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CLASS|ICAL MACHINE LEARNING

Data is pre-categorized Data « not labeled
or numerical n any way
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Supervised Learning
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Types of Machine Learning
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Why Linear Models?

® In 2024, deep neural networks are ubiquitous!
® Why a lecture on linear models?

v The underlying machine learning concepts are the same.

v" The theory (statistics and optimization) are easier to understand.
V" Linear models are still widely used (specially if data is scarce)

v' Linear models are a component of deep networks.

v' It is the natural starting point to start learning machine learning.

M. Figueiredo (IST) Linear Models LxMLS 2024 5/134



Linear Classifiers and Neural Networks
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Supervised Machine Learning

Given a collection of input/output pairs (training data)
D= (x1,y1); - (@N,yn) € X XY (i € X, yi €Y)

e . learn a predictor h: X — Y.

Use it for a new input « € X, ...

® .. to guess the corresponding y, which is unknown.

That is, predict/infer/guess/decide § = h(x).

Hopefully, 7 ~ y most of the time, i.e., h should generalize.
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Inputs and Outputs

® |nput x € X

v e.g., a news article, a sentence, an image, a signal, a collection of
laboratory test results, ...

e Qutputy €Y

v e.g., fake/true, a topic, an image segmentation, the next word, a
diagnostic, a stock value, the maximum temperature tomorrow, ...

® Input/output pair: (z,y) € X x Y
v e.g., a news article together with a topic
v e.g., a sentence together with its translation
v e.g., a sequence of words (tokens) together with the next word

v e.g., an image partitioned into segmentation regions
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Regression vs Classification

Regression: quantitative Y;

Classification: categorical Y.

® Regression: Y=R, or Y =10, 1], or Y =R4, or ...
v e.g., given a news article, how much time a user will spend reading it?
¢ Multivariate regression: Y =RX or Y =RE orY = Ay, or ...
v e.g., denoise an image, estimate class probabilities, ...
¢ Binary classification: Y = {£1}
v e.g., spam detection, fraud detection, target detection, ...
® Multi-class classification: Y = {1,2,..., K} (order is irrelevant!)
v e.g., topic classification, image classification, word prediction, ...
® Structured classification: Y exponentially large and structured

v’ e.g., machine translation, caption generation, image segmentation, ...
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Feature Representations
® Feature engineering is (was?) an important step for linear models:

v' Bag-of-words features for text, parts-of-speech, ...

v SIFT features and wavelet representations in computer vision

V" Other categorical, Boolean, continuous features, ...

v Decades of research in machine learning, natural language processing,
computer vision, image analysis, speech processing, ...
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Feature Representations

® Feature represent information about an “object” «

Typical approach: a feature map ¢ : X — R?

® ¢(x) is a (maybe high-dimensional) feature vector

Feature vectors may mix categorical and continuous features

Categorical features are often reduced to one-hot binary features:

e, :=(0,...,0, (1 _,0,...,0) € {0, 1} represents class y

position y
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Representation/Feature Engineering vs Learning

g

® Feature engineering (FE) is “alchemy”:

v’ it requires deep domain knowledge
(linguistics in NLP, vision in computer vision, ...)

v' usually very time-consuming

FE allows incorporating knowledge, it is a form of inductive bias

FE is still widely used in practice, namely in data-scarce scenarios

Modern alternative: representation learning a.k.a. deep learning

Tomorrow's lecture, by Bhiksha Raj
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Linear Regression: A Picture

e Data L4
w—— Linear Regression

“When you're fundraising, it's Al.

When you're hiring, it's ML.

When you're implementing, it's just linear regression”
(Baron Schwartz)
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Linear (Nonlinear) Regression

CURVE-FITTING METHODS
PND THE. MESSAGES THEY SEND

® |n fact, linear regression may be
nonlinear
(more later)

[ | 1 1 "I NEED To CONNECT ESE “USTEN, SCENCE IS HARD. "L HAVE A THEORY,
Beware the |ndUCt|V€ blas U5 NES, BUT MY FRST IEA  BUT I A SEROUS AND THS 15 THE ONLY
DONT HAVE ENOUGH MATH!  PERSON DONG MY BEST®  DATA T COULD FIND.

xkcd.com

M. Figueiredo (IST) Linear Models LxMLS 2024 16 /134



Regression

® In a nutshell: build a “machine” that predicts/estimates/guesses a
quantity y from of other “quantities” x1,...,x,

xry
1)

X = : ? Y
Tp

e Central tool in data analysis, thus in much of science (biological,
social, economic, physical,...) and engineering.

® Learning/training: given a collection of examples (training data)

D= ((mla y2)7 X (mn’ y”))

..find the “best” possible machine.

® Notation: bold = vector or matrix (e.g. x, X).
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Linear Regression

Noisy observations Y = w”’x + wo + N, where N ~ N(0, 02)

Gaussian conditional pdf fy | x (y|x) = N(y|lw?x 4 wy, o?),

Parameters (w, wp) are unknown; instead, i.i.d. training data:

D = (@191, oo (@0, y1))

® Points a1, ..., &, are seen as given, deterministic

Likelihood and log-likelihood function

n
le,...,Yn (yh -~-7yn|iL'17 vy Ly, W, Wo, 02) = HN(y’L|wTwz + ’U)O;U2)
=1
logfylv---,yn(yh"'7yn‘m17"'7mnawaw07 = 20-2 Z —w m"_wo)Q
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Linear Regression

® Maximum likelihood estimate of w:

n
(), wo)mL = arg min » ~(y; — w’ @; — wp)?
w,wo im1

® Another view: loss function L(y,9) = (y — 9)?

Bayes/expected risk for §(x) = w’ z 4+ wp:

Rluw,un) = B[V ~w" X ~00)?) = [ [ (=0T zw0)? fyx (v.2) do dy

unknown
® The empirical risk is, in this case, the residual sum of squares (RSS)
Rl ] = =501~ w2, — up)? = LRSS0, 0
emp |W, Wo —n' 13/2 w T; — Wwo ~ w, wo
1=

® Empirical risk minimization (ERM) = least squares (LS) regression

(W, Wo)erm = (W, Wo)Ls = arg glg(l) Remp|w, wo
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Linear Regression: Another Picture

Y

Linear least squares fitting with
X € IR?. We seek the linear function of X that mini-
mizes the sum of squared residuals from Y.

From: Hastie, Tibshirani, Friedman, “The Elements of Statistical Learning”, Springer, 2009.
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Linear Regression: Dealing with w, (1st Method)

1
. . i1 1
® Replace each original @; withx; = | . | € R?
Lip
wWo
. . wy 1
e Let w now denote a p + 1-dimensional vector: w = | . | € RPT
Wp
e The offset wy is now absorbed into w”x;, thus
n
Wis = arg min Z(yi —w'x;)?

=1
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Linear Regression: Dealing with w, (2nd Method)

n
e Estimation criterion: (w,wy) = arg min Z(yl —wlz; — wp)?
i
n
® Assume centered variables: Z$ij =0,forj=1,..,p
i=1

n

® Assume zero mean responses: g y; =0
i=1

These assumptions imply no loss of generality

Under these assumptions,

0 0
—~ —~

n n
wo = solution,,, <Z Yi —wT Z €T; —nwy = 0) =0

i=1 =1

...which we will assume hereafter to be true.
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Linear Regression: Vector Notation

® | east squares regression,

n

wis(y) = arg min > (y; - wlz;)? = arg min ||y — Xwl3
=1

where y = [y1, ..., ¥n]? and X is the design matrix

'Tll o o e xlp
X = : .. : c R"XP

Tpl xnp

® Gradient: Vylly — Xw|3 =2XT(Xw —y)
® Fquating to zero,
wis(y) = solutiony, (X7 (Xw —y) =0)= (XTX)leTy
_..only if X7 X is invertible, i.e., rank(X) = p, requiring n > p.

M. Figueiredo (IST) Linear Models LxMLS 2024  23/134



A Classic: Coefficient of Determination R2

Coefficient of determination:
SSR
2_1-Z=—_=1-F
R TSS vu

Recall the assumptions 7 = Y ; y; = 0 and wy = 0.
Total sum of squares: TSS =37 ;42  (observation variance xn)

Sum of squared residuals: SSR = >0, (y; — wlx;)?

(1 — fraction of variance unexplained)

SSR

...
¢ .
L .
_'_’__;_,..J———"_’
.

3 .

.

0l . .

R%0.06 REXTHOR, THE DOG-BEARER

X
>
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The Geometry of Linear Regression

® Predicted values at the sampled points:

N ~ —1
§=Xwis(y) = X(X'X) X" y=Py

hat matrix P € R**"

® Matrix P is a projection matrix; it is idempotent, PP = P:

IxT_p

PP=X(XTX)"'XTx(Xx"X)"'x" = X (X"X)"
® Clearly, y € range(X) (span of the columns of X); in fact,

Py=X inly — Xwl3) = i — z|3
y =X (argmin [ly - Xwl|l3) =arg__min ly - 2]

~~

w) 5(y)

i.e., the orthogonal projection onto range(X).
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Geometry of Linear Regression: Euclidean Projection

This picture is in R”
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Going Non-Linear

® To express non-linearities, just replace & with ¢(x),

Po(x)
¢:RP R ¢(x) = : (typically ¢o(z) = 1)
$q—1(x)

® Components of ¢ often called features, and ¢ a feature map.

® E.g., final layer of a deep network:
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Going Non-Linear (but staying linear)
® To express non-linearities, just replace  with ¢(x),
Po(x)
¢:RP R px)=| (typically ¢o(a) = 1)
ba-1(x)
® The LS criterion becomes
wis = arg min > (yi — wl (i)
i=1
= argmin [ly — Xw|3,

where the design matrix X is now
do(x1) -+ Pa-1(x1)
X = : L : e Rx(d)
do(xn) -+ da—1(xn)
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Example: Polynomial Regression

® Order-k polynomial regression in R:
o(x)=[1, z, 22, ..., 27T
® Order-k polynomial regression in R?:
d(x) = [1, 1, zo, 23, 2129, T3, ..., zlzvg_l, 57

...all monomials of order up to k

Order-k polynomial regression in R?:

¢(x) = “vector with all monomials of degree up to k" € R?

which has dimension

_(p+R) _(p+k)_ ptkyE
1= ("1") = = ()

k k! p! k

...exponential in k
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Other Types of Non-Linear Regression

1

Radial basis functions (RBF): ¢;(x) = w(a—um - cjug)
J

...with fixed centers ¢; and widths o;

Typical choices:

v Gaussian RBF (GRBF): ¢(r) = exp(—7?)

v Thin plate spline RBF (TPSRBF): ¢(r) = r?logr

Spline regression: each ¢; is a piece-wise polynomial function.

Kernels: more later.
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Example of Gaussian RBF Regression

RBFN Function Approximation

+ Training Data
RBFN Output

L
0 10 20 30 40 50 60 70 80 90 100
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Ridge Regression

If rank(X) < p (for example, if n < p), wis cannot be computed,
(XTX) € RP*P; rank(X)<p = (X'X) ! cannot be computed

The classical alternative is ridge regression:

Wridge = argmin |y — Xwl3 + A [lwl|3

—1
- (XTX + AI) xTy

Since X7 X is symmetric positive semi-definite, (XTX + AI) is
invertible, for any A > 0

Can be seen as MAP or MMSE estimate of w, under Gaussian prior
1
fw(w) = N(w;O, XI)

® Goes by other names in other contexts: weight decay, penalized least
squares, Tikhonov regularization, ¢ regularization,...
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Ridge Regression: lllustration

Even if w g can be computed, wWyiqge may preferable (lower MSE)

Example: fitting an order-14 polynomial to 21 points in R

In damitda 20,135

mean squared armor

« 4} - train mse
== tost msa

log lambda
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Degrees of Freedom
® Degrees of freedom: df(\) = tr(P) (hat matrix P)
® Limit cases: lim df(\) =p lim df(A) =0
A—=0 A—ro00

® Example with p = 8 (prostate cancer data; Hastie at al, 2009)

Icavol

Coefficients
v Y
}
g

(A — o) df(\) (A=0)
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Choosing ) via Cross Validation (CV)

Available data (z1,91), ..., (Tn, Yn)

Split into K disjoint subsets (folds), each with % samples: Sy, ..., Sk

For each k € {1, ..., K}, learn wfﬁ)geA from all the samples not in Sj,.
Estimate the MSE using S,

—_— K N
MSEL(N) = — D (i — @ tbyigye )’
1€SE

Choose A by minimizing the average MSE estimate:

K
A" = arg m/\lnz MSEx(A) = arg mmz Z —a wrldge /\)2

k=1 k=1i€Sy

K-fold CV; common choices are K =5 and K = 10.
® Extreme case: K = n, leave-one-out CV (LOOCV).
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Dual Variables: Ridge Regression

*® Ridge regression: wWyidge(y) is the solution w.r.t. w of
. 1 .
(XTX + )‘I)w = XTy ~ wridge(y) = XXT (y - X'wridge(y))
that is,

(y - pridge(y))

> =

Wridge(¥) = X v with a =

® Again, Widge(y) is a linear combination of rows of X

® Predicted value for some new point x:

Z)(w) —CC wrldge Zaz 37 xz

...a linear combination of the inner products of x with the x;
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Dual Variables: Ridge Regression (2)
® Ridge regression in dual variables:
. . 1 .
'wridge(y) =X"a with a= X (y - X'wridge(y))

® Inserting the first equality in the second one, solving for a

1

a=—(y-XX"a) & a=AN+XX")"y

> =

thus

wiigge(y) = X" M+ XXT) 'y = (XTX +21) 7 X"y

.

nxn iNvVersion pxp inversion
® Note that (X X7T);; = #lx;; XX is the Gram matrix of 1, ..., @,
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Kernel Regression

Recall that, in dual variables,
= Zai (Tx;), with a= (M + XXT)_ly

e .. XXT7 is the Gram matrix of &1, ..., z,, ie. (XXT)Z-j = cc;fr:z:j

® Data points are only involved via inner products: a:;fpmj and a:ij

To go non-linear, use a feature map ¢ : RP — R,

Z a; (p(@), d(xi)), with a=N+G) 'y,

G is still the Gram matrix, that is, Gi; = (¢(x;), o(x;))

The feature map moves the inner products from R? to R%. Bad?
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Kernel Regression (2)

Motivation example: order 2 polynomial regression in R?:

d(x) = ¢([1, 22]") = [L, 217, 22°, V21 2]

Computing the inner product in R*

(p(@), d(@)) =1+ 212 24> + 2o 2l + 201 2y moahy = 1 + (w, 2')?

The inner product in R* is a function of that in R2.

Such a function is called a kernel: K(xz,z') = (¢(x), p(x'))

Kernel least squares regression:

Z o K(z,x;), with o=+ G)_ly,

® G is the Gram matrix, that is, G;; = K(x;, ;).
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Kernel Regression (3)

No need for structure on «; instead of RP?, just use € X (some set).

Definition: a kernel is a function K : X x X — R, such that,

K(z,2') = (¢(z), o(x'))

for any @, ' € X, for some ¢ : X — F, where F is a Hilbert space.

Hilbert space? Just a complete inner-product vector space.

Mercer's theorem: a symmetric function K : X x X — R is a kernel if
and only if, for any n € N and any @1, ..., x,, € X, the Gram matrix
G (with elements G; ; = K (x;, ;) is positive semi-definite (psd).

G being psd implies existence of ()\I + G)_l, for A > 0.
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Kernels: Examples

In this slide, X = R?

Linear kernel: K(x,z') = ((Ax), (Az’)); mapping ¢(x) = Ax.

Quadratic kernel: K(z,z') = ((z,x') + A)?;
o(x) = [A, V2Ax, V2Axy, ... V2Axg, 22, 11 X9, ..oy 1 T4, .y 22T

(all monomials of degree up to 2, with scaling depending on A)

Polynomial kernel: K(z, ') = ((x, ') + A);

¢(x) = [all monomials of degree up to p, with scaling depending on A]”

dim ¢ (x) = (‘ﬁf”)
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Kernels: Examples
In this slide, X = R¢

i : / lz—2]3 .
Gaussian kernel: K(x,z') = eXp(_T2 ,

transformation ¢ : R? — F, where F has infinite dimension.

p(@) = exp(~ 12— 12)

202

Illustration for d = 1:

/¢\4 $(x) ¢(x)

°
=
>

<
EN)

oot = (-1 1 (L2
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Kernels: Examples

® There are kernels for many other types of objects: sets, strings,
images, graphs, probability density or mass functions, ...

e Sets: let X = 25 (all subsets of set 8, for simplicity, assumed finite).
Kn(A, A" =|ANA'|, forA, A" € X (intersection kernel)
mapping ¢ : X — F (space of real-valued functions in 8)

. 1 « z€A
¢(A) =14, thatis 1A(x)—{ 0 « z¢A

(p(A) =Y 1@ ia(@) = Y 1=AnA| = Kn(4,4))

xeX zeANA’

® There are many other kernels for sets.
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Kernels on Strings
® Finite alphabet X (e.g., ¥ = {a,b,c,d})
® Kleene closure: ¥* = X0 U XU X2 U ... (set of all finite strings of
elements of ¥, including the empty one)

® The p-spectrum kernel corresponds to the following mapping:

P X" — N‘OEIP, with @P(s) = # of times the u-th substring appears in s

1=
K§(s,s') = (¢"(s), ¢"(s)) = D #hi(s) Sh(s))
u=1
® Weighted all substrings (WAS) kernel:
Kwas(s,s') = Z of KE(s,s)
p=1

® Remarkably, both K%(s,s’) and Kwas(s,s’) can be computed with
O(|s| + |$|) cost, using dynamic programming.
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Minimum-Norm Linear Regression

Consider n < p, with X full rank (rank(X) = n)

LS regression does not have a unique solution:
~ . 2
wis(y) € arg min [ly — Xw|;
weRP

® Xw = y has infinitely many solutions, all with ||y — Xw||3 = 0,

Minimum-norm (MN) linear regression:

wun(y) =arg | min w3 = XT(XXT) "y

LS and MN: instances of the Moore-Penrose pseudo-inverse.

® Perfect interpolation regime: g = Xwun(y) =y
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Double Descent

Reconciling modern machine-learning practice and
the classical bias—variance trade-off

Mikhail Belkin®®', Daniel Hsu®, Siyuan Ma®, and Soumik Mandal®

Columbus, OH 43210; and “‘Computer Science Department and Data Science Institute, Columbia University, New York, NY 1002
Edited by Peter J. Bickel, University of California,

*Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210; "Department of Statistics, The Ohio State University,
CA, and

July 2, 2019

for review February 21, 2019)

under-fitting . over-fitting

@

. Test risk

under-parameterized

Risk

over-parameterized
Test risk
“classical”
regime

Risk

“modern”
interpolating regime

~ ‘Training risk

sweet spot_ T ~

- Training risk:
— TS ierpolation threshold
Capacity of H Capacity of H
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Double Descent (2)
® Random Fourier features: ¢;(x) = exp(v/—1(v;, x)),

Zero-one loss

v~ N(O, I)

Squared loss

88 = 1709
~4~ RFF ~4~ RFF
Min. norm solution y, . Min, mnorm solution Ay, .
" (original kemel) = (original kermel)
100
g .
2 15 g 10
&
1
4 -
0
2 T T T T T T T
60 o 10 20 30 40 50 60
447 447 k
§ 62 - g 62
z ~4= RFF z —4— RFF
= Min. norm solution h,, .. = Min. norm solution h,, .
i T T T T T T T T T T T T
[ 10 20 30 40 50 60 0 10 20 30 40 50 60
14 = 04
_ —— RFF —— RFF
& €
c 849 ® 02
E -
0+ 0.0
T T T T T T T T T T T T T
[} 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of Random Fourier Features (x107) (N) Number of Random Fourier Features (x10%) (N)
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Overparametrization and Double Descent

® “Modern” interpolating regime: more parameters than data points.
® For linear regression with p > n, use minimum norm solution.

® Example w/ ¢;(z) = max{v]x,0}, where v; are random vectors.

“Classical” regime . -
(Bias/variance tradeoff) Modern" interpolating regime

® mean squared error

= min ||y — Xw]|3
w

1O

T
I
i
i
i
i
i
i
H
*oas R
.~ R
§ ) ‘.“‘ - ! i ; | .
= T Ly 1 “ nterpolation =N
ok ~ © % Threshold P
— ' .
S i ) e
" i ..
L. H e esrtinttttncanesd
-
0.0t L PP T | " USRI |

Number of parameters P

(Image adapted from Rocks and Mehta, 2022.)

® Current research topic.
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Overparametrization and Double Descent (cont.)
regression: the ¢; are Legendre polynomials.

® Polynomial

10°

107

10°

10°

Mean Squared Error

10t

107!

1073

Polynomial Regression

ylx) = 2z + cos(25x) |

underparametrized

Test
Train
e |nterpolation Threshold

10° 10!

Num Parameters (Num Features)
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Overparametrization and Double Descent (cont.)

® Polynomial regression: the ¢; are Legendre polynomials.

underparametrized overparametrized

il
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Bayesian View of Ridge Regression

Linear-Gaussian likelihood (design D): fyw (y|lw) = N(y|Dw, o>I)
® Gaussian prior: fw (w) = N(w;0,1/X)

Posterior density:

Jwiv (wly) = N(w; (D™D + 0*A1) ™' DTy, 0* (D™D + 0*A1) ")

Prediction at new point x, is Y (x.) = xI W + N (Gaussian)
Frix (yla.) = N(:;:I(DTD +02M) "' DTy, 02" (DTD + 0°\I) 'z, + 02)
Z/fY|X,Y(y|~"3*,W,y) fW\Y(w|y) dw

...the variance/uncertainty of the prediction depends on .

® Example in next slide: p = 1, w = [wo, w1]?, Wyye = [~0.3, 0.5]
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Bayesian View of Ridge Regression: Example 1

likelihood prior/posterior data space
1 1

o
I
x o

zo
1
x o

L4 n=2

1
wi o n=20
-1
-1 0 1 -1 0
wo wo X

I
o
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Bayesian View of Ridge Regression: Example 2

[

M. Figueiredo (IST) Linear Models

w—prediction
Q training data |

plugin approximation (MLE)

ey .
] <

Posterior predictive

T 1

Y 3 8 -3 -3 8 8 2 -

functions sampled from postenor

- 2 ° 2 4 . .



Gaussian Processes

Stochastic process: collection of random variables indexed by some
set X: {F(x), x € X}

® Many variants: time X = [0, T, space X = R?, ...
We consider only Fi(z) € R

® Gaussian process (GP): stochastic process such that any finite
collection of variables is jointly Gaussian.

A Gaussian process is fully specified by

v" mean function m(x) = E[F(x)]

v covariance function: K (z,z') = E[(F(x) — m(z))(F(z') — m(z'))]
Notation: F' ~ GP(m, K) or F(x) ~ GP(m(x), K (z,z"))

Common choice (RBF, for X = RP): K(x,2') = exp(—%”w — :L"H%)
e |f X is finite, a GP is just a Gaussian vector.
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Gaussian Process Example: Noiseless Observations
e Example: X =R, m(z) =0, and a set of points X' = [z, ..., /y]
o F' = [F(x}),..., F(x/\)]T € RY is a zero-mean Gaussian r.v.
F ~N(0, K(X', X)),
where K(wllaazll) e K(wll’wll\/)
K(X/,X/)Z ERNXN
® Another set X = [z1,...,x,] and F = [F(x1), ..., F(x,)]l € R"

® Joint Gaussianity:

F (el ko )

e Posterior: F'|(F = f) ~
N(K(X' X)K(X,X)"'f,K(X',X')- K(X'X)K(X,X)'"K(X,X")

M. Figueiredo (IST) Linear Models LxMLS 2024 55/134



Gaussian Process Example: Noiseless Observations
(2)

Left: samples from the “prior” F

Middle: samples from “posterior” F'|F = f (crosses);

Gray bands: 95% probability.

Right: posterior covariance

. — x*2
2 Z 06l - xa1
= x=3
1 =
= '§ 04
g’ K
-1
-2 H
i ) -02
-5 0 5 -5 0 5 N
input, x input, x 5 Inp?n, x s
(a), prior (b), posterior (c), posterior covariance

(figure from Rasmussen & Williams, 2006)
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Gaussian Process Regression
® Now, consider noisy observations: Y = f + noise, Y| f ~ N(f,02I).

Joint Gaussianity:

[F’ ] ~N<O [g(X’ ,X') K(X', X) ])

Y (X,X') K(X,X)+o0’I
e Posterior: F'|(Y =y) ~ N(f,C), where
Fo= [f@), . fl@n)] = KX, X) (KX, X)+0T) 'y
C = KX’

LX) - K(X', X) (K(X,X)+0T) ' K(X,X')
X

,X)+UQI)_1y, then f = K(X’, X) a, and

n
= E oK (z), x
=1

...GP regression is kernel regression.
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Gaussian Process Regression: Example

_ 12
® Gaussian RBF kernel: K(z,z') = 2 exp(—%)
e 7 controls the correlation length-scale; 72 is the point-wise variance.

o Left: 20 samples with (7,v,0) = (1,1,0.1); middle and right: GP
regressions with different parameters.

(r.v,0) = (1,1,0.1) (7,7,0) = (0.3, 1.08,0.00005) (7,7,0) = (3,1.16,0.89)
2 { 2 2
1 ‘ 1 1
5 0 50 ;0 + ¢
%-1 ‘ §'1 §—1/\/
-2 -2 -2 + >
—3} =3 -3
-5 0 5 -5 0 5 -5 0 5
input, x input, x input, x

(figure from Rasmussen & Williams, 2006)
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LASSO regression

® Alternative to ridge regression, with built-in variable selection
. 1 2
Wiasso = argn}}’n §||y - Xw||2 + A Hle

where [|[w|l; = >, |w;|, the {1 norm.
® | ASSO = least absolute shrinkage and selection operator

® Can be seen as MAP estimate of w, under Laplacian prior
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Norm balls
Radius r ball in £, norm: By(r) ={veR": |jv|, <r}
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Why LASSO Yields Sparse Solutions?
1
Irgn§\|y—Xw||§+/\|\w\| and  min|ly - Xwl|f} st. w| <o

are equivalent problems (have the same solution path).

Ridge (||w]||2) versus LASSO (J|w]|1)

w* = argming | Xw—yl3 vs w*= argming || Xw —yl3

s.t. lwll2 <6 s.t. |lw|1 <6

w VvV
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LASSO Yields Sparse Solutions

® The simplest problem with ¢; regularization (p = 1)

1 y—A <= y>A
W = arg min §(w—y)2+)\|wl =soft(y,A\) =<¢ 0 <=yl <A
b y+A = y<—A
soft(y. A)

A soft(y, A) = sign(y)(lyl —A)
| N = sign(y) max(|y| — A,0)

e Contrast with the squared ¢ (ridge) regularizer (linear scaling):

. 1 2
w=argmin —(w —y)*+ -w* = ——y
w2
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LASSO versus Ridge

® Example (prostate cancer data)

LASSO
=
! i
3
Eh S
g0
'?‘ i
p
(A= ) snembage Fack's (A=0)
soc1/||wlly
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Solving LASSO Regression

® Ridge regression simply amounts to solving a linear system:
(XTX + M )trigge = Xy
...may capitalize on many decades of work on numerical linear algebra.

® | ASSO is much more challenging:
N 1 2
Wiasso = argngn 5”’!/ - Xw||2 + A Hle

since ||w||; is non-differentiable (for any w; = 0)

® In deep learning, with gradient descent, simply pretend that ¢; is
differentiable (derivative in {—1,0,1}), although it is crucial to adapt
the step size.
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Classification (a.k.a. Pattern Recogpnition)

® In a nutshell: produce a “machine” that predicts/estimates/guesses a
class y € {1, ..., K}, from variables/features x1,...,z,

T
xr2

X = : ? Y
Tp

® Maybe the core machine learning problem, with countless applications.

® Learning/training: given a collection of examples (training data)

D = ((x1,41), -, (Xn, Un))

.find the “best” possible machine.
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Generative Perspective: Exponential Family Classes
® LetY €{l,..., K} be a random variable (the class)
® Prior class probabilities: {fy(y),y =1,..., K}
® Exponential family class-conditional pdf or pmf, observations X € X

1
Z(nw)

Fxv(@ly) = h@) exp((nV) ¢()). e {1, K}

® Maximum a posteriori (MAP) rule (Bayes + logs + drop constants):

j(x) = arg e ?ﬁé_?fK}{log fy (y) +log fx|v (mly)}

=g max{log fr(y) ~log Z(n) + (n)"g(x) }

... linear in the features ¢(x).

® Examples: Gaussian, Exponential, Binomial, Multinomial, Poisson, ...
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Class Posteriors for Exponential Family Classes

¢ Class posterior probabilities (from Bayes law):

fyix(ylz) o< fy(y) fx)y(xly)

x fy(y)Z(; exp((n®)7 p(a))

n®)
o Let (%) =1log fy(y) — log Z(n™),
Frixlm) o exp((n®) p(x) + ¢W)
o Normalizing,

exp (@) p(@) + (W)
> exp ()T (=) +¢)

...sometimes called a generalized linear model (GLM) or softmax.
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Generative Learning: Exponential Family Classes

Parameters n1), ..., n5) are unknown, but we have training data D

Estimate the class parameters from the training data

D= ((Xlayl)v - (xn,yn))

For each class y = 1, ..., K, estimate (ML or MAP) () from the
training samples from class y

Plug these estimates in the MAP classifier of the GLM.
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Discriminative Learning of GLM
® Generalized linear model (GLM):
exp ()7 (@) + )
frix(yle) = —

> e (1) ) + )

* Assumptions about D = ((x1,¥1), .-, (Xn, Yn))
v' Each y; is a sample of Y; ~ fy | x (y|x:)

v The samples are conditionally independent

e n=(nW,...,n")) and ¢ = (¢, ...,¢5), log-likelihood function:

n
log fY1,...,Yn (yla ey Ynis L1y ey Ty 1M, C) = Zlog fY|X(yZ|:clv n, C)
i=1

n K
= Z Z 1y:yi IOg fY|X(y’wZ7 n, C)
i=1 y=1

modernly called cross-entropy loss.
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The Binary Case: A Detailed Look
® Binary classification, y € {1, 0}, thus
exp ((n™)T () + V)
exp ()7 (@) + V) + exp ()T () + ()

fyix(z) =

* Dividing numerator and denominator by exp ((n®)7¢(z) + ¢(@),

exp (w” ¢p(x) + ¢)
1+ exp ('qub(a:) +¢)

frix(1z) =

where w = 77(1) — 77(0) and ¢ = g(l) _ C(O)-
® Assuming ¢o(x) =1 and wy = (,

exp (w' ¢ ())

= sigmoid (w” ¢(x
1+ exp ('qub(:B)) -8 d( g ))

frix(1lz) =
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Binary Logistic Regression
- T
® Model: fyx(1]z) = . —eijiauzwﬁ((:()a):)) = Singid(wT¢(w))

oot sigmoid(u
08
07
06
05
04
03
02

01

® Since fyx(0lz) =1 — fyx(1|z),

1 _ o exp (—'qu.’)(m))
1+exp(wle(x)) 1+4exp(—wTo(x))

fyix(0]z) =
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Binary Logistic Regression

® In two dimensions (w, ¢(x) € R?)

EHHTTITTTN

® Classical decision boundary, fy|x(1l|z)=1/2 & w’ p(x)
is linear with respect to ¢(x).

® For any other threshold, fy|x(l|z) =7 & w’¢(x)
is linear with respect to ¢(x).
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Binary Logistic Regression: Log-Likelihood

) . - (wT¢(w)) Yy 1 (1—y)
fy(ylz) = <1+exp (wTd,(w))) <1+exp (wTdJ(x)))

o Negative log-likelihood (NLL), given D = ((Xl,yl),..., (Xn,yn)),

T 3 A Tt AP )

2N BT oxp (T b)) 1+ exp (w” $(x:)

= Z(log +exp (w'¢(x;))] - yin¢(fUz‘)>
® ML estimate wy, = argmin £(w)

® No closed form! We need optimization algorithms (later)
® L(w) is smooth and convex (should not be too hard to optimize)
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Logistic Regression: the Separable Case

A simple example, with only two points in R: D = ((—1,0), (1, 1))

Set ¢(x) = x, wp = 0, so we only need to estimate w € R

Negative log-likelihood:

2
L(w) = Z(log(l + exp(wxi)) — yiwxi)
=1

= log(1 + exp(—w)) + log(1 + exp(w)) — w

Derivative,

dl(w) -2
dw 1+ exp(w)

<0, foranyweR,

thus £(w) is monotonically decreasing with w: it has no minima.

® |n this case, the ML parameter estimate is undefined.
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Logistic Regression: the Separable Case

® Separable data: y; = 1< a; > 0.
® Fory; =1, fy|x(1]x;) = sigmoid(w ;) increases with w.

® Fory; =0, fy|x(0]z;) = 1 — sigmoid(w z;) also increases with w.

BY=1|z)=—>"

Lte

® Clas0
*  Class 1
0.24

— gpam]

=

—_— =20

00

100 7.5 50 25 0.0 25 50 75 10,0
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Ridge and LASSO Logistic Regression

® Ridge logistic regression:
'lbridge = argngnﬁ(w) + 5”’[0”%

still smooth and convex.

® Sparse (LASSO) logistic regression:
wsparse = argrrqlli}nﬁ(w) + >‘”le

still convex, but not smooth.

® Both well defined, even for separable data.
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Multi-class Logistic Regression

® Recall the GLM, assuming, without loss of generality that ¢(x) =«
and (¥ =0
exp (:I:Tw(y))

K
Z exp (:L'T'w(“))
u=1

fyix (yle, w) =

. with w = (w®, ..., w)).

® This is called the multinomial/multi-class logistic, a.k.a. maximum
entropy, softmax, ....

® The log-likelihood function can be written

n n K
> log fyix (yilziw) =Y > 1y,—xlog fyx (klai, ),
i=1

i=1 k=1
where 1, =1,if y; =k, and 1, = 0, if y; # k.
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Multi-class Logistic Regression (2)

e Using one-hot encoding: y; € {0, 1}, y;. = 1 if x; is in class k

® The negative multinomial logistic log-likelihood function

n

K
L(w) = yirlog fyx (klai, w)
i=1 k=1
can be written as

s (ot (o)

=1

® Notice: if x; is in class k, minimizing £(w) pushes :B;fp'w(k) up.
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Bayesian Logistic Regression

Using some estimate w, obtained from data D, and plugging it into
fy|x (y|x,w) ignores the randomness/uncertainty in

Bayesian approach: from a prior fy (w), compute the posterior

e wly) = P D )

where fyw(ylw) = Hf\il fyix (yil®i, w) (recall x; are deterministic)

Given some new point x,, the predictive distribution is

hmw%w=/NWWthmeMw

Unfortunately, none of these have closed-form expressions.
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Bayesian Logistic Regression (2)

Log UkeiPood

(c) (d)

Figure 10.13: (a) Hlustration of the data. (b) Log-likelihood for a logistic regression model. The line is drawn
from the origin in the direction of the MLE (which is at infinity). The numbers corvespond to 4 points in

cter space, cor ding to the lines in (a). (c) Unnormalized log posterior (assuming vague spherical
;uwr) (d) Laplace approximation to posterior. Adapted from a figure by Mark Girolami. Generated by code
at figures.probml.ai/book1/10.13.
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Bayesian Logistic Regression (3)

Ply=11x. wMAP)

6 el *
. ° I.y.
c ., .

e o &
.t -
0f J et et

.
-2 .
.
-
-6

(a)

(d)

(c)

Figure 10.14: Posterior predictive distribution for a logistic regression model in 2d.
ply = 1|&, Weap). (b): samples from the posterior predictive distribution. (c): Averaging over these samples.

(d): moderated output (probit approrimation). Adapted from a figure by Mark Girolami. Generated by code at

Sigures.probml.ai/book1/10.14.
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Another View of (and Beyond) Softmax

T
. z .
T Linear or non-linear : 1 . h
X = . regression ?
(e.g. deep network) _— * Yk
Tp ZK YK

e Scores: z € RE, without constraints/restrictions.

® Probabilities: y; = Plclass k|x], thus y € Ag_1, where

K
Ag_ 1= {y e RX, st.y1, ...,y > 0 and Zyl = 1} (simplex)
k=1

® How to map from z € R¥ to y € Ag_1, such that

Zi=zj = yi=y; and z; > zj = y; >y

M. Figueiredo (IST) Linear Models
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Argmax and Softmax
® First possibility: probability vector “most aligned” with z:

y=arg max plz = y£0ske argmax{z;j, j =1,..., K}
PEAK 1 J

called the argmax operator/mapping.

® Second possibility: encourage more uniform probability distribution:

y=arg max p'z+H(p) = y=softmax(z), i.e. yp o exp(z)
PEAK 1

where H(p) is Shannon's entropy,

K
H(p)=—) pilogp;
k=1

® H satisfies: H(p) > 0 and H(p) < log K (attained for p; = 1/K).
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Softmax as Maximum Entropy
® Encouraging high entropy (with weight 1/5):

y=arg max Sp’'z + H(p)
PEAK 1

Add Lagrangian for the simplex constraint:

y=argmaxf3p’z + H(p) + \(1Tp—-1)
p

Taking derivatives (gradient) w.r.t. pi,...,px and equating to zero:
e/Bzi

Z(B;A)

Bzi—1—logp;+A=0 < pizexp[ﬁzi—i—)\—l] =

Choosing A to satisfy the constraint 17p = 1 determines Z(3, \)
eﬂzi

E‘f(':l erBz]'
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Beyond Softmax: Sparsemax

A third possibility!: simply project z onto Ax_;

y=arg min |p—z|3 = y = sparsemax(z)
PEAK 1

It can also be written as

1
T 2
= ar max zZ— =

-1

—|Ipl3 is (up to a constant) a Tsallis entropy.

General family, where € is some entropy,

y=arg max SBp’z+Qp)
PEAK 1

LA. Martins and R. Astudillo. “From softmax to sparsemax: A sparse model of
attention and multi-label classification”, ICML, 2016.
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Argmax, Softmax, and Sparsemax
e All these mappings satisfy: 2/ =z +al = ¢y =y

® They are also permutation equivariant: if R is a permutation,
Z'=R(z) = y = R(y)

® Sparsemax versus softmax:

=== softmax; ([t.0)
= paraamax, ([t.0)
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Argmax, Softmax, and Sparsemax

® Sparsemax is in-between softmax and argmax

® For z =[1.0716,—1.1221, —0.3288, 0.3368, 0.0425]

softmax(z) sparsemax(z) argmax(z)
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0

® Sparsemax, unlike softmax, may yield exact zeros.
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Temperature

Softmax and sparsemax may include a “temperature” parameter T,

Scale the argument by 1/7": softmax(z/T) and sparsemax(z/T)

Zero temperature limit:

lim softmax(z/T") = lim sparsemax(z/T) = argmax(z)
T—0 T—0

® High temperature limit:
lim soft T) = I )= ()
Jim so max(z/T) Tgi;osparsemax(z/ ) 1 B

The temperature controls how peaked the softmax is and how sparse
the sparsemax is.
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Classification: The Loss Function Perspective

Consider binary classifiers of the form §(z) = sign(f(x;6))

In the linear case, f(x;0) = 67z

Both logistic regression and SVM can be seen as minimizing a
regularized loss:

0= ’ L(f
arg meln + Z (x;;0

regularlzer loss

Logistic 10ss: Ligaic(f,y) o log(1 + exp(—y f))

Hinge loss: Lyng(f,y) x max{0,1 —y f}
. underlies support vector machines (SVM)

M. Figueiredo (IST) Linear Models LxMLS 2024  90/134



Classification: The Loss Function Perspective (2)

® Both the hinge and the logistic loss can be seen as convex
replacements for the error loss (or misclassification loss)

1 <« sign(f)#y

Lerror(f’ y) o8 1yf<0 = { 0 <« S|gn(f) =y

® Naturally, other losses can be used (binomial deviance = logistic):

—— Misclassification
—— Exponential
Binomial Deviance
—— Squared Emror
—— Support Vector

e
©

Loss
15
1

T
0
y-f
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Classification: Empirical and Expected Risk

® The quantity (empirical risk)

n

1
~ > L(F(@i:0),4:) = Remg[F(:6)]
i=1
is a sample-based (empirical) estimate of the expected loss (the risk)
E[L(f(X:0),Y)] = R[f(;0)]

® Of course, R[f(-;0)] cannot be computed: fx y is unknown.
Instead, we have training data (z1,y1), ..., (®n, yn) ~ fxy, i.id.

® | ogistic regression and SVMs solve regularized ERM problems, with
convex surrogates of the error loss
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What About Sparsemax?

® Let's recall softmax:
v’ the classifier estimates fy|x (y | =; W)

v loss is the negative log-likelihood:

—log fy|x(y | z; W)
—log [softmax(z(x))]y,

LW (x,y))

where z.(x) is the score of class c.

® | oss gradient:
Vwl(W;(x,y)) = (softmax(z(cc)) - ey)qb(az)T

® Not directly applicable to sparsemax: cannot compute log(0)
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Sparsemax Loss

The natural choice for sparsemax

® Compute estimates fy|x (y | x; W) using sparsemax

We would like the gradient to have the form:

Vwl(W; (x,y)) = (sparsemax(z(az)) - ey>¢(sc)T

This is achieved with the sparsemax loss:
LW (x,y)) = —zy(x) + %H sparsemax(z(x))||? — z(z) " sparsemax(z(x)),

where z, () is the score of class y.
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Classification Losses (Binary Case)

® | et the true label be y = 1 and define s = z9 — 2z3.

® Sparsemax loss is sort of a “classification Huber loss”:

4.04
1 — on
351 — Logistic
—— Hinge
3.04 9
—— Perceptron
251 ---- Squared (clf.)
204 — Sparsemax loss
151
104
\\
\\
0.5 4 o
S
0.0 =
-3 -2 -1 0 1 2 3
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Classification: The Loss Function Perspective

® Recall that supervised learning can be formulated as
regularized empirical risk minimization:

empirical risk

6 = i 0 L(f
arg min + Z (x:;0),y;)
regularlzer loss

 Quadratic loss: Lguic(f>y) o (f — )?

® Logistic loss: L (f,y) log(l + exp(—y f))

® Hinge loss: Ly (f,y) x max{0,1 —y f}

e Absolute error loss: L, (f,y) o< |f —y| (not covered today)
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Minimizers
® Goal: find 8%, a minimizer of (@) with respect to 8 € R?
® Types of minimizers:
v global, if F(8*) < F(0), for any 8 € R?
v local, if F(6%) < F(8), for any 8 € R? s.t. ||@ — 0| < ¢, for some ¢.

\ [/ 3 |/
N/

[ 1
|/ “V

‘ : global
YA /mm
global min infinitely many lo;:‘al min
global min
® Minimizers:  global = local; local + global.
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Convexity
® F'is a convex function if, for all 81, 65 € R4,
A€0,1] = F(A01+ (1 —X)02) < AF(01) + (1 —\)F(62)
® [ is a strictly convex function if, for all 81, 65 € R4,

A€]0,1[ = F(A\y + (1 — \)8s) < AF(0;) + (1 — \)F ()

L

T f 1
non-convex convex convex, not strictly
strictly convex

® Convexity = all local minima are global minima.

e Convexity = continuity.
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Hessian

® For F twice differentiable, the Hessian is

[ 9*F  _9?F . _0°F T
907 90100, 96,00,
00200 92 00200
H(0) =V?F(8) = | 7 3.z 24| ¢ Rxd
2F 2F . 9%F
_69d891 00,002 805 |

® [ convex < H(O) =0 (positive semi-definite — psd)

® F strictly convex < H(0) =0 (positive definite — pd)
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Coercivity

e F'is a coercive function if: im  F(0) = +oo
18] —-+o0

® Let G =arg mgin F(8), the set of global minimizers.

F'is coercive i G#£0 (example?)

o &
F is strictly convex - G has at most one element  (example?)

coercive and coercive, not convex, not
strictly convex strictly convex coercive
I o* « , T
G = {0*} G G=10

® Non-coercivity example: logistic regression on separable data.
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Descent Directions

® Definition: 77 is a descent direction at 8 if
F(6y+ an) < F(6), for some a > 0.
® For differentiable F',
nTVF(8)) <0 < mnisa descent direction.

® Thus, for differentiable F,
.. L < .
0" is a local minimizer - VF(@*) =0

local min local max saddle point

Nd N O N
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The Convex Case

e If F'is convex and (twice) differentiable, then
0" is a global minimizer < VF(0*) =0
Proof: second-order Taylor expansion of F' around 8*, for a > 0,
F(0) =F(6%) + (6 — 6)TVF(6%)
500 H(6" 1 a(6 —69)(n - 6.)
F(0*) + (6 — 6")TVF(6)

since convexity implies H = 0, thus the second-order term is > 0.
Then,
VF(@*)=0 = F(0)> F(0"), forany

F(0) > F(6%), forany 8 = VF(0")=0.

e Can also be proved without the Hessian (see recommended reading).
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Gradient Descent

e Key idea: if not at a minimizer, take a step in a descent direction.

® Gradient descent algorithm:
v Start at some initial point 8y € R?
v Fort=1,2,...,
> choose step-size v,

> take a step of size a; in the direction of the negative gradient:

0, =6,_1— atVF(at—l)
® Several (many) ways to choose ay; big research topic.

® Some stopping criterion is used; e.g., ||[VF(0,)| <6
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Gradient Descent: Quadratic Case

The quadratic case is easily analysed and provides insight.

Take least squares linear regression:

T

Q p ——
1 o 1 0773 TxT L2
F(0)=§HX0—YH2:§9 X'X0-6'X Y+§HYH2

1
= 56»TQ¢9—(9Tp+r

Gradient: VF(0) = Q0 —p
Hessian: H(0) = Q
Since, for any 8, 07Q 6 = (X0)"(X60) = || X6||2 > 0, then Q = 0.

That is, F' is convex.

e If X is full (column) rank, then Q = 0, thus F'is strictly convex
(unique minimizer).
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Gradient Descent: Quadratic Case (2)

Consider a constant step size: a.

Iterations:
0:11 =6, —a(Q6, —p)

Consider any minimizer 8%, that is, Q6" = p (unique if Q > 0),

0t+1 — 0" = Bt — 0" — a(QOt — QO*)
=(I-aQ)(6;—6")

Unrolling the iteration,
0, — 6" = (I-aQ)"(6, — 0%)
showing that what controls convergence is matrix (I — aQ)’.

¢ Convergence requires unique 8%, thus Q > 0, i.e., \,in(Q) > 0.
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Gradient Descent: Quadratic Case (3)

Fact 1: ||Av|j2 < Amax(A)||v]]2.

Fact 2: X\i(A™) = (X\i(A))™, because Av = Av = A™v = \"v.

Fact 3: Mi(I—aQ) =1—aX(Q).

* As a consequence, [|8; — 6*|]2 < (Amax(I — aQ))"[|60 — %2

Choosing a = 1/ Amax(Q),

0 < Amax(I— aQ) < <1—i’r:;+((%))) - (”;1> <1,

where kK = Amax(Q)/Amin(Q) is the condition number.

k—1

t
o Finall, 0,0 < (1) 10— 01— 0
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Gradient Descent: Quadratic Case (4)

® If Apin(Q) is known, there is a (slightly) better choice:

2
)‘min(Q) + Amax(Q)

o =

leading to

k—1
0, — 0% <
o= 67l < (554

t
) ||00 — O*HQ — 0
t—o0
® This type of convergence is called linear:

16, — 6"|»
— = <~ <1
61 —6, "
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Gradient Descent: Quadratic Case (5)

® The condition number k expresses the problem difficulty.

small & large £

® Convergence for different distributions of eigenvalues.

semi-log plot

log-log plot

log, ol F6) - Fir) ]
log, ol F0) - Fir) ]

4 —A\ ~ 1Kk -4 —A ~1K
— A~ K — A ~ K
- = bound - = bound
6" J ry
0 2000 4000 0 1 2 3
t log ,(t)

(pictures from F. Bach).

M. Figueiredo (IST) Linear Models LxMLS 2024 109 /134




Convex Case

® The previous result can be extended to general convex functions.

Instead of Amax(Q), we need L-smoothness,

IVE(©) = VF(6)]2 < L6 — 6|2

If F'is twice differentiable, L-smoothness & H(6) < LI

Instead of A,in(Q), we need pi-strong convexity,

F(0) > F(6)+ (8- 0)TVF(6)+ 5[0 - 0|}

If F'is twice differentiable, p-strong convexity < H(6) > pl.

L
e Condition number Kk = —.
1
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L-smoothness and ;—Strongly Convex

® [-smooth and p—strongly convex function: upper and lower bounded
by quadratics.

F@)+ F'(0) (n—0)+5|n— 0|3 (¢ )

E(e) + (m-9) 7F(O)+ L’Lh"; Bwi
L “nJL;‘.u*.'

F(n)
P ‘."L(.,)‘* J

J
— to

o L towvix Ly
F(0)+ F'(6) (n—0) /

L >
0 n

® ,,—strong convexity - strict convexity (e.g., exponential)

® ,1—strong convexity = coercivity.
* Regularization: if F(8) is convex, F(6) + 4||0||3 is y-strongly convex.
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Gradient Descent for Convex Functions

® Gradient descent with step-size « = 1/L,

K—1

K

F(0,) — F(8") < ( ) (F(80) — F(6"))

called linear convergence (2 <y < 1, with A; = F(6;) — F(6")).
¢ If 4 =0 (not strongly convex),
* L * (|12
F(0y) — F(07) < 51160 — 673

called sub-linear convergence (Af_l — 1)

® In practice, these are very different (next slide).

® Proofs: see recommended reading (F. Bach).
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Linear vs Sublinear Convergence

Convergence rates

10° 85

AA ~O-Sublinear
X &Qq ~{A~Linear
H -%+Quadratic

106 $
10® Q&G&&&%
84
10 X
10 0 10 20 30
Number of iterations
® Quadratic (A%t — 8 < 00) and super-linear (A?tl —0)
t—1 -

convergence: not achievable using only gradient information.

e QOptimization is a central tool in machine learning; it is a huge field.
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Overparametrized Models

Let's return to linear LS regression, now overparametrized: d > n.

F(0) = ]| X6 — y||3 is convex, but not strongly, Apin(XTX) = 0.

Gradient descent with step-size o (recall Q = X7 X and p = XTy)

041 =0, —a(QO; —p) =0, — a X" (X0, —y)

Yt

Multiply on the left by X, then subtract v,

Y1l — Y=Yt — Y —OéXXT(!}t —y) = (I— OZXXT)(’!% —y)

® If Apyin (X XT) > 0 (likely, since d > n), then for
a < 1/Amax(XXT), ||9:+1 — yl| converges linearly to zero.

® ||gt+1 — y|| converges linearly to zero, even if 8; does not converge.
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Stochastic Gradient “Descent”
* Back to empirical risk minimization: 6 = arg mein F(0)
n

F(8)= > L(f(w::6),3) (maybe + R(6)

=1

® For large n, computing VF(8) is expensive:
1 n
V() = ;ZVL(f(CL’z‘; 0),vi)
i=1

® Alternative: stochastic gradient “descent” (SGD):
v Start at some initial point 8y € R?
v Fort=1,2,...,
> sample ¢ € {1,...,n} at random and choose step-size a,
> take a step of size a; in the direction of the negative gradient:
0; =01 — a:VL(f(xi;0:t-1),9:)
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Motivation for SGD: Computmg a Mean
® Consider the goal of computing a mean: pu = Zmz
=1
e It is well known (prove it) that the mean is the solution of

n \ | |
e io-=it 00

® Let's use “SGD": L(x;,0) = %HO — CI:Z”% thus VL(x;,0) =0 — x;
V" Set initial point 83 =0
v Fort=1,2,...,
> take i € {1,...,n} sequentially (¢ =t) and use step-size a; = 1/t,

> take a step of size a; in the direction of the negative gradient:
1 t—1 1
0, =0,_, — ;(et—l —x) = — 0.1+ 7 Ty

t—1
® Notice that (t —1)0;_; = sz thus 6, = 131 @;
i=1
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Motivation: Computing an Expected Value

® Goal: computing an expectation, R(w)
—_——
1
p = E[X] = arg min 3 E[(w — X)?]
w
1
[

SGD with i.i.d. samples X;, for i = 1,2,...,n, and step-size o = 7

1 n
Wy =Wn1+a(Wimy — Xy) = - ZXi (random sequence)
i=1

Expected cost (assuming variance o2),

i ? 02 n
E[R(Wn)]Z%E (%ZXi—X) :7< :;1>

=1

Optimal cost, for w* =y, is R(u) = L E[(u — X))} = %
2
g

e Optimality gap: E[R(W,,) — R(u)] = —
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Stochastic Gradient Descent

Expected loss (risk): F'(0) = R(0) =Ex y[L(f(X;0),Y)].

To do gradient descent, we need

VR(0) = VE[L(f(X;0),Y)] = E[VL(f(X;6),Y)]

Thus, VL(f(X;0),Y) is an unbiased estimate of VR(0)

SGD with samples from fx y is a sequence of random variables,
0111 =0, — VL(f(X;6:),Y)
that is, in expectation,

E[0;11] = E[0;] — a4E[VL(f(X;6;),Y)]
== E[Ot] - atVfR(Bt)

® In expectation, SGD by sampling fx y is gradient descent on R(8).
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Convergence of Stochastic Gradient Descent

SGD uses noisy gradients: G(8), such that E[G(6)] = VF(0)

True for F(8) = R(0) and for F(8) = L "0 | L(f(i;0),v:).

T n

* Assumptions: F is convex; ||G(8)]]3 < B?; ||y — 0*||2 < D.
® Step size: oy = BL\/E'
t
_ _, g0,
e Average iterates: ; = w
Zs:l Qs
® Then,

E[F(6,) - P(67)] < Dij;g”

® Notice: not practical to compute F'(0;). Selecting the best iterate is
thus impractical and would beat the purpose of SGD.
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Convergence of SGD: Strongly Convex Case

1 n
Regularization: F(0) = - ZL(f(-’Bi; 0),yi) + g||9||§
i=1

® Consequence: F'is u-strongly convex;

. 1
® Step size: oy = —
wut

t
. . 1
® Average iterates: 0; = n 268_1
s=1

Then,
2 B%(1+ logt)

B (F(@) - F(6)) < 20

e Strong convexity speeds up convergence from O(1/v/t) to O(1/t)
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Visual Summary

Finite sums Expectation

2~ ~Vf(z) Vi(z)
-+ Vfi(z) » VF(z,2)
oo zZ~
Draw i € {1,...,n} uniformly. Draw z ~ z
Tr1 = Tk — TV fi(2k) Tk+1 = Tk — Tk VF (2, 2)

Theorem: If f is strongly convex and 7 ~ 1/k,
E(|zx — z*[?) = O(1/k)

(Picture by Gabriel Peyré)



Stochastic Gradient Descent: Linear Classification
® Linear predictor with margin loss: L(f(x;;0;_1),y:) = £(y;07 ;)
® Several choices (all convex):

V" hinge loss (SVM): £(u) = max{0,1 — u}

v logistic loss: £(u) = log(1 + exp(—u))

v squared loss: £(u) = (1 — u)?

® From the gradient of the composite function,

V(6 ) = LY V(y:0 ;) = (‘M(“)

du du

Yi | Ti
u=y;07x;

® Each SGD update moves 6, in a direction parallel to sample x;.

u=y;07x;

showing that V/(y;07 x;) is co-linear with x;.
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The Perceptron Algorithm

® Hinge loss: ¢(u) = max{0,1 — 7}, thus

dl(u) [ -1, ifu<T
du 0, otherwise.

ignoring the non-differentiability at v = 7.

Each iteration of SGD, with constant step size «, choose sample 7,

yix; ify0lx; <1

01 =6+ { 0, otherwise.

Points with wrong classification (y;0] z; < 0) or insufficient margin
(y;0] x; < 7) move ; towards/away from x; depending on v;

This is the famous Perceptron algorithm, proposed in 1957 by Frank
Rosenblatt (with 7 = 0), the percursor of modern neural networks.
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A Bit of History: The Perceptron
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The New York Times, 1958 Minsky and Pappert, 1969
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Perceptron Mistake Bound

e Definitions:

v The training data is linearly separable with margin v > 0 iff there is a
weight vector u, with ||u|| = 1, such that

Yn uTa:n >, Vn.

v" Radius of the data: R = max ||x,|.
n

® Then, the following bound of the number of mistakes holds?

Theorem

The perceptron algorithm is guaranteed to find a separating hyperplane
2 0
after at most % mistakes (non-zero updates).

2A. Novikoff, “On convergence proofs for perceptrons”, Symposium on the
Mathematical Theory of Automata, 1962.
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Novikoff’s Theorem: One-Slide Proof

® Recall that non-zero updates (mistakes) are: 0,11 = 0; + y; ;.
® Lower bound on [|6;]|, after M mistakes:

u’0, = w0, + Yi u'z;
> w01+
> w0+ M~y = M~ (recall 8y = 0)
Thus, ||0;] = |Ju| 1|6:]] > w6, > M~ (Cauchy-Schwarz)
—

1
¢ Upper bound on ||6;]]: <o, if mistake

—_—~—
161> = 16c1l” + [loil* +2 v 6 s
< ||9t—1||2+R2
< MR?

® Equating both sides, (M~)? < |6 < M R?> = M < R?/4? [
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Implicit Regularization

SGD in linear prediction, with i; denoting the sample at iteration ¢,

0, =0, 1 —are;, x;,

where e;, depends on the loss gradient and label y;, .

Minibatch or full batch gradient descent:

0,5 = Ot,l — O E €; &Lj
JEB:

Initializing at ) =0 = 6, € span(xy, ..., T,).

If there are multiple 6* with F'(6*) = 0, and the predictions only
depend on 87 x;, this corresponds to solving

moin 10112, such that L(6Tx;,y;) =0, fori=1,...,n.

This is sometimes called the overparametrized or interpolating regime
and is a central tool in the understanding of modern deep learning.
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Explicit Regularization: Weight Decay

Objective function F(6 Z L(f(x;0 ||9”2

Let g(@) be a (batch or stochastic) gradient of the empirical risk

Gradient of the regularizer: A @

Gradient descent (batch or stochastic):

0 =61 — oy (g(6i—1) + \0;_1)
=1 -Xay)bi—1 — o g(0i-1)

For a; and A small enough, 0 < (1 — A ay) <1

0,_1 is shrunk/decayed before being updated: weight decay
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Tricks of the Trade

Choosing the step size is critical: active research area.

Decay the step size: either continuously, or after each epoch (a single
pass through some set of samples, e.g., the whole training set) .

Shuffling the data after each epoch.
Minibatching: instead of a single sample, use minibatches (size m)

0, =0;,_1— E Z vL(f(mj;etfl)ayj)
j € minibatch ¢
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Momentum

® Momentum: remember the previous step, combine it in the update:

0, =01 —g(60,_1) + 7(0—1 — 6,_2);

g(0;) is the gradient estimate (batch, single sample, minibatch).

® Advantage: reduces the update in directions with changing gradients;
increases the update in directions with stable gradient.

() starting Point

e 4

~CJ
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Adaptive Gradient (AdaGrad)

e AdaGrad3: use separate step sizes for each component of ;.

® For component j of 6y,

t

Gjt = Z(gj(et’))2 =Gjt-1+ (gj(et))z

=1
® Scale the update of each component (¢ for numerical stability)
a

VGit-1+e

® Advantages: robust to choice of «; robust to different parameter
scaling.

Oj1=0j1-1— 9;(0r-1)

® Drawbacks: updated step size (learning rate) vanishes, since
Git 2 Gt
3J. Duchi, E. Hazan, Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization”, Jour. of Machine Learning Research, vo. 12, 2011
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Root Mean Square Propagation (RMSProp)

RMSProp* addresses the vanishing learning issue.

For component j of 6,

Gt =vGjs1+ (1—7)(g;(8,))°

Forgetting factor « (typically 0.9): G;+ may be smaller than G, ;.

Scale the update of each component
(6

«/Gj,t—l +e€ 9i

Advantages: robust to choice of « (typically 0.01 or 0.001); robust to
different parameter scaling.

(61-1)

Ojt = 0jt—1 —

*Presented by G. Hinton in a Coursera lecture.
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Adam Algorithm: Adaptive Moment Estimation
e Adam®: combines aspects of AdaGrad and RMSProp.

® Separate moving averages of gradient and squared gradient.
e |nitial: m; =0, v; = 0 (typical f; = 0.9, B = 0.999, a = 1073):

my = ﬁlmtq + (1 - 51)gt
Vi = /Bg’vt—l + (1 - ﬁ2)gt2
my =my/(1— B (bias correction due to o = 0)

0y = v /(1 — L) (bias correction due to vy = 0)

my
VU + €
® Advantages: Computationally efficient, low memory usage, suitable
for large datasets and many parameters.

0,11 =6, —« (component-wise)

® Drawbacks: Possible convergence issues and noisy gradient estimates.

°D. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, International
Conference for Learning Representations, 2015. (more than 184000 citations)
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Recommended Books

PATTERNS,
PREDICTIONS,
AND ACTIONS

dations of Machine Learning

Learning Theory from First Principles

Probabilistic
Machine Learning

An Introduction

Moritz Hardt
Banjamin Recht Kevin P. Murphy

https://mistory.org/ https://probml.github.io/pml-book/book1.html

https://www.di.ens.fr/~fbach/Itfp_book.pdf

Thank you!  Questions?
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