the test data: p(x̄;θ)

2. That value will be tiny, because V† is infinitely large, and p
will decrease exponentially in the length of x̄. So we
transform it:

Perplexity(x̄; p(·;θ)) = N̄

√
1

p(x̄;θ)
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Evaluation of Language Models
Given a test dataset x̄ (of N̄ words), we arrive at the standard
intrinsic evaluation in three steps:

1. Probability of the test data: p(x̄;θ)

2. That value will be tiny, because V† is infinitely large, and p
will decrease exponentially in the length of x̄. So we
transform it:

Perplexity(x̄; p(·;θ)) = N̄

√
1

p(x̄;θ)
= 2( 1

N̄
×− log2 p(x̄;θ))

Special cases:
I If the model were to put all of its probability on x̄, perplexity

would be 1 (minimal possible value).
I If the model assigns zero probability to x̄, perplexity is +∞.

So it’s important to make sure that p assigns strictly positive
probability to every sequence of words.

You can interpret perplexity as “effective size of the
vocabulary.”
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Perplexity

I Warning: you can only directly compare perplexity of models
that use exactly the same V.

I Perplexity on conventionally accepted test sets is often
reported in papers.

I I won’t discuss perplexity numbers, because:
I Perplexity is only an intermediate measure of performance.
I Understanding the models is more important than

remembering how well they perform on specific train/test sets;
your data will always be different!

I If you’re curious, look up numbers in the literature; always
take them with a grain of salt.

I New perplexity benchmark: Paloma (Magnusson et al., 2023)
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Reflection

We can also measure perplexity on the training data. Do you
expect training perplexity to be lower (i.e., better) than test
perplexity, or higher (i.e., worse)? Why?
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How to Design the Vocabulary V?

A näıve solution: split text into tokens using whitespace as a
delimiter. Anything that’s a token becomes a vocabulary element
(type).
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How to Design the Vocabulary V?

A näıve solution: split text into tokens using whitespace as a
delimiter. Anything that’s a token becomes a vocabulary element
(type).

I Vocabulary will be huge, because there are a lot of words,
they all have many variants with different capitalization,
punctuation, and mis)spellings. Also, some languages don’t
use whitespace!
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How to Design the Vocabulary V?

A näıve solution: split text into tokens using whitespace as a
delimiter. Anything that’s a token becomes a vocabulary element
(type).

A safe solution: build models on bytes. (What’s wrong with this?)

I This might work, but it means your text will be heavily
fragmented and your sequences will be extremely long. This
isn’t yet a practical solution for current models.
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A näıve solution: split text into tokens using whitespace as a
delimiter. Anything that’s a token becomes a vocabulary element
(type).

A safe solution: build models on bytes. (What’s wrong with this?)

Conventional solution: use a sample of data to learn a series of
rules that start from bytes or characters and iteratively merge
common sequences into larger units, up to some maximum
vocabulary size (Sennrich et al., 2016; Wu et al., 2016). The most
common technique is known as “byte pair encoding.”
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A näıve solution: split text into tokens using whitespace as a
delimiter. Anything that’s a token becomes a vocabulary element
(type).

A safe solution: build models on bytes. (What’s wrong with this?)

Conventional solution: use a sample of data to learn a series of
rules that start from bytes or characters and iteratively merge
common sequences into larger units, up to some maximum
vocabulary size (Sennrich et al., 2016; Wu et al., 2016). The most
common technique is known as “byte pair encoding.”

I This approach is “safe” in the sense that you can always fall
back to byte-level tokenization.
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Our Universe, For Now

We will focus on probabilistic language models with a fixed, finite
vocabulary V.

Training will start from the maximum likelihood principle.

Training data is x = 〈x1, . . . , xN 〉 and we evaluate perplexity on
test data x̄ = 〈x̄1, . . . , x̄N̄ 〉.
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A First Language Model

p(x) ∝ count(x)
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A First Language Model

p(x) ∝ count(x)

What if x̄ is not (in) the training data?
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A First Language Model

p(x) ∝ count(x)

If we think of the training data as multiple sequences, the issue
remains.
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Using the Chain Rule

p(X = x) =


p(X1 = x1)
· p(X2 = x2 | X1 = x1)
· p(X3 = x3 |X1:2 = x1:2)
...
· p(XN = 8 |X1:N−1 = x1:N−1)


=

N∏
i=1

p(Xi = xi |X1:i−1 = x1:i−1)

The game is to “summarize” the history well enough to predict
each word in turn.
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Unigram Model: Empty History

p(X = x) =

N∏
i=1

p(Xi = xi |X1:i−1 = x1:i−1)

assumption
=

N∏
i=1

p(Xi = xi;θ) =

N∏
i=1

θxi

Maximum likelihood estimate: for every v ∈ V,

θ∗v =

∑N
i=1 1 {xi = v}

N

=
countx(v)

N

45 / 150



Example

The probability of

Presidents tell lies .

is:

p(X1 = Presidents) · p(X2 = tell) · p(X3 = lies) · p(X4 = .) · p(X5 = 8)

In unigram model notation:

θPresidents · θtell · θlies · θ. · θ8

Using the maximum likelihood estimate for θ, we could calculate:

countx(Presidents)

N
· countx(tell)

N
· · · countx(8)

N
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Reflection

Consider a unigram model that is completely agnostic; it assigns
θv = 1

V for all v ∈ V.

What will its perplexity be? Hint: as long as the test data is
restricted to words in V, the test data doesn’t matter!
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Reflection

Consider a unigram model that is completely agnostic; it assigns
θv = 1

V for all v ∈ V.

What will its perplexity be? Hint: as long as the test data is
restricted to words in V, the test data doesn’t matter!

Perplexity(x̄; p(·;θ)) = N̄

√
1

p(x̄;θ)
= N̄

√
1(

1
V

)N̄ = V
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Unigram Models: Assessment

Pros:

I Easy to understand

I Cheap

I Good enough for
information retrieval
(maybe)

Cons:

I Fixed, known vocabulary
assumption

I “Bag of words” assumption
is linguistically inaccurate
I p(the the the the)�

p(I want ice cream)
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Markov Models ≡ n-gram Models

p(X = x) =

N∏
i=1

p(Xi = xi |X1:i−1 = x1:i−1)

assumption
=

N∏
i=1

p(Xi = xi | Xi−n+1:i−1 = xi−n+1:i−1;θ)

=

N∏
i=1

θxi|xi−n+1:i−1

(n− 1)th-order Markov assumption ≡ n-gram model

I Unigram model is the n = 1 case

I In speech and translation systems, trigram models (n = 3)
were widely used, then later 5-grams, ...
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Reflection

What is the maximum likelihood estimate for the n-gram model’s
probability of v given a (n− 1)-length history h?
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Solution

θv|h = p(Xi = v |Xi−n+1:i−1 = h)

=
p(Xi = v,Xi−n+1:i−1 = h)

p(Xi−n+1:i−1 = h)

=
countx(hv)

N

/
countx(h)

N

=
countx(hv)

countx(h)

A common mistake is to forget that θv|h is a conditional
probability and estimate the joint probability p(hv) instead.
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Reflection

Given a sequence of words, what procedure would you use to
calculate its n-gram probability? To make this procedure as fast as
possible, what properties would you want for the data structure
that stores θ?
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Choosing n is a Balancing Act

If n is too small, your model can’t learn very much about language.

As n gets larger:
I The number of parameters grows with O(V n).

I What’s a parameter?

I Most n-grams will never be observed, so you’ll have lots of
zero probability n-grams. This is an example of data sparsity.

I Your model depends increasingly on the training data; you
need (lots) more data to learn to generalize well.

This is a beautiful illustration of the bias-variance tradeoff.
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Language Modeling Research in a Nutshell

a language model
increase or improve

training data
(e.g., larger N)

reduced test perplexity

increase model capacity
(e.g., larger n)

better fit to training data

improve inductive bias

more parameters

better generalization

better performance in applications advance knowledge

increased computational cost

? ?

??

?
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Smoothing: Attempts to Improve Inductive Bias

The game: prevent θv|h = 0 for any v and h, while keeping∑
x p(x) = 1 so that perplexity stays meaningful.

I Simple method: add λ > 0 to every count (including counts
of zero) before normalizing; Eisenstein (2019) calls this
“Lidstone” smoothing

I Longstanding champion: modified Kneser-Ney smoothing
(Chen and Goodman, 1998)

I Reasonable, easy solution when you don’t care about
perplexity: stupid backoff (Brants et al., 2007)
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Hyperparameters

After we choose a general technical approach, there are often
“micro-decisions” in execution that affect perplexity, task
performance, etc. E.g., n, or λ in Lidstone smoothing. We call
these hyperparameters.
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don’t have a priori reasons to inform our choices. Often we look to
published experiments to see what has worked in the past.
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“micro-decisions” in execution that affect perplexity, task
performance, etc. E.g., n, or λ in Lidstone smoothing. We call
these hyperparameters.

Hyperparameters are usually scientifically “uninteresting,” and we
don’t have a priori reasons to inform our choices. Often we look to
published experiments to see what has worked in the past.

Empirica solution: try different values, and choose one using a
validation dataset.

I Never the training set, because you want hyperparameter
values that generalize well.

I Never the test set, because that’s cheating!
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Hyperparameters

After we choose a general technical approach, there are often
“micro-decisions” in execution that affect perplexity, task
performance, etc. E.g., n, or λ in Lidstone smoothing. We call
these hyperparameters.

Hyperparameters are usually scientifically “uninteresting,” and we
don’t have a priori reasons to inform our choices. Often we look to
published experiments to see what has worked in the past.

Empirica solution: try different values, and choose one using a
validation dataset.

I Never the training set, because you want hyperparameter
values that generalize well.

I Never the test set, because that’s cheating!

Better solution: tune them using a systematic and replicable search
procedure; report this procedure. See Dodge et al. (2019).
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n-gram Models: Assessment

Pros:

I Easy to understand

I Cheap (Lin and Dyer,
2010)

I Fine in some applications
and when training data is
scarce

Cons:

I Fixed, known vocabulary
assumption

I Markov assumption is
linguistically inaccurate
I (But not as bad as

unigram models!)

I Data sparseness problem
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Neural Language Models

Instead of a lookup for a word and fixed-length history (θv|h),
define a vector function:

p(Xi |X1:i−1 = x1:i−1) = NN(enc(x1:i−1);θ)

where θ do the work of encoding the history and transforming it
into a distribution over the next word.
The transformation is described as a composed series of simple
transformations or “layers.”
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What is a Neural Network?

Like many things from machine learning, the name invites
confusion.

Formally, it’s a function NN from θ (learned parameters) and
inputs to outputs, all of which are real-valued vectors (or matrices,
or tensors, or collections of them).

Almost always, NN is differentiable with respect to θ and
nonlinear with respect to the data input.

I “Nonlinear” means there does not exist a matrix A such that
NN(v;θ) = Av, for all v.
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What is a Neural Network?

Like many things from machine learning, the name invites
confusion.

Formally, it’s a function NN from θ (learned parameters) and
inputs to outputs, all of which are real-valued vectors (or matrices,
or tensors, or collections of them).

Almost always, NN is differentiable with respect to θ and
nonlinear with respect to the data input.

I “Nonlinear” means there does not exist a matrix A such that
NN(v;θ) = Av, for all v.

For a neural language model:

I We need an encoder that maps word histories h to
vectors/matrices.

I We interpret the output as p(Xi |X1:i−1 = h).
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NLM v. 0: Classification
Lau et al. (1993), among others

If you let the label set be V, then you can reduce language
modeling to training a supervised classification trained on N
instances (one per word). Input is a history, output is a prediction
of the next word (or distribution over the possibilities).
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NLM v. 0: Classification
Lau et al. (1993), among others

If you let the label set be V, then you can reduce language
modeling to training a supervised classification trained on N
instances (one per word). Input is a history, output is a prediction
of the next word (or distribution over the possibilities).

I Note that the instances will not be independent, so it’s a bit
different from the usual classification setup.
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Remember, though, that to do this, you need to decide what
features of h and each candidate next word to use.
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features of h and each candidate next word to use.

These models were usually called “maximum entropy” (not neural)
language models, and the computational cost made them largely
impractical in the 1990s.
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NLM v. 0: Classification
Lau et al. (1993), among others

If you let the label set be V, then you can reduce language
modeling to training a supervised classification trained on N
instances (one per word). Input is a history, output is a prediction
of the next word (or distribution over the possibilities).
E.g., the multinomial logistic regression probability function is
differentiable with respect to θ (its weights).:

p(Xt = v |Xi−n+1:i−1 = h) =
expθ>f(h, v)∑

v′∈V
expθ>f(h, v′)

Remember, though, that to do this, you need to decide what
features of h and each candidate next word to use.
These models were usually called “maximum entropy” (not neural)
language models, and the computational cost made them largely
impractical in the 1990s.
For training, we moved from specialized algorithms to generic
convex optimization to SGD.
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Reflection

What do you think made these models impractical for realistic
language modeling?
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Multinomial Logistic Regression

If you understand the principles, it’s easier to learn the models to
come.
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Why So Many Models?

We’re going to see a lot of neural network approaches to language
modeling.

The general ideas used in the series of models shown here have
been used across NLP. This happens a lot in AI in general;
understanding similarities and differences across approaches makes
it easier to make sense of new developments!
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Two Key Developments

1. “Embedding” words as vectors.

2. Layering to increase capacity (i.e., the set of distributions that
can be represented).

Same as before: we run stochastic (sub)gradient descent
algorithms to maximize likelihood.

Different from before: likelihood is not necessarily convex in θ.
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“One Hot” Vectors

Let ei ∈ RV be the ith column of the identity matrix I.

e1 =


1
0
...
0
0

 ; e2 =


0
1
...
0
0

 ; . . . ; eV =


0
0
...
0
1



ei is the “one hot” vector for the ith word in V.
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A neural language model starts by “looking up” each history-word
by multiplying its one hot vector by a matrix M

V × d

; e>v M = mv, the

“embedding” of v.
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Let ei ∈ RV be the ith column of the identity matrix I.

e1 =


1
0
...
0
0

 ; e2 =


0
1
...
0
0

 ; . . . ; eV =


0
0
...
0
1


ei is the “one hot” vector for the ith word in V.

A neural language model starts by “looking up” each history-word
by multiplying its one hot vector by a matrix M

V × d

; e>v M = mv, the

“embedding” of v.

M becomes part of the parameters (θ).
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“Dense” Word Vectors

The dense embeddings in M lead us to an interesting idea: words
can be closer or farther in different dimensions.

Many have attempted to connect this notion to word meanings.
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Brief Tangent: Word Vectors

This lecture focuses on language models; neural language models
require that we represent vocabulary words as vectors.

That idea—“word vectors”—also came about in a separate thread
of research (Schütze, 1992), independent of language modeling.
We could easily spend an hour on that topic!

Indeed, we could have started from word vectors and worked our
way up to the language models you’re learning here, an approach I
take in Smith (2020).
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Standalone Word Vector Methods

I Most methods start from cooccurrence statistics between
words: how often does v appear just after (or before) v′?
More often than we’d expect by chance under a unigram
model?

I Relatedly: guess a word at position i given a word in a nearby
position.

I Popular methods include continuous bag of words and
skip-gram (Mikolov et al., 2013a,b) in the “word2vec”
package; these are trained much like neural classifiers, and
have a close relationship to matrix factorization of a
coocurrence-statistic matrix (Levy and Goldberg, 2014).
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Three Approaches to Word Vectors in Language Models

1. Most common today: treat M as “just more parameters,”
initialized randomly and learned during language model
training.

2. “Pretrain” M using a different algorithm (like skip-gram),
then plug them in as fixed (“frozen”) values. Train the other
LM parameters.

3. Use pretrained word embeddings as initial values and
“finetune” M during NLM training.

The appeal of options 2 and 3: if pretraining is cheap, we could
get M from lots more data and spend less computation learning
the other LM parameters.
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Sequences of Word Vectors

Given a word sequence 〈v1, v2, . . . , vk〉, we transform it into a
sequence of word vectors,

mv1 ,mv2 , . . . ,mvk

Using neural networks in NLP requires decisions about how to deal
with variable-length input, because the lengths of the histories vary.
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Adding Layers

Neural networks are built by composing functions, a mix of

I affine, v′ = Wv + b (note that the dimensionality of v and
v′ might be different)

I nonlinearity, including softmax, elementwise hyperbolic
tangent

v′i = tanh(vi) =
evi − e−vi
evi + e−vi

,

and rectified linear (“relu”) units, v′i = max(0, vi).
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Adding Layers

Neural networks are built by composing functions, a mix of

I affine, v′ = Wv + b (note that the dimensionality of v and
v′ might be different)

I nonlinearity, including softmax, elementwise hyperbolic
tangent

v′i = tanh(vi) =
evi − e−vi
evi + e−vi

,

and rectified linear (“relu”) units, v′i = max(0, vi).

The typical pattern is affine, nonlinear, affine, nonlinear, . . .

More layers ⇒ increased capacity (more parameters, more
computational cost, better training data fit)

88 / 150



Language Modeling Research in a Nutshell

a language model
increase or improve

training data
(e.g., larger N)

reduced test perplexity

increase model capacity
(e.g., larger n)

better fit to training data

improve inductive bias

more parameters

better generalization

better performance in applications advance knowledge

increased computational cost

? ?

??

?
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NLM v. 1: Feedforward
(Bengio et al., 2003)

Define the n-gram probability as follows:

p(· | h1, . . . , hn−1) =

softmax

(
b
V

+

n−1∑
j=1

mhj
d

Aj
d× V

+ W
V ×H

tanh

(
u
H

+

n−1∑
j=1

m>hj Tj
d×H︸ ︷︷ ︸

affine

)

︸ ︷︷ ︸
nonlinearity︸ ︷︷ ︸

affine

)

︸ ︷︷ ︸
nonlinearity

Parameters θ include M and everything in pink.

Hyperparameters: dimensionalities d and H
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Feedforward NLM Computation Graph
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Interpretation?

It’s a bit like a multinomial logistic regression classifier language
model with two kinds of “features”:

I Concatenation of context-word embeddings vectors mhj (but
these “word feature” vectors are themselves learned, not fixed
in advance)

I tanh-affine transformation of the above

New parameters arise from (i) embeddings and (ii) affine
transformations.

No single parameter will have any intuitive meaning.
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Number of Parameters

D = V d︸︷︷︸
M

+ V︸︷︷︸
b

+ (n− 1)dV︸ ︷︷ ︸
A

+ V H︸︷︷︸
W

+ H︸︷︷︸
u

+ (n− 1)dH︸ ︷︷ ︸
T

For Bengio et al. (2003), V ≈ 18000 (after OOV processing);
d ∈ {30, 60}; H ∈ {50, 100}; n− 1 = 5. So D = 461V + 30100
parameters, compared to O(V n) for classical n-gram models.

I Forcing A = 0 eliminated 300V parameters and performed a
bit better, but training was slower to converge.

I If we averaged mhj instead of concatenating, we’d get to
221V + 6100 (this is a variant of “continuous bag of words,”
Mikolov et al., 2013a).
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Why does it work?

I Historical answer: multiple layers and nonlinearities allow
feature combinations a linear model can’t get.

I Neural models seem to smoothly explore lots of
approximately-conjunctive features.

I Modern answer: representations of words and histories are
tuned, simultaneously, to the next-word prediction task.

I Word embeddings: a powerful idea!
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Reminders about Training

Good news: apply maximum likelihood principle and SGD as with
v. 0. Lots more details in Eisenstein (2019) section 3.3 and
Goldberg (2015).

Bad news:
I Log-likelihood function is not convex.

I So any perplexity experiment is evaluating the model, the
initial value of θ (usually random), and an algorithm for
estimating it.

I Calculating log-likelihood and its gradient is very expensive (5
epochs took 3 weeks on 40 CPUs).
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Observations about NLMs (So Far)

I There’s no knowledge built in that the most recent word hn−1

is “closer” than earlier ones; it must be learned (probably
learnable?).

I Hyperparameters: in addition to choosing n, also have to
choose dimensionalities d and H.

I Parameters of these models are mostly hard to interpret.

I Architectures are not especially intuitive.

I Impressive perplexity reduction got people’s interest.
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Feedforward Networks

Like v. 0, but more layers and harder to understand.
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Neural Networks for Sequences

A feedforward network is fine if our input is bounded in length and
we believe each position comprises its own features.

I That’s not really how language works, though; there’s nothing
special about (for example) “the word four positions back.”

I It also doesn’t scale to longer sequences well (consider
parameters specifically tied to the 974th word of a document).

I It also doesn’t capture the way words tend to combine locally
(e.g., with their neighbors) to form bigger meanings
(compositionality).

What follows are three families or styles of networks that reuse
parameters to encode sequences of arbitrary length.
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NLM v. 2: Convolutional Networks (Sliding Windows)

Consider the entire history for word t, h = 〈x1, x2, . . . , xt−1〉 (no
Markov assumption).

Start with X(0) =
[
mx1 ; mx2 ; . . . ; mxt−1

]
.

We will define a new matrix, X(`), at each layer of the network, by
applying a convolution function to the matrix X(`−1). The vector
X(`)[∗,m] can be considered a “hidden state” representation of
history word m at layer `.
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Convolution Layers

A convolution layer applies a feedforward-like “affine + nonlinear”
sliding window function across the input matrix, at each position.

X(1)[k,m] = f

bk +

d∑
i=1

w∑
j=1

C(k)[i, j] ·X(0)[i,m+ j − 1]



f is a nonlinearity (like tanh). w is the width of the sliding window.
Each k is a different “filter” and each m is a word position.

Hyperparameters: number of layers, and, at every layer, f , w,
number of filters
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Convolutional Network, Illustrated

embeddings, mxi

X(1)
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Convolutional Network, Illustrated

embeddings, mxi

X(1)

X(D)

convolution

convolutions

pooling
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Convolutional Network: Pooling

Let the dimensionality of the last (Dth) layer be dout .

Pooling takes X(D) ∈ Rdout×(t−1) and maps it into Rdout .

Two standard options (with no additional parameters) are max
pooling,

zk = max
j

X(D)[k, j];

and average pooling,

zk =
1

t− 1

t−1∑
j=1

X(D)[k, j].

Finally, softmax(z) gives a probability distribution over outputs.
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Reflection

Consider the computations required for encoding the history of
word xt and the history of word xt+1. Do you see a way to make
training efficient that wouldn’t have been available for the
feedforward NLM?
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Historical and Practical Notes

Convolutional neural networks originated in computer vision;
similar ideas emerged in speech recognition.

Seminal use of convolutional networks for text classification: Kim
(2014). Example use in language modeling: Dauphin et al. (2017).

Dilated convolutional networks use longer “strides” at deeper
levels, skipping over increasingly more of the words, allowing
effectively longer windows; see Yu and Koltun (2015).
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Convolutional Networks

An import from computer vision, often touted for their speed.

112 / 150



NLM v. 3: Recurrent Neural Network
Mikolov et al. (2010)

I Again, no Markov assumption; the history for word t is
h = 〈x1, x2, . . . , xt−1〉, mapped to 〈mx1 ,mx2 , . . . ,mxt−1〉.

I The history is encoded as a fixed-length “state” vector, st−1.

p(· | x1:(t−1)) = yt = softmax
(
s>t−1U

)
si = sigmoid

(
m>xiA + s>i−1B + c

)
s0 = 0

Note the recurrence.

The “depth” of the network corresponds to the position in the
sequence (here, t).
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Computation Graph: RNN
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Visualization
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Improvements to RNN Language Models

The simple RNN is known to suffer from two related problems:

I “Vanishing gradients” during learning make it hard to
propagate error into the distant past.

I State tends to change a lot on each iteration; the model
“forgets” too much.

Some variants:

I “Stacking” the functions to make deeper networks, feeding
the output of one in as the input to the next.

I Sundermeyer et al. (2012) use “long short-term memories”
(LSTMs, Hochreiter and Schmidhuber, 1997; see Olah, 2015)
and Cho et al. (2014) use “gated recurrent units” (GRUs) to
define the recurrence.
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Recurrent Networks

Established the dominance of neural models in NLP, strongest
option for many settings for several years.
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Taking Stock

Four NLMs so far:

v. architecture

0 multinomial logistic regression

1 feedforward neural network

2 convolutional neural network

3 recurrent neural network
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None of these were designed specifically for language modeling,
though arguably they are increasingly “language savvy” in their
handling of sequences.
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Four NLMs so far:

v. architecture

0 multinomial logistic regression

1 feedforward neural network

2 convolutional neural network

3 recurrent neural network

None of these were designed specifically for language modeling,
though arguably they are increasingly “language savvy” in their
handling of sequences.

Also increasingly expensive.
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Taking Stock

Four NLMs so far:

v. architecture

0 multinomial logistic regression

1 feedforward neural network

2 convolutional neural network

3 recurrent neural network

The last model, v. 4, is called the “transformer” (Vaswani et al.,
2017). I won’t have time to teach that!
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Sequence-to-Sequence

So far, we’ve focused on modeling p(Xi |X1:i−1), which can be
composed to give p(X).

That makes sense for “autocomplete” (the first motivation for this
lecture), but what if we have an input?

Sequence-to-sequence (“seq2seq”) models, also called
“encoder-decoder” models (as opposed to “decoder-only”) are
about p(Y |X), where both random variables are sequences.
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Machine Translation

The driving application motivating seq2seq models is automatic
translation between natural languages, known as “machine
translation” (MT).

The seq2seq family of approaches was developed for MT, and we’ll
focus on that use case. Today, it’s applied to many problems in
NLP; often, it’s an easy starting point.
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MT Evaluation

Intuition: good translations are fluent in the target language and
faithful to the original meaning.

Bleu score (Papineni et al., 2002):

I Compare to a human-generated reference translation

I Or, better: multiple references

I Weighted average of n-gram precision (across different n)

There are many more recent alternatives; they often use models
specifically trained for this problem.

Better: human evaluations that compare output to reference.
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Warren Weaver to Norbert Wiener, 1947

One naturally wonders if the problem of translation could be
conceivably treated as a problem in cryptography. When I look at
an article in Russian, I say: ‘This is really written in English, but it
has been coded in some strange symbols. I will now proceed to
decode.’
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Noisy Channel Models
A pattern for modeling a pair of random variables, X and Y :

source −→ Y −→ channel −→ X

I Y is the plaintext, the true message, the missing information,
the output

I X is the ciphertext, the garbled message, the observable
evidence, the input

I Decoding: select y given X = x.

y∗ = argmax
y

p(y | x)

= argmax
y

p(x | y) · p(y)

p(x)

= argmax
y

p(x | y)︸ ︷︷ ︸
channel model

· p(y)︸︷︷︸
source model
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Translation

Successful translation requires generating a word sequence that is:

I Faithful to the input

I Fluent

If we’re mapping a French word sequence f to an English word
sequence e, then:

e∗ = argmax
e

Faithfulness(e;f) + Fluency(e)

Language models can provide a “fluency” score.
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Translation

Successful translation requires generating a word sequence that is:

I Faithful to the input

I Fluent

If we’re mapping a French word sequence f to an English word
sequence e, then:

e∗ = argmax
e

Faithfulness(e;f) + Fluency(e)

= argmax
e

log p(f | e)︸ ︷︷ ︸
channel model

+ log p(e)︸ ︷︷ ︸
source model

Language models can provide a “fluency” score.
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Bitext/Parallel Text

Let f and e be two sequences in French and English, respectively.

If we have enough such examples, we could estimate a conditional
distribution p(F | E), known as the translation model.

In a noisy channel machine translation system, we could use this
together with source/language model p(E) to “decode” f into an
English translation.
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Reflection

Where might we find parallel data?
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History of Pre-Neural MT in One Slide

I Many approaches based on formal automata and
expert-crafted rules, going back to the 1950s. Often these
were based on linguistic theories.

I Brown et al. (1993) introduced the noisy channel approach
and channel models models based on bitext. This was
complicated stuff!

I Open source implementation (Al-Onaizan et al., 1999) and
automatic evaluation (Papineni et al., 2002) followed.
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expert-crafted rules, going back to the 1950s. Often these
were based on linguistic theories.

I Brown et al. (1993) introduced the noisy channel approach
and channel models models based on bitext. This was
complicated stuff!

I Open source implementation (Al-Onaizan et al., 1999) and
automatic evaluation (Papineni et al., 2002) followed.

I By the early 2000s, it was becoming clear that modeling
translation “word-by-word” was missing out on powerful
contextual cues. There were two solutions in friendly
competition:
I Phrase-based translation: work with chunks of words instead

of words (Koehn et al., 2003), sometimes organized
hierarchically (Chiang, 2007).

I Syntax-based translation: use syntactic parse trees (from
linguistics) of input, output, or both (Galley et al., 2004).

Some good overviews: Lopez (2008); Koehn (2009)
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Neural Machine Translation

Original idea proposed by Forcada and Ñeco (1997); resurgence in
interest starting around 2013. Strong starting points for current
work: Sutskever et al. (2014); Bahdanau et al. (2014).

Take care: here, the terminology “encoder” and “decoder” are
used differently than in the noisy-channel pattern.
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High-Level Model

p(E = e | f) = p(E = e | encode(f))

=
∏̀
j=1

p(ej | e0, . . . , ej−1, encode(f))

The encoding of the source sentence is a deterministic function of
the words in that sentence.
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Neural MT Source-Sentence Encoder

Ich möchte  ein  Bier
lookups

forward RNN

backward RNN [  ]
source sentence encoding

0

0

F is a d×m matrix encoding the source sentence f (length m).
Originally, RNNs (depicted here) were used; now transformers
dominate (Vaswani et al., 2017).
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Decoder: Contextual Language Model

Two inputs, the previous word and the source sentence context.

st = grecurrent(eet−1 , access(encode(f))︸ ︷︷ ︸
“context”

, st−1)

yt = goutput(st)

p(Et = v | e1, . . . , et−1,f) = [yt]v

(The forms of the two component gs are suppressed; just
remember that they (i) have parameters and (ii) are differentiable
with respect to those parameters.) The “access” function is a
topic for later.

The neural language model we discussed earlier (Mikolov et al.,
2010) didn’t have the context as an input to grecurrent.
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Learning and Decoding

log p(e | encode(f)) =

m∑
i=1

log p(ei | e0:i−1, encode(f))

is differentiable with respect to all parameters of the neural
network, allowing “end-to-end” training.

Decoding typically uses beam search.
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Beam Search for Seq2Seq Models

Input: beam size k, maximum length M , scoring function
(typically log p(Yi | y0:i−1, encode(x))

B0 ← {〈0,©〉} // Bt is the beam of t-length prefixes

F0 ← ∅ // Ft is the set of finished hypotheses of length ≤ t
for t ∈ {1, . . . ,M − 1}:
I H ← ∅ // hypotheses of length t

I Ft ← Ft−1, Bt ← ∅
I for 〈s,y〉 ∈ Bt−1 and v ∈ V:

I add 〈s+ score(v | y),yv〉 to H

I while |Bt| < k:
I 〈s,y〉 ← pop(H) // the max-scoring hypothesis
I if y doesn’t end in 8, then add 〈s,y〉 to Bt; else:

I add 〈s,y〉 to Ft

I if |Ft| ≥ k, then return the max scoring item from Ft

// stop as soon as we have k finished hypotheses
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Notes on Beam Search

I Runtime depends on beam width, vocabulary size, maximum
output length.

I Special cases:
I k = 1 is greedy left-to-right decoding.
I As k,M →∞, you’re doing brute force, exhaustive search.

I Generally: no guarantee.

I Lots of variations; some add randomness, pruning, patience,
and more!

142 / 150



On Data

The pervasive attitude for many years: more data is better
(Church and Mercer, 1993).

The growth of the web makes easier to get more, and more diverse
data. Today’s datasets are too large to inspect manually, and often
treated as trade secrets. Recent work documenting the
construction of an open language modeling dataset: Soldaini et al.
(2024).

The emergence of NLMs for generation (motivation III on slide 5)
and the sheer quantity of data used have opened up new concerns
about data quality, fairness, privacy, and cultural biases that NLMs
can learn (and then repeat); see for example Gehman et al. (2020).
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Language Modeling Research in a Nutshell

a language model
increase or improve

training data
(e.g., larger N)

reduced test perplexity

increase model capacity
(e.g., larger n)

better fit to training data

improve inductive bias

more parameters

better generalization

better performance in applications advance knowledge

increased computational cost

? ?

??

?
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Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural networks for
language modeling. In Proc. of Interspeech, 2012.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with
neural networks. In NeurIPS, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS,
2017.

149 / 150

https://arxiv.org/pdf/2311.17301.pdf
https://arxiv.org/pdf/1902.06006
https://arxiv.org/pdf/2402.00159.pdf


References VI

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, Gregory S. Corrado, Macduff Hughes, and Jeffrey Dean. Google’s
neural machine translation system: Bridging the gap between human and machine
translation, 2016. arXiv:1609.08144.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated
convolutions. In Proc. of ICLR, 2015.

150 / 150


	References

