. f S - 9 b N | 1
LLLLL N
|‘V‘|AC I"i | N [L[ARN I N G
SCHOOL

Transformers and Pre-trained Language Models

Dangi Chen

Princeton Language and Intelligence
Princeton University

July 15th, 2024

(Many slides are adapted from Princeton COS484 and Stanford CS224N course materials)

Introduction

Adithya Howard Chen Dan Friedman Tianyu Gao Lucy He

Bhaskar (w/ Karthik (w/ Peter
Narasimhan) Henderson)

g -»__*‘*",,;fv'-‘.’.‘ 2 _".‘_,“ AT o ‘n'y,_,i:i— T
BN A, ey AT N 4
Alexander
[]
Wettig

Howard Yen Zexuan Zhong

Our research focuses on training, adapting and understanding large language models

See more at https://www.cs.princeton.edu/~danqic/

Lecture plan

Part I. Transformers

Focus: innovations and key designs in neural architectures

@ 30min coffee break

coffee break
Part II. Pre-trained language models

Focus: training objectives & data, downstream adaptations

Lecture plan

e Fundamentals (70%) - | will walk through the most important ideas in NLP

and LLMs in the past 5+ years (Transformers, pre-training, in-context
learning, RLHF, ...)

* How do these ideas evolve and lead to state-of-the-art models? (15%)
- | will highlight recent improvements and developments

 Cutting-edge research topics (15%) - What research topics do we study
in 20247 | will briefly discuss some of the works from my research group too

partl. [ransformers

Transformers

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Llion Jones*
Google Research
1lion@google.com

Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Research Google Research
noam@google.com nikip@google.com usz@google.com

Aidan N. Gomez* T FLukasz Kaiser*
University of Toronto Google Brain
aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com

(Vaswani et al., 2017)

What is attention!?

NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau
Jacobs University Bremen, Germany

» Attention Is a technique to address the “bottleneck”
KyungHyun Cho Yoshua Bengio® iIssue Iin the seq2seq model, originally designed for
Université de Montréal : .

machine translation

(Bahdanau et al., 2015)

Encoder bottleneck Decoder
l bonjour le monde : <eos>
. 4 4 A 4 4
hidden
> — — |_>
|_> |_> state |_’

) ! t y ¢ f ¢ A

hello world . <bos> bonjour le monde

What is attention!?

NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau
Jacobs University Bremen, Germany

» Attention Is a technique to address the “bottleneck”
KyungHyun Cho Yoshua Bengio” iIssue Iin the seq2seq model, originally designed for
Université de Montréal : :

machine translation

(Bahdanau et al., 2015) _ | | |
- Key idea . : At each time step during decoding,

focus on only a particular part of source sentence

- This depends on decoder’s current hidden state 79¢

- Usually implemented as a probability distribution
over the hidden states of the encoder (;")

Attention for seq2seq models

Encoder
hidden
state

hidden
J e state #1

SUIS

étudiant [

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seg2seg-models-with-attention/ g

Attention for seq2seq models

Encoder
hidden
state

Attention learns the notion of alignment
*Which source words are more relevant to the current target word?”

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seg2seg-models-with-attention/ 1g

Attention

Attention

Encoder

distribution

SCOIES

RNN

Attention for seq2seq models

hete, ... he™ and h* are hidden states from encoder and decoder RNNs

- Encoder hidden states: /1;", ..., 1"

| Attention pie (n: # of words in source sentence)
® output T
o) J
P > 9 - Decoder hidden state at time #: /7,
= % - Attention scores:
el = [g(h{", htdec), 8, hflec)] e R”
- Attention distribution:
O O O O (@) O @) o) @) O 5 l n
|e ol o] Jo a' = softmax(e’) € R
s sls——{s (s (8 I8 8 8 i)
O o |©o © of |o o |©o O O . .
~ Weighted sum of encoder hidden states:
Tt T T T n
_ t1,enc h
il a m’ entarté <START> he hit me with a Op = 2 &; hi eR
N\ v J =1

Source sentence (input) . dec _
Combine o, and /1,°“ to predict next word

11

We can think of attention as performing fuzzy lookup a in key-value store

Attention as a soft, averaging lookup table

Lookup table: a table of keys that map to
values. The

matches one of the keys,

returning its value.

keys values

vl
V2
v3

output
v4 % v4
v5

Attention: The

keys values

ki
k2

query
q k3
k4
k5

(In the case of NMT, key = value)

matches to all keys softly
to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.

vl

V2

V3

v4

v5

Weighted

Sum

output

)y —

12

Transformer encoder-decoder

Qutput
Probabilities

1

Softmax

1

Linear
A

Add & Norm J<=~
Feed
Forward
A =)
r) x
p ~ Add & Norm Je—~
—>{_Add & Norm Multi-Head
\ Feed l Attention
Forward d 2 }r 2) N

A

\

Add & Norm -

N x
~>| Add & Norm R
Multi-Head Multi-Head
Attention Attention
A_ ¢+ 2 At
- J =)
Positional Positional
. < + :
Encoding ?_® Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

(Vaswani et al., 2017)

e [ransformer encoder + Transformer decoder:

a replacement for seg2seq + attention based
on RNNs

e First designed and experimented on NMT

1997 RNNs / LSTMs
2014 seqiseq

2015 seqg2seq I attention
2017 attention only -

Transformer encoder-decoder

Transformers (both encoders and decoders) have become

the default neural architectures in modeling languages! -

Transformer encoder-decoder

Qutput
Probabilities
{
Softmax
)
Linear
/Y
(., B
Add & Norm |~
Feed
Forward
4 y
e 5 I
e N Add & Norm Je=
> Add & Norm Multi-Head
\ Feed] Attention
Forward A7 7 7 N x
L /Y fa J
Add & Norm <=
N x r
~>| Add & Norm R
Multi-Head Multi-Head
Attention Attention
A__ ¢+ A+
& J U)
Positional Positional
: + + .
Encoding 9_® Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

(Vaswani et al., 2017)

* Transformer encoder = a stack of encoder layers

 Transformer decoder = a stack of decoder layers

\d L
* .

Transformer encoder: BERT, RoBERTa, ELECTRA

Transformer decoder: GPT-n, ChatGPT, Gemini,
Claude, LLaMA, Mistral, ...

iTransformer encoder-decoder: T5, BART

* *
. .

e Key innovation: self-attention, multi-head

e TJransformers don’t have any recurrence structures!

h, =f(h_,,x) e R"

14

~>| Add & Norm |

—

Feed
Forward

|

Nx —>|_Add &[Norm]

Multi-Head
Attention

Transformers: roadmap

Qutput
Probabilities

1

Softmax |}

1

Linear |

—

Add & Norm |<ﬁ

Feed
Forward
})

Add &INorm J~
[Multi-Head l

Attention

[o —; NX

J

Positional
Encoding

@%

Input
Embeddmg

T

Inputs

I
Add &I Norm Je=
Masked
Multi-Head
Attention
q =)
Positional
Encoding
Qutput
Embedding
Outputs

(shifted right)

Self-attention and multi-head attention

Feedforward layers

Positional encoding

Residual connections + layer normalization
Transformer encoder vs Transformer decoder

The Annotated Transformer

Ashish Vaswani’
Google Brain
avaswani@google.com

Llion Jones™
Google Research
1lion@google.com

https://nlp.seas.harvard.edu/annotated-transformer/

Attention is All You Need

Noam Shazeer” Niki Parmar”
Google Brain Google Research
noam@google.com nikip@google.com

Aidan N. Gomez™ |

Jakob Uszkoreit®

Google Research
usz@google.com

F.ukasz Kaiser”

University of Toronto Google Brain
aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin® *
illia.polosukhin@gmail.com

15

Transformers: roadmap

Qutput
Probabilities

1

Softmax }

1

Llnear]

Add & Norm J<=~

Feed
Forward
(3

4] N\ Add & Norm

~—>| Add & Norm J Multi-Head
Feed Attention
Forward N

N ‘-"‘-“

)
Multi-Head
Attention

_
Posntlonal
Encoding

Multi-Head
Attention

—

D

»‘ Positional
‘v Encoding

Input Output
Embeddlng Embedding
Inputs OQutputs
(shifted right)

Self-attention and multi-head attention «
Feedforward layers

Positional encoding

Residual connections + layer normalization
Transformer encoder vs Transformer decoder

Advanced techniques: SwiGLU, rotary embeddings,

pre-normalization, grouped query attention
Architecture exploration beyond Transformers

16

General form of attention

o A more general form: use a set of keys and values (K;,v,), ..., (K ,v),

kl- - Ide, V. € IRdv, keys are used to compute the attention scores and
values are used to compute the output vector

e Attention always involves the following steps:
e Computing the attention scores e = g(q, k;) € R"

e Taking softmax to get attention distribution a:

a = softmax(e) € R"

 Using attention distribution to take weighted sum of values:

T
0 = E a;v; € R%
i=1

17

T T T

self-attention

ki @1 v1 ky q2 v, k3 q3 v3
A P s
! I .

self-attention

ks q3 v3

kl ql vl kz q2 172
W1 W> W3

The chef who

Self-attention

In NMT, query = decoder’s hidden state,
keys = values = encoder’s hidden states

e Self-attention = attention from the sequence to itself

e Self-attention: let’s use each word in a sequence as
the query, and all other words in the sequence as
keys and values.

kr qr vr

food

Layer. 5 §|Attention: Input - Input

‘ The_
animal_
didn_

street_
because

it

was

too

tire

A
¥

The_
animal_
didn_

https://jalammar.github.io/illustrated-transformetr?

Self-attention

Step #1: Transform each input vector into three vectors: query, key, and value vectors

q;=xWleR% k=xW' eR® v,=xW'eR?

WQ =3 di,Xd, WK = RdinXdk WV =3 d, Xd

Input 'hinking Machines

Embedding
— q q i Note that we use row vectors here;
It is also common to write
q; = W%, € R%
Keys for X. = a column vector

Values

https://jalammar.github.io/illustrated-transformety

Self-attention

Step #2: Compute pairwise similarities between keys and queries; normalize with softmax

For each (;, compute attention scores and attention distribution:

-)

-k,
Q= Softmax(

o \/Tc

aka. “scaled dot product”
[t must be d, = d; in this case

Q. Why scaled dot product?

To avoid the dot product to become too large

1
Vi

for larger d,; scaling the dot product by

IS easier for optimization

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (

Softmax

Vi)

https://jalammar.github.io/illustrated-transformet?

Self-attention

Step #3: Compute output for each input Input
as weighted sum of values
Embedding
T Queries a1 Q2
E (d
hi — CVZJV] - R Y Keys
j:1 Values
Score i1 ® — Q1 ® —

Divide by 8 (Vd;.)

Softmax

Softmax
X

Sum

https://jalammar.github.io/illustrated-transformet/

Self-attention

Input [hinking Machines
What would be the output vector for SnRsoRInY
the word “Thinking” approximately? Queries i &
(A) 0.5v1 + 0.5v5 ——
Values
(B) 0.54v; + 0.46vs
Score qi® ki = Qi e =
(C) 0.88v; + 0.12vs Divide by 8 (/s)
(D) 0.12v; + 0.88vs Soltmay
Softmax
X
(C) is correct.
Sum h, h,

https://jalammar.github.io/illustrated-transformer/

Self-attention: matrix notations

X € R™4n (n = input length)
0 =XWC K=XWKV=xw"

where WQ e | dinqu, WK e | dinXdk, WV e | dinde

nxd, d, Xn

Attention(Q, K, V) = softmax(d nxd R (:)

\({ Lo

Q: What is this softmax operation?

https://jalammar.github.io/illustrated-transformet?

Multi-head attention

“The Beast with Many Heads”

e |t is better to use multiple attention functions instead of one!
e Each attention function (*head”) can focus on different positions.

e |t gives the attention layer multiple “representation subspaces”

ATTENTION HEAD #0 ATTENTION HEAD #1

Calculating attention separately in
eight different attention heads

v

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

https://jalammar.github.io/illustrated-transformet#

Multi-head attention

“The Beast with Many Heads”

Finally, we just concatenate all the heads and apply an output projection matrix.

MultiHead(Q, K, V) = Concat(heady, ..., head,) W T e e SR e S
head; = Attention(X WZ-Q,XWZ.K X R RE

 |n practice, we use a reduced dimension for each head. |
WiQ c Rdmxdq7 WiK c Rdmxdk7 WZ_V c R%in X dv
d, = dr, = d, = d/m d = hidden size, m = # of heads

WO c Rd X Aot

e The total computational cost is similar to that of
single-head attention with full dimensionality.

https://jalammar.github.io/illustrated-transformet?

Multi-head attention

“The Beast with Many Heads”

MultiHead(Q, K, V) = Concat(heady, ..., heady,)W
head; = Attention(XW2, XWX XW))

e \We can think of multi-head attention (MHA) layer as an abstraction layer that maps a sequence
of input vectors X1,...,X, € [Rdin to a sequence of n vectors: hl, ool hn - Rdom‘

If we stack multiple layers, usually d;, =d, .= d

e The same abstraction as RNNs - used as a drop-in replacement for an RNN layer

h, = f(Wh,_, + Ux, + b) € R%u
Much easier to parallelize, more expensive to scale up to longer sequences!

https://jalammar.github.io/illustrated-transformet#

Layer:

What does multi-head

5 5§ Attention:

.

The_
animal_
didn_

street_
because_
it_

was_

Input - Input

=

//

e

A
v

The

animal_
didn_

street_
because
it_

was_

too

tire

attention learn?

Layer. S5 3 Attention:

H BElEE
The_

animal_
didn_

t

Cross_
the

street
because
it

was

too

tire

Input - Input

The_
animal_
didn_

t

Cross_
the

street
because
it

wdas

too
tire

https://github.com/jessevig/bertviz,;

Transformers: roadmap

Qutput
Probabilities

1

Softmax |

1

Linear |

—
Add & Norm

Feed
Forward
(3

4 | ~ Add &lNorm <
ol g e ’ Multi-Head]

Feed Attention
Forward g_J }r J) N x

J

\.

\.

I
| Add & Norm Je=
N x I
~—>| Add &lNorm T
Multi-Head Multi-Head
Attention Attention
& I " =
Positional Positional
Encoding Encoding
Input Output
Embeddlng Embedding
Inputs OQutputs
(shifted right)

Self-attention and multi-head self-attention
Feedforward layers <

Positional encoding

Residual connections + layer normalization
Transformer encoder vs Transformer decoder

Advanced techniques: SwiGLU, rotary embeddings,

pre-normalization, grouped query attention
Architecture exploration beyond Transformers

28

Adding nonlinearities: Feed-forward layers

 There are no element-wise nonlinearities in self-attention; stacking
more self-attention layers just re-averages value vectors

e Simple fix: add a feed-forward network to T : : :
post-process each output vector FF FF FF FF

FFN(x;) = ReLU(x;W; + b,)W + by ! ! L]
2z FF FF =
dxd d T T I
W; eR : 7, by € RYY self-attention T
W, € RYrX4 b, € RY
W1 W» W3 Wr
The chef who food

Usua”y, dff — 4d

29

4

Add & Norm

Feed
Forward

|

|

N x (_>‘

Add & Norm

|

)
Multi-Head
Attention

|

\

—

Positional

Encoding ‘v

¢

Transformers: roadmap

Qutput
Probabilities

1

Softmax }

1

Linear |

—
Add &lNorm [

Feed
Forward
)

Add &lNorm <

Multi-Head
Attention

N x
A }r)

J

|
Add &I Norm Je=

Masked
Multi-Head
Attention

|

Input
Embedding

|

T

Inputs

)
Positional
l@ e Encoding

Qutput
Embedding

T

Outputs
(shifted right)

Self-attention and multi-head attention
Feedforward layers

Positional encoding <

Residual connections + layer normalization
Transformer encoder vs Transformer decoder

Advanced techniques: SwiGLU, rotary embeddings,
pre-normalization, grouped query attention

Architecture exploration beyond Transformers

30

Modeling order information: positional encoding

e Unlike RNNSs, self-attention doesn’t build in order information, we need to encode the order
of the sentence in our keys, queries, and values

 Solution: Add positional embeddings to the input embeddings: p; € Réfori=1.2,....n

X; < X T Pi

e Sinusoidal positional embeddings: sine and cosine functions of different frequencies:

(sin(i/100002*1/d)
cos(i/100002*1/@)

d
sin(i/100002*§/ S

Pi

\cos(i/100002*5/d)/

Dimension

- -

et
-

—

|

Index in the sequence

* Pros: Periodicity + can extrapolate to longer sequences

e Cons: Not learnable

31

Modeling order information: positional encoding

 Absolute positional embeddings: let all p; be learnable parameters

e P e R for L = max sequence length

* Pros: each position gets to be learned to fit the data
e Cons: can’t extrapolate to indices outside of max sequence length L
* Examples: BERT, GPT-1, GPT1-2, GPT-3, OPT

/ h 4 A 4 2N 4 h 4 N / 4 N\
Input [CLS] \ my dog IS (cute W [SEP] he (likes M play 1 ##ing W [SEP]
Token
Embeddings E[CLS] Emy Edog Eis I-:.cute E[SEP] Ehe Elikes Eplay E##ing E[SEP]
= 3= . 2 == 3= = = == == 3= 3=
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
.

(Devlin et al., NAACL 2019)

R ———

Add & Norm |

Feed
Forward

8)

Nx | 4(CAdd & Norm

Multi-Head
Attention

_

_
Positional
Encoding

Input
Embedding

|

Inputs

Qutput
Probabilities

1

Softmax }

1

Linear |

Transformers: roadmap

(
Add & Norm J«

Multi-Head
Attention

)

Add & Norm |}

Masked
Multi-Head
Attention

N x

S

Qutput
Embedding

T

Outputs
(shifted right)

Positional
Encoding

Self-attention and multi-head attention
Feedforward layers

Positional encoding

Residual connections + layer normalization <«
Transformer encoder vs Transformer decoder

Advanced techniques: SwiGLU, rotary embeddings,
pre-normalization, grouped query attention

Architecture exploration beyond Transformers

33

How to make Transformers work for deep NNs?

Add & Norm: LayerNorm(z + Sublayer(z))

Residual connections (He et al., CVPR 2016)
Instead of X\ = Layer(X(i_l)) (i represents the layer)

'l Lt | PR

Layer - X©)

We let X = XD 4 Layer(X(i_l)), so we only need to learn “the
residual” from the previous layer

KD Layer @ X

This prevents the network from "forgetting" or distorting
important information as it is processed by many layers.

How to make Transformers work for deep NNs?

Add & Norm: LayerNorm(x + Sublayer(x))

Layer normalization (Ba et al., 2016)

Problem: Difficult to train the parameters of a given layer because its input from
the layer beneath keeps shifting.

Solution: Reduce variation by normalizing to zero mean and standard deviation of
one within each layer.

Y = \/Va,r]+ e *y+ P v, B € R are learnable parameters

{

(]

~> Add & Norm

Feed
Forward

|

8)

Nx | —{"Add & Norm

)
Multi-Head
Attention

|

Transformers: roadmap

Qutput
Probabilities

1

Softmax }

1

Linear |

—
Add &lNorm h\

Feed
Forward
)

Add &lNorm <

Multi-Head
Attention

N x
L] }r}

J

|
Add &INorm -

Masked
Multi-Head
Attention

_ Y,
Positional
Encoding

Input
Embedding

|

T

Inputs

_ 2
Positional
Encoding

Qutput
Embedding

T

Outputs
(shifted right)

Self-attention and multi-head attention
Feedforward layers

Positional encoding

Residual connections + layer normalization
Transformer encoder vs Transformer decoder <

Advanced techniques: SwiGLU, rotary embeddings,
pre-normalization, grouped query attention

Architecture exploration beyond Transformers

36

Let’s put things together - Transformer encoder

From the bottom to the top:
e |nput embedding
== e Positional encoding
e A stack of Transformer encoder layers

_ _
Transformer encoder is a stack of NV layers, which
el consists of two sub-layers:

e Multi-head attention layer
QR » Feed-forward layer

Input
Embedding | d

Xl""’X e | dip —————— hl”hI’ZEl' out

Add & Norm

Positional
Encoding

n
INnputs

Let’s put things together - Transformer decoder

OQutput
Probabilities

1

Softmax

1

Linear |
f
Add &lNorm h\
o Cross-attention
\ Add&tN = / between source
orm
e l and target sequence
Attention
| 7 }r)) N x
Add &lNorm -
HEEGEE Self-attention
Muilti-
it | [
AL within target
| 2 seqguence
Positional
6{)_® Encoding
Output
Embeddingl

1

Outputs

From the bottom to the top:

e Qutput embedding

 Positional encoding

o A stack of Transformer decoder layers
 Linear + softmax

Transformer decoder is a stack of /V layers, which
consists of three sub-layers:

e Masked multi-head attention

 Multi-head cross-attention
 Feed-forward layer
e (w/ Add & Norm between sub-layers)

Masked multi-head self-attention

» Key: You can’t see the future text for the decoder!

Self-Attention Masked Self-Attention

_J
R

”)

e Solution: for every 4. , only attend to {(k;,v;)},j <7 How to implement this? Masking!

https://jalammar.github.io/illustrated-gpt2/

Masked multi-head self-attention

a=x; W%k, =x,;W" v, =x,W"

Qi - k;

ARV

a; = softmax(e;)

Vi=1,...,n

raw attention weights mask

dot = torch.bmm(queries, keys.transpose(l, 2))

Efficient implementation: compute

attention as we normally dO, mask out indices = torch.triu indices(t, t, offset=1)
attent!On to future words by Settmg dot[:, indices[0], indices[1l]] = float('-inf')
attention scores to —oo

dot = F.softmax(dot, dim=2)

http://peterbloem.nl/blog/transformers 4

Masked multi-head self-attention

q, kK

The following matrix denotes the values of ! for 1 <i<nml<j<nm=4)
V
1 0 _1 _1 What should be the value of a, , in masked attention?
1 1 1 0 (A) O
-- ®) 0.5
0o 1 1 - e
__ C)————
2e+e '+ 1
4 1 2T D) 1

The correct answer is (B)

OQutput
Probabilities

1

Softmax

i

Linear

1

r

Add & Norm

Feed
Forward

)

l J

Add & Norm

|

Multi-Head
Attention

|

7 7 7

N x

Add & Norm

L

Masked
Multi-Head

Attention

.

At

7

o Positional
Encoding

|

Output
Embedding

|

I

Outputs

(shifted right)

Multi-head cross-attention

Cross-attention
between source
and target sequence

Attention
distribution

Attention

Encoder
RNN

SCOIES

Similar as the attention in
seg2sed model!

: Attention pie
: output T
A _
-
N /T N N
Hﬂ;‘\
O O @) O O @) O O O O
el (o] (O] O S|O (O] (@) | o .JO
| |10 @ |0 10 ®| |10 e ‘1| 1O
) O O @) @) (@) (@) (@) (@) (@)
il a m’ entarté <START> he hit me with a
1\ J

Y
Source sentence (input)

42

Multi-head cross-attention

Self-attention: Cross-attention: (always fmm}he top layer)
4 = x; WOk, = x, WE v, = x, WV X1,---,Xm : hidden states from encoder
q; - k. X1,.--,Xnpn: hidden states from decoder
€Ci,j — -],\V/j:L...,TL
v dg

«; = softmax(e;)

n
hy =) ;v
j=1

q;, = XZ'WQ | = 1,2,...,n
kj . }szK,Vj s }NCjWV V] — 1,2,...,m

ZQi'kj

T

o; = softmax(e;)

™m
hy =) ;v
j=1

Vi=1,....m

43

Transformer encoder-decoder

Qutput
Probabilities

Linear |

4

(& |
Add & Norm

-
~>| Add & Norm]

Feed
Forward

—
Nx | {Add & Norm)
Multi-Head
Attention
_
_
Positional
Encoding

Input
Embedding

Inputs

\

Feed
Forward
|)

Add & Norm]ﬂ

Multi- Head
Attentlon

l Add & Norm |<-\

Masked
Multi-Head
Attention

J

. J

Softtmax] /
|

N x

Positional
Encoding

Qutput
Embeddlng

Outputs

softmax(W h)

e R
Transformer

Encoder
4
o

o
t

Transformer
Encoder

Word + Position
Embeddings Representations

linput sequence]

[predictions!]
t
Transformer
Decoder
[decoder attends :
to encoder states] ®
o
¢
Transformer
Decoder
Word
Embeddings

loutput sequence]

Position
Representations

Training Transformer encoder-decoder models

The same as the way that we train seg2seq models!

. Training data: parallel corpus {(w'", w!")}

French: bonjour le monde .

* Minimize cross-entropy loss:

T
Z — 102 Py, | Yy - - -5 Y,y W) English: hello world .

=1 (1)
(denote W =y, ..., y7)

- Back-propagate gradients through both encoder and decoder

Masked self-attention is the key!

This can enable parallelizable operations while NOT looking at the future

45

Empirical results with Transformers

. BLEU Training Cost (FLOPs)
oo EN-DE EN-FR EN-DE EN-FR

ByteNet [15] 23.75

Deep-Att + PosUnk [32] 39.2 1.0 - 10%°
GNMT + RL [31] 24.6 39.92 2.3-101% 1.4-10%°
ConvS2S [8] 25.16 40.46 9.6-10% 1.5.104°
MOoE [26] 26.03 40.56 20«10 132:10%
Deep-Att + PosUnk Ensemble [32] 40.4 8.0 - 1040
GNMT + RL Ensemble [31] 2630 41.16 1.8-10%° 1.1-10%!
ConvS2S Ensemble [8] 2636 41.29 T7:10" 19+ 10*
Transformer (base model) 27.3 38.1 3.3.10'®
Transformer (big) 28.4 41.0 2.3.10%°

(Vaswani et al., 2017)

46

The backbone of large language models (e.g., GPT/ChatGPT, Gemini, LLaMA, .

Transformer-based language models

Qutput
Probabilities

t

Softmax

1

Linear

A

Add & Norm

Feed
Forward

t

Add & Norm

IO

)
4

N x

Add & Norm Je=

Masked
Multi-Head
Attention

.

At

2

al

Qutput
Embedding

I

Outputs

Positional
Encoding

Next word

Loss

Softmax over
Vocabulary

Linear Layer

Transformer
Block

Input
Embeddings

Iong

and

thanks

[Og ylong

lOg Yand

log ytl 1anks

for

aH

= Og Yfor

= Og Yall

é 6 6 6 6

and

thanks

for

)

47

Transformer architecture specifications

N dmodcl

de h dr d,

base | 6 512 2048 8 64 64

(Vaswani et al., 2017)

Model Name Nparams Niayers dmodel Nheads dhead
GPT-3 Small 125M 12 768 12 64
GPT-3 Medium 350M 24 1024 16 64
GPT-3 Large 760M 24 1536 16 96
GPT-3 XL 1.3B 24 2048 24 128
GPT-3 2.7B 2.7B 32 2560 32 80
GPT-3 6.7B 6.7B 32 4096 32 128
GPT-3 13B 13.0B 40 5140 40 128
GPT-3 175B or “GPT-3”7 175.0B 96 12288 96 128

(Brown et al., 2020)

Multi-Head
Attention

48

Transformers: pros and cons

Easier to capture long-range dependencies: we draw attention between every pair of words!

Easier to parallelize:
Q=XW® Kg—-xwk Vv=xwV

. QK
Attention(Q, K,V) = softmax(
Vdg

Are positional embeddings enough to capture positional information?

1%

Otherwise self-attention is an unordered function of its input

Quadratic computation in self-attention

Can become very slow when the sequence becomes very long

49

Computational analysis of Transformers

Multi-head attention (MHA)

0 =XWeK=XWKV=xWw"

nXd dXn

O(nd* + n*d)

Attention(Q, K, V') = softmax(@ > nxd

Feed-forward layers (FFN) d X d dyy X d

. / O(nd?)

FFN(XZ) — RGLU(X@Wl —+ bl)Wz —+ b2

Note: RNNs only require O(ndz) time: h, = f(Wh__, + Ux, + b)
(assuming input dimension = hidden dimension = d)

50

Computational analysis of Transformers

« For BERT-sized models (n = 512, d = 768, d = 4d), 2/3 of parameters are FFNs.

Inference Latency

¢ | == GPU

227 == cpu

P

£ 17

c

-

X g -

Embedding Linear Multi-Head Linear Feed Forward
Layer before Attn. Self-Attention after Attn. Network

(Ganesh et al., 2020)

e However, when sequence length becomes longer (e.g., > 50,000), the computation will
be dominated by self-attention O(1°d)

* Numerous solutions have been proposed to address this issue
| ong-context language modeling is still one of the most active research areas today

51

Transformers: roadmap

Qutput
Probabilities
Softmax |
Linear |
—
Add &'Norm J
Feed
Forward
)
(g i
r | ~ Add & Norm J
—>(_Add & Norm Multi-Head
’ Feed ‘ Attention
Forward A\ 7 7 7 N x
L f (y
| Add & Norm)
N x I =)
~>| Add & Norm J Ve
Multi-Head Multi-Head
Attention Attention
N)
Posntlonal Positional
Encoding Encoding
Input Output
Embeddlng Embedding
Inputs OQutputs
(shifted right)

Self-attention and multi-head attention
Feedforward layers

Positional encoding

Residual connections + layer normalization
Transformer encoder vs Transformer decoder

Advanced techniques: SwiGLU, rotary embeddings,
pre-normalization, grouped query attention

Architecture exploration beyond Transformers

52

Major modifications since original
Transformers

53

SwiGLU activation
SwiGLU = Swish + GLU

SWiGLU(:E, W,V,b,c, 8) = Swishg(zW + b) ® (zV + c)

k’ S1g IllOId

Swish(x) = 31gm01d(ﬁx)

https://azizbelaweid.substack.com/p/what-is-swiglu-how-to-implement-it

(Shazeer et al., 2020): GLU Variants Improve Transformer

54

SwiGLU activation

Score | CoLA SST-2 MRPC MRPC STSB STSB QQP QQP MNLIm MNLImm QNLI RTE
Average | MCC Acc F1 Acc PCC SCC F1 Acc Acc Acc Acc Acc

FFNReLU | 83.80 51.32 94.04 93.08 90.20 89.64 8942 89.01 91.75 85.83 86.42 92.81 80.14
FFNaeLU 83.86 53.48 94.04 9281 90.20 89.69 8949 88.63 91.62 85.89 86.13 92.39 80.51
FENgwish 83.60 49.79 93.69 92.31 89.46 89.20 88.98 88.84 91.67 85.22 85.02 92.33 81.23
FFNgLU 84.20 49.16 94.27 92.39 89.46 89.46 89.35 88.79 91.62 86.36 86.18 92.92 84.12
FFNqeGLU 84.12 53.65 93.92 92.68 89.71 90.26 90.13 89.11 91.85 86.15 86.17 02.81 79.42
FFNsgilinear 83.79 51.02 94.38 92.28 89.46 90.06 89.84 88.95 91.69 86.90 87.08 92.92 81.95
FFNswiGLU 84.36 51.59 93.92 92.23 88.97 90.32 90.13 89.14 91.87 86.45 86.47 92.93 83.39
FFNRecLU 84.67 | 56.16 94.38 92.06 89.22 89.97 89.85 88.86 91.72 86.20 86.40 92.68 81.59
Raffel et al, 2019] | 83.28 | 53.84 92.68 92.07 88.92 88.02 87.94 88.67 01.56 84.24 8457 90.48 76.28
ibid. stddev. 0.235 1.111 0.569 0.729 1.019 0.374 0.418 0.108 0.070 0.291 0.231 0.361 1.393

Notes: there are 3 projection matrices (up_project, down_project, gate_project), dff is reduced to 4d X

SwiGLU(z, W, V, b, ¢, B) = Swishg(zW + b) ® (=V + ¢)

3

55

X141

?

Layer Norm

T

addition

A

/7

X141

T

Pre-normalization

addition

N

Layer Norm

T

addition

A

/1_

A

FFN

N

Layer Norm

Multi-Head

Attention

(a)

X1

(b)

L

Multi-Head
Attention

T

Layer Norm

Image: (Xiong et al., 2020)

RMSNorm normalization function

a;

(Zhang and Senrich, 2019)

1 <
a; = RMS(a)gi’ where RMS(a) = \ E;ai.

56

Rotary positional embeddings

 Relative positional embeddings (15 uses this!):

Self-Attention with Relative Position Representations

:EZ'WQ (ZEjWK -+ a,{](-)T

Peter Shaw Jakob UszKkoreit Ashish Vaswani €; j =
Google Google Brain Google Brain \/d
petershaw @ google.com usz@ google.com avaswani @google.com ~

» Instead of focusing on absolute positions, relative positional embeddings
concentrate on the distances between pairs of tokens

* Incorporating this relative positional information into attention directly

(Shaw et al., 2018) Self-Attention with Relative Position Representations

57

Rotary positional embeddings

Enhanced UniteS bOth abSOIUte and
Transformer relative positional information

with

Rotary

Position

Embedding

Position Position Encoded Query / Key

f (¥ = cosmf —sinm@ W{(;,lk)} W{(;Zk)} 2
{g.k}\Em T =\ “ginm@ cosmb weD o (22) Ne)
{q’k} {Qak}

(Su et al., 2021) RoFormer: Enhanced Transformer with Rotary Position Embedding

58

Grouped query attention (GQA)

Multi-head Grouped-query Multi-query
Values
Keys
S B T R s b el e — N "y N PP Y
Queries

(Ainslie et al., 2023) GQA: Training generalized multi-query transformer models from multi-head checkpoints.

Architecture exploration beyond
Transformers

60

Efficient Transformers

Charformer
(Tay et al., 2021)

TokenlLearner

Perceiver (Ryoo et al., 2021)

(Jaegle et al., 2021)
Transformer-XL

(Dai et al., 2019) Nystromformer
’ (Xiong et al., 2019)
Recurrence Memory / Memory

: Compressed
| Downsampling “0Poss
Compressive

Transformer
(Rae et al., 2018)

Set Transformer
(Lee et al., 2019)

Clusterformer

N Rou;mg (Wang et al., 2020)
: ransformer
Funnel Poolingformer (Roy et al, 2020) Reformer
S ‘ (Zhang et al., 2021) (Kitaev et al,, 2020)
(Choromanski et al., 2020) ‘ .)
Big Bird
Ainslie et al., 2020) (Zaheer et al., 2020)
Low-Rank Transformer . /
(Winata et al., 2020) Longformer Swin ¥

(Beltagy et al., 2020) & Clustered Attention
Transformer _~Sinkhorn (Vyas et al., 2020)

(Liu et al., 2020)
, Low Rank / Lo o e Transforme
Linformer 9) . (Tay et al. 2020t)
wrousi 2209 Kernels [Transformer) Fixad/Factorized/
it Adaptive
— Random Patterns Sparse
Random Feature Attention |°YNNesIZer Transformer
(Peng et al., 2021) LESTL S5 A BlOCkWise Transform er (HuaCngi-t':f..%g18) (Lepshﬁtitaalr.go.’w) (Correia et al., 2019)

(Qiuetal., 2019)

Linear
Transformer

Sparse clam

(Du et al., 2021)

Sparse Transformer

(Katharopoulos et al., 2020) Image Transformer (Ccate 20 Switch
P 2018
(Parmar et al,, 2018) T T Product Key
Axial Transformer (Fedus et al,, 2021) Memory

(Ho et al., 2019) (Lample et al., 2019)

Scaling Transformer
(Jaszczur et al., 2021)

(Tay et al., 2020): Efficient Transformers: A Survey

01

Example: Performers

’—-—__——__—_-____—_—___§

™

f"QZ
,.

(=

—--———————————-
--—_—_—_—_—-—*

~-___________________——’

L: sequence length, m << L

Low-rank decomposition: Decompose A as the product of Q’ and K’
(random projection of origional keys and querys)

(Choromanski et al., 2020): Rethinking Attention with Performers

62

Example: Longformer / Big Bird

Sparse attention: only compute attention at particular positions

(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

(Beltagy et al., 2020): Longformer: The Long-Document Transformer

(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD

(Zaheer et al., 2021): Big Bird: Transformers for Longer Sequences

63

Example: Transformer-XL

Segment-level recurrence with state reuse: hidden representations from previous
segment will be cached as extended context (no back-propagation to those!)

O O O O O O O O
@ ® & © ®) O O O
® :> ®@ 6 6O @) O O O
O @ & 6 O O o O
""" Paififll | Neews J
(a) Training phase. (b) Evaluation phase.

(Dai et al., 2019): Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

64

Research from my group

TRIME

@9 Target token’s embedding Positive in-batch memory

O Other token embeddings (O Negative in-batch memory

A Forward pass A Back-propagation

prediction (target: “Apple”)

N

Q ' O and C)Microsoft] V] token
1‘¢ E @Apple O color] embeddings ;
C el)<_. Ofirst O... ;
A + ... works at Microsoft '
: ... returned to Apple | in-batch
Jobs became CEO of _ + (... Jobs became CEQ | memories :
: ... moves to Apple
' @, J

(Zhong et al., EMNLP’22) Training Language

........

Models with Memory Augmentation

AutoCompressors
use for language modeling summary vectors
NN
t A t —_J
| 7
\ LM)
o i
\ LM ,
77 summary
U vectors
LM)
§y summar
NN tokens d
1 1 1
randomly

' segmented input

(Chevalier et al., EMNLP’23) Adapting
Language Models to Compress Contexts

65

Research from my group

() Trainable () Frozen (Feedforward)

... (——)

N L}

f I I :'"""""""'""""""""""""'""""""""'"""E

D000 L Q000000 JOOODODEL L Jeell d

T T T —(Cross-attention) |

(encoser J(encoser J(Ecoser) {C__Sefattenion 3
D ? D 1 These architectures/techniques

Chapter 01: Dune ... Chapter 02: Muad'dib ... Chapter 03: “Yueh! Yueh!” ... Who betrayed the Atreides? A:

Additional context C

are generally applicable to both
long-context modeling and
retrieval augmentation!

Main input X

(Yen et al., ACL'24) Long-Context Language Modeling with

Parallel Context Encoding

66

Remarks on efficient Transformers

e A lot of exploration around 2019-2021: mostly approximation solutions of replacing
the full quadratic attention. Few technigues have been adopted in state-of-the-art
LLMs (exception: Mistral uses Sliding Window Attention to handle longer sequences).

The cat sat on the The cat sat on the

window size

ﬂ 0 0 0 0 DDDDDDDD/‘—DB
JODEEDINE

(Jiang et al., 2023)

I
0 1 1 1 0 il
I
\ ° ° 1 1 1/ | Tokens v)
Vanilla Attention Sliding Window Attention Effective Context Length

You can still do such approximations to speed up inference though!

e On the other hand, many system-level advancements have been made to scale up

Transformers to longer sequences without approximation e.g., FlashAttention (Dao
et al., 2022)

o7

)

Class
Bird

Car

Vision Transformer (ViT)

Vision Transformer (ViT)

Ball |

MLP
Head

Transformer Encoder

[E—

- Do o)) 6

Lmear PI'O_]CCIIOH of Flattened Patches

* Extra learnable

[class] embedding

1 |
_il H’ 5!‘!2&.“.115 N
' \ i)Y, ,"l

(Dosovitskiy et al., 2021): An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

|

>ﬂl

X i "
i ¥t

LAY "lrl
‘ | g
= ..--!
3 . » > p—

Transformer Encoder

Multi-Head
Attention

L1 J

Norm

Embedded
Patches

68

Mixture of experts (MokEs)

Output y

;

FFN 1

“experts”

FFN 2 J l FFN 3 l FFN 4

\

Router

Input x

69

Mixture of experts (MokEs)

Output y Outgut y
/ Mergéd FFN
—ﬁ

FFN 1 ‘P FFN 2 FFN 3 1 FFN 4 Merged FFN

FFN 1 FFN% FFN3 | | FFN4

/_

\ ,-

Router Router v, = softmaX(W,.x)
Input x Input x \‘
. Routing
Conventional MoE “Soft-merging” MoE

(Zhong et al., 2024): Lory: Fully Differentiable Mixture-of-Experts for Autoregressive Language Model Pre-training

Partl. Pre-trained language models

Roadmap

e The BERT era: pre-training and fine-tuning
e The GPT-3 era: prompting and in-context learning
e The ChatGPT era: supervised instruction tuning and RLHF

2 1he BERT era:
pre-training and fine-tuning

BERT = Bidirectional Encoder Representations
from Transformers

LSTMs — |

BERT: Pre-training of Deep Bidirectional Transformers for ELMo
Language Understanding

«— Transformer decoder
Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova

Google Al Language
{jacobdevlin, mingweichang, kentonl, kristout}@google.com GPT-1

(Devlin et al., 2019)

Input: a sequence of n words

Output: a sequence of n vectors aka. “contextualized word embeddings”
Each word doesn’t have a fixed vector as in (static) word embeddings

Inside BERT: A Transformer encoder

Feed —
Forward Token

Embeddings
Segment
N Add & Norm Embeddings
Multi-Head
Attention Position
Embeddings
i =

FPositional
Encoding

&

Input
Embedding

INpuls

[CLS] W my dog IS (cute W [SEP] he (likes W play w (##ing W [SEP]
E[CLS] Emy Edog Eis Ecute E[SEP] Ehe EIikes Eplay E##ing E[SEP]
=+ s gl -+ -+ = -+ -+ = = -+ -+
EA EA EA EA EA EA EB EB EB EB EB
-+ -+ -+ -+ + -+ -+ -+ -+ + +
EO El E2 E3 E4 E5 E6 E7 E8 E9 ElO

® 12 or 24 layers of Transformer blocks

e Each block consists of a multi-head self-attention layer and a
feedforward layer with residual connections

How is BERT pre-trained!?

e Rather than always replacing the chosen

Two pre-training objectives: words with [MASK], the data generator will
* Masked language modeling (MLM) iR e Sotioping
e Next sentence prediction (NSP) * 80% of the time: Replace the word with the

[MASK] token, e.g., my dog is hairy —
my dog 1s [MASK]

* 10% of the time: Replace the word with a

Masked language modeling random word, €.g., my dog is hairy — my
dog 1s apple

= mask out 15% of the inputs and * 10% of the time: Keep the word un-

then predict the masked words changed, e.g., my dog is hairy — my dog
is hairy. The purpose of this is to bias the

representation towards the actual observed

word.
store gallon

T T
the man went to the [MASK] to buy a [MASK] of milk

e Too little masking: too expensive to train

 Too much masking: not enough context

How is BERT pre-trained!?

Two pre-training objectives:
e Masked language modeling (MLM)
e Next sentence prediction (NSP)

Next sentence prediction

Iﬂpllt — [CLS] the man went to [MASK] store [SEP]
he bought a gallon [MASK] milk [SEP]

Label = 1snext

Iﬂpllt — [CLS] the man [MASK] to the store [SEP]
penguin [MASK] are flight ##less birds [SEP]

Label — NotNext

Sample two segments of text (segment A and
segment B) and predict whether the second
segment is followed after the first one.

* 50% probability: a text segment of 512 tokens

* 50% probability: a text segment of 256 tokens,
followed by another text segment of 256 tokens
from a different document

The MLM loss and NSP loss are
combined in pre-training

’r’

Remarks on BERT's pre-training objectives

e [ater on, (Joshietal., 2019; Liu et al., 2019) find that the next-sentence prediction
objective unnecessary - RoBERTa doesn’t use NSP at all.

e Understanding the role of masking rates (Why 15%?7)

Should You Mask 15% in Masked Language Modeling?

Alexander Wettig® Tianyu Gao* Zexuan Zhong Danqi Chen
Department of Computer Science, Princeton University
{awettig, tianyug,zzhong,dangic}@cs.princeton.edu

(Wetting et al., 2023)

 The optimal masking rate should depend on model sizes and masking strategies

e Masking plays two distinct roles: corruption vs prediction

/8

How is BERT used for downstream tasks?

ﬁ: Mask LM

Mask LM Start/End Speh

*

Masked Sentence A Masked Sentence B Question Paragraph
\ Unlabeled Sentence A and B Pair / \ Question Answer Pair

Pre-training Fine-Tuning

The pre-trained BERT encoder can be used directly for
downstream tasks with minimal task-specific parameters!

79

BERT for text classification

"I love this movie.
I've seen it many times
and it's still awesome.”

"This movie is bad.
I don't like it it all.
It's terrible.”

e Add a classifier on top of the [CLS] representation

e New parameters: d X | C|, jointly trained with BERT
parameters

e d = hidden dimension (e.g., 768)

e |C| =number of classes (e.g., 2)

Single Sentence

80

BERT for question answering

Start/End Span

Stanford Question Answering Dataset (SQuUAD)

‘Tesla was the fourth of five children. He had an older brother
named Dane and three sisters, Milka, Angelina and Marica.
éDane was killed in a horse-riding accident when Nikola was
five. In 1861, Tesla attended the "Lower" or "Primary" School
in Smiljan where he studied German, arithmetic, and
religion. In 1862, the Tesla family moved to Gospi¢, Austrian
Empire, where Tesla's father worked as a pastor. Nikola :
§completed "Lower" or "Primary" School, followed by the
"Lower Real Gymnasium" or "Normal School."

Question Paragraph

L — logpstart(S*) o lngend(e*)

Q: What language did Tesla study while in school?

Pstart (1) = softmax;(w/ . ;)

A: German

Pend (i) = softmax;(w_ h;)

(Rajpurkar et al., 2016): SQUAD: 100,000+ Questions for Machine Comprehension of Text 31

Pre-BERT QA models vs BERT

. Start/End Span
Start Scores Linear
Llntaar

| Bi- GRU

A_Bi-GRU— ’9
@ : | | Prediction

Self-Attention
~ Attention |

A
Linear ReLU Layer

Pre-Process]

A
Self-Attention Embedding
, | Input |
—Bi-GRU
Linear ReLU Layer
A
Bi-GRU

Question Paragraph
A

CNN + Max Pool CNN + I\'/Iax Pool
crbec Erbec) All the parameters are pre-trained
| Char Embed | Char I?mbed
[oomewTet | [comexTen | except for a small number of task-

specific parameters Wgiart Wend

Only the word embeddings at the input layer
are pre-trained (2-3M parameters in total) BERT has 110M or 330M parameters

Prompt-based fine-tuning

Task: sentiment classification

Input: “No reason to watch.”

Output: positive = or negative = ?

Label mapping

4)
4 R i A .. r “
CLS | .. _.| label:positive great (label:positive) | <. .| MLM
head label:negative v/ (Iabel:negative) v/ _head
) : ’ N Label space) — - Label mapping M (Y) -/ ,
L [CLS]| No reason to watch . [SEP] } [[CLS] No reason to watch . It was |[MASK]|. [SEP] }

Fine-tuning Prompt-based fine-tuning

81.4% (32 examples) 92.7% (32 examples)
93.5% (67k examples; BERT-base)

(Gao et al., 2021): Making Pre-trained Language Models Better Few-shot Learners

BERT: training cost

BERT-base: 12 layers, n = 512, d = 768, 110M parameters
BERT-large: 24 layers, n = 512, d = 1024, 330M parameters

Trained on Wikipedia + BooksCorpus (3.3 billion tokens)

Estimate: 6 days for BERT-base and 26 days for BERT-large on 8 Nvidia Titan-V GPUs
(12Gb memory)

RESEARCH SHARLEL

Jacob Portes®, Alex Trott*, Daniel King, Sam Havens ° @ 6 e

MosaicBERT: Pretraining BERT from
Scratch for $20

https://www.mosaicml.com/blog/mosaicbert (8x A100-80Gb GPUs)

384

RoBERTa

BERT Is still under-trained

Removed the next-sentence prediction objective
Trained longer with 10x data & bigger batch sizes

Pre-trained on 1,024 V100 GPUSs for one day in 2019

SQuAD
Model data bsz steps (v1.1/2.0) MNLI-m SST-2
RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6
+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
BERTLARGE
with BOOKS + WIKI 13GB 256 1M 90.9/81.8 86.6 93.7

(Liu et al., 2019): RoBERTa: A Robustly Optimized BERT Pretraining Approach

85

ELECTRA

ELECTRA provides a more efficient training method,
because it predicts 100% of tokens (instead of 15%) every time

sample
the — [MASK] ->» the — original
chef — chef Gen_erator chef Discriminator original
cooked —> [MASK] (typically a [-> ate (ELECTRA) replaced
the — the small MLM) the original
meal —> meal meal original

(Clark et al., 2020): ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

86

BERT vs GPT-1 models

 Unlike GPT-1 (autoregressive language models), BERT/RoBERTa/ELECTRA can’t
generate text naturally!

e However, bidirectionality is important for natural language understanding tasks.

200 400 600 800 1,000
Pre-training Steps (Thousands)

(Devlin et al., 2019)

84 -
§ 82 __\,(/___———-;\-’*{T—-—-—‘T}%———/\<
:
5 S0 %
A .
- |A Why not combine the best
Z 78
> of both worlds”?

— A BERTgase (Masked LM)
76 — s BERTgasg (Left-to-Right)

87

T5: Text-to-text models

e T5 = Text-to-Text Transfer Transformer

e [ransformer encoder-decoder architecture
e Encoder: preserves bidirectionality
e Decoder:. good for generation!

Pre-training

Original text

(always 15% span masking)

Thank you fef inviting me to your party [ast week.

—— >

Thank you <X> me to your party <Y> week.

Targets
<X> for inviting <Y> last <7>

(Raffel et al., 2020): Exploring the Limits of Transfer Learning with a Unified

ext-to-

ext

ransformer

883

T5: Text-to-text models

e T5 = Text-to-Text Transfer Transformer

Fine-tuning
All NLU tasks can be cast as text prediction tasks too!

["translate English to German: That is good."

r)
"cola sentence: The "Das ist gut."]
course 1is jumping well."J
.
~ N "not acceptable"]
"stsb sentencel: The rhino grazed
on the grass. sentence2: A rhino
is grazing in a field." "3.8"]
& ! ! _
- , s R 1elbaepiiatized atta
‘summarize: state authorities six people hospitalized aTter
dispatched emergency crews tuesday to a storm in attala county.)

survey the damage after an onslaught
of severe weather in mississippi.."

\ 4

(Raffel et al., 2020): Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

T5: Text-to-text models

e T5 = Text-to-Text Transfer Transformer

15 comes In different sizes:

Training corpus:

e t5-small.

C4 = Colossal Clean Crawled Corpus
e t5-base.
. t5-large. A cleaned version of Common Crawl
e t5-3b. Trained on 34B tokens
e 15-11b.

(Raffel et al., 2020): Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

BART: another text-to-text model

BART

ABCDE

£ 44144 (AlcE D) (DE.ABC.) (C.DE.AB)
Bidirectional :> Autoregressive Token Masking Sentence Permutation Document Rotation
< Encoder Decoder @

TITT I (oE) © (Ec.or) ¢ o)

Token Deletion Text Infilling

(Lewis et al., 2020): BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension 91

GP§T_3 The GPT1-3 era:

prompting and in-context learning

GPT-3

Language Models are Few-Shot Learners

Tom B. Brown* Benjamin Mann* Nick Ryder* Melanie Subbiah*
Jared Kaplan' Prafulla Dhariwal Arvind Neelakantan Pranav Shyam
Girish Sastry Amanda Askell Sandhini Agarwal Ariel Herbert-Voss

Gretchen Krueger Tom Henighan Rewon Child Aditya Ramesh
Daniel M. Ziegler Jeffrey Wu Clemens Winter
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray

Benjamin Chess Jack Clark

Christopher Berner

Sam McCandlish Alec Radford Ilya Sutskever Dario Amodei

(Brown et al., 2020)

 From GPT-1 to GPT-2 to GPT1-3

* Transformer decoder for
autoregressive language modeling

 What’s new?

» Parameters T Data 1

» These models can start generating
human-like text!

* You don’t have to fine-tune these
models - prompting works well!

12 decoders

—
e
~
IZ

GPT-1
512 token size

48 decoders

1.58

GPT-2

1024 token size

https://medium.com/@YanAlx/

96 decoders

GPT-1 vs GPT-2 vs GPT-3

GPT-1 - 4.8GB (unfiltered) data

&

GPT-2 <+ 40GB human-filtered data

4

GPT-3 <+— 570GB data filtered from 45TB raw data

$

175B parameters

2048 token size ChatGPT/GPT-4 «+— Human demonstrations and annotations

Data size |
Data quality T

(Zha et al., 2023)

https://medium.com/@YanAIx/

PROMPT
(HUMAN-WRITTEN)

MODEL COMPLETION

GP1-2 generation example

A train carriage containing controlled nuclear materials was stolen in
Cincinnati today. Its whereabouts are unknown.

The incident occurred on the downtown train line, which runs from
Covington and Ashland stations.

In an email to Ohio news outlets, the U.S. Department of Energy said it
is working with the Federal Railroad Administration to find the thief.

“The theft of this nuclear material will have significant negative
consequences on public and environmental health, our workforce and

the economy of our nation,” said Tom Hicks, the U.S. Energy Secretary,
in a statement. “Our top priority is to secure the theft and ensure it
doesn’t happen again.”

The stolen material was taken from the University of Cincinnati’s

Research Triangle Park nuclear research site, according to a news
release from Department officials.

GPT-3’s in-context learning

e Before GPT-3, most use of pre-trained language models are through fine-tuning,
on a reasonably-sized supervised dataset.

e SST-2 has 67k examples, SQUAD has 88k (passage, answer, question) triples.

e GPT-3 shows that, with a very large autoregressive language model (175B
parameters), the model can perform a task:

* Using only a few examples ‘“Few-shot learning”
e Without gradient updates:

the examples are only provided in the context! “In-context learning”

(Brown et al., 2020): Language Models are Few-Shot Learners

In-context learning

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

(Brown et al., 2020): Language Models are Few-Shot Learners

97

Accuracy (%)

Zero-shot

l

60

In-context learning

One-shot Few-shot

! - e B -

Natural Language
Prompt

Number of Examples in Context (K)

(Brown et al., 2020): Language Models are Few-Shot Learners

175B Params

13B Params

1.3B Params

98

In-context learning

Input: 2014-06-091 -
Output: !'06!01!2014!
Input: 200/7-12-13

Output: 11211312007! | IN-context
Input: 2010-09-23 examples
Output: !0912312010! _
Input: 2005-07-23 test example
Output: !07!23!2005!

Iu— - model completion

Unnatural Date Formatting: !<month>!<day>!<year>!
Accuracy
98.6% 995% 99.7% 99.9% 99.9% 99.9%

100 95.3%

62.3%

Accuracy (%)
S

8

0 2 - 6 8 10 12 14
Number of in-context examples

http://ai.stanford.edu/blog/in-context-learning/ 99

Understanding in-context learning

* Hypothesis #1: Transformers perform implicit gradient descent to update an “inner model”

Transformers Learn In-Context by Gradient Descent Why Can GPT Learn In-Context?

Language Models Implicitly Perform Gradient Descent as
Meta-Optimizers

Johannes von Oswald !> Eyvind Niklasson? Ettore Randazzo? Joao Sacramento '
Alexander Mordvintsev? Andrey Zhmoginov? Max Vladymyrov > Damai Dai'* Yutao Sun'? Li Dong?, Yaru Hao!, Shuming Ma¥, Zhifang Suif, Furu Wei*

* Hypothesis #2: Transformers learn tasks required for downstream applications during pre-
training, and in-context demonstrations are only used to recognize which task is required

a5 Classification
R ethinkin g th e R Ol e Of D emonstr ati ONnSs: 60/ No Demos Demos w/ gold labels Demos w/ random labels
What Makes In-Context Learning Work? S
-
LL‘ 1
Sewon Min'* Xinxi Lyu' Ari Holtzman' Mikel Artetxe® ¢ 15)
Mike Lewis’ Hannaneh Hajishirzi!? Luke Zettlemoyer'~ S
1 University of Washington “Meta Al 3 Allen Institute for Al N
{sewon, alrope, ahai,hannaneh, lsz}l@cs.washington.ed ’:
MetalCL (774M) GPTJ (6B) GPT-3 (175B)

{artetxe,mikelewis}@meta.com

Ground-truth labels don’t matter!

Understanding in-context learning

We disentangle In-context learning into two roles -
task recognition (TR) vs task learning (TL)

 TR: recognizes the task from demonstrations and
applies LLMs’ pre-trained priors

e TL: learns a new input-label mapping from
demonstrations

e |CL performs both TR and TL, but TL emerges with larger
models and more demonstrations

(Pan et al., 2023): What In-Context Learning “Learns” In-Context: Disentangling Task Recognition and Task Learning 101

Chain-of-thought (CoT) prompting

Standard Prompting

fc Input) \

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

= /

Model Output)

A: The answer is 27. x

Chain of Thought Prompting

((Input) \

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have?

K(Model Outputj

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The

_/

Qnswer is9. j

(Wel et al., 2022): Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

102

G

hatGPT
Chat The ChatGPT era:

Supervised instruction tuning and RLHF

From 2020°s GPT-3 to 2022’s ChatGPT

t l Large-scale language model pretraining

Training on code L

[GPT-3 Initial | Instruction tuning
GPT-3 Series Codex Initial InstructGPT Initial What’s new?
e (Code training
| e Supervised instruction tuning
v :
. l - | | | e RLHF = Reinforcement
LM + code training then instruction tuning _
learning from human feedback
GPT-3.5 Series l Supervised instruction tuning

RLHF l l RLHF

v

https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-
Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36faldc

Post-training pipeline of LLMs

Training language models to follow instructions
with human feedback

Long Ouyang™ Jeff Wu* Xu Jiang® Diogo Almeida* Carroll L. Wainwright*

Pamela Mishkin®* Chong Zhang Sandhini Agarwal Katarina Slama Alex Ray

John Schulman Jacob Hilton Fraser Kelton Luke Miller Maddie Simens

Amanda Askell’ Peter Welinder Paul Christiano*T

Jan Leike* Ryan Lowe*

OpenAl

The InstructGPT paper

105

Post-training pipeline of LLMs

K

The boy went to the*@———b 0.4

Previous words (Context)

_

Pre-Training

Probability Distribution
over next word/token

— | 0.1 |Cafe

——»| 0.85 [Hospital

LLM —P 0.15 Pal‘k

———p 0.3

School

Words Eejng Pre_dic‘te,d

£) @akshay_pachaar

Playground

\

‘ ~ 1

SFT

/

A promptis
sampled from our Stinthe
prompt dataset. landing 1o & year okd
Y
A labeler
demonstrates the @
desired output ~
&
behavior. o
the maor
L
This data is used &P
to fine-tune GPT-3 .&?.g&.
with supervised W
learning. p
BER3

_

Post-Training

/

A prompt and
saveral model
outputs are
sampled

A labeler ranks
the outputs from
bost to worst

This data is used
10 train our
reward model.

_

RLHF

@ A new prompt
The woon
ol

S s sampled from
areiag tn u e pese the dataset
0o o
rrre The policy
(o) 0o generates
iakiiad - Rabiwl an outpul

o The reward model
calculates a
reward for
the output,

i
.
S5,
W The reward is

used to update
the policy
using PPO.

SFT = supervised fine-tuning
RLHF = reinforcement learning from human feedback

(Ouyang et al., 2022): Training language models to follow instructions with human feedback

106

Supervised fine-tuning (SFT)

* Instruction data: (instruction, response)
* Objective: next-token prediction conditioned on instruction

Can you write a short introduction about the relevance of the term
"monopsony” in economics? Please use examples related to potential
monopsonies in the labour market and cite relevant research.

"Monopsony" refers to a market structure where there is only one buyer for a
particular good or service. In economics, this term is particularly relevant in the
labor market, where a monopsony employer has significant power over the
wages and working conditions of their employees. The presence of a
monopsony can result in lower wages and reduced employment opportunities
for workers, as the employer has little incentive to increase wages or provide
better working conditions understand the extent and impact of
monopsonies on the economy and to develop policies to address this issue.
References: Bivens, J., & Mishel, L. (2013). The Pay of Corporate Executives
and Financial Professionals as Evidence of Rents in Top 1 Percent Incomes.
Journal of Economic Perspectives, 27(3), 57-78.

107

Supervised fine-tuning (SFT)

Use-case Prompt Use-case (%)
Brainstorming List five 1deas for how to regain enthusiasm for my Generation 45.6%
career Open QA 12.4%
Generation Write a short story where a bear goes to the beach, Scengormmg 1LS%
. : Chat 8.4%

makes friends with a seal, and then returns home. :
Rewrite 6.6%
Rewrite This 1s the summary of a Broadway play: Summarization 4.2%
o Classification 3.5%
{summary } Other 3.5%
L Closed QA 2.6%
This 1s the outline of the commercial for that play: Extract 1.9%

SFT data: only ~13k (written by labeller, not public)

(Ouyang et al., 2022): Training language models to follow instructions with human feedback 108

Collection of supervised fine-tuning data

* Repurposed from existing supervised datasets
* Human-written instructions and responses

Ba:lrl'i‘licahon
Number Emor
o Candidat
Generati Stereotype Sance | Tpuaron
o et Detectiol Detecion ~ Ostection
Questio LIP':g;ng Uam}'
Decompesition = Eyaluation Named
Entity Il:ri:l e
aw Recognition The Paraphrasing (Sarnce
Sentence Blank
. Perturbation s .
ntim Section
Word Aenglyselgt Do G
An . T Resolution
alogy GQuestlon Matg;(‘ting
Keyword neration
Tagging Cause onofatio Gender
Effect 5 N Classification
P e Classification
Reﬁm?); ~ Information 1 Answer
trony ‘ EXMOn Verification
e Sentence g QueStl_On — Title
Ordering Composition Translation Answering
Peision Textual Ethics
Cassicalon Dialngue Entailment Classification
Generation Data
Descourse
— Mis ; ext
Program e =
Explanation 5 Language
Text Execution Detection (Sieanty Digogue
Mms"-""! Categorization Tracking
u
=, Kemeagon
Classfication wo;d \assfication
_ Text mmonsense Completion i
simplcaton Classification “
Su
Pos
sye | Tagging Question Evacion "
w
., (e g OpenAssisstant
= vavomates] o050
[G
—

(Kopf et al., 2023)

Super-Naturallnstructions (Wang et al., 2022)
Also: FLAN, TO++

109

Collection of supervised fine-tuning data

* Response distilled from GPT models

* Instructions can be generated by GPT models too, e.g., Self-Instruct

(Wang et al., 2023)

W Introducing ShareGPT

ShareGPT

Share your wildest ChatGPT conversations with one click.

22,936 conversations shared so far.

J Install extension

https://sharegpt.com/

N

@ Meta
LLaMA 7B
Text-davinci-003 \

g Supervised
- 59K Finetuning
175 Self- Modified Self-instruct Instruction-following
Instruct Instruction Generation examples
seed tasks
Example seed task Example Generated task
Instruction: Brainstorm a list of Instruction: Brainstorm creative
possible New Year's resolutions. ideas for designing a conference
Output: HEQID.
- Lose weight Output:
- Exercise more ... Incorporating flexible
- Eat healthier components, such as moveable
walls and furniture ...

Stanford Alpaca

: w
L w“‘ ; ‘
e

il bl
1

Alpaca /B

110

Learning from human feedback

* Preference data: (instruction, winning response, losing response)

Preference Dataset: Signals for human desiderata

Prompt Explain the moon Human annotation

landing to a 6 year old InstructGPT: 33k prompts, each

o o with K (4~9) corresponding SFT
Candldate Explain gravity... Explain war... Irrlgd”el Completlons ranked by
answers dpellers

C_ D

Moon is natural People went to
satellite of... the moon...

111
(Ouyang et al., 2022) Training language models to follow instructions with human feedback

Reinforcement learning from human feedback

Prompts Dataset

Y/ X: A dogis...

" Initial Language Model |

/ f‘[;{\"?\. < Q \
77O\

X

50

/
S
)

RN,

Y

QY
Q

Base Text 9999

®® ®®

y: a furry mammal
\

A4

Tuned Language
Model (RL Policy)

Reinforcement Learning
Update (e.g. PPO)

9(—9+V¢9J(9)

N

RLHF ®O®®
Tuned Text ® ® ® ®

y: man’s best friend

' Reward (Preference)
Mode

—AkLDKL (7TPPO(3/|CU) | Wbase(ykc))
KL prediction shift penalty

iy - \
@7 ¥\« N\
e ¥ N@ 7
(_/:‘ ‘A a7 &), —r'ﬁi’a\ v] ()
ey \,.:\'""'_”,) & 4
W - &\ 2

Multiple stages in training

* Reward model training

- Sampling from policy model
 Policy model update

Multiple models involved
 Reward model
» Policy model
« Reference model

Reinforcement Learning from Human Feedback (RLHF)

x: “write me a poem about
the history of jazz"

label rewards

: /7~ N\
:@ > —> reward model
L S

preference data maximum sample completions
likelihood

LM policy

reinforcement learning

https://huggingface.co/blog/rlhf 112

Dataset

RealToxicity

GPT

Supervised Fine-Tuning

InstructGPT

API| Dataset
Hallucinations

GPT

Supervised Fine-Tuning
1

InstructGPT

GPT-3 vs InstructGPT

0.233

0.199

0.196

0.414

0.078

02

Dataset

TruthfulQA

GPT 0.224
Supervised Fine-Tuning 0.206
—————

InstructGPT 0.413

APl Dataset
Customer Assistant Appropriate

GPT 03811
Supervised Fine-Tuning 0.880
InstructGPT 0.902

https://openai.com/index/instruction-following/

113

Direct preference optimization (DPO)

Instead of training an explicit reward model, express reward in the form of policy model:

Direct Preference Optimization (DPO) Implicit reward expression:

x: “write me a poem about
the history of jazz"

r(z,y) = Blog Zf((‘z “ Z)) - Blog Z(x)

L%D > —— final LM
Bradley-Terry ranking objective:

preference data S

likelihood LR(T$, D) = —E sy .y~ 108 0(rs(z,yw) — To(x, u1))]

DPO objective:

]) W@(yw ‘ CC) 7.‘-H(yl ‘ CE))-
L TTo; Tref) = — (g ~p |logo lo lo
DPO(6 f) (ayw,yl) D i & (/B 5 ﬂref(yw ‘ CIJ) IB 5 Wref(yl ‘ .’L') i

(Rafailov et al., 2023) Direct Preference Optimization: Your Language Model is Secretly a Reward Model e

Simple preference optimization (SimPO)

EDPO (Wr‘% WI'(}() —

4

C|log o (ﬂ log

79(Yw | @)

Mref (Yuw

)

Blog

mo(y1 | @))

T‘_r‘(‘l'(y] I) -

- "
£Sin1PO(7rU) —
i B B \
—E|logo Tlog 7r9(yw \ CL’) ” log 7r9(yz ‘ :c) =
L. pti | o

A simple length-normalized reward (reference-freel):

T'SimPO (% y)

|

log o (y | x)

Y|

Zlogw@ Yi | L y<z)

e Introducing target reward margin in Bradley-Terry objective:

p(y’w ~ Y | x) — 0 (T(xay’w) — T(CB,yl)

—)

(Meng et al., 2024) SIimPO: Simple Preference Optimization with a Reference-Free Reward

115

Simple preference optimization (SimPQO)

AlpacaEval 2 LC Win Rate (%) Arena-Hard LC Win Rate (%)

_— %0
BN DPO +5.5 BN DPO

B SimPO

60

HEl SimPO

Mistral Mistral Llama3 Llama3 Llama3
Base 7B IT7TB Base8B IT8B IT8Bv0.2 Base 7B IT7B Base8B IT8B IT8Bv0.2

Mistral Mistral Llama3 Llama3 Llama3

(Meng et al., 2024) SImPO: Simple Preference Optimization with a Reference-Free Reward

116

