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Causality: A Missing Link to Reasoning in Al

The ability to understand cause-and-effect relationships is crucial for deeper
understanding and decision-making processes.
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Why artificial intelligence needs to
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The Mathematical Framework of
Causal Data Science



Judea Pearl — Causality

Director of the Cognitive Systems Laboratory at
/ the University of California, Los Angeles.
In 2011, he won the A. M. Turing Award (the

highest distinction in computer science and a
$250,000 prize)

“for fundamental contributions to artificial
intelligence through the development of a
calculus for probabilistic and causal reasoning.’

— Association for Computing Machinery (ACM)

)

"Deep learning has instead given us machines with truly
impressive abilities but no intelligence. The difference is
profound and lies in the absence of a model of reality.”

— The Book of Why: The New Science of Cause and Effect



https://amturing.acm.org/award_winners/pearl_2658896.cfm

Guido W. Imbens, Joshua D. Angrist & Donald B. Rubin

CAUSAL
INFERENCE

FOR
STATISTICS,

SOCIAL,
AND

_ BIOMEDICAL
Donald B. Rubin SCIENCES

Professor of Applied Professor of S e

Professor of Econometrics at Statistics at -
Smics at | Stanford University ~ Harvard University

Economics at MIT

Joshua D. Angrist

In 2021, Angrist & Imbens won the Nobel Prize in Economics
“for their methodological contributions to the analysis of causal relationships”


https://www.nobelprize.org/prizes/economic-sciences/2021/summary/

Yoshua Bengio — Deep Learning

Professor at the University of Montreal, and the
Founder and Scientific Director of Mila — Quebec
Al Institute

In 2018, he won the A. M. Turing Award, with
Geoffrey Hinton, and Yann LeCun

“for conceptual and engineering breakthroughs that
have made deep neural networks a critical
component of computing.”

— Association for Computing Machinery (ACM)

ey RO chgen (A y _ _ _
R A Causality is very important for the next steps of progress of

pog ) S machine learning,” — interview with IEEE Spectrum.


https://spectrum.ieee.org/tech-talk/artificial-intelligence/machine-learning/yoshua-bengio-revered-architect-of-ai-has-some-ideas-about-what-to-build-next
https://spectrum.ieee.org/understanding-causality-is-the-next-challenge-for-machine-learning
https://amturing.acm.org/award_winners/bengio_3406375.cfm

Why causality is so important?

Causality allows important capabilities such as

Causal Effect: can determine the effect of unrealized interventions rather than just
predicting an outcome (i.e., can distinguish between association and causation)

- Causal Effect Identification and Estimation

Explainability: provides a better understanding of the underlying mechanisms

- Causal Discovery

Fairness: captures and disentangles any mechanisms of discrimination that may be
present, including direct, indirect-mediated, and indirect-confounded.

Generalizability: allows the transportability of causal effects across different domains.

Data Fusion: provides language and theory to cohesively combine prior knowledge
and data from multiple and heterogeneous studies.



Causality Theory by Judea Pearl

https://causality101.net/
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Causality Theory by Judea Pearl

JUDEA PEARL

WINNER OF THE TURING AWARD

AND DANA MACKENZIE

THE
BOOK OF

WHY

THE NEW SCIENCE

OF CAUSE AND EFFECT
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INFERENCE
IN STATISTICS

A Primer
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)
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Prediction vs Effect of Interventions

Statistical Association vs Causation

12



Predictive Tasks

Task: Can | guess the size of a fire by observing the number of firefighters?

Yes! Correlation between severity of fire and
- number of firefighters in action
X: Number of firefighters in action y=2,3x-1
775 "RZ — 0,92 g

Y: Size of the (initial) fire

Y: Seriousness
of the Fire

5,0
25 F2
pyy # 0 = Xis a good predictor of Y ’ _ _ _
1 10 15 25
P(Y = y ‘X = x) # P(Y = )7) X: Number of Firefighters in Action
& Observational Positive Correlation:
Probability Distribution The more firefighters, the stronger the fire!

13



Prediction = Decision-Making?

Should we reduce the number of firefighters to
decrease the size of the fire?

Misleading correlation: It is the size of the fire that determines
the number of firefighters needed, not the other way around.

14



Causal Effect = Effect of an Intervention

The causal direction is determined by understanding the underlying reality.

X: Number of firefighters in action
Y: (Initial) Severity of the fire
Y is not a function of X

{X — fX(Y’ UX) In other words, X is not a cause of Y
Y=f Y( U Y)
Changing the number of firefighters through an
action/intervention on X, do(X = x), does not

Underlying affect the initial size of the fire (Y).
Structural Causal Model

(SCM)

15



Structural Causal Model (SCM)

EXPLAINABILITY AND THE DATA GENERATING MODEL

16



Structural Causal Model (SCM)

Definition: A structural causal model . (or, data generating model) is a tuple
(V,U, #,P(u)), where

» V=1{V,,...,V }: are endogenous variables
- U={U,,..., U, }: are exogenous variables

« F =1{f;,...,/,}: are functions determining V, i.e., v; < f.(pa., u;), where
- Pa; C V are endogenous causes (parents) of V.

- U; C U are exogenous causes of V..

« P(U) is the probability distribution over U.

Assumption: .Z is recursive, i.e., there are no feedback (cyclic) mechanisms.

17



Structural Equation Model (SEM)

V={XY,Z] » Pre-specified causal order
U = {ex €y, €4} * Linear functions
Z =P+ €y « Normal distribution
F = X = Pxo+ DxzZ+ €y » Markovianity / Causal Sufficiency:
M = Y = Pyo + Py Z + Pyx X + €y) Error terms in U are independent of
each other (diagonal covariance matrix).

oy 0 0

U~A410,2= |0 oy O
0 0 o

Full specification of an SCM requires parametric and distributional assumptions.

Estimation of such models usually requires strong assumptions (e.g., Markovianity).



Statistical Association vs Causation

Pre-Interventional/ Post-Interventional /
Observational SCM Interventional SCM
V={X.,Y) ox V={XY}

U = {Uyy, Uy, Uy) o(X =) U= tUxy: Uy, Uyl

M = 7 {X=fX(UX» Uxy) » M = F {sz

P(U) P(U)
* Observational * Interventional
Distribution Distribution
P(V)=P (V) 7 P(V|do(X =x)) =P , (V)
Can we predict better the value of Y after Can we predict better the value of Y after
observing that X = x? making an intervention do(X = x)?

P(Y=y|X=x)# P(Y=y) = Xis correlated to Y dxst. Py (Y=y)#P(Y=y) = Xisacauseof ¥ |



Statistical Association vs Causation

Pre-Interventional/
Observational SCM

V =

U — {ny, Ux, Uy}
{X = Jx(Uy, Uyy)

LC},’_

P(U)

Observational
Data

X, Yj

do(X = Xx)

Y — f Y(X ’ UYa UXY)

| Loss of Information |

P ,(V)

Observational
Distribution

44444

Observational
Causal Diagram

Post-Interventional /

Interventional SCM

V={X,Y}

M= {sz
=

Y — f Y(x ’ UYa UXY)

P(U)

Interventional
Data

| Loss of Information |

P, (V)=
P(V |do(x))

Interventional
Distribution

X UXY
) §
Interventional
Causal Diagram

20



Randomized Experiments

A well accepted way to access P(Y | do(X = x)) is through a perfectly realized

Randomized Experiments / Control Trials (e.g. RCT):

Randomization of the
X’s assignment

Average Causal Effect:

~[Y]do(X = xy)] —

[ Y| do(X = xp)]

Y| do(X = xy)]

-[Y|do(X = x)]

21



What if we cannot conduct randomized experiments?

(for example due to ethical concerns,
practical limitations, or logistical challenges)

22



Potential SCMs

My =V, U, F 1, P(uy))

My, =V, Uy, F 1 Py (0y)) True Model

My =V, Uy, F51, Pr1(1y))

My, = (V, Uy, # 2k P 2k2(u2)>

5%

(XX
X
£

M = (V, U, 97’31»P31(u3)>

f
\4?\ e
}}.{b( {

uuuuuuuuuu

iiiiiiiiii
hidden layer 1 hidden layer 2

Observational

M 3, = (V, U, # 3k © 3k3(“3)>

My =V, Uy, F 41, Pyr(0y))
%4@ =(V,U,, & 4k, P 4k4(“4)>

M5 = (V,Us, F51, P5(us))

uoneziilaweled
UeINOMJeN

M s, = (V,Us, # sk L 5k5(“5)>
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Potential SCMs

My = (V, U1»3‘711»P11(u1)>

M 1y, = (V. Uy, 91klaP1kl(“1)> True Model

My =V, Uy, F51, Pr1(1y))

M, = (V,U,, # ok F 2k2(“2)>

My =V, Uz, F31, P31(u3))

Observational

M 3, = (V, U, # 3k © 3k3(“3)>

! P41(u4)>

Multiple models / neural nets fit the data equally
well, leading to different causal explanations!

o Par(0y))
: P5 1 (“5)>

M s, = (V,Us, # sk L 5k5(“5)>

uonezisweled
uelnoMJen
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Pearl’s Causal Hierarchy (PCH)

The Three Inferential Layers

25



Ladder of Causation

3. Imagining

2. Doing

1. Seeing

Layer Task / Language | Typical Question Examples
Counterfactual Structural What if | had acted \3/12? :tghpepgcsjpg';
) J - f)
P(yx | X', V) Causal Model differently” headache?

Interventional
P(y | do(x), c)

Associational
P(y | )

(Causal Bayes Net)

ML- (Un)Supervised

(Bayesian Networks,
Decision Trees,
Deep Neural Networks)

What would Y be if
| iIntervene on X?

g 0SSR A a8 DS R S RO T X . _p s
S Amty z - 4 / - - i

)

What if | see?
How would seeing

X change my belief
inY?

be cured if | take
aspirin?

What does a
symptom tell us
about the
disease”?

* Book of Why & On Pearl’s Hierarchy and the Foundations of Causal Inference,

E. Bareinboim, J. Correa, D. Ibeling, T. Icard, in press. https://c:ausalai.net/r60.pdf26


https://causalai.net/r60.pdf

Ladder of Causation

3. Imagining

2. Doing

1. Seeing

Cross-layer inferences:

_ e a2

Fos - o = o AL o e ac . Cea . A AR YT SRy Py = - k= o AL o e g . Loa RN - o = o DAY R . e A . Loa s
prama 7 O - LT s Eapnd . - > 3 7 O - A X AR 7 O - A X AR

most of the inferences are
about causal effects

Doing

% o

Seeing

(policies, treatments, decisions)
most of the available data
IS observational,

passively collected

* Book of Why & On Pearl’s Hierarchy and the Foundations of Causal Inference,
E. Bareinboim, J. Correa, D. Ibeling, T. Icard, in press. https://causalai.net/r60.pdf

27
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Ladder of Causation

3. Imagining

2. Doing

1. Seeing

Cross-layer inferences:

Doing

Fos = - k= - AL o g . s . A AR - o = o AL o e ac . Lia  BABA R SR Oy Py = - k= o AL o e g . Loa RN — o - o AL o ac . Loa s
paia % 2% - A X prama 7 O - A % LAY ye - § > 3 7 O - A X AR 7 R - A % —

most of the inferences are
about causal effects

(policies, treatments, decisions)

* Book of Why & On Pearl’s Hierarchy and the Foundations of Causal Inference,
E. Bareinboim, J. Correa, D. Ibeling, T. Icard, in press. https://causalai.net/r60.pdf
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Association vs Causation

ANOTHER HUGE. STUDY . YOURE NOT... THERE ARE S
FOUND No EYIDENCE. THAT UNITED STATES: MANY PROBLEMS WITH THAT.

T THINK THEY JUsT

ﬁ@rlfwm

JUST TO BE SAFE, UNTIL
I SEE MORE DATA IT™M
GOING To ASSUME CANCER
CAVSES CELL PHONES.

https://xkcd.com/925/ - Creative Commons Attribution-NonCommercial 2.5 License.

Will we be able to decide the true relationship just by seeing more data?

llllll
....

.......
* v

Mobile
Phone

Which type of data would maybe provide us more definite conclusion?



Bayesian Network

A DAG, possibly with latent confounders (ADMG),

representing the conditional independences
implied by an SCM

Directed
Acyclic Graph

Acyclic Directed
Mixed Graph

30



Encoding Conditional independencies

Fork Chain V-Structure
Z as a common cause Z as a mediator /. as a collider or common effect
. Physical
Age Diet Activity
@ Family History : @ @
ObesityA/ Baldness of Diabetes ~ Dlabetes  Stroke e N
® O 0—0—C
X1 Y|Z X1 Y|Z Disease
X1l Y
XY\ Z

In both cases, Z is a non-collider!

31



Active and Inactive Iriplets

Definition (inactive): Atriplet (V;,V,,, V,) is said to be inactive
relative to a set Z if the middle node V :

1. Is a non-collider and is in Z.; or

2. Is a collider and neither it nor any of its descendants in Z.

W is non-collider W is (descendant of) a
and W € Z colliderand W, A & Z
X =—— ) — ) X — | C—)
X e [V | | % X =— [ rrree » Y
\/

A




D-Separation

Definition (d-separation): A path p in an ADMG G is said to be d-separated (or blocked) by a set
of variables Z if and only if p contains an inactive triplet in it.

A set Z d-separates X and Y if and only if Z blocks every path between a node in X and a node in
Y. We denote that by (X 1L Y |Z).

Does Z. d-separate X and Y ?

Xe—B—— W —>Yy 7 -X{ M{B MW M {BW
X—— BNy —y  Z- A MBS W X (B W
X {B; (W) X (B W]

X—»B-‘—»W—#Y Z: X

| D-separations in G imply \
conditional independencies in P |

Global Markov property: (X 1L Y |Z); > X 1L Y |Z),



BN - Encoder of Conditional Independences

Bayesian Networks (BN) are Minimal Independence Maps: No edges of G can be
(X 11 Y| Z)G = (X 1L Y| Z), removed without ceasing

such a property.

Observational .
pistribution. (V) =P 4 (V) = Z H P(v;| pa;, u)P(u)

u vVev N
Factorization obtained by Chain Rule
Edges have no and conditional independencies
causal semantics! implied by the SCM /.
@ P(v) = P(w|z,x,y,a) P(z|x,y,a) P(x|y,a) P(y|a) P(a)
el N

W1l X,Y,A|Z AL Z|X,Y YLl X|A

@ @_,@ — P(w|2) P(z|x.y) P(x|a) P(y]a) P(a)
hOa
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BN - Encoder of Conditional Independences

Bayesian Networks (BN) are Minimal Independence Maps: No edges of G can be
(X 11 Y| Z)G = (X 1L Y| Z), removed without ceasing

such a property.

Observational :
Dis;i:i‘llaau’:?onna P(V) =P (V) = Z H P(v;| pa;, w)P (“)

u vev
Factorization obtalned by Chain Rule
Edges have no and conditional independencies
causal semantics! implied by the SCM /.
@ P(v) = P(w|z,x,y,a) P(z|x,y,a) P(x|y,a) P(y|a) P(a)

W1l X,Y,A|Z AL Z|X,Y YLl X|A

@ @_,@ — P(w|2) P(z|x.y) P(x|a) P(y]a) P(a)
hOa
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Markov Equivalence Class

'V ={X,Y)
U= {U,U)

(a0
. {f Y(Xa UY)

P(U)

Vo7
U — {Ux, Uy, UX,Y}

L Jx(Y, Uy, Uy y)
: Jy(Uy, Uy y)

 P(U)
'V ={(X,Y)

U= {U,U,)

.

- {waY)
P(U)

Conditional
(in)dependencies

P(x,y) = ) P(x|y)P(y)P(u,, u)

Uy, Uy,

P(x,y) = ) P(y|x)P()P(u,, u,)

Uyl
e
[
L

Markov Equivalence Class

(class of models implying the same
set of conditional independencies)

Correlation does not
imply causation!
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Equivalent Bayesian Networks

Distribution

Observational P(X,Y,Z)
Data

— with

P(Y|X,Z) = P(Y|X) |
e X1 Y|Z

Factorization

X, 2)P(z| x)P(x)
2)P(z| x)P(x)

v, 2)P(y|2)P(2)
2)P(z|y)P(y)

x, 2)P(x | 2)P(2)
2)P(x|2)P(z)

Bayesian Networks

Markov
@4—@4—@ Equivalent

Two models are considered Markov equivalent if they imply the same conditional independencies.

37



Equivalent Bayesian Networks

Distribution

P(X.Y,7)
with P(Y|X,Z) = P(Y|X)

e, X 1L Y|Z

Factorization

P(x,v,2) = P(x

x, 2)P(z| x)P(x)
2)P(z| x)P(x)

7. OPGIIPE)

2)P(z|y)P(y)

_—

Invariance:
Z, is never a collider
(either ancestor of X and Y).

P(x,y,z) = P(y

x, 2)P(x | 2)P(2)
2)P(x|z)P(z)

Bayesian Networks

B0

uNy

: o’ Yo,

: f?‘ * f
\ .

: )

: o

B—2~¥

Markov
Equivalent
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Equivalent Bayesian Networks

Distribution Factorization Bayesian Networks

dentifiable if
P(Xa Y, Z) P(x’ y, Z) — P(Z X, y)P(X ‘ y)P(y) — entitiapie |

| ‘ 2 no latent
with P(Y|X) = P(Y) = P(z|x, y)P(x)P(y) @_@‘_@ confounder
e, X 1LY
- Markov
@_’@4_@ Equivalent

AT A A"“"...
: : C 39



Equivalent Bayesian Networks

Distribution Factorization Bayesian Networks
| Identifiable if
P&, Y,2) P(x,y,z) = P(z|x,y)P(x|y)P(y) - | no latent
with P(Y|X) = P(Y) = P(z|x,y)P(x)P(y) | confounder
e, X1l Y

I

l\

| \
I

Markov
- Equivalent
Invariance: ; |
| . -
Z is always a collider ]
|

(non-ancestor of X and Y).

_— 40



Causal Bayesian Network

A DAG, possibly with latent confounders (ADMG),
representing the causal and confounding relationships
implied by an SCM

41



CBN: Encoder of Structural Causal Knowledge

Structural Causal Model (SCM) Induced Causal Bayesian Network (CBN)
=(V,U, %, P(n)) Causal Diagram
={A,B,C, D} Headache
U= {Uy, Up, Ue, Up, Ucp}
A < fu(Uy)
M = _ B « fz(A,D, Up) ——
I = SES

D (_fZ(UDa UCD)

P(U) Drug Heart Disease

An SCM A/ = (V,U, F, P(u)) induces a causal diagram such that, for every V., V.e V:

V; — V., if V; appears as argument ofjj- e F

42



CBN: Encoder of Structural Causal Knowledge

Structural Causal Model (SCM) Induced Causal Bayesian Network (CBN)
=(V,U, %, P(n)) Causal Diagram

={A,B,C,D}
U — {UA’ UB’ Uc, UD’ UCD}

A < fa(Uy)
%: o B(—fB(A,D, UB)
D « f,(Up, Ucp)

Hypertension

F
C (—fX(B, UC’ UCD)
P(U) Drug Heart Disease

An SCM A/ = (V,U, F, P(u)) induces a causal diagram such that, for every V., V.e V:

V; — V., if V; appears as argument ofjj- e F
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CBN: Encoder of Structural Causal Knowledge

Structural Causal Model (SCM) Induced Causal Bayesian Network (CBN)
=(V,U, %, P(n)) Causal Diagram

={A,B,C,D}
U — {UA’ UB’ Uc, UD’ UCD}

A < fa(Uy)
%: o B(—fB(A,D, UB)
D « f,(Up, Ucp)

Hypertension

F
C (—fX(B, UC’ UCD)
P(U) Drug Heart Disease

An SCM ./ = (V, U, #, P(u)) induces a causal diagram such that, for every V,, V. € V:
V, = V., if V; appears as argument ofjj- e F
V; «-> V. if the corresponding U;, U; € U are correlated or f; , f; share some argument U € U.
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CBN: Encoder of Structural Causal Knowledge

Structural Causal Model (SCM) Induced Causal Bayesian Network (CBN)
M =(V,U, F,Pu)) Causal Diagram
V={A,B,C,D} @ Headache
U — {UA’ UB’ Uc, UD’ UCD}
A(—](A(UA) 4’"~“
— B A,D,U —_— ‘
/A 7 — <_fB( B) SES v

D (_fZ(UDa UCD)

C (—fX(B, UC’ UCD)
P(U) Drug Heart Disease

An SCM ./ = (V,U, &, P(u)) induces a causal diagram such that, for every V. V] e V:
V, — V, if V, appears as argument of f; € F.
V; «-> V. if the corresponding U;, U; € U are correlated or f; , f; share some argument U € U.
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CBN: Encoder of Structural Causal Knowledge

Structural Causal Model (SCM) Induced Causal Bayesian Network (CBN)
=(V,U, %, P(n)) Causal Diagram
=14,B,C, D} Headache

U = Uy, Up, Uc, Up, Ucp)

A fo(Uy) e @ -'\‘
a=1  |BfyAD Uy —_— v
7= D < f,(Up, Ucp) SES
C < (B, Uq Ugp)

P(U) Drug Heart Disease

An SCM ./ = (V, U, #, P(u)) induces a causal diagram such that, for every V,, V. € V:
V, = V., if V; appears as argument ofjj- e F
V; «-> V. if the corresponding U;, U; € U are correlated or f; , f; share some argument U € U.



CBN: Encoder of Structural Causal Knowledge

Let P.. be the collection of all interventional distributions P(V |do(X)), X C V, including the null
(observational) distribution P(V).

An Acyclic Directed Mixed Graph (ADMG) G is a CBN for P if for every intervention do(X = X),
X C V, ifit hold:

Interventional P(V|do(X =x)) =P %X(V)

Distribution
— Z H P(v.|pa,, u)P(u)
/ u VevV\X =X

Truncated factorization

implied by the SCM ./ . Semi-Markov relative to Gy

47



Causal Effect Identification
from Causal Diagrams / CBNs

48



Causal Pipeline from a Causal Diagram

a Query

P(y|do(x))

inference Solution
Engine —
a Causal Contraints es / no
P(y|do(x)) = }, P(y|x,2)P() Observational
(o) = D EQI% PR —» E(y|dot) = ¥ E((y]x DPG)
e P(x,m,y) Interventional Avallable Z

Distribution <+— Dijstributions
Observational Distribution

—— _ - —
|

“-, ——__ _ __ = . T "- P *";’gh 1
' Causal Modeling / Causal Discovery ——»

e e e et e ———
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Causal Effect

The causal effect of a (set of) treatment variable(s) X on a (set of) outcome variable(s) Y is a quantity
derived from P(Y | do(X)) that tells us how much Y changes due to an intervention do(X = X).

Examples:

* Average Treatment Effect (ATE) for discrete treatments:

_[Y ‘ dO(X — X/)] . _[Y ‘ dO(X — X)], where E[Y | do(X = X)] = Z yP(y | do(x))

YEQy

defined for two treatment levels X’ and X of X.

» Average Treatment Effect (ATE) for continuous treatments, Jacobian of E[Y | do(X = X)], where

OE[Y;| dO(Xj _ xj)] E[Y [do(X =Xx)| = ), YP(y | do(x))dy,

,forall ¥; € Y,and X; € X. y

axj and 2y is the space of all possible values
that Y might take on
The derivative shows the rate of change of Y w.r.t. do(X = X)
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Classical Causal Effect Identification

Structural knowledge
available

O ooy —
P(y|do(x))

Inference .
. Solution
. Engine —
e Causal Contraints es)/ no
@——»@*@ P(yldo() = Y, POm|x) D P(y|m,x)PX)
Interventional Available
e Probability Distributions Distribution ™ Distributions

P(x,m,y) Observational Distribution

 Tian, J. and Pearl, J. (2002) A General ldentification Condition for Causal Effects. In Proceedings of the Eighteenth
National Conference on Artificial Intelligence (AAAI 2002), pp. 567-573, Menlo Park, CA, 2002. AAAIl Press/MIT Press. 51



The Effect Identification Problem

Causal Effect Identifiability: The causal effect of a (set of) treatment variable(s) X on a (set of) outcome
variable(s) Y is said to be identifiable from a causal diagram G and the probability of the observed variables

P(V) if the interventional distribution P(Y | do(X)) is uniquely computable, i.e., if for every pair of SCMs ./, and
M » that induce G and P#1(V) = P*>(V) = P(V) > 0, P“(Y | do(X)) = P*(Y | do(X)) = P(Y | do(X)).

My =V, U, F1, Pr(uy))

P(Y|do(X))

(Unobserved) (Observed) 5 (Inferred)
Tl’ue MOdel %1]{1 — <V9 Ula 91]{19 Plkl(u1)>

@%@\
\

In words, causal effect identifiability means that, no matter the form of true SCM,
for all models . agreeing with (G, P(V)), they also agree in P(y | do(X)). -




The Effect Identification Problem

Causal Effect Identifiability: The causal effect of a (set of) treatment variable(s) X on a (set of) outcome
variable(s) Y is said to be identifiable from a causal diagram G and the probability of the observed variables

P(V) if the interventional distribution P(Y | do(X)) is uniquely computable, i.e., if for every pair of SCMs ./, and
M » that induce G and P#1(V) = P*>(V) = P(V) > 0, P“(Y | do(X)) = P*(Y | do(X)) = P(Y | do(X)).

|dentifiable Non-ldentifiable
Models
iInducing
P(v)
et —>

Same

6"\ P(y | do(x))/;-}

Models
compatible
with GG

Different
All models Py | do(x)) !

In words, causal effect identifiability means that, no matter the form of true SCM,
for all models . agreeing with (G, P(V)), they also agree in P(y | do(X)). -



ldentification Via Adjustment over Parents

Let G be a causal graph with all parents observed.

Then, the effect of X on Y is given by:

Proof follows from the truncated
P(y|do(x)) = Z P (y | X, pax) P (pax) factorization for Markovian models.
pa Try at home!
X = {X)
Y = (Y]
PaX — {Zl’ Z2}

P(yldo() = ) P (yIx2.2) P (2, 2)

Zl 922
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ldentification via Backdoor Criterion

In Gx, all non-backdoor

paths are severed
Let X be a set of treatment variables and Y a set of outcome variables in the causal graph G.

If there exists a set Z. such that:
1. Z d-separates X and Y in the graph Gy, i.e., the graph resulting from cutting the arrows out of X

2. no node in Z is a descendant of a variable X € X in G (all variables in Z are pre-treatment)

Then, Z satisfies the backdoor criterion for (X, Y) and, then the effect of X on Y is given by:

X=1{X
P(y\do(X)>=ZP(Y\X»Z)P(Z) Y=§Y}}
Z ZZ{Z}

Z., a set of covariates, admissible for
backdoor adjustment

Judea Pearl. Comment: Graphical models, causality and

intervention. Stat. Sci., 8:266-269, 1993. 55



ldentification via Backdoor Criterion

In Gx, all non-backdoor

paths are severed
Let X be a set of treatment variables and Y a set of outcome variables in the causal graph G.

If there exists a set Z. such that:
1. Z d-separates X and Y in the graph Gy, i.e., the graph resulting from cutting the arrows out of X

2. no node in Z is a descendant of a variable X € X in G (all variables in Z are pre-treatment)

Then, Z satisfies the backdoor criterion for (X, Y) and, then the effect of X on Y is given by:

X=1{X.,X}
P(y\do(x))=ZP(y\X,Z)P(Z) Y={Y1} 2
£ 1 =17,}

Z., a set of covariates, admissible for

G
backdoor adjustment G X
(2 (x)(Y) (x) (2p(x) (v

Judea Pearl. Comment: Graphical models, causality and @

intervention. Stat. Sci., 8:266-269, 1993. 56



Admissible Sets for BD Adjustment

Z. satisfies the backdoor criterion for or (X, Y) in the causal graph G if:

1. Z d-separates X and Y in the graph Gy, i.e., the graph resulting from cutting the arrows out of X

2. no node in Z is a descendant of a variable X € X in G (all variables in Z are pre-treatment)

L4

L 4

N

]

.
4

Minimal BD { (Z,},
Adjustment Sets
| 4o}

141> 42}

P(yldo(x)) = ) P (y|x.z,) P (z,)

{1

(2)—z
‘@—@

1421
ARZY

P(y|do(x)) = P (y|x)

o
"@_.

U

P(y|do(x)) =

P (y|x)

There is no BD
Adjustment Set!

P(y|do(x)) is
non-identifiable
57



http://causalfusion.net
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Y

Confounding Analysis A

Admissible Sets
Admissibility Test
Instrumental Variables

IV Admissibility Test

Path Analysis A
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Counterfactual Interpretation of Backdoor

Theorem 4.3.1, Pearl’s Primer Book

Theorem: If a set Z satisfies the backdoor criterion w.r.t. the ordered pair (X, Y),
then, for all x, it holds that Y. 1l X |Z.

Observational

Graph
Although the satlsﬁablhty of Z to the ' y
~ backdoor criterion can be tested given a | < : >_’
~ causal diagram or a PAG, the condition - f |
Y. 1l X|Z is sometimes framed as an , Ourgre;picwa

~assumption, referred to as (conditional) | .
ignorability, exchangeability or l‘
unconfoundedness ‘ .............




Many Scenarios Beyond Adjustment!

W@ P(y|do()) = ¥ Pm|x) ¥ P(y|m,x)P(x)

Front-Door

Conditional Front-Door Napkin Unnamed
E(y|do(x)) = ) P(m|x,2)P(z|x) Y, Pyl 2)Pz)  P(y|ldo@) = ) P(Ix2,2,%)PE)
m.z P(y ‘ dO(x)) — ervé
ZZz P(x|zy, 0)P(2)

Y E@y|m.x, 2)P(x'|2)

And many others.... 61



Tools for Causal Identification

1. Markovian Models (No Unobserved Confounders)
. Truncated Factorization / G-computation or G-formula
2. Adjustment over Parents (No Unobserved Parents)
3. Non-Markovian Models (Under the Presence of Unobserved Confounders)

. Graphical criteria (Backdoor Adjustment, Generalized Adjustment, Front-door
Adjustment)

ii. Do-Calculus (a.k.a Causal Calculus)

. ldentify Algorithm (a.k.a. ID algorithm)

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press, New York. http://
dx.doi.org/10.1017/CBO9/7/80511803161

Jin Tian. Studies in causal reasoning and learning. PhD thesis, University of California, Los Angeles, 2002. o


http://dx.doi.org/10.1017/CBO9780511803161
http://dx.doi.org/10.1017/CBO9780511803161

Advances on Effect Identification given a Causal Diagram

Identification from observational and experimental data:

Lee, S., Correa, J., and Bareinboim, E. (2019). General identifiability with arbitrary surrogate
experiments. In Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence, volume 35,
Tel Aviv, Israel. AUAI Press.

J. Correa, S. Lee, E. Bareinboim. (2021) Nested Counterfactual Identification from Arbitrary Surrogate
Experiments. In Proceedings of the 35th Annual Conference on Neural Information Processing Systems

Identification of stochastic/soft (and possibly imperfect) interventions:

Correa, J. and Bareinboim, E. (2020). A calculus for stochastic interventions: Causal effect identification
and surrogate experiments. In Proceedings of the 34th AAAI Conference on Atrtificial Intelligence, New
York, NY. AAAI Press.

Identification and Estimation via Deep Neural Networks:

Xia, K., Lee, K.-Z., Bengio, Y., and Bareinboim, E. (2021). The causal-neural connection: Expressiveness,
learnability, and inference. Advances in Neural Information Processing Systems, 34.

Xia, K., Pan, Y.,and Bareinboim, E. (2023) Neural Causal Models for Counterfactual Identification and
Estimation. In Proceedings of the 11th International Conference on Learning Representations.
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What if domain knowledge does not allow
you construct a causal diagram?

)

o4



Super-Exponential Growth

The space of DAGs grows super-exponentially with the number n of variables,
as shown by the following recurrence relation (Robinson, 1973):

n - |DAG»)

...........................................................................................................................

n
| DAG(n) | = Z ( )2l<"—l> | DAGn—-1)| S >
=1 1 3 27
4 729
5 59,049
Inference trough enumeration S ;
isnotagoodidea! 6 1 1a3Px100
7 1.0460 x 100

8 22877 x 10"



Super-Exponential Growth

The space of ADMGs also grows super-exponentially with the number n of
variables, and it is much bigger than the space of DAGS:

n | DAG(®n)| |ADMG(n) |

..............................................................................................................................................................................................

2 3 , 6
_ n(n—1)/2 N S— S———
|ADMG(n)| = |DAG(n)| X 2 . ” o

4 729 46,656

|[ADMG(n)| > |DAGm)| 5 59049 6.0457x107
6 14349107 47019 x 10!
2 1.0460><1010§ 2.1936 x 1016
8 2.2877 X 1013§ 6.1410 x 102!

00



Learning the Markov Equivalence Class

Causal Discovery:

Many models are statistically indistinguishable without additional parametric /

distributional assumptions.

In non-parametric settings, causal discovery algorithms can only learn a
graphical representation of its Markov equivalence class (MEC)!

Fast Causal Inference (FCI): Sound and complete causal discovery algorithm,
even Iin the presence of unobserved confounders and selection bias.

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent

confounders and selection bias. Artificial Intelligence, 172(16):1873-1896. Link
or


http://dx.doi.org/10.1016/j.artint.2008.08.001

Causal Discovery: Learning Structural Invariances

A
I

F =

%N—l .

PU)

L

S

 P(U)

F =

 P(U)

(V={X,Y.Z)
U= {Uxz Uyz. Ux, Uy, Uz} ey

(V={X,Y,Z}
U — {Ux, Uy, Uz}

X < fx(Uy)
Z — f,(X,Y,U,)

LY<_fY(UY)

AL

rX (_fx(UXZ, Uy)
Z — [,(Y, Uy, Uy,)

; Y < fy(Uy)

A\

(V={X,Y,Z) /

U = (Uxz Uyz, Uy, Uy, Uy}

(X « fy(Uyz Uy)
Z < f(Uxz, Uyz, Up)
; Y < fy(Uy,, Uy)

A\

Markov Equivalence Class

Conditional
(in)Jdependencies
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Causal Discovery: Learning Structural Invariances

F =

A\

V=1{XY7] Markov Equivalence Class
U= {U,Uy,U,) .
- : fX(ZUX) Conditional o MEC) *
2. 1 v (in)dependencies ; | _
Y < £,(Uy) Data ! Partial Ancestral Graph
P(U \ ‘ MEC Representation
i P(v) P
: . Causal
Yo il | XY DISCOVGW
i {(f];((Z, UJYFZ;;]]X, lg,)Uz} _> _> X | t Z _> ®_>@<_@
i SRy i
%N—l iy AR B <—fZ(Y, UXZ’ UZ) ZAH_/ Y : FCI Algorlthm
Y < fy(Uy) I
\P(U) / X HY|Z |
(V={X,Y,Z) |
U= (U, .U U U U il | X O0—>» / —> Z non-ancestor of X
L Een | Zl Yo—>» 7Z =—> Znon-ancestor of Y
-
J
1:

Z < f7(Uxz, Uyz, Uy) |
kY(_fY(UYZa Uy) |

 P(U)

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders and
selection bias. Artificial Intelligence, 172(16):1873-1896. Link 69


http://dx.doi.org/10.1016/j.artint.2008.08.001

FCI Algorithm - Pipeline

Unknown Reality

@_' """ X1l w Implied by the ADMG
True causal X1 Y|ZW using d-separation
diagram

Conditional FCI Rules
Independence Tests (R1) — (R10)
p  (XooZgepey) i (XoZio WV
Vv
Skeleton Partial Ancestral Graph
(PAG)
By faithfulness, are correctly ,
observed in the data Imlplled by the P’_A‘G‘ X 4
using m-separation X || Y|Z W
A o—» B = B non-ancestor of A 7 Y or W
A B — A ancestror of B IS not an ancestor of X or W.
A «— B = spurious association Z and W are ancestors of Y.

A —— B — selection bias /. is not confounded with Y. 70



Conditional Independence Tests

Gaussian errors and independent observations: partial correlation test

Fisher, R.A. (1921). On the Probable Error of a Coefficient of Correlation Deduced from a Small Sample.
R package: https://cran.r-project.org/web/packages/pcalg/

Kernel-based non-parametric test:

Zhang, K., Peters, J., Janzing, D., & Scholkopf, B. (2012). Kernel-based conditional independence test
and application in causal discovery. In: Uncertainty in artificial intelligence. AUAI Press; 2011. p.804-13
R package: https://cran.r-project.org/web/packages/CondindTests

Continuous (conditional Gaussian) or Discrete (Binary, Ordinal, Multinomial) - Linear Regression

* Tsagris, M., Borboudakis, G., Lagani, V. et al. (2018) Constraint-based causal discovery with mixed

data. Int J Data Sci Anal 6, 19-30. (Link)
* R package: https://cran.r-project.org/web/packages/MXM/

Gaussian errors and correlated observations (family data) :

Ribeiro A.H., Soler J.M.P. (2020). Learning Genetic and environmental graphical models from family data,
Statistics in Medicine.
R package: https://github.com/adele/FamilyBasedPGMs

[a


https://cran.r-project.org/web/packages/CondIndTests
https://github.com/adele/FamilyBasedPGMs
https://cran.r-project.org/web/packages/pcalg/
https://doi.org/10.1007/s41060-018-0097-y
https://cran.r-project.org/web/packages/MXM/

PAG: Representation of the Markov Equivalence Class

True
(unknown)
causal diagram

OMONT5- L.

V

Partial Ancestral Graph
(PAG)

Z is not an ancestor of X or W.
/. and W are ancestors of Y.

/. is not confounded with Y.

(2



Fast Causal Inference (FCI) Algorithm

Underlying Causal Diagram Partial Ancestral Graph

02020 (p—s(Z (7

OO "Lra O-0@
/@\ o\ _~
@_.@4 ...... @4_@ @“@“’@‘”@

WDl W27
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Developments in Causal Discovery with Unobserved Confounding

Going Beyond the Markov Equivalence Class:

1. Causal Discovery with Interventional Data

* Jaber, A., Kocaoglu, M., Shanmugam, K. and Bareinboim, E., (2020). Causal discovery from soft
interventions with unknown targets: Characterization and learning. Advances in neural information
processing systems, 33, pp.9551-9561.

* A. Li, A. Jaber, E. Bareinboim. Causal discovery from observational and interventional data across
multiple environments. (2023) In Proceedings of the 37th Annual Conference on Neural Information
Processing Systems — NeurlPS-23.

Fl , S1,2
X A Y
Fl
€T
(a) Gs (b) Skeleton (c) After Orienting (d) Final S-PAG
Unshielded Colliders
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Developments in Causal Discovery with Unobserved Confounding

Going Beyond the Markov Equivalence Class:

2. Causal Discovery with Prior Knowledge

* Wang, T. Z., Qin, T. and Zhou, Z.H., (2022). Sound and complete causal
identification with latent variables given local background knowledge. Advances
in Neural Information Processing Systems, 35, pp.10325-10338.

3. Human-in-the-Loop Probabilistic Causal Discovery

« da Silva, T., Silva, E., Ribeiro, A., Gois, A., Heider, D.,
Kaski, S., & Mesquita, D. (2023). Human-in-the-Loop
Causal Discovery under Latent Confounding using
Ancestral GFlowNets. arXiv:2309.12032.

lgs



Developments in Causal Discovery with Unobserved Confounding

Going Beyond the Markov Equivalence Class:

4. Causal Discovery in Linear Models

 Tashiro, T., Shimizu, S., Hyvarinen, A., & Washio, T. (2014).
ParceLINGAM: A causal ordering method robust against latent
confounders. Neural computation, 26(1), 57-83.

* Wang, Y. S., & Drton, M. (2023). Causal discovery with
unobserved confounding and non-Gaussian data. Journal of
Machine Learning Research, 24(271), 1-61.

5. Causal Discovery for Additive Noise Models

 Van Diepen, M. M., Bucur, . G., Heskes, T., & Claassen, T. (2023).
Beyond the Markov Equivalence Class: Extending Causal Discovery

under Latent Confounding. In Conference on Causal Learning and
Reasoning (pp. 707-725). PMLR.

J’

- Relax the causal sufficiency |

|

|

assumption of LInGAN by
Shimizu et al., 2006:

order / ancestral identifiability

under linear systems with

 FCI-CDC: causal direction |

criterion (CDC) allows pairwise
orientation in (weakly) additive
noise models with independent

‘ non-gaussian error terms |
| hon-gaussian error terms




Developments in Causal Discovery with Unobserved Confounding

Learning Dynamic Systems:

1. Causal Discovery with Cycles

 Bongers, S., Forre, P, Peters, J., & Mooij, J. M. (2021). Foundations of structural causal models
with cycles and latent variables. The Annals of Statistics, 49(5), 2885-2915.

 Claassen, T. &; Mooij, J.M.. (2023). Establishing Markov equivalence in cyclic directed graphs.
Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, PMLR
216:433-442, 2023.

2. Causal Discovery from Time-Series Data

* Gerhardus, A., & Runge, J. (2020). High-recall causal discovery for autocorrelated time series with

latent confounders. Advances in Neural Information Processing Systems (NeurlPS 2020), 33,
12615-12625.

’r



Causal Identification from PAGs

Can we identify causal effects from the equivalence class?

Effect Identification:

For Covariate Adjustment, we can use the Generalized Adjustment Criterion.

Recently, we proposed complete calculus and algorithms for the identification
of marginal and conditional causal effect in PAGs!

Perkovic, E., Textor, J. C., Kalisch, M., & Maathuis, M. H. (2018). Complete graphical characterization and construction of
adjustment sets in Markov equivalence classes of ancestral graphs. Journal of Machine Learning Research 18 (2018) 1-62

Jaber A., Ribeiro A. H., Zhang, J., Bareinboim, E. (2022) Causal Identification under Markov Equivalence - Calculus, Algorithm,
and Completeness. In Proceedings of the 36th Annual Conference on Neural Information Processing Systems, NeurlPS. (Link)
78


https://causalai.net/r86a.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf

Effect Identification in Markov Equivalence Classes

Can be constructed in a fully
data-driven way!

Inference
Engine

( “/ no

Query
P(y|do(x))

Solution

P(y|do(x)) = ) P(y|x.z) P(2)

Inferred Avalilable
Data (Interventional) <————— —(Observational)
Distribution : Distribution

-“

P(x,y,z,w) Observational Distribution
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|dentification via Adjustment in Markov Equivalence Classes

|
. \l
Query _ s | 4 - |

Adjustment
Criterion

P(y|do(x)) = ) P(y|x.z) P(2)

Inferred Avalilable
Data (Interventional) <————— —(Observational)
Distribution : Distribution

~-“

P(x,y,z,w) Observational Distribution

Perkovic, E., Textor, J. C., Kalisch, M., & Maathuis, M. H. (2018). Complete graphical characterization and
construction of adjustment sets in Markov equivalence classes of ancestral graphs. Journal of Machine Learning
Research 18 (2018) 1-62 80



https://www.jmlr.org/papers/volume18/16-319/16-319.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf

General ldentification in Markov Equivalence Classes

Complete algori, |
| available at the PAGId R package: |
| https://github.com/adele/PAGId |

IDP / CIDP

P(y1, Y4, Y51 x1) - P(V2Y3 Yas V5 | )

P(y|do(x)) =
P(y,,ys)
Inferred Available
(Interventional) 4————— (Observational)
Data Distribution . Distribution

P(x,y,z,w) Observational Distribution

Jaber A., Ribeiro A. H., Zhang, J., Bareinboim, E. (2022) Causal Identification under Markov Equivalence -
Calculus, Algorithm, and Completeness. In Proceedings of the 36th Annual Conference on Neural Information
Processing Systems (NeurlPS 2022). 81


https://github.com/adele/PAGId

Effect Identifiabiliy given a PAG

G

. @ /@v Py | do(x) =
W @ LY
\ G2 @
P(y | do(x) =
P Y- P ,
(y | do(x)) ; (y ‘X,Z) (2) @ EP(y\x, 2)P(2)

An effect identifiable in a PAG & is identifiable in all causal diagrams G in the
Markov Equivalence Class using the same identification formula!
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Effect Non-ldentifiabiliy given a PAG

-------- a
Gl
P(y|do(x)) =
X Z P(v|x,2)P(z)

, Gy, e .
oy @
P(y|do(x)) is C)‘ """"" y
not identifiable

An effect not identifiable in a PAG &£ is not identifiable in at least one
causal diagrams G in the Markov Equivalence Class

P(y|do(x)) is
not identifiable
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Causal Inference Workflow

Continuous Process of Scientific Discovery and Causal Hypothesis Refinement

new discoveries(t+1)

S M T e ettt e ettt et
(Unobserved Nature) :
Z « f2(U,) queries(t)
X « fx(Z, Ux) . new
/ Y — f,X. Z Uy i Q  insights
P(U;, Uy, U) > knowledge(t) . |
causal hypothesis (t) nswerable Experimental
5 L e
\ """""" . o validation(t)
data(tf A — distributions(t) —> \\; y T not new
A z 0/ answerable Cha”enges

perform new observations
and/or experiments(t+1)

[.A Statistical Learning B Causal Learning C CausalInference D Causal Exp. Design]

384



Causal Inference Workflow

Continuous Process of Scientific Discovery and Causal Hypothesis Refinement

new discoveries(t+1)

S M T e ettt e ettt et
(Unobserved Nature) :
Z + fz(Uy) queries(t)
X « fx(Z, Ux) . new
/ Y — f,X. Z .Uy i S\E  insights
P(Uz, Uy, U) > knowledge(t) . |
causal hypothesis (t) o Experimental
5 L answerable P
\ """"""" . o validation(t)
data(tf A — distributions(t) —> \\iv — not new
A z 0/ answel’able Cha”enges

perform new observations
and/or experiments(t+1)

[.A Statistical Learning B Causal Learning C CausalInference D Causal Exp. Design]
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Many other Topics in Causal Inference

. Causal Representation Learning & Causal Abstraction
. Causal Reinforcement Learning

. Fairness & Mediation Analysis

. Individual Treatment Effect (ITE) Estimation

. Data-Driven Covariate Selection for Adjustment

. Partial Effect Identification

N O O &~ W DN =

. Many more...
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Causal Representation Learning & Causal Abstraction

Toward Causal

Rep]_‘esentati()n Learning Schélkopf, B., Locatello, F,, Bauer, S., Ke, N. R.,

Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021).

This article reviews fundamental concepts of causal inference and relates them to crucial Toward causal representation learning. Proceedings
open problems of machine learning, including transfer learning and generalization, of the IEEE, 109(5), 612-634.
thereby assaying how causality can contribute to modern machine learning research.

By BERNHARD SCHOLKOPF~ , FRANCESCO LOCATELLO“ , STEFAN BAUER“, NAN ROSEMARY KE,

NAL KALCHBRENNER, ANIRUDH GOYAL, AND YOSHUA BENGIO

Coarse-grained causal models:

Causal Consistency of Structural Equation Models

Paul K. Rubenstein*!2, Sebastian Weichwald*!3, Stephan Bongers*, Joris M. Mooij*
Dominik Janzing!, Moritz Grosse-Wentrup!, Bernhard Schélkopf!
*Equal contribution
'Empirical Inference, MPI for Intelligent Systems, 2Machine Learning Group, University of Cambridge,
3Max Planck ETH Center for Learning Systems, “Informatics Institute, University of Amsterdam

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

. Neural Causal Abstractions
Causal Effect Identification in Cluster DAGs

Tara V. Anand*', Adele H. Ribeiro*?, Jin Tian’, Elias Bareinboim? Kevin Xia and Elias Bareinboim
'Department of Biomedical Informatics, Columbia University Causal Artificial Intelligence Lab
*Department of Computer Science, Columbia University Columbia University

SDepartment of Computer Science, Iowa State University

tara.v.anand @columbia.edu, adele @cs.columbia.edu, jtian @iastate.edu, eb@cs.columbia.edu {kevinmxia, eb} @cs.columbia.edu
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https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9363924
https://auai.org/uai2017/proceedings/papers/11.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/26435/26207
https://ojs.aaai.org/index.php/AAAI/article/view/26435/26207
https://ojs.aaai.org/index.php/AAAI/article/view/26435/26207
https://arxiv.org/pdf/2401.02602

Causal Reinforcement Learning

Generalized Policy Learning
combining online + offline learning

Learn policy I[ by systematically combining
offline (L) and online (L,) modes of
interaction.

Generalizability & Robustness of
Causal Claims

transportability & structural invariances

Generalize policy based on structural
invariances shared across training (SCM M)
and deployment environments (M*).

http://crl.causalai.net

When and Where to Intervene?
refining the policy space

|dentify subset of L, to refine the policy
space do(][(X)) based on topological
constraints implied by M on G.

TASK 5

Learning Causal Models

discovering the causal structure with
observation and experiments

Learn the causal graph G (of M) by
systematically combining observations (L)
and experimentation (L»).

Counterfactual Decision-Making

changing optimization function based on
intentionality, free will, and autonomy
Optimization criterion based on
counterfactuals and L3-based
randomization (instead of Ly/do()-
counterpart).

Causal Imitation Learning
policy learning with unobserved rewards
Construct Ly-policy based on partially

observable Li-data coming from an expert
with unknown reward function.

By Elias Bareinboim’s Research Group
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http://cr.causalai.net

Fairness and Mediation Analysis

A Causal Framework for
Decomposing Spurious Variations

Drago Plecko and Elias Bareinboim
Department of Computer Science
Columbia University
dp3144@columbia.edu, eb@cs.columbia.edu

D. Plecko, E. Bareinboim. A Causal Framework for
Decomposing Spurious Variations. In Proceedings of
the 37th Annual Conference on Neural Information
Processing Systems — NeurlPS-23.

Foundations and Trends® in Machine Learning

Causal Fairness Analysis
A Causal Toolkit for Fair Machine Learning

Suggested Citation: Drago Plecko and Elias Bareinboim (2024), “Causal Fairness
Analysis”, Foundations and Trends® in Machine Learning: Vol. 17, No. 3, pp 1-238. DOI:

10.1561/2200000106.

Drago Plecko
Seminar fiir Statistik, ETH Ziirich
drago.plecko@stat.math.ethz.ch

Elias Bareinboim

Department of Computer Science, Columbia University
eb@cs.columbia.edu
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https://causalai.net/r90.pdf
https://causalai.net/r93.pdf

Individual Treatment Effect (ITE) Estimation

Generalization Bounds and Representation Learning for
Estimation of Potential Outcomes and Causal Effects

Fredrik D. Johansson
Chalmers University of Technology
Goteborg, 412 96, Sweden

Uri Shalit

Technion - Israel Institute of Technology

Haifa, 3200003, Israel
Nathan Kallus

Cornell University

New York, NY 10044, USA
David Sontag

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

Other related works
cited within, such as:

FREDRIK.JOHANSSONQCHALMERS.SE
URISHALITQTECHNION.AC.IL

KALLUS@QCORNELL.EDU

DSONTAGQCSAIL.MIT.EDU

Estimating individual treatment effect:
generalization bounds and algorithms

Uri Shalit, Fredrik D. Johansson, David Sontag Proceedings of the 34th International Conference
on Machine Learning, PMLR 70:3076-3085, 2017.

Johansson, F.D., Shalit, U., Kallus, N. and
Sontag, D., 2022. Generalization bounds and
representation learning for estimation of
potential outcomes and causal effects. Journal
of Machine Learning Research, 23(166), pp.1-50.

Learning Representations for Counterfactual Inference

Fredrik D. Johansson* FREJOHK @ CHALMERS.SE

CSE, Chalmers University of Technology, Goteborg, SE-412 96, Sweden

Uri Shalit* SHALIT@CS.NYU.EDU
David Sontag DSONTAG@CS.NYU.EDU

CIMS, New York University, 251 Mercer Street, New York, NY 10012 USA

* Equal contribution
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https://proceedings.mlr.press/v70/shalit17a.html
https://www.jmlr.org/papers/volume23/19-511/19-511.pdf
https://proceedings.mlr.press/v48/johansson16.pdf

Data-Driven Covariate Selection for Adjustment

Finding Valid Adjustments under Non-ignorability Abhin Shah, Karthikeyan Shanmugam, and
with Minimal DAG Knowledge Kartik Ahuja. Finding valid adjustments under

non-ignorability with minimal DAG knowledge. In

International Conference on Atrtificial Intelligence

Abhin Shah Karthikeyan Shanmugam Kartik Ahuja
MIT IBM Research Mila PMLR, 2022.

abhin@mit.edu karthikeyan.shanmugam2@ibm.com kartik.ahuja@mila.quebec

Differentiable Causal Backdoor Discovery

Limor Gultchin Matt J. Kusner Varun Kanade Ricardo Silva
University of Oxford University College London University of Oxford University College London
The Alan Turing Institute The Alan Turing Institute The Alan Turing Institute The Alan Turing Institute

and Statistics (AISTATS - 2022), pages 5538-5562.
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https://proceedings.mlr.press/v151/shah22a/shah22a.pdf
https://proceedings.mlr.press/v108/gultchin20a/gultchin20a.pdf

Partial Effect Identification

Stochastic Causal Programming for Bounding Treatment Effects

Kirtan Padh KIRTAN.PADH@ TUM.DE

Helmholtz AI, Helmholtz Munich & Technical University Munich

Jakob Zeitler
University College London

David Watson
King’s College London

Matt Kusner
University College London

Ricardo Silva
University College London

Niki Kilbertus
Helmholtz AL, Helmholtz Munich & Technical University Munich

Kirtan Padh, Jakob Zeitler, David Watson, Matt
Kusner, Ricardo Silva, Niki Kilbertus; Proceedings

of the Second Conference on Causal Learning and
Reasoning, PMLR 213:142-176

Related: Jakob Zeitler, and Ricardo Silva. (2022) The Causal Marginal Polytope for Bounding
Treatment Effects arXiv preprint arXiv:2202.13851 - https://arxiv.org/pdf/2202.13851.pdf
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https://arxiv.org/pdf/2202.13851.pdf
https://openreview.net/pdf?id=iop8rRYtggi

Thank you! :

Feel free to reach out to me if you have any questions;

adele.ribeiro@uni-marburg.de
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