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Supervised Learning

M. Figueiredo (IST) Linear Models LxMLS 2024 3 / 134



Types of Machine Learning
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Why Linear Models?

• In 2024, deep neural networks are ubiquitous!

• Why a lecture on linear models?

X The underlying machine learning concepts are the same.

X The theory (statistics and optimization) are easier to understand.

X Linear models are still widely used (specially if data is scarce)

X Linear models are a component of deep networks.

X It is the natural starting point to start learning machine learning.
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Linear Classifiers and Neural Networks

Linear Classifier
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Supervised Machine Learning

• Given a collection of input/output pairs (training data)

D = (x1, y1), ..., (xN , yN ) 2 X⇥ Y (xi 2 X, yi 2 Y)

• ... learn a predictor h : X ! Y.

• Use it for a new input x 2 X, ...

• ... to guess the corresponding y, which is unknown.

• That is, predict/infer/guess/decide by = h(x).

• Hopefully, by ⇡ y most of the time, i.e., h should generalize.
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Inputs and Outputs
• Input x 2 X

X e.g., a news article, a sentence, an image, a signal, a collection of
laboratory test results, ...

• Output y 2 Y

X e.g., fake/true, a topic, an image segmentation, the next word, a
diagnostic, a stock value, the maximum temperature tomorrow, ...

• Input/output pair: (x, y) 2 X⇥ Y

X e.g., a news article together with a topic

X e.g., a sentence together with its translation

X e.g., a sequence of words (tokens) together with the next word

X e.g., an image partitioned into segmentation regions
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Regression vs Classification

Regression: quantitative Y;

Classification: categorical Y.

• Regression: Y = R, or Y = [0, 1], or Y = R+, or ...
X e.g., given a news article, how much time a user will spend reading it?

• Multivariate regression: Y = RK , or Y = RK
+ , or Y = �K , or ...

X e.g., denoise an image, estimate class probabilities, ...

• Binary classification: Y = {±1}
X e.g., spam detection, fraud detection, target detection, ...

• Multi-class classification: Y = {1, 2, . . . ,K} (order is irrelevant!)

X e.g., topic classification, image classification, word prediction, ...

• Structured classification: Y exponentially large and structured
X e.g., machine translation, caption generation, image segmentation, ...
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Feature Representations

• Feature engineering is (was?) an important step for linear models:

X Bag-of-words features for text, parts-of-speech, ...

X SIFT features and wavelet representations in computer vision

X Other categorical, Boolean, continuous features, ...

X Decades of research in machine learning, natural language processing,
computer vision, image analysis, speech processing, ...
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Feature Representations

• Feature represent information about an “object” x

• Typical approach: a feature map � : X ! Rd

• �(x) is a (maybe high-dimensional) feature vector

• Feature vectors may mix categorical and continuous features

• Categorical features are often reduced to one-hot binary features:

ey := (0, . . . , 0, 1|{z}
position y

, 0, . . . , 0) 2 {0, 1}K represents class y
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Representation/Feature Engineering vs Learning

• Feature engineering (FE) is “alchemy”:

X it requires deep domain knowledge
(linguistics in NLP, vision in computer vision, ...)

X usually very time-consuming

• FE allows incorporating knowledge, it is a form of inductive bias

• FE is still widely used in practice, namely in data-scarce scenarios

• Modern alternative: representation learning a.k.a. deep learning

Tomorrow’s lecture, by Bhiksha Raj
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Linear Regression: A Picture

“When you’re fundraising, it’s AI.

When you’re hiring, it’s ML.

When you’re implementing, it’s just linear regression”

(Baron Schwartz)
M. Figueiredo (IST) Linear Models LxMLS 2024 15 / 134



Linear (Nonlinear) Regression

• In fact, linear regression may be
nonlinear
(more later)

• Beware the inductive bias

xkcd.com
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Regression

• In a nutshell: build a “machine” that predicts/estimates/guesses a
quantity y from of other “quantities” x1,...,xp

• Central tool in data analysis, thus in much of science (biological,
social, economic, physical,...) and engineering.

• Learning/training: given a collection of examples (training data)

D =
�
(x1, y2), ..., (xn, yn)

�

..find the “best” possible machine.

• Notation: bold = vector or matrix (e.g. x, X).
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Linear Regression

• Noisy observations Y = wTx+ w0 +N , where N ⇠ N(0,�2)

• Gaussian conditional pdf fY |X(y|x) = N(y|wTx+ w0,�
2),

• Parameters (w, w0) are unknown; instead, i.i.d. training data:

D =
�
(x1, y1), ..., (xn, yn)

�

• Points x1, ...,xn are seen as given, deterministic

• Likelihood and log-likelihood function

fY1,...,Yn(y1, ..., yn|x1, ...,xn,w, w0,�
2) =

nY

i=1

N(yi|wTxi + w0,�
2)

log fY1,...,Yn(y1, ..., yn|x1, ...,xn,w, w0,�
2) = K� 1

2�2

nX

i=1

(yi�wTxi�w0)
2
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Linear Regression

• Maximum likelihood estimate of w:

(ŵ, ŵ0)ML = arg min
w,w0

nX

i=1

(yi �wTxi � w0)
2

• Another view: loss function L(y, ŷ) = (y � ŷ)2

• Bayes/expected risk for ŷ(x) = wTx+ w0:

R[w, w0] = E[(Y�wTX�w0)
2] =

Z Z
(y�wTx�w0)

2 fY,X(y,x)
| {z }

unknown

dx dy

• The empirical risk is, in this case, the residual sum of squares (RSS)

Remp[w, w0] =
1

n

nX

i=1

(yi �wTxi � w0)
2 =

1

n
RSS(w, w0)

• Empirical risk minimization (ERM) = least squares (LS) regression

(ŵ, ŵ0)ERM = (ŵ, ŵ0)LS = arg min
w,w0

Remp[w, w0]
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Linear Regression: Another Picture

From: Hastie, Tibshirani, Friedman, “The Elements of Statistical Learning”, Springer, 2009.
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Linear Regression: Dealing with w0 (1st Method)

• Replace each original xi with xi =

2

6664

1
xi1
...
xip

3

7775
2 Rp+1

• Let w now denote a p+ 1-dimensional vector: w =

2

6664

w0

w1
...
wp

3

7775
2 Rp+1

• The o↵set w0 is now absorbed into wTxi, thus

ŵLS = argmin
w

nX

i=1

(yi �wTxi)
2
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Linear Regression: Dealing with w0 (2nd Method)

• Estimation criterion: (ŵ, ŵ0) = arg min
w,w0

nX

i=1

(yi �wTxi � w0)
2

• Assume centered variables:
nX

i=1

xij = 0, for j = 1, ..., p

• Assume zero mean responses:
nX

i=1

yi = 0

• These assumptions imply no loss of generality

• Under these assumptions,

ŵ0 = solutionw0

✓
0z }| {

nX

i=1

yi�wT

0z }| {
nX

i=1

xi�nw0 = 0

◆
= 0

...which we will assume hereafter to be true.
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Linear Regression: Vector Notation

• Least squares regression,

ŵLS(y) = arg min
w2Rp

nX

i=1

(yi �wTxi)
2 = arg min

w2Rp
ky �Xwk22

where y = [y1, ..., yn]T and X is the design matrix

X =

2

64
x11 · · · x1p
...

. . .
...

xn1 · · · xnp

3

75 2 Rn⇥p

• Gradient: rwky �Xwk22 = 2XT (Xw � y)

• Equating to zero,

ŵLS(y) = solutionw
�
XT (Xw � y) = 0

�
=
�
XTX

��1
XTy

...only if XTX is invertible, i.e., rank(X) = p, requiring n � p.
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A Classic: Coe�cient of Determination R2

• Recall the assumptions ȳ =
Pn

i=1 yi = 0 and w0 = 0.

• Total sum of squares: TSS =
Pn

i=1 y
2
i (observation variance ⇥n)

• Sum of squared residuals: SSR =
Pn

i=1(yi � ŵTxi)2

• Coe�cient of determination:

R2 = 1� SSR

TSS
= 1� FV U (1� fraction of variance unexplained)
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The Geometry of Linear Regression

• Predicted values at the sampled points:

ŷ = XŵLS(y) = X
�
XTX

��1
XT

| {z }
hat matrix P 2 Rn⇥n

y = Py

• Matrix P is a projection matrix; it is idempotent, PP = P :

PP = X
�
XTX

��1
XTX

�
XTX

��1
XT = X

�
XTX

��1
XT = P

• Clearly, ŷ 2 range(X) (span of the columns of X); in fact,

Py = X
�
argmin

w
ky �Xwk22

| {z }
ŵ
LS

(y)

�
= arg min

z2range(X)
ky � zk22

i.e., the orthogonal projection onto range(X).
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Geometry of Linear Regression: Euclidean Projection

This picture is in Rn
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Going Non-Linear

• To express non-linearities, just replace x with �(x),

� : Rp ! Rd, �(x) =

2

64
�0(x)

...
�d�1(x)

3

75 (typically �0(x) = 1)

• Components of � often called features, and � a feature map.

• E.g., final layer of a deep network:
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Going Non-Linear (but staying linear)

• To express non-linearities, just replace x with �(x),

� : Rp ! Rd, �(x) =

2

64
�0(x)

...
�d�1(x)

3

75 (typically �0(x) = 1)

• The LS criterion becomes

ŵLS = argmin
w

nX

i=1

(yi �wT�(xi))
2

= argmin
w

ky �Xwk22,

where the design matrix X is now

X =

2

64
�0(x1) · · · �d�1(x1)

...
. . .

...
�0(xn) · · · �d�1(xn)

3

75 2 Rn⇥(d)
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Example: Polynomial Regression

• Order-k polynomial regression in R:

�(x) = [1, x, x2, . . . , xk]T

• Order-k polynomial regression in R2:

�(x) = [1, x1, x2, x
2
1, x1x2, x

2
2, . . . , x1x

k�1
2 , xk2]

T

...all monomials of order up to k

• Order-k polynomial regression in Rp:

�(x) = “vector with all monomials of degree up to k” 2 Rd

• which has dimension

d =

✓
p+ k
k

◆
=

(p+ k)!

k! p!
�
⇣p+ k

k

⌘k

...exponential in k
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Other Types of Non-Linear Regression

• Radial basis functions (RBF): �j(x) =  
⇣ 1

↵j
kx� cjk2

⌘

...with fixed centers cj and widths ↵j

• Typical choices:

X Gaussian RBF (GRBF):  (r) = exp(�r2)

X Thin plate spline RBF (TPSRBF):  (r) = r2 log r

• Spline regression: each �j is a piece-wise polynomial function.

• Kernels: more later.
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Example of Gaussian RBF Regression
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Ridge Regression
• If rank(X) < p (for example, if n < p), ŵLS cannot be computed,

(XTX) 2 Rp⇥p; rank(X) < p ) (XTX)�1 cannot be computed

• The classical alternative is ridge regression:

ŵridge = argmin
w

ky �Xwk22 + � kwk22

=
⇣
XTX + �I

⌘�1
XTy

• Since XTX is symmetric positive semi-definite,
⇣
XTX + �I

⌘
is

invertible, for any � > 0

• Can be seen as MAP or MMSE estimate of w, under Gaussian prior

fW (w) = N
⇣
w; 0,

1

�
I
⌘

• Goes by other names in other contexts: weight decay, penalized least
squares, Tikhonov regularization, `2 regularization,...
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Ridge Regression: Illustration

Even if ŵLS can be computed, ŵridge may preferable (lower MSE)

Example: fitting an order-14 polynomial to 21 points in R
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Degrees of Freedom
• Degrees of freedom: df(�) = tr(P ) (hat matrix P )

• Limit cases: lim
�!0

df(�) = p lim
�!1

df(�) = 0

• Example with p = 8 (prostate cancer data; Hastie at al, 2009)
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Choosing � via Cross Validation (CV)

• Available data (x1, y1), ..., (xn, yn)

• Split into K disjoint subsets (folds), each with n
K samples: S1, ..., SK

• For each k 2 {1, ...,K}, learn ŵ(k)
ridge,� from all the samples not in Sk.

• Estimate the MSE using Sk

[MSEk(�) =
K

n

X

i2Sk

�
yi � xT

i ŵ
(k)
ridge,�

�2

• Choose � by minimizing the average MSE estimate:

�⇤ = argmin
�

KX

k=1

[MSEk(�) = argmin
�

KX

k=1

X

i2Sk

�
yi � xT

i ŵ
(k)
ridge,�

�2

• K-fold CV; common choices are K = 5 and K = 10.

• Extreme case: K = n, leave-one-out CV (LOOCV).
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Dual Variables: Ridge Regression

• Ridge regression: ŵridge(y) is the solution w.r.t. w of

�
XTX + �I

�
w = XTy , ŵridge(y) =

1

�
XT

�
y �Xŵridge(y)

�

that is,

ŵridge(y) = XT↵ with ↵ =
1

�

�
y �Xŵridge(y)

�

• Again, ŵridge(y) is a linear combination of rows of X

• Predicted value for some new point x:

ŷ(x) = xT ŵridge(y) =
nX

i=1

↵i (x
Txi)

...a linear combination of the inner products of x with the xi
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Dual Variables: Ridge Regression (2)

• Ridge regression in dual variables:

ŵridge(y) = XT↵ with ↵ =
1

�

�
y �Xŵridge(y)

�

• Inserting the first equality in the second one, solving for ↵

↵ =
1

�

�
y �XXT↵

�
, ↵ =

�
�I +XXT

��1
y

thus

ŵridge(y) = XT
�
�I +XXT

��1

| {z }
n⇥n inversion

y =
�
XTX + �I

��1

| {z }
p⇥p inversion

XTy

• Note that (XXT )ij = xT
i xj ; XXT is the Gram matrix of x1, ...,xn
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Kernel Regression

• Recall that, in dual variables,

ŷ(x) =
nX

i=1

↵i (x
Txi), with ↵ =

�
�I +XXT

��1
y

• ... XXT is the Gram matrix of x1, ...,xn, i.e., (XXT )ij = xT
i xj

• Data points are only involved via inner products: xT
i xj and xTxj

• To go non-linear, use a feature map � : Rp ! Rd,

ŷ(x) =
nX

i=1

↵i h�(x),�(xi)i, with ↵ =
�
�I +G

��1
y,

• G is still the Gram matrix, that is, Gij = h�(xi),�(xj)i

• The feature map moves the inner products from Rp to Rd. Bad?
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Kernel Regression (2)

• Motivation example: order 2 polynomial regression in R2:

�(x) = �([x1, x2]
T ) = [1, x1

2, x2
2,
p
2x1 x2]

• Computing the inner product in R4

h�(x),�(x0)i = 1 + x1
2 x01

2 + x2
2 x02

2 + 2x1 x
0
1 x2 x

0
2 = 1 + hx,x0i2

• The inner product in R4 is a function of that in R2.

• Such a function is called a kernel: K(x,x0) = h�(x),�(x0)i

• Kernel least squares regression:

ŷ(x) =
nX

i=1

↵iK(x,xi), with ↵ =
�
�I +G

��1
y,

• G is the Gram matrix, that is, Gij = K(xi,xj).
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Kernel Regression (3)

• No need for structure on x; instead of Rp, just use x 2 X (some set).

• Definition: a kernel is a function K : X⇥ X ! R, such that,

K(x,x0) = h�(x),�(x0)i

for any x, x0 2 X, for some � : X ! F, where F is a Hilbert space.

• Hilbert space? Just a complete inner-product vector space.

• Mercer’s theorem: a symmetric function K : X⇥ X ! R is a kernel if
and only if, for any n 2 N and any x1, ...,xn 2 X, the Gram matrix
G (with elements Gi,j = K(xi,xj) is positive semi-definite (psd).

• G being psd implies existence of
�
�I +G

��1
, for � > 0.
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Kernels: Examples

• In this slide, X = Rd

• Linear kernel: K(x,x0) = h(Ax), (Ax0)i; mapping �(x) = Ax.

• Quadratic kernel: K(x,x0) =
�
hx,x0i+A)2;

�(x) = [A,
p
2Ax1,

p
2Ax2, ...

p
2Axd, x

2
1, x1 x2, ...., x1 xd, ..., x

2
d]
T

(all monomials of degree up to 2, with scaling depending on A)

• Polynomial kernel: K(x,x0) =
�
hx,x0i+A)p;

�(x) = [all monomials of degree up to p, with scaling depending on A]T

dim�(x) =

✓
d+ p
p

◆
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Kernels: Examples
• In this slide, X = Rd

• Gaussian kernel: K(x,x0) = exp
⇣
�kx�x0k22

2�2

⌘
;

transformation � : Rd ! F, where F has infinite dimension.

�(x) = exp
⇣
�kx� · k22

2�2

⌘

• Illustration for d = 1:

• Why?

h�(x),�(x0)i =
Z

exp
⇣
�kx� uk22

2�2

⌘
exp

⇣
�kx0 � uk22

2�2

⌘
du = exp

⇣
�kx� x0k22

2�2

⌘
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Kernels: Examples

• There are kernels for many other types of objects: sets, strings,
images, graphs, probability density or mass functions, ...

• Sets: let X = 2S (all subsets of set S, for simplicity, assumed finite).

K\(A,A
0) = |A \A0|, forA,A0 2 X (intersection kernel)

mapping � : X ! F (space of real-valued functions in S)

�(A) = 1A, that is 1A(x) =

⇢
1 ( x 2 A
0 ( x 62 A

h�(A),�(A0)i =
X

x2X
1A(x)1A0(x) =

X

x2A\A0

1 = |A\A0| = K\(A,A
0)

• There are many other kernels for sets.
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Kernels on Strings
• Finite alphabet ⌃ (e.g., ⌃ = {a, b, c, d})
• Kleene closure: ⌃⇤ = ⌃0 [ ⌃1 [ ⌃2 [ ... (set of all finite strings of
elements of ⌃, including the empty one)

• The p-spectrum kernel corresponds to the following mapping:

�p : ⌃⇤ ! N|⌃|p
0 , with �pu(s) = # of times the u-th substring appears in s

Kp
S(s, s

0) = h�p(s),�p(s0)i =
|⌃|pX

u=1

�pu(s)�
p
u(s

0)

• Weighted all substrings (WAS) kernel:

KWAS(s, s
0) =

1X

p=1

↵p Kp
S(s, s

0)

• Remarkably, both Kp
S(s, s

0) and KWAS(s, s
0) can be computed with

O(|s|+ |s0|) cost, using dynamic programming.
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Minimum-Norm Linear Regression

• Consider n < p, with X full rank (rank(X) = n)

• LS regression does not have a unique solution:

ŵLS(y) 2 arg min
w2Rp

ky �Xwk22

• Xw = y has infinitely many solutions, all with ky �Xwk22 = 0,

• Minimum-norm (MN) linear regression:

ŵMN(y) = arg min
w: y=Xw

kwk22 = XT (XXT )�1y

• LS and MN: instances of the Moore-Penrose pseudo-inverse.

• Perfect interpolation regime: ŷ = XŵMN(y) = y
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Double Descent
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Double Descent (2)
• Random Fourier features: �i(x) = exp(

p
�1hvi,xi), vi ⇠ N(0, I)
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Overparametrization and Double Descent

• “Modern” interpolating regime: more parameters than data points.

• For linear regression with p � n, use minimum norm solution.

• Example w/ �i(x) = max{vT
i x, 0}, where vi are random vectors.

• Current research topic.
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Overparametrization and Double Descent (cont.)
• Polynomial regression: the �i are Legendre polynomials.
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Overparametrization and Double Descent (cont.)
• Polynomial regression: the �i are Legendre polynomials.
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Bayesian View of Ridge Regression

• Linear-Gaussian likelihood (design D): fY |W (y|w) = N(y|Dw,�2I)

• Gaussian prior: fW (w) = N
�
w; 0, I/�

�

• Posterior density:

fW |Y (w|y) = N
⇣
w; (DTD + �2�I)�1DTy,�2

�
DTD + �2�I

��1
⌘

• Prediction at new point x⇤ is Y (x⇤) = xT
⇤ W +N (Gaussian)

fY |X(y|x⇤) = N
⇣
xT
⇤ (D

TD + �2�I)�1DTy,�2xT
⇤
�
DTD + �2�I

��1
x⇤ + �2

⌘

=

Z
fY |X,Y (y|x⇤,w,y) fW |Y (w|y) dw

...the variance/uncertainty of the prediction depends on x⇤

• Example in next slide: p = 1, w = [w0, w1]T , wtrue = [�0.3, 0.5]
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Bayesian View of Ridge Regression: Example 1
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Bayesian View of Ridge Regression: Example 2
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Gaussian Processes

• Stochastic process: collection of random variables indexed by some
set X: {F (x), x 2 X}

• Many variants: time X = [0, T ], space X = Rp, ...

• We consider only F (x) 2 R
• Gaussian process (GP): stochastic process such that any finite
collection of variables is jointly Gaussian.

• A Gaussian process is fully specified by

X mean function m(x) = E[F (x)]

X covariance function: K(x,x0) = E
⇥
(F (x)�m(x))(F (x0)�m(x0))

⇤

• Notation: F ⇠ GP(m,K) or F (x) ⇠ GP(m(x),K(x,x0))

• Common choice (RBF, for X = Rp): K(x,x0) = exp
⇣
�1

2kx� x0k22
⌘

• If X is finite, a GP is just a Gaussian vector.
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Gaussian Process Example: Noiseless Observations
• Example: X = R, m(x) = 0, and a set of points X 0 = [x0

1, ...,x
0
N ]

• F 0 = [F (x0
1), ..., F (x0

N )]T 2 RN 0
is a zero-mean Gaussian r.v.

F 0 ⇠ N
�
0,K(X 0,X 0)

�
,

where

K(X 0,X 0) =

2

64
K(x0

1,x
0
1) · · · K(x0

1,x
0
N )

...
. . .

...
K(xN ,x0

1) · · · K(x0
N ,x0

N )

3

75 2 RN⇥N

• Another set X = [x1, ...,xn] and F = [F (x1), ..., F (xn)]T 2 Rn

• Joint Gaussianity:

F 0

F

�
⇠ N

✓
0,


K(X 0,X 0) K(X 0,X)
K(X,X 0) K(X,X)

�◆

• Posterior: F 0|(F = f) ⇠
N
�
K(X 0,X)K(X,X)�1f ,K(X 0,X 0)�K(X 0,X)K(X,X)�1K(X,X 0)

�
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Gaussian Process Example: Noiseless Observations
(2)

• Left: samples from the “prior” F ;

• Middle: samples from “posterior” F 0|F = f (crosses);

• Gray bands: 95% probability.

• Right: posterior covariance
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Gaussian Process Regression
• Now, consider noisy observations: Y = f + noise, Y |f ⇠ N(f ,�2I).

• Joint Gaussianity:

F 0

Y

�
⇠ N

✓
0,


K(X 0,X 0) K(X 0,X)
K(X,X 0) K(X,X) + �2I

�◆

• Posterior: F 0|(Y = y) ⇠ N(f̂ ,C), where

f̂ = [f̂(x0
1), ..., f̂(x

0
N )] = K(X 0,X)

�
K(X,X) + �2I

��1
y

C = K(X 0,X 0)�K(X 0,X)
�
K(X,X) + �2I

��1
K(X,X 0)

• Letting ↵ =
�
K(X,X) + �2I

��1
y, then f̂ = K(X 0,X)↵, and

f̂(x0
i) =

nX

j=1

↵jK(x0
i,xj)

...GP regression is kernel regression.
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Gaussian Process Regression: Example
• Gaussian RBF kernel: K(x,x0) = �2 exp

�
�kx�x0k22

2 ⌧2

�

• ⌧ controls the correlation length-scale; �2 is the point-wise variance.

• Left: 20 samples with (⌧, �,�) = (1, 1, 0.1); middle and right: GP
regressions with di↵erent parameters.
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LASSO regression

• Alternative to ridge regression, with built-in variable selection

ŵlasso = argmin
w

1

2
ky �Xwk22 + � kwk1

where kwk1 =
P

i |wi|, the `1 norm.

• LASSO = least absolute shrinkage and selection operator

• Can be seen as MAP estimate of w, under Laplacian prior

fW (w) =
pY

i=1

�

2
exp
⇣
��|wi|

⌘

=
⇣�
2

⌘p
exp
⇣
��kwk1

⌘
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Norm balls
Radius r ball in `p norm: Bp(r) = {v 2 Rn : kvkp  r}

p = 1 p = 2
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Why LASSO Yields Sparse Solutions?
• min

w

1

2
ky�Xwk22 + � kwk and min

w
ky�Xwk22 s.t. kwk  �

are equivalent problems (have the same solution path).

• Ridge (kwk2) versus LASSO (kwk1)

w⇤ = argminw kXw � yk22
s.t. kwk2  �

vs w⇤ = argminw kXw � yk22
s.t. kwk1  �
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LASSO Yields Sparse Solutions

• The simplest problem with `1 regularization (p = 1)

bw = argmin
w

1

2
(w�y)2+�|w| = soft(y,�) =

8
<

:

y � � ( y > �
0 ( |y|  �
y + � ( y < ��

soft(y,�) = sign(y)
�
|y|� �

�
+

= sign(y)max
�
|y|� �, 0

�

• Contrast with the squared `2 (ridge) regularizer (linear scaling):

bw = argmin
w

1

2
(w � y)2 +

�

2
w2 =

1

1 + �
y
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LASSO versus Ridge

• Example (prostate cancer data)

LASSO Ridge
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Solving LASSO Regression

• Ridge regression simply amounts to solving a linear system:

�
XTX + �I

�
ŵridge = XTy

...may capitalize on many decades of work on numerical linear algebra.

• LASSO is much more challenging:

ŵlasso = argmin
w

1

2
ky �Xwk22 + � kwk1

since kwk1 is non-di↵erentiable (for any wi = 0)

• In deep learning, with gradient descent, simply pretend that `1 is
di↵erentiable (derivative in {�1, 0, 1}), although it is crucial to adapt
the step size.
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Classification (a.k.a. Pattern Recognition)

• In a nutshell: produce a “machine” that predicts/estimates/guesses a
class y 2 {1, ...,K}, from variables/features x1,...,xp

• Maybe the core machine learning problem, with countless applications.

• Learning/training: given a collection of examples (training data)

D =
�
(x1, y1), ..., (xn, yn)

�

..find the “best” possible machine.
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Generative Perspective: Exponential Family Classes

• Let Y 2 {1, ...,K} be a random variable (the class)

• Prior class probabilities: {fY (y), y = 1, ...,K}

• Exponential family class-conditional pdf or pmf, observations X 2 X

fX|Y (x|y) =
1

Z(⌘(y))
h(x) exp

⇣
(⌘(y))T�(x)

⌘
, y 2 {1, ...,K}

• Maximum a posteriori (MAP) rule (Bayes + logs + drop constants):

ŷ(x) = arg max
y2{1,...,K}

n
log fY (y) + log fX|Y (x|y)

o

= arg max
y2{1,...,K}

n
log fY (y)� logZ(⌘(y)) + (⌘(y))T�(x)

o

... linear in the features �(x).

• Examples: Gaussian, Exponential, Binomial, Multinomial, Poisson, ...
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Class Posteriors for Exponential Family Classes
• Class posterior probabilities (from Bayes law):

fY |X(y|x) / fY (y) fX|Y (x|y)

/ fY (y)
1

Z(⌘(y))
exp
�
(⌘(y))T�(x)

�

• Let ⇣(y) = log fY (y)� logZ(⌘(y)),

fY |X(y|x) / exp
�
(⌘(y))T�(x) + ⇣(y)

�

• Normalizing,

fY |X(y|x) =
exp

⇣
(⌘(y))T�(x) + ⇣(y)

⌘

KX

u=1

exp
⇣
(⌘(u))T�(x) + ⇣(u)

⌘

...sometimes called a generalized linear model (GLM) or softmax.
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Generative Learning: Exponential Family Classes

• Parameters ⌘(1), ...,⌘(K) are unknown, but we have training data D

• Estimate the class parameters from the training data

D =
⇣
(x1, y1), ..., (xn, yn)

⌘

• For each class y = 1, ...,K, estimate (ML or MAP) ⌘(y) from the
training samples from class y

• Plug these estimates in the MAP classifier of the GLM.
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Discriminative Learning of GLM
• Generalized linear model (GLM):

fY |X(y|x) =
exp

⇣
(⌘(y))T�(x) + ⇣(y)

⌘

KX

u=1

exp
⇣
(⌘(u))T�(x) + ⇣(u)

⌘

• Assumptions about D =
�
(x1, y1), ..., (xn, yn)

�

X Each yi is a sample of Yi ⇠ fY |X(y|xi)

X The samples are conditionally independent

• ⌘ =
�
⌘(1), ...,⌘(K)

�
and ⇣ = (⇣(1), ..., ⇣(K)), log-likelihood function:

log fY1,...,Yn(y1, ..., yn;x1, ...,xn,⌘, ⇣) =
nX

i=1

log fY |X(yi|xi,⌘, ⇣)

=
nX

i=1

KX

y=1

1y=yi log fY |X(y|xi,⌘, ⇣)

modernly called cross-entropy loss.
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The Binary Case: A Detailed Look
• Binary classification, y 2 {1, 0}, thus

fY |X(1|x) =
exp

⇣
(⌘(1))T�(x) + ⇣(1)

⌘

exp
⇣
(⌘(1))T�(x) + ⇣(1)

⌘
+ exp

⇣
(⌘(0))T�(x) + ⇣(0)

⌘

• Dividing numerator and denominator by exp
�
(⌘(0))T�(x) + ⇣(0)

�
,

fY |X(1|x) =
exp

�
wT�(x) + ⇣

�

1 + exp
�
wT�(x) + ⇣

�

where w = ⌘(1) � ⌘(0) and ⇣ = ⇣(1) � ⇣(0).

• Assuming �0(x) = 1 and w0 = ⇣,

fY |X(1|x) =
exp

�
wT�(x)

�

1 + exp
�
wT�(x)

� ⌘ sigmoid
�
wT�(x)

�
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Binary Logistic Regression

• Model: fY |X(1|x) =
exp

�
wT�(x)

�

1 + exp
�
wT�(x)

� ⌘ sigmoid
�
wT�(x)

�

• Since fY |X(0|x) = 1� fY |X(1|x),

fY |X(0|x) = 1

1 + exp (wT�(x))
=

exp
�
�wT�(x)

�

1 + exp (�wT�(x))
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Binary Logistic Regression

• In two dimensions (w, �(x) 2 R2)

• Classical decision boundary, fY |X(1|x) = 1/2 , wT�(x) = 0,
is linear with respect to �(x).

• For any other threshold, fY |X(1|x) = ⌧ , wT�(x) = log( ⌧
1�⌧ ),

is linear with respect to �(x).
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Binary Logistic Regression: Log-Likelihood

• fY (y|x) =
 

exp
�
wT�(x)

�

1 + exp
�
wT�(x)

�
!y  

1

1 + exp
�
wT�(x)

�
!(1�y)

• Negative log-likelihood (NLL), given D =
⇣
(x1, y1), ..., (xn, yn)

⌘
,

L(w) = �
nX

i=1

✓
yi log

exp
�
wT�(xi)

�

1 + exp
�
wT�(xi)

� + (1� yi) log
1

1 + exp
�
wT�(xi)

�
◆

=
nX

i=1

✓
log
⇥
1 + exp

�
wT�(xi)

�⇤
� yiw

T�(xi)

◆

• ML estimate ŵML = argmin
w

L(w)

• No closed form! We need optimization algorithms (later)

• L(w) is smooth and convex (should not be too hard to optimize)
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Logistic Regression: the Separable Case

• A simple example, with only two points in R: D =
�
(�1, 0), (1, 1)

�

• Set �(x) = x, w0 = 0, so we only need to estimate w 2 R

• Negative log-likelihood:

L(w) =
2X

i=1

�
log
�
1 + exp(wxi)

�
� yiwxi

�

= log
�
1 + exp(�w)

�
+ log

�
1 + exp(w)

�
� w

• Derivative,

dL(w)

dw
=

�2

1 + exp(w)
< 0, for any w 2 R,

thus L(w) is monotonically decreasing with w: it has no minima.

• In this case, the ML parameter estimate is undefined.
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Logistic Regression: the Separable Case

• Separable data: yi = 1 , xi � 0.

• For yi = 1, fY |X(1|xi) = sigmoid(w xi) increases with w.

• For yi = 0, fY |X(0|xi) = 1� sigmoid(w xi) also increases with w.
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Ridge and LASSO Logistic Regression

• Ridge logistic regression:

ŵridge = argmin
w

L(w) +
�

2
kwk22

still smooth and convex.

• Sparse (LASSO) logistic regression:

ŵsparse = argmin
w

L(w) + �kwk1

still convex, but not smooth.

• Both well defined, even for separable data.
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Multi-class Logistic Regression
• Recall the GLM, assuming, without loss of generality that �(x) = x
and ⇣(y) = 0

fY |X(y|x,w) =
exp

�
xTw(y)

�

KX

u=1

exp
�
xTw(u)

�

... with w = (w(1), ...,w(K)).

• This is called the multinomial/multi-class logistic, a.k.a. maximum
entropy, softmax, ....

• The log-likelihood function can be written

nX

i=1

log fY |X(yi|xi,w) =
nX

i=1

KX

k=1

1yi=k log fY |X(k|xi,⌘),

where 1yi=k = 1, if yi = k, and 1yi=k = 0, if yi 6= k.
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Multi-class Logistic Regression (2)

• Using one-hot encoding: yi 2 {0, 1}K , yik = 1 if xi is in class k

• The negative multinomial logistic log-likelihood function

L(w) =
nX

i=1

KX

k=1

yik log fY |X(k|xi,w)

can be written as

L(w) =
nX

i=1


log

✓ KX

k=1

exp(xT
i w

(k))

◆
�
✓ KX

k=1

yik x
T
i w

(k)

◆�

• Notice: if xi is in class k, minimizing L(w) pushes xT
i w

(k) up.
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Bayesian Logistic Regression

• Using some estimate ŵ, obtained from data D, and plugging it into
fY |X(y|x, ŵ) ignores the randomness/uncertainty in ŵ

• Bayesian approach: from a prior fW (w), compute the posterior

fW |Y (w|y) =
fW (w) fY |W (y|w)

fY (y)

where fY |W (y|w) =
QN

i=1 fY |X(yi|xi,w) (recall xi are deterministic)

• Given some new point x⇤, the predictive distribution is

fY |X(y|x⇤,y) =

Z
fW |Y (w|y) fY |X(y|x⇤,w) dw

• Unfortunately, none of these have closed-form expressions.
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Bayesian Logistic Regression (2)
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Bayesian Logistic Regression (3)
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Another View of (and Beyond) Softmax

• Scores: z 2 RK , without constraints/restrictions.

• Probabilities: yk = P[class k|x], thus y 2 �K�1, where

�K�1 =
n
y 2 RK , s.t. y1, ...., yK � 0 and

KX

k=1

yi = 1
o

(simplex)

• How to map from z 2 RK to y 2 �K�1, such that

zi = zj ) yi = yj and zi > zj ) yi � yj
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Argmax and Softmax

• First possibility: probability vector “most aligned” with z:

y = arg max
p2�K�1

pTz =) yk 6= 0 , k 2 argmax
j

{zj , j = 1, ...,K}

called the argmax operator/mapping.

• Second possibility: encourage more uniform probability distribution:

y = arg max
p2�K�1

pTz +H(p) ) y = softmax(z), i.e. yk / exp(zk)

where H(p) is Shannon’s entropy,

H(p) = �
KX

k=1

pi log pi

• H satisfies: H(p) � 0 and H(p)  logK (attained for pi = 1/K).
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Softmax as Maximum Entropy
• Encouraging high entropy (with weight 1/�):

y = arg max
p2�K�1

� pTz + H(p)

• Add Lagrangian for the simplex constraint:

y = argmax
p

� pTz + H(p) + � (1Tp� 1)

• Taking derivatives (gradient) w.r.t. p1, ..., pK and equating to zero:

� zi � 1� log pi + � = 0 , pi = exp
⇥
� zi + �� 1

⇤
=

e� zi

Z(�,�)

• Choosing � to satisfy the constraint 1Tp = 1 determines Z(�,�)

yi =
e� zi

PK
j=1 e

� zj
=
⇥
softmax(� z)

⇤
i
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Beyond Softmax: Sparsemax

• A third possibility1: simply project z onto �K�1

y = arg min
p2�K�1

kp� zk22 =) y = sparsemax(z)

• It can also be written as

y = arg max
p2�K�1

pTz � 1

2
kpk22

• �kpk22 is (up to a constant) a Tsallis entropy.

• General family, where ⌦ is some entropy,

y = arg max
p2�K�1

� pTz + ⌦(p)

1A. Martins and R. Astudillo. “From softmax to sparsemax: A sparse model of
attention and multi-label classification”, ICML, 2016.
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Argmax, Softmax, and Sparsemax

• All these mappings satisfy: z0 = z + ↵1 ) y0 = y

• They are also permutation equivariant: if R is a permutation,

z0 = R(z) ) y0 = R(y)

• Sparsemax versus softmax:
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Argmax, Softmax, and Sparsemax

• Sparsemax is in-between softmax and argmax

• For z = [1.0716,�1.1221,�0.3288, 0.3368, 0.0425]

softmax(z)

0

0.2

0.4

0.6

0.8

1

sparsemax(z)

0

0.2

0.4

0.6

0.8

1

argmax(z)

0

0.2

0.4

0.6

0.8

1

• Sparsemax, unlike softmax, may yield exact zeros.
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Temperature

• Softmax and sparsemax may include a “temperature” parameter T ,

• Scale the argument by 1/T : softmax(z/T ) and sparsemax(z/T )

• Zero temperature limit:

lim
T!0

softmax(z/T ) = lim
T!0

sparsemax(z/T ) = argmax(z)

• High temperature limit:

lim
T!1

softmax(z/T ) = lim
T!1

sparsemax(z/T ) =
⇣

1
K , ..., 1

K

⌘

• The temperature controls how peaked the softmax is and how sparse
the sparsemax is.
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Classification: The Loss Function Perspective

• Consider binary classifiers of the form ŷ(x) = sign
�
f(x;✓)

�

• In the linear case, f(x;✓) = ✓Tx

• Both logistic regression and SVM can be seen as minimizing a
regularized loss:

✓̂ = argmin
✓

R(✓)| {z }
regularizer

+
1

n

nX

i=1

L(f(xi;✓), yi)| {z }
loss

• Logistic loss: Llogistic(f, y) / log
�
1 + exp(�y f)

�

• Hinge loss: Lhinge(f, y) / max{0, 1� y f}
... underlies support vector machines (SVM)
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Classification: The Loss Function Perspective (2)
• Both the hinge and the logistic loss can be seen as convex
replacements for the error loss (or misclassification loss)

Lerror(f, y) / 1y f<0 =

⇢
1 ( sign(f) 6= y
0 ( sign(f) = y

• Naturally, other losses can be used (binomial deviance = logistic):
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Classification: Empirical and Expected Risk

• The quantity (empirical risk)

1

n

nX

i=1

L(f(xi;✓), yi) = Remp[f(·;✓)]

is a sample-based (empirical) estimate of the expected loss (the risk)

E [L(f(X;✓), Y )] = R[f(·;✓)]

• Of course, R[f(·;✓)] cannot be computed: fX,Y is unknown.
Instead, we have training data (x1, y1), ..., (xn, yn) ⇠ fX,Y , i.i.d.

• Logistic regression and SVMs solve regularized ERM problems, with
convex surrogates of the error loss
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What About Sparsemax?

• Let’s recall softmax:

X the classifier estimates fY |X(y | x;W )

X loss is the negative log-likelihood:

L(W ; (x, y)) = � log fY |X(y | x;W )

= � log [softmax(z(x))]y,

where zc(x) is the score of class c.

• Loss gradient:

rWL(W ; (x, y)) =
⇣
softmax

�
z(x)

�
� ey

⌘
�(x)T

• Not directly applicable to sparsemax: cannot compute log(0)

M. Figueiredo (IST) Linear Models LxMLS 2024 93 / 134



Sparsemax Loss

• The natural choice for sparsemax

• Compute estimates fY |X(y | x;W ) using sparsemax

• We would like the gradient to have the form:

rWL(W ; (x, y)) =
⇣
sparsemax

�
z(x)

�
� ey

⌘
�(x)T

• This is achieved with the sparsemax loss:

L(W ; (x,y)) = �zy(x) +
1

2
k sparsemax(z(x))k2 � z(x)> sparsemax(z(x)),

where zy(x) is the score of class y.
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Classification Losses (Binary Case)

• Let the true label be y = 1 and define s = z2 � z1.

• Sparsemax loss is sort of a “classification Huber loss”:
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Classification: The Loss Function Perspective

• Recall that supervised learning can be formulated as
regularized empirical risk minimization:

✓̂ = argmin
✓

R(✓)| {z }
regularizer

+

empirical risk
z }| {
1

n

nX

i=1

L(f(xi;✓), yi)| {z }
loss

• Quadratic loss: Lquadratic(f, y) / (f � y)2

• Logistic loss: Llogistic(f, y) / log
�
1 + exp(�y f)

�

• Hinge loss: Lhinge(f, y) / max{0, 1� y f}

• Absolute error loss: Labs(f, y) / |f � y| (not covered today)
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Minimizers
• Goal: find ✓⇤, a minimizer of F (✓) with respect to ✓ 2 Rd

• Types of minimizers:

X global, if F (✓⇤)  F (✓), for any ✓ 2 Rd

X local, if F (✓⇤)  F (✓), for any ✓ 2 Rd s.t. k✓ � ✓k  ", for some ".

• Minimizers: global ) local; local ; global.
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Convexity

• F is a convex function if, for all ✓1, ✓2 2 Rd,

� 2 [0, 1] ) F (�✓1 + (1� �)✓2)  �F (✓1) + (1� �)F (✓2)

• F is a strictly convex function if, for all ✓1, ✓2 2 Rd,

� 2 ] 0, 1 [ ) F (�✓1 + (1� �)✓2) < �F (✓1) + (1� �)F (✓2)

• Convexity ) all local minima are global minima.

• Convexity ) continuity.
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Hessian

• For F twice di↵erentiable, the Hessian is

H(✓) = r2F (✓) =

2

666664

@2F
@✓21

@2F
@✓1@✓2

· · · @2F
@✓1@✓d

@2F
@✓2@✓1

@2F
@✓22

· · · @2F
@✓2@✓d

...
...

. . .
...

@2F
@✓d@✓1

@2F
@✓d@✓2

· · · @2F
@✓2d

3

777775
2 Rd⇥d

• F convex , H(✓) ⌫ 0 (positive semi-definite — psd)

• F strictly convex , H(✓) � 0 (positive definite — pd)
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Coercivity
• F is a coercive function if: lim

k✓k!+1
F (✓) = +1

• Let G = argmin
✓

F (✓), the set of global minimizers.

• F is coercive
:
) G 6= ; (example?)

• F is strictly convex
:
) G has at most one element (example?)

• Non-coercivity example: logistic regression on separable data.
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Descent Directions
• Definition: ⌘ is a descent direction at ✓0 if

F (✓0 + ↵⌘) < F (✓0), for some ↵ > 0.

• For di↵erentiable F ,

⌘TrF (✓0) < 0 , ⌘ is a descent direction.

• Thus, for di↵erentiable F ,

✓⇤ is a local minimizer
:
) rF (✓⇤) = 0
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The Convex Case
• If F is convex and (twice) di↵erentiable, then

✓⇤ is a global minimizer , rF (✓⇤) = 0

Proof: second-order Taylor expansion of F around ✓⇤, for ↵ > 0,

F (✓) = F (✓⇤) + (✓ � ✓⇤)TrF (✓⇤)

+
1

2
(✓ � ✓⇤)TH

�
✓⇤ + ↵(✓ � ✓⇤)

�
(⌘ � ✓⇤)

� F (✓⇤) + (✓ � ✓⇤)TrF (✓⇤)

since convexity implies H ⌫ 0, thus the second-order term is � 0.
Then,

rF (✓⇤) = 0 ) F (✓) � F (✓⇤), for any ✓

F (✓) � F (✓⇤), for any ✓ ) rF (✓⇤) = 0.

• Can also be proved without the Hessian (see recommended reading).
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Gradient Descent

• Key idea: if not at a minimizer, take a step in a descent direction.

• Gradient descent algorithm:

X Start at some initial point ✓0 2 Rd

X For t = 1, 2, ...,

. choose step-size ↵t,

. take a step of size ↵t in the direction of the negative gradient:

✓t = ✓t�1 � ↵trF (✓t�1)

• Several (many) ways to choose ↵t; big research topic.

• Some stopping criterion is used; e.g., krF (✓t)k  �
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Gradient Descent: Quadratic Case
• The quadratic case is easily analysed and provides insight.

• Take least squares linear regression:

F (✓) =
1

2
kX✓ � yk22 =

1

2
✓T

Qz }| {
XTX✓ � ✓T

pz }| {
XTy+

rz }| {
1

2
kyk22

=
1

2
✓TQ✓ � ✓Tp+ r

• Gradient: rF (✓) = Q✓ � p

• Hessian: H(✓) = Q

• Since, for any ✓, ✓TQ✓ = (X✓)T (X✓) = kX✓k22 � 0, then Q ⌫ 0.

That is, F is convex.

• If X is full (column) rank, then Q � 0, thus F is strictly convex
(unique minimizer).
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Gradient Descent: Quadratic Case (2)

• Consider a constant step size: ↵.

• Iterations:
✓t+1 = ✓t � ↵(Q✓t � p)

• Consider any minimizer ✓⇤, that is, Q✓⇤ = p (unique if Q � 0),

✓t+1 � ✓⇤ = ✓t � ✓⇤ � ↵
�
Q✓t �Q✓⇤�

= (I� ↵Q)(✓t � ✓⇤)

• Unrolling the iteration,

✓t � ✓⇤ = (I� ↵Q)t(✓0 � ✓⇤)

showing that what controls convergence is matrix (I� ↵Q)t.

• Convergence requires unique ✓⇤, thus Q � 0, i.e., �min(Q) > 0.
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Gradient Descent: Quadratic Case (3)

• Fact 1: kAvk2  �max(A)kvk2.

• Fact 2: �i(Am) = (�i(A))m, because Av = �v ) Am v = �mv.

• Fact 3: �i(I� ↵Q) = 1� ↵�i(Q).

• As a consequence, k✓t � ✓⇤k2 
�
�max(I� ↵Q)

�tk✓0 � ✓⇤k2

• Choosing ↵ = 1/�max(Q),

0  �max(I� ↵Q) 
✓
1� �min(Q)

�max(Q)

◆
=

✓
� 1



◆
< 1,

where  = �max(Q)/�min(Q) is the condition number.

• Finally, k✓t � ✓⇤k2 
✓
� 1



◆t

k✓0 � ✓⇤k2 ���!
t!1

0.
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Gradient Descent: Quadratic Case (4)

• If �min(Q) is known, there is a (slightly) better choice:

↵ =
2

�min(Q) + �max(Q)

leading to

k✓t � ✓⇤k2 
✓
� 1

+ 1

◆t

k✓0 � ✓⇤k2 ���!
t!1

0

• This type of convergence is called linear:

k✓t � ✓⇤k2
k✓t�1 � ✓⇤k2

 � < 1.
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Gradient Descent: Quadratic Case (5)
• The condition number  expresses the problem di�culty.

• Convergence for di↵erent distributions of eigenvalues.

(pictures from F. Bach).
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Convex Case

• The previous result can be extended to general convex functions.

• Instead of �max(Q), we need L-smoothness,

krF (✓)�rF (✓0)k2  Lk✓ � ✓0k2

• If F is twice di↵erentiable, L-smoothness , H(✓) � LI.

• Instead of �min(Q), we need µ-strong convexity,

F (✓) � F (✓0) + (✓ � ✓0)TrF (✓0) +
µ

2
k✓ � ✓0k22

• If F is twice di↵erentiable, µ-strong convexity , H(✓) ⌫ µI.

• Condition number  =
L

µ
.
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L-smoothness and µ�Strongly Convex
• L-smooth and µ�strongly convex function: upper and lower bounded
by quadratics.

• µ�strong convexity
:
) strict convexity (e.g., exponential)

• µ�strong convexity ) coercivity.

• Regularization: if F (✓) is convex, F (✓) + µ
2k✓k

2
2 is µ-strongly convex.
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Gradient Descent for Convex Functions
• Gradient descent with step-size ↵ = 1/L,

F (✓t)� F (✓⇤) 
✓
� 1



◆t �
F (✓0)� F (✓⇤)

�

called linear convergence ( �t
�t�1

 � < 1, with �t = F (✓t)� F (✓⇤)).

• If µ = 0 (not strongly convex),

F (✓t)� F (✓⇤)  L

2 t
k✓0 � ✓⇤k22

called sub-linear convergence ( �t
�t�1

! 1)

• In practice, these are very di↵erent (next slide).

• Proofs: see recommended reading (F. Bach).
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Linear vs Sublinear Convergence

• Quadratic ( �t
�2

t�1
! � < 1) and super-linear ( �t

�t�1
! 0)

convergence: not achievable using only gradient information.

• Optimization is a central tool in machine learning; it is a huge field.
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Overparametrized Models
• Let’s return to linear LS regression, now overparametrized: d > n.

• F (✓) = 1
2kX✓ � yk22 is convex, but not strongly, �min(X

TX) = 0.

• Gradient descent with step-size ↵ (recall Q = XTX and p = XTy)

✓t+1 = ✓t � ↵(Q✓t � p) = ✓t � ↵XT (X✓t|{z}
ŷt

�y)

• Multiply on the left by X, then subtract y,

ŷt+1 � y = ŷt � y � ↵XXT (ŷt � y) = (I � ↵XXT )(ŷt � y)

• If �min(XXT ) > 0 (likely, since d > n), then for
↵ < 1/�max(XXT ), kŷt+1 � yk converges linearly to zero.

• kŷt+1 � yk converges linearly to zero, even if ✓t does not converge.
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Stochastic Gradient “Descent”
• Back to empirical risk minimization: ✓̂ = argmin

✓
F (✓)

F (✓) =
1

n

nX

i=1

L(f(xi;✓), yi)
�
maybe +R(✓)

�

• For large n, computing rF (✓) is expensive:

rF (✓) =
1

n

nX

i=1

rL(f(xi;✓), yi)

• Alternative: stochastic gradient “descent” (SGD):

X Start at some initial point ✓0 2 Rd

X For t = 1, 2, ...,

. sample i 2 {1, ..., n} at random and choose step-size ↵t,

. take a step of size ↵t in the direction of the negative gradient:

✓t = ✓t�1 � ↵trL(f(xi;✓t�1), yi)
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Motivation for SGD: Computing a Mean
• Consider the goal of computing a mean: µ =

1

n

nX

i=1

xi.

• It is well known (prove it) that the mean is the solution of

µ = arg min
✓2Rd

1

2

nX

i=1

k✓ � xik22

• Let’s use “SGD”: L(xi,✓) =
1
2k✓ � xik22, thus rL(xi,✓) = ✓ � xi

X Set initial point ✓0 = 0

X For t = 1, 2, ...,

. take i 2 {1, ..., n} sequentially (i = t) and use step-size ↵t = 1/t,

. take a step of size ↵t in the direction of the negative gradient:

✓t = ✓t�1 �
1
t
(✓t�1 � xt) =

t� 1
t

✓t�1 +
1
t
xt

• Notice that (t� 1)✓t�1 =
t�1X

i=1

xi, thus ✓t =
1
t

Pt
i=1 xi
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Motivation: Computing an Expected Value
• Goal: computing an expectation,

µ = E[X] = argmin
w

R(w)
z }| {
1

2
E[(w �X)2]

• SGD with i.i.d. samples Xi, for i = 1, 2, ..., n, and step-size ↵t =
1

t
,

Wn = Wn�1 + ↵t(Wt�1 �Xt) =
1

n

nX

i=1

Xi (random sequence)

• Expected cost (assuming variance �2),

E[R(Wn)] =
1

2
E

2

4
 
1

n

nX

i=1

Xi �X

!2
3

5 =
�2

2

✓
n+ 1

n

◆

• Optimal cost, for w⇤ = µ, is R(µ) = 1
2 E[(µ�X)2] = �2

2

• Optimality gap: E[R(Wn)�R(µ)] =
�2

2n
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Stochastic Gradient Descent

• Expected loss (risk): F (✓) = R(✓) = EX,Y [L(f(X;✓), Y )].

• To do gradient descent, we need

rR(✓) = rE[L(f(X;✓), Y )] = E[rL(f(X;✓), Y )]

• Thus, rL(f(X;✓), Y ) is an unbiased estimate of rR(✓)

• SGD with samples from fX,Y is a sequence of random variables,

✓t+1 = ✓t � ↵trL(f(X;✓t), Y )

that is, in expectation,

E[✓t+1] = E[✓t]� ↵tE[rL(f(X;✓t), Y )]

= E[✓t]� ↵trR(✓t)

• In expectation, SGD by sampling fX,Y is gradient descent on R(✓).
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Convergence of Stochastic Gradient Descent

• SGD uses noisy gradients: G(✓), such that E[G(✓)] = rF (✓)

• True for F (✓) = R(✓) and for F (✓) = 1
n

Pn
i=1 L(f(xi;✓), yi).

• Assumptions: F is convex; kG(✓)k22  B2; k✓0 � ✓⇤k2  D.

• Step size: ↵t =
D

B
p
t
.

• Average iterates: ✓̄t =

Pt
s=1 ↵s✓s�1Pt

s=1 ↵s

• Then,

E
⇥
F (✓̄t)� F (✓⇤)

⇤
 DB (2 + log t)

2
p
t

• Notice: not practical to compute F (✓t). Selecting the best iterate is
thus impractical and would beat the purpose of SGD.
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Convergence of SGD: Strongly Convex Case

• Regularization: F (✓) =
1

n

nX

i=1

L(f(xi;✓), yi) +
µ

2
k✓k22

• Consequence: F is µ-strongly convex;

• Step size: ↵t =
1

µ t

• Average iterates: ✓̄t =
1

t

tX

s=1

✓s�1

• Then,

E
⇥
F (✓̄t)� F (✓⇤)

⇤
 2B2 (1 + log t)

µ t

• Strong convexity speeds up convergence from O(1/
p
t) to O(1/t)
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Visual Summary

(Picture by Gabriel Peyré)
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Stochastic Gradient Descent: Linear Classification

• Linear predictor with margin loss: L(f(xi;✓t�1), yi) = `(yi✓Txi)

• Several choices (all convex):

X hinge loss (SVM): `(u) = max{0, 1� u}

X logistic loss: `(u) = log(1 + exp(�u))

X squared loss: `(u) = (1� u)2

• From the gradient of the composite function,

r`(yi✓Txi) =
d `(u)

d u

����
u=yi✓Txi

r(yi✓
Txi) =

 
d `(u)

d u

����
u=yi✓Txi

yi

!
xi

showing that r`(yi✓Txi) is co-linear with xi.

• Each SGD update moves ✓t in a direction parallel to sample xi.
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The Perceptron Algorithm

• Hinge loss: `(u) = max{0, 1� ⌧}, thus

d `(u)

d u
=

⇢
�1, if u  ⌧
0, otherwise.

ignoring the non-di↵erentiability at u = ⌧ .

• Each iteration of SGD, with constant step size ↵, choose sample i,

✓t+1 = ✓t + ↵

⇢
yixi if yi✓T

t xi  ⌧
0, otherwise.

• Points with wrong classification (yi✓T
t xi < 0) or insu�cient margin

(yi✓T
t xi  ⌧) move ✓t towards/away from xi depending on yi

• This is the famous Perceptron algorithm, proposed in 1957 by Frank
Rosenblatt (with ⌧ = 0), the percursor of modern neural networks.
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A Bit of History: The Perceptron
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Perceptron Mistake Bound

• Definitions:

X The training data is linearly separable with margin � > 0 i↵ there is a
weight vector u, with kuk = 1, such that

yn u
Txn � �, 8n.

X Radius of the data: R = max
n

kxnk.

• Then, the following bound of the number of mistakes holds2

Theorem

The perceptron algorithm is guaranteed to find a separating hyperplane
after at most R2

�2 mistakes (non-zero updates).

2A. Noviko↵, “On convergence proofs for perceptrons”, Symposium on the
Mathematical Theory of Automata, 1962.
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Noviko↵’s Theorem: One-Slide Proof
• Recall that non-zero updates (mistakes) are: ✓t+1 = ✓t + yi xi.

• Lower bound on k✓tk, after M mistakes:

uT✓t = uT✓t�1 + yi u
Txi

� uT✓t�1 + �

� uT✓0 +M � = M � (recall ✓0 = 0)

Thus, k✓tk = kuk|{z}
1

k✓tk � uT✓t � M � (Cauchy-Schwarz)

• Upper bound on k✓tk:

k✓tk2 = k✓t�1k2 + kxik2 + 2

0, if mistakez }| {
yi ✓

T
t�1xi

 k✓t�1k2 +R2

 M R2

• Equating both sides, (M�)2  k✓tk2  M R2 ) M  R2/�2 ⌅
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Implicit Regularization
• SGD in linear prediction, with it denoting the sample at iteration t,

✓t = ✓t�1 � ↵t eit xit

where eit depends on the loss gradient and label yit .

• Minibatch or full batch gradient descent:

✓t = ✓t�1 � ↵t

X

j2Bt

ej xj

• Initializing at ✓0 = 0 ) ✓t 2 span(x1, ...,xn).

• If there are multiple ✓⇤ with F (✓⇤) = 0, and the predictions only
depend on ✓Txi, this corresponds to solving

min
✓

k✓k22, such that L(✓Txi, yi) = 0, for i = 1, ..., n.

• This is sometimes called the overparametrized or interpolating regime
and is a central tool in the understanding of modern deep learning.
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Explicit Regularization: Weight Decay

• Objective function F (✓) =
1

n

nX

i=1

L(f(xi;✓), yi) +
�

2
k✓k22

• Let g(✓) be a (batch or stochastic) gradient of the empirical risk

• Gradient of the regularizer: �✓

• Gradient descent (batch or stochastic):

✓t = ✓t�1 � ↵t
�
g(✓t�1) + �✓t�1

�

= (1� �↵t)✓t�1 � ↵t g(✓t�1)

• For ↵t and � small enough, 0 < (1� �↵t) < 1

• ✓t�1 is shrunk/decayed before being updated: weight decay
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Tricks of the Trade
• Choosing the step size is critical: active research area.

• Decay the step size: either continuously, or after each epoch (a single
pass through some set of samples, e.g., the whole training set) .

• Shu✏ing the data after each epoch.

• Minibatching: instead of a single sample, use minibatches (size m)

✓t = ✓t�1 �
↵t

m

X

j 2minibatch t

rL(f(xj ;✓t�1), yj)
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Momentum

• Momentum: remember the previous step, combine it in the update:

✓t = ✓t�1 � ↵tg(✓t�1) + �t(✓t�1 � ✓t�2);

g(✓t) is the gradient estimate (batch, single sample, minibatch).

• Advantage: reduces the update in directions with changing gradients;
increases the update in directions with stable gradient.
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Adaptive Gradient (AdaGrad)
• AdaGrad3: use separate step sizes for each component of ✓t.

• For component j of ✓t,

Gj,t =
tX

t0=1

�
gj(✓t0)

�2
= Gj,t�1 +

�
gj(✓t)

�2

• Scale the update of each component (" for numerical stability)

✓j,t = ✓j,t�1 �
↵p

Gj,t�1 + "
gj(✓t�1)

• Advantages: robust to choice of ↵; robust to di↵erent parameter
scaling.

• Drawbacks: updated step size (learning rate) vanishes, since
Gj,t � Gj,t�1.

3J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo. 12, 2011
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Root Mean Square Propagation (RMSProp)

• RMSProp4 addresses the vanishing learning issue.

• For component j of ✓t,

Gj,t = �Gj,t�1 + (1� �)
�
gj(✓t)

�2

• Forgetting factor � (typically 0.9): Gj,t may be smaller than Gj,t�1.

• Scale the update of each component

✓j,t = ✓j,t�1 �
↵p

Gj,t�1 + "
gj(✓t�1)

• Advantages: robust to choice of ↵ (typically 0.01 or 0.001); robust to
di↵erent parameter scaling.

4Presented by G. Hinton in a Coursera lecture.
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Adam Algorithm: Adaptive Moment Estimation
• Adam5: combines aspects of AdaGrad and RMSProp.

• Separate moving averages of gradient and squared gradient.

• Initial: mt = 0, vt = 0 (typical �1 = 0.9,�2 = 0.999,↵ = 10�3):

mt = �1mt�1 + (1� �1)gt

vt = �2vt�1 + (1� �2)g
2
t

m̂t = mt/(1� �t1) (bias correction due to 0 = 0)

v̂t = vt/(1� �t2) (bias correction due to v0 = 0)

✓t+1 = ✓t � ↵
m̂tp
v̂t + ✏

(component-wise)

• Advantages: Computationally e�cient, low memory usage, suitable
for large datasets and many parameters.

• Drawbacks: Possible convergence issues and noisy gradient estimates.
5D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International

Conference for Learning Representations, 2015. (more than 184000 citations)
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Recommended Books

Thank you! Questions?
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