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Predictive vs Explainable, Trustworthy AI
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Predictive vs Explainable, Trustworthy AI

Chat GPT - Impressive Abilities:



Causality: A Missing Link to Reasoning in AI
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The ability to understand cause-and-effect relationships is crucial for deeper 
understanding and decision-making processes.



The Mathematical Framework of 
 Causal Data Science
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Judea Pearl — Causality
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Director of the Cognitive Systems Laboratory at 
the University of California, Los Angeles.

In 2011, he won the A. M. Turing Award (the 
highest distinction in computer science and a 
$250,000 prize)

“for fundamental contributions to artificial 
intelligence through the development of a 
calculus for probabilistic and causal reasoning.” 
— Association for Computing Machinery (ACM)

“Deep learning has instead given us machines with truly 
impressive abilities but no intelligence. The difference is 
profound and lies in the absence of a model of reality.”

 — The Book of Why: The New Science of Cause and Effect 

https://amturing.acm.org/award_winners/pearl_2658896.cfm


Guido W. Imbens, Joshua D. Angrist & Donald B. Rubin
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In 2021, Angrist & Imbens won the Nobel Prize in Economics  

“for their methodological contributions to the analysis of causal relationships”

Professor of 
Economics at MIT

Joshua D. Angrist
Professor of Applied 

Econometrics at 
Stanford University

Guido W. Imbens Donald B. Rubin
Professor of 
Statistics at 

Harvard University

https://www.nobelprize.org/prizes/economic-sciences/2021/summary/


Yoshua Bengio — Deep Learning
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Professor at the University of Montreal, and the 
Founder and Scientific Director of Mila – Quebec 
AI Institute

“Causality is very important for the next steps of progress of 
machine learning,” —  interview with IEEE Spectrum. 

In 2018, he won the A. M. Turing Award, with 
 Geoffrey Hinton, and Yann LeCun

“for conceptual and engineering breakthroughs that 
have made deep neural networks a critical 
component of computing.”
 — Association for Computing Machinery (ACM)

https://spectrum.ieee.org/tech-talk/artificial-intelligence/machine-learning/yoshua-bengio-revered-architect-of-ai-has-some-ideas-about-what-to-build-next
https://spectrum.ieee.org/understanding-causality-is-the-next-challenge-for-machine-learning
https://amturing.acm.org/award_winners/bengio_3406375.cfm


Why causality is so important?
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Causality allows important capabilities such as


Causal Effect: can determine the effect of unrealized interventions rather than just 
predicting an outcome (i.e., can distinguish between association and causation) 


- Causal Effect Identification and Estimation 

Explainability: provides a better understanding of the underlying mechanisms

- Causal Discovery 

Fairness: captures and disentangles any mechanisms of discrimination that may be 
present, including direct, indirect-mediated, and indirect-confounded. 


Generalizability: allows the transportability of causal effects across different domains.


Data Fusion: provides language and theory to cohesively combine prior knowledge 
and data from multiple and heterogeneous studies. 



Causality Theory by Judea Pearl
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https://causality101.net/



Causality Theory by Judea Pearl
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Prediction vs Effect of Interventions
Statistical Association vs Causation
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Predictive Tasks
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Correlation between severity of fire and 
number of firefighters in action
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X: Number of Firefighters in Action
1 10 15 25

y = 2,3x - 1
R² = 0,92

9

5
32

P(Y = y |X = x) ≠ P(Y = y)

Task: Can I guess the size of a fire by observing the number of firefighters?

Positive Correlation: 

: Number of firefighters in action 
: Size of the (initial) fire

X
Y

Yes!

  is a good predictor of ρXY ≠ 0 ⟹ X Y

Observational 
Probability Distribution The more firefighters, the stronger the fire!



Prediction  Decision-Making?⇒
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Should we reduce the number of firefighters to 
decrease the size of the fire?

Misleading correlation: It is the size of the fire that determines 
the number of firefighters needed, not the other way around.



Causal Effect  Effect of an Intervention≡
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Changing the number of firefighters through an 
action/intervention on ,  , does not 

affect the initial size of the fire ( ).
X do(X = x)

Y

In other words,  is not a cause of X Y

: Number of firefighters in action 
: (Initial) Severity of the fire

X
Y

{X = fX(Y, UX)
Y = fY(UY)

Underlying  
Structural Causal Model 

(SCM) 

 is not a function of Y X

The causal direction is determined by understanding the underlying reality.



Structural Causal Model (SCM)
EXPLAINABILITY AND THE DATA GENERATING MODEL
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Structural Causal Model (SCM)
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Definition:  A structural causal model  (or, data generating model) is a tuple 
, where


• : are endogenous variables


• : are exogenous variables 


• : are functions determining , i.e., , where


-   are endogenous causes (parents) of  


-  are exogenous causes of .


•  is the probability distribution over .


Assumption:   is recursive, i.e., there are no feedback (cyclic) mechanisms.

ℳ
⟨V, U, ℱ, P(u)⟩

V = {V1, …, Vn}

U = {U1, …, Um}

ℱ = {f1, …, fn} V vi ← fi(pai, ui)
Pai ⊆ V Vi

Ui ⊆ U Vi

P(U) U

ℳ



Structural Equation Model (SEM)
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• Pre-specified causal order 
• Linear functions 
• Normal distribution 
• Markovianity / Causal Sufficiency: 

Error terms in  are independent of 
each other (diagonal covariance matrix).

Uℳ =

V = {X, Y, Z}
U = {ϵX, ϵY, ϵZ}

ℱ =
Z = βZ0 + ϵZ

X = βX0 + βXZZ + ϵX

Y = βY0 + βYZZ + βYXX + ϵY)

U ∼ 𝒩 0, Σ =
σX 0 0
0 σY 0
0 0 σZ

Full specification of an SCM requires parametric and distributional assumptions. 
Estimation of such models usually requires strong assumptions (e.g., Markovianity).
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do(X = x)

ℳx =

V = {X, Y}
U = {UXY, UX, UY}

ℱ = {X = x
Y = fY(x, UY, UXY)

P(U)

Post-Interventional / 
Interventional SCM

Pre-Interventional/
Observational SCM

ℳ =

V = {X, Y}
U = {UXY, UX, UY}

ℱ = {X = fX(UX, UXY)
Y = fY(X, UY, UXY)

P(U)

Can we predict better the value of  after 
making an intervention ?

Y
do(X = x)

 is a cause of  X Y s.t. ∃x Pℳx
(Y = y) ≠ P(Y = y) ⟹P(Y = y |X = x) ≠ P(Y = y) ⟹

Can we predict better the value of  after 
observing that ?

Y
X = x

 is correlated to  X Y

  P(V) ≐ Pℳ(V) P(V |do(X = x)) ≐ Pℳx
(V)≠

Observational 
Distribution

Interventional 
Distribution

Statistical Association vs Causation
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Observational 
Data

Pℳ(V)
Observational 
Distribution

YX

UXY

Observational 
Causal Diagram

Interventional 
Data

Pℳx
(V) ≐

P(V |do(x))
Interventional 
Distribution

do(X = x)

Interventional 
Causal Diagram

YX
x

UXY

Loss of Information Loss of Information

ℳx =

V = {X, Y}
U = {UXY, UX, UY}

ℱ = {X = x
Y = fY(x, UY, UXY)

P(U)

Post-Interventional / 
Interventional SCM

Pre-Interventional/
Observational SCM

ℳ =

V = {X, Y}
U = {UXY, UX, UY}

ℱ = {X = fX(UX, UXY)
Y = fY(X, UY, UXY)

P(U)

Statistical Association vs Causation



Randomized Experiments
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A well accepted way to access  is through a perfectly realized 
Randomized Experiments / Control Trials (e.g. RCT): 

P(Y |do(X = x))

YX

do(X = x0)

YX

do(X = x1)
Randomization of the 

’s assignmentX

𝔼[Y |do(X = x0)]

𝔼[Y |do(X = x1)]

Average Causal Effect: 𝔼[Y |do(X = x0)] − 𝔼[Y |do(X = x1)]



What if we cannot conduct randomized experiments? 

(for example due to ethical concerns,  
practical limitations, or logistical challenges)

22
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Potential SCMsPotential Causal Diagrams

YX
G1

23

YX
G2

YX
G3

YXG4

YX
G5

ℳ11 = ⟨V, U1, ℱ11, P11(u1)⟩

ℳ1k1
= ⟨V, U1, ℱ1k1

, P1k1
(u1)⟩

ℳ21 = ⟨V, U2, ℱ21, P21(u2)⟩

ℳ2k2
= ⟨V, U2, ℱ2k2

, P2k2
(u2)⟩

⋯
⋯

ℳ31 = ⟨V, U3, ℱ31, P31(u3)⟩

ℳ3k3
= ⟨V, U3, ℱ3k3

, P3k3
(u3)⟩

⋯

ℳ41 = ⟨V, U4, ℱ41, P41(u4)⟩

ℳ4k4
= ⟨V, U4, ℱ4k4

, P4k4
(u4)⟩

⋯

ℳ51 = ⟨V, U5, ℱ51, P51(u5)⟩

ℳ5k5
= ⟨V, U5, ℱ5k5

, P5k5
(u5)⟩

⋯

 X     Z     Y

 P(Y |X = x)^

D
N

N

Encoded Knowledge / Assumptions



M
arkovian 

P
aram

etrization

True Model

Data
O

bs
er

va
tio

na
l 

Potential SCMsPotential Causal Diagrams
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YX
G2

YX
G3

YXG4

YX
G5

ℳ11 = ⟨V, U1, ℱ11, P11(u1)⟩

ℳ1k1
= ⟨V, U1, ℱ1k1

, P1k1
(u1)⟩

ℳ21 = ⟨V, U2, ℱ21, P21(u2)⟩

ℳ2k2
= ⟨V, U2, ℱ2k2

, P2k2
(u2)⟩

⋯
⋯

ℳ31 = ⟨V, U3, ℱ31, P31(u3)⟩

ℳ3k3
= ⟨V, U3, ℱ3k3

, P3k3
(u3)⟩

⋯

ℳ41 = ⟨V, U4, ℱ41, P41(u4)⟩

ℳ4k4
= ⟨V, U4, ℱ4k4

, P4k4
(u4)⟩

⋯

ℳ51 = ⟨V, U5, ℱ51, P51(u5)⟩

ℳ5k5
= ⟨V, U5, ℱ5k5

, P5k5
(u5)⟩

⋯

 X     Z     Y

 P(Y |X = x)^

D
N

N

Encoded Knowledge / Assumptions

Multiple models / neural nets fit the data equally 
well, leading to different causal explanations!  



Pearl’s Causal Hierarchy (PCH)
The Three Inferential Layers
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      Layer Task / Language Typical Question Examples

Ladder of Causation
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Counterfactual

 P(yx | x’, y’) 

What if I had acted 
differently?

Was it the aspirin 
that stopped my 

headache?

Associational

 P(y | x) 

What if I see?

How would seeing 
X change my belief 

in Y?


What does a 
symptom tell us 

about the 
disease?

Interventional

 P(y | do(x), c)

What if I do X? 

What would Y be if 
I intervene on X?

Will my headache 
be cured if I take 

aspirin?

* Book of Why & On Pearl’s Hierarchy and the Foundations of Causal Inference,   
E. Bareinboim, J. Correa, D. Ibeling, T. Icard, in press. https://causalai.net/r60.pdf 

ML- (Un)Supervised 
(Bayesian Networks, 
Decision Trees, 
Deep Neural Networks)

ML- Reinforcement
(Causal Bayes Net)

Structural  
Causal Model

1.
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g
2.
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g 

https://causalai.net/r60.pdf


Ladder of Causation
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* Book of Why & On Pearl’s Hierarchy and the Foundations of Causal Inference,   
E. Bareinboim, J. Correa, D. Ibeling, T. Icard, in press. https://causalai.net/r60.pdf 
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most of the inferences are 
about causal effects 

(policies, treatments, decisions)

most of the available data 
is observational, 

passively collected

Doing 

Seeing 

  Cross-layer inferences:  

https://causalai.net/r60.pdf


Ladder of Causation

28
* Book of Why & On Pearl’s Hierarchy and the Foundations of Causal Inference,   
E. Bareinboim, J. Correa, D. Ibeling, T. Icard, in press. https://causalai.net/r60.pdf 

1.
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28

most of the inferences are 
about causal effects 

(policies, treatments, decisions)

most of the available data 
is observational, 

passively collected

Doing 

Seeing 

  Cross-layer inferences:  

Causal Hierarchy Theorem : The ladder almost never 
collapses. That is, for almost any SCM, the rungs of 

the ladder remain distinct. 

https://causalai.net/r60.pdf


Association vs Causation
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https://xkcd.com/925/ - Creative Commons Attribution-NonCommercial 2.5 License.

Will we be able to decide the true relationship just by seeing more data? 

CancerMobile 
Phone CancerMobile 

Phoneor or CancerMobile 
Phone

?
CancerMobile 

Phoneor

Which type of data would maybe provide us more definite conclusion? 



Bayesian Network
A DAG, possibly with latent confounders (ADMG),  

representing the conditional independences  
implied by an SCM

30

 Acyclic Directed 
Mixed Graph

 Directed 
Acyclic Graph



Encoding Conditional independencies
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X ⊥⊥ Y |Z
X ⊥⊥ Y

X ⊥⊥ Y |Z
X ⊥⊥ Y

X ⊥⊥ Y |Z
X ⊥⊥ Y

X ⊥⊥ Y |W

Z

YX

Obesity Baldness

Age

Fork
 as a common causeZ

Z YX

Family History 
of Diabetes StrokeDiabetes

Chain
 as a mediatorZ

Z

YX

Diet Physical 
Activity

Obesity

W
Heart 

Disease

V-Structure

 as a collider or common effectZ

In both cases,  is a non-collider!Z



Active and Inactive Triplets
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Definition (inactive):  A triplet  is said to be inactive 
relative to a set  if the middle node :


1. Is a non-collider and is in ; or

2. Is a collider and neither it nor any of its descendants in .

⟨Vi, Vm, Vj⟩
Z Vm

Z
Z

X W Y

X W Y

 is non-collider   
and 

W
W ∈ Z

X W Y

X W Y

X W Y

A

 is (descendant of) a 
collider and 
W

W, A ∉ Z



D-Separation
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Definition (d-separation): A path  in an ADMG  is said to be d-separated (or blocked) by a set 
of variables  if and only if  contains an inactive triplet in it.


A set  d-separates  and  if and only if   blocks every path between a node in  and a node in
. We denote that by . 

p G
Z p

Z X Y Z X
Y (X ⊥⊥ Y |Z)G

{B} {W} {B, W}{}X B W Y

X B W Y {B} {W} {B, W}{}

:Z

:Z

Does  d-separate  and  ?Z X Y

X B W Y {B} {W} {B, W}{}:Z

Global Markov property: (X ⊥⊥ Y |Z)G ⇒ (X ⊥⊥ Y |Z)P
D-separations in  imply 

conditional independencies in 
G

P



BN - Encoder of Conditional Independences
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Z
Y

X
WA

P(v) = P(w |z, x, y, a) P(z |x, y, a) P(x |y, a) P(y |a) P(a)

W ⊥⊥ X, Y, A |Z A ⊥⊥ Z |X, Y Y ⊥⊥ X |A

= P(w |z) P(z |x, y) P(x |a) P(y |a) P(a)

Edges have no 
causal semantics!

No edges of  can be 
removed without ceasing 

such a property.

GBayesian Networks (BN) are Minimal Independence Maps:  
(X ⊥⊥ Y |Z)G ⇒ (X ⊥⊥ Y |Z)P

Observational 
Distribution = ∑

u
∏
Vi∈V

P(vi |pai, ui)P(u)

Factorization obtained by Chain Rule 
and  conditional independencies 

implied by the SCM .ℳ

  P(V) ≐ Pℳ(V)



BN - Encoder of Conditional Independences
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Z
Y

X
WA

P(v) = P(w |z, x, y, a) P(z |x, y, a) P(x |y, a) P(y |a) P(a)

W ⊥⊥ X, Y, A |Z A ⊥⊥ Z |X, Y Y ⊥⊥ X |A

= P(w |z) P(z |x, y) P(x |a) P(y |a) P(a)

Edges have no 
causal semantics!

No edges of  can be 
removed without ceasing 

such a property.

GBayesian Networks (BN) are Minimal Independence Maps:  
(X ⊥⊥ Y |Z)G ⇒ (X ⊥⊥ Y |Z)P

Observational 
Distribution = ∑

u
∏
Vi∈V

P(vi |pai, ui)P(u)

Factorization obtained by Chain Rule 
and  conditional independencies 

implied by the SCM .ℳ

  P(V) ≐ Pℳ(V)



Markov Equivalence Class

P(x, y) = ∑
ux,uy

P(x |y)P(y)P(ux, uy)

Conditional 
(in)dependencies

P(v)

X ⊥⊥ Y

P(x, y) = ∑
ux,uy

P(y |x)P(x)P(ux, uy)

Correlation does not 
imply causation!

Markov Equivalence Class 
(class of models implying the same 
set of conditional independencies)

YX

YX

YX

YX

YX

ℳ1 =

V = {X, Y}
U = {Ux, UY}

ℱ = {fX(UX)
fY(X, UY)

P(U)

ℳN−1 =

V = {X, Y}
U = {Ux, UY, UX,Y}

ℱ = {
fX(Y, UX, UX,Y)
fY(UY, UX,Y)

P(U)

ℳN =

V = {X, Y}
U = {Ux, UY}

ℱ = {fX(UX)
fY(UY)

P(U)

⋮
Data

36

⋮

⋮



Equivalent Bayesian Networks
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Distribution Bayesian NetworksFactorization

 P(X, Y, Z)

with 
  P(Y |X, Z) = P(Y |X)

i.e., X ⊥⊥ Y |Z

P(x, y, z) = P(y |x, z)P(z |x)P(x)
= P(y |z)P(z |x)P(x)

P(x, y, z) = P(x |y, z)P(y |z)P(z)
= P(x |z)P(z |y)P(y)

P(x, y, z) = P(y |x, z)P(x |z)P(z)
= P(y |z)P(x |z)P(z)

ZX Y

ZX Y

ZX Y

Markov 
Equivalent

Two models are considered Markov equivalent if they imply the same conditional independencies. 

Observational 
Data



Equivalent Bayesian Networks
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Distribution Bayesian NetworksFactorization

 P(X, Y, Z)
with   P(Y |X, Z) = P(Y |X)

i.e., X ⊥⊥ Y |Z

P(x, y, z) = P(y |x, z)P(z |x)P(x)
= P(y |z)P(z |x)P(x)

P(x, y, z) = P(y |x, z)P(x |z)P(z)
= P(y |z)P(x |z)P(z)

ZX Y

ZX Y

ZX Y

ZX Y

ZX Y

P(x, y, z) = P(x |y, z)P(y |z)P(z)
= P(x |z)P(z |y)P(y)

⋮

⋮

⋮

Markov 
Equivalent

Invariance:  
 is never a collider  

(either ancestor of  and ).
Z

X Y



Equivalent Bayesian Networks
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Distribution Bayesian NetworksFactorization

 P(X, Y, Z)
with   P(Y |X) = P(Y)

i.e., X ⊥⊥ Y

P(x, y, z) = P(z |x, y)P(x |y)P(y)
= P(z |x, y)P(x)P(y) ZX Y

ZX Y

ZX Y

ZX Y

ZX Y
⋮

Markov 
Equivalent

ZX Y Identifiable if 
no latent 

confounder



Equivalent Bayesian Networks
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Distribution Bayesian NetworksFactorization

 P(X, Y, Z)
with   P(Y |X) = P(Y)

i.e., X ⊥⊥ Y

P(x, y, z) = P(z |x, y)P(x |y)P(y)
= P(z |x, y)P(x)P(y) ZX Y

ZX Y

ZX Y

ZX Y

ZX Y
⋮

Markov 
Equivalent

ZX Y    Identifiable if 
no latent 

confounder

Invariance:  
 is always a collider  

(non-ancestor of  and ).
Z

X Y



Causal Bayesian Network
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A DAG, possibly with latent confounders (ADMG),  
representing the causal and confounding relationships 

implied by an SCM



ℳ =

V = {A, B, C, D}
U = {UA, UB, UC, UD, UCD}

ℱ =

A ← fA(UA)
B ← fB(A, D, UB)
D ← fZ(UD, UCD)
C ← fX(B, UC, UCD)

P(U)

CBN: Encoder of Structural Causal Knowledge

42

Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

Induced Causal Bayesian Network (CBN)

Causal Diagram

An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

C

DA

B
SES

Heart DiseaseDrug

Headache
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Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

C

DA

B

Hypertension

SES

Heart DiseaseDrug

Headache

UCD

UA

UB UC

An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

UD

ℳ =

V = {A, B, C, D}
U = {UA, UB, UC, UD, UCD}

ℱ =

A ← fA(UA)
B ← fB(A, D, UB)
D ← fZ(UD, UCD)
C ← fX(B, UC, UCD)

P(U)

CBN: Encoder of Structural Causal Knowledge
Induced Causal Bayesian Network (CBN)


Causal Diagram
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Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

C

DA

B

Hypertension

SES

Heart DiseaseDrug

Headache

UCD

UA

UB UC

UD

An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


 if the corresponding  are correlated or  ,  share some argument .

ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

Vi ⤎⤏ Vj Ui, Uj ∈ U fi fj U ∈ U

ℳ =

V = {A, B, C, D}
U = {UA, UB, UC, UD, UCD}

ℱ =

A ← fA(UA)
B ← fB(A, D, UB)
D ← fZ(UD, UCD)
C ← fX(B, UC, UCD)

P(U)

CBN: Encoder of Structural Causal Knowledge
Induced Causal Bayesian Network (CBN)


Causal Diagram
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Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

C

DA

B
SES

Heart DiseaseDrug

HeadacheUA

UB UC

UD

An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


 if the corresponding  are correlated or  ,  share some argument .

ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

Vi ⤎⤏ Vj Ui, Uj ∈ U fi fj U ∈ U

ℳ =

V = {A, B, C, D}
U = {UA, UB, UC, UD, UCD}

ℱ =

A ← fA(UA)
B ← fB(A, D, UB)
D ← fZ(UD, UCD)
C ← fX(B, UC, UCD)

P(U)

CBN: Encoder of Structural Causal Knowledge
Induced Causal Bayesian Network (CBN)


Causal Diagram
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Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

C

DA

B
SES

Heart DiseaseDrug

Headache

An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


 if the corresponding  are correlated or  ,  share some argument .

ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

Vi ⤎⤏ Vj Ui, Uj ∈ U fi fj U ∈ U

ℳ =

V = {A, B, C, D}
U = {UA, UB, UC, UD, UCD}

ℱ =

A ← fA(UA)
B ← fB(A, D, UB)
D ← fZ(UD, UCD)
C ← fX(B, UC, UCD)

P(U)

CBN: Encoder of Structural Causal Knowledge
Induced Causal Bayesian Network (CBN)


Causal Diagram
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CBN: Encoder of Structural Causal Knowledge

P(V |do(X = x)) ≐ Pℳx
(V)Interventional 

Distribution

= ∑
u

∏
Vi∈V∖X

P(vi |pai, ui)P(u)
X=x

Truncated factorization 
implied by the SCM .ℳx

Let  be the collection of all interventional distributions , , including the null 
(observational) distribution . 


An Acyclic Directed Mixed Graph (ADMG)  is a CBN for  if for every intervention , 
, if it hold:

P* P(V |do(x)) X ⊆ V
P(V)

G P* do(X = x)
X ⊆ V

Semi-Markov relative to GX
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Causal Effect Identification  
from Causal Diagrams / CBNs



Causal Pipeline from a Causal Diagram
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Inference 
Engine

3 P(x, m, y)

1 Query
P(y |do(x))

Solution
yes / no

Available 
Distributions

Interventional 
Distribution

👍

P(y |do(x)) = ∑
z

P(y |x, z)P(z)

2 Causal Contraints

YX

Z

Observational Distribution

𝔼(y |do(x)) = ∑
z

𝔼(y |x, z)P(z)

Causal Modeling / Causal Discovery Causal Effect Identification Causal Effect Estimation

�̂�(y |do(x)) = ∑
z

�̂�((y |x, z) ̂P(z)

Observational 
Data



Causal Effect
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The causal effect of a (set of) treatment variable(s)  on a (set of) outcome variable(s)  is a quantity 
derived from  that tells us how much  changes due to an intervention .

X Y
P(Y |do(X)) Y do(X = x)

• Average Treatment Effect (ATE) for discrete treatments:


,


defined for two treatment levels  and  of . 

𝔼[Y |do(X = x′ )] − 𝔼[Y |do(X = x)]

x′ x X

Examples:

• Average Treatment Effect (ATE) for continuous treatments, 


, for all and .
∂𝔼[Yi |do(Xj = xj)]

∂xj
Yi ∈ Y, Xj ∈ X

Jacobian of , where 

, 

and  is the space of all possible values 
that  might take on

𝔼[Y |do(X = x)]

𝔼[Y |do(X = x)] = ∫Ωy

yP(y |do(x))dy

ΩY
Y

where  𝔼[Y |do(X = x)] = ∑
y∈ΩY

yP(y |do(x))

The derivative shows the rate of change of  w.r.t. Y do(X = x)



Classical Causal Effect Identification
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Inference 
Engine

3 Probability Distributions
P(x, m, y)

1 Query
P(y |do(x))

Solution
yes / no

Available 
Distributions

Interventional 
Distribution

👍

P(y |do(x)) = ∑
m

P(m |x) ∑
x′ 

P(y |m, x′ )P(x′ )

2 Causal Contraints

YX M

• Tian, J. and Pearl, J. (2002) A General Identification Condition for Causal Effects. In Proceedings of the Eighteenth 
National Conference on Artificial Intelligence (AAAI 2002), pp. 567–573, Menlo Park, CA, 2002. AAAI Press/MIT Press.

Observational Distribution

Structural knowledge 
available



YX

Z

The Effect Identification Problem

52

Causal Effect Identifiability: The causal effect of a (set of) treatment variable(s)  on a (set of) outcome 
variable(s)  is said to be identifiable from a causal diagram  and the probability of the observed variables 

 if the interventional distribution  is uniquely computable, i.e., if for every pair of SCMs  and 
 that induce  and ,  = .

X
Y G

P(V) P(Y |do(X)) ℳ1
ℳ2 G Pℳ1(V) = Pℳ2(V) = P(V) > 0 Pℳ1(Y |do(X)) = Pℳ2(Y |do(X)) P(Y |do(X))

In words, causal effect identifiability means that, no matter the form of true SCM, 
for all models  agreeing with , they also agree in . ℳ ⟨G, P(V)⟩ P(y |do(x))

 P(X, Y, Z)True Model ℳ1k1
= ⟨V, U1, ℱ1k1

, P1k1
(u1)⟩

ℳ11 = ⟨V, U1, ℱ11, P11(u1)⟩

⋯  P(Y |do(X))

(Observed) (Inferred)(Unobserved)



The Effect Identification Problem
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Causal Effect Identifiability: The causal effect of a (set of) treatment variable(s)  on a (set of) outcome 
variable(s)  is said to be identifiable from a causal diagram  and the probability of the observed variables 

 if the interventional distribution  is uniquely computable, i.e., if for every pair of SCMs  and 
 that induce  and ,  = .

X
Y G

P(V) P(Y |do(X)) ℳ1
ℳ2 G Pℳ1(V) = Pℳ2(V) = P(V) > 0 Pℳ1(Y |do(X)) = Pℳ2(Y |do(X)) P(Y |do(X))

In words, causal effect identifiability means that, no matter the form of true SCM, 
for all models  agreeing with , they also agree in . ℳ ⟨G, P(V)⟩ P(y |do(x))

Identifiable Non-Identifiable
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Let  be a causal graph with all parents observed.


Then, the effect of  on  is given by:


G

X Y

P(y |do(x)) = ∑
pax

P (y |x, pax) P (pax)

YX

Z3
Z1

Z2

Pax = {Z1, Z2}

Identification Via Adjustment over Parents

P(y |do(x)) = ∑
z1,z2

P (y |x, z1, z2) P (z1, z2)

PaX = {Z1, Z2}

X = {X}
Y = {Y}

Proof follows from the truncated 
factorization for Markovian models. 

Try at home! 



Identification via Backdoor Criterion
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Z = {Z}

X = {X}
Y = {Y}

Let  be a set of treatment variables and  a set of outcome variables in the causal graph .  


If there exists a set  such that:


1.  d-separates  and  in the graph , i.e., the graph resulting from cutting the arrows out of 


2. no node in  is a descendant of a variable  in  (all variables in  are pre-treatment)


Then,  satisfies the backdoor criterion for  and, then the effect of  on  is given by:


X Y G
Z

Z X Y GX X

Z X ∈ X G Z

Z (X, Y) X Y

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

In , all non-backdoor 
paths are severed
GX

Judea Pearl. Comment: Graphical models, causality and 
intervention. Stat. Sci., 8:266–269, 1993.

, a set of covariates, admissible for 
backdoor adjustment

Z

YX

Z
GX

YX

ZG



Identification via Backdoor Criterion
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Z = {Z2}

X = {X1, X2}
Y = {Y}

Let  be a set of treatment variables and  a set of outcome variables in the causal graph .  


If there exists a set  such that:


1.  d-separates  and  in the graph , i.e., the graph resulting from cutting the arrows out of 


2. no node in  is a descendant of a variable  in  (all variables in  are pre-treatment)


Then,  satisfies the backdoor criterion for  and, then the effect of  on  is given by:


X Y G
Z

Z X Y GX X

Z X ∈ X G Z

Z (X, Y) X Y

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

In , all non-backdoor 
paths are severed
GX

Judea Pearl. Comment: Graphical models, causality and 
intervention. Stat. Sci., 8:266–269, 1993.

, a set of covariates, admissible for 
backdoor adjustment

Z G
Z1X1 X2 Y

Z2

GX

Z1X1 X2 Y

Z2



Admissible Sets for BD Adjustment
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YX

Z1 Z2

YX

Z1 Z2

{Minimal BD 
Adjustment Sets

, 

,


{Z1}
{Z2}

{Z1, Z2}

, 


, 


{}

{Z2}
{Z1, Z2}

YX

Z1 Z2

YX

Z1 Z2

{} There is no BD 
Adjustment Set!

 satisfies the backdoor criterion for or  in the causal graph  if:

1.  d-separates  and  in the graph , i.e., the graph resulting from cutting the arrows out of 


2. no node in  is a descendant of a variable  in  (all variables in  are pre-treatment)

Z (X, Y) G
Z X Y GX X

Z X ∈ X G Z

P(y |do(x)) = ∑
z1

P (y |x, z1) P (z1) P(y |do(x)) = P (y |x) P(y |do(x)) = P (y |x)  is 
non-identifiable
P(y |do(x))
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 http://causalfusion.net
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 http://causalfusion.net



Counterfactual Interpretation of Backdoor
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Theorem 4.3.1, Pearl’s Primer Book 

Theorem: If a set  satisfies the backdoor criterion w.r.t. the ordered pair , 
then, for all , it holds that . 

Z (X, Y)
x Yx ⊥⊥ X |Z

Although the satisfiability of  to the 
backdoor criterion can be tested given a 
causal diagram or a PAG, the condition 

 is sometimes framed as an 
assumption, referred to as (conditional) 

ignorability, exchangeability or 
unconfoundedness.

Z

Yx ⊥⊥ X |Z

Yx ⊥⊥ X |Z

Counterfactual 
Graph

YX

Z

Yx

x

YX

ZObservational 
Graph



Many Scenarios Beyond Adjustment!
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YX

Z2

Z1

Napkin

And many others…. 

YX

Z2

Z1

M

Unnamed

P(y |do(x)) =
∑z2

P(x, y |z1, z2)P(z2)

∑z2
P(x |z1, z2)P(z2)

P(y |do(x)) = ∑
z2,z3

P(y |x, z1, z2, z3)P(z2)

∑
z1

P(z3 |x, z1)P(z1)

YX

Z

M

Conditional Front-Door

E(y |do(x)) = ∑
m,z

P(m |x, z)P(z |x)

∑
x′ 

E(y |m, x′ , z)P(x′ |z)

YX M P(y |do(x)) = ∑
m

P(m |x) ∑
x′ 

P(y |m, x′ )P(x′ )

Front-Door



Tools for Causal Identification
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1. Markovian Models (No Unobserved Confounders)

i. Truncated Factorization / G-computation or G-formula


2. Adjustment over Parents (No Unobserved Parents)

3. Non-Markovian Models (Under the Presence of Unobserved Confounders)


i. Graphical criteria (Backdoor Adjustment, Generalized Adjustment, Front-door 
Adjustment)


ii. Do-Calculus (a.k.a Causal Calculus)

iii. Identify Algorithm (a.k.a. ID algorithm)

Jin Tian. Studies in causal reasoning and learning. PhD thesis, University of California, Los Angeles, 2002.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press, New York. http://
dx.doi.org/10.1017/CBO9780511803161

http://dx.doi.org/10.1017/CBO9780511803161
http://dx.doi.org/10.1017/CBO9780511803161


Advances on Effect Identification given a Causal Diagram
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Identification from observational and experimental data: 

Lee, S., Correa, J., and Bareinboim, E. (2019). General identifiability with arbitrary surrogate 
experiments. In Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence, volume 35, 
Tel Aviv, Israel. AUAI Press. 


J. Correa, S. Lee, E. Bareinboim. (2021) Nested Counterfactual Identification from Arbitrary Surrogate 
Experiments. In Proceedings of the 35th Annual Conference on Neural Information Processing Systems 


Identification of stochastic/soft (and possibly imperfect) interventions:


Correa, J. and Bareinboim, E. (2020). A calculus for stochastic interventions: Causal effect identification 
and surrogate experiments. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, New 
York, NY. AAAI Press. 


Identification and Estimation via Deep Neural Networks: 


Xia, K., Lee, K.-Z., Bengio, Y., and Bareinboim, E. (2021). The causal-neural connection: Expressiveness, 
learnability, and inference. Advances in Neural Information Processing Systems, 34. 


Xia, K., Pan, Y.,and Bareinboim, E. (2023) Neural Causal Models for Counterfactual Identification and 
Estimation. In Proceedings of the 11th International Conference on Learning Representations.
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What if domain knowledge does not allow 
you construct a causal diagram?



Super-Exponential Growth
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The space of DAGs grows super-exponentially with the number n of variables, 
as shown by the following recurrence relation (Robinson, 1973):

|DAG(n) | =
n

∑
i=1

(n
1)2i(n−i) |DAG(n − 1) | 2 3

3 27

4 729

5 59,049

6

7

8

|DAG(n) |n

1.4349 × 107

1.0460 × 1010

2.2877 × 1013

Inference trough enumeration 
is not a good idea!
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|ADMG(n) | = |DAG(n) | × 2n(n−1)/2

The space of ADMGs also grows super-exponentially with the number n of 
variables, and it is much bigger than the space of DAGs:

2 3 6

3 27 216

4 729 46,656

5 59,049

6

7

8

|DAG(n) |n

1.4349 × 107

1.0460 × 1010

2.2877 × 1013

|ADMG(n) |

6.0457 × 107

4.7019 × 1011

2.1936 × 1016

6.1410 × 1021

|ADMG(n) | ≫ |DAG(n) |

Super-Exponential Growth



Learning the Markov Equivalence Class
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Many models are statistically indistinguishable without additional parametric / 
distributional assumptions. 


In non-parametric settings, causal discovery algorithms can only learn a 
graphical representation of its Markov equivalence class (MEC)!


Fast Causal Inference (FCI): Sound and complete causal discovery algorithm, 
even in the presence of unobserved confounders and selection bias. 

Causal Discovery:

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent 
confounders and selection bias. Artificial Intelligence, 172(16):1873–1896. Link

http://dx.doi.org/10.1016/j.artint.2008.08.001


Causal Discovery: Learning Structural Invariances

Conditional 
(in)dependencies

P(v)
X ⊥⊥ Y

X ⊥⊥ Z
Z ⊥⊥ Y
X ⊥⊥ Y |Z

Data

68

ℳ1 =

V = {X, Y, Z}
U = {Ux, UY, UZ}

ℱ =
X ← fX(UX)
Z ← fZ(X, Y, UZ)
Y ← fY(UY)

P(U)

⋮

ℳN−1 =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(Y, UXZ, UZ)
Y ← fY(UY)

P(U)

ℳN =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(UXZ, UYZ, UZ)
Y ← fY(UYZ, UY)

P(U)

Markov Equivalence Class 
(MEC)

Z YX

Z YX

Z YX

Z YX

⋮

⋮



Conditional 
(in)dependencies

P(v)
X ⊥⊥ Y

X ⊥⊥ Z
Z ⊥⊥ Y
X ⊥⊥ Y |Z

Data
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ℳ1 =

V = {X, Y, Z}
U = {Ux, UY, UZ}

ℱ =
X ← fX(UX)
Z ← fZ(X, Y, UZ)
Y ← fY(UY)

P(U)

⋮

ℳN−1 =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(Y, UXZ, UZ)
Y ← fY(UY)

P(U)

ℳN =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(UXZ, UYZ, UZ)
Y ← fY(UYZ, UY)

P(U)

Z YX

Partial Ancestral Graph 
MEC Representation

Markov Equivalence Class 
(MEC)

Z YX

Z YX

Z YX

Z YX

⋮

Causal 
Discovery

FCI Algorithm

⋮

Causal Discovery: Learning Structural Invariances

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders and 
selection bias. Artificial Intelligence, 172(16):1873–1896. Link

        non-ancestor of 

        non-ancestor of 

X Z ⟹ Z X
Y Z ⟹ Z Y

http://dx.doi.org/10.1016/j.artint.2008.08.001


FCI Algorithm - Pipeline
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X W YZ

FCI Rules
(R1) − (R10)

X W YZ

Partial Ancestral Graph 
(PAG)

X W YZ

Skeleton

Conditional 
Independence Tests

True causal 
diagram

X W YZ

Complete Graph

 is not an ancestor of  or .Z X W
  and  are ancestors of .Z W Y

X ⊥⊥ W
X ⊥⊥ Y |Z, W

Implied by the PAG 
using m-separation

X ⊥⊥ W
X ⊥⊥ Y |Z, W

Implied by the ADMG 
using d-separation

By faithfulness, are correctly 
observed in the data

X ⊥⊥ W
X ⊥⊥ Y |Z, W

  is not confounded with .Z Y

Unknown Reality

V

       B non-ancestor of A

       A ancestror of B

       spurious association

A B ⟹
A B ⟹
A B ⟹

                selection bias A B ⟹



Conditional Independence Tests
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Gaussian errors and independent observations: partial correlation test

Zhang, K., Peters, J., Janzing, D., & Schölkopf, B. (2012). Kernel-based conditional independence test 
and application in causal discovery. In: Uncertainty in artificial intelligence. AUAI Press; 2011. p. 804–13

R package: https://cran.r-project.org/web/packages/CondIndTests

Ribeiro A.H., Soler J.M.P. (2020). Learning Genetic and environmental graphical models from family data, 
Statistics in Medicine. 
R package: https://github.com/adele/FamilyBasedPGMs

Kernel-based non-parametric test:

Fisher, R.A. (1921). On the Probable Error of a Coefficient of Correlation Deduced from a Small Sample. 
R package: https://cran.r-project.org/web/packages/pcalg/

Gaussian errors and correlated observations (family data) :

Continuous (conditional Gaussian) or Discrete (Binary, Ordinal, Multinomial) - Linear Regression 
• Tsagris, M., Borboudakis, G., Lagani, V. et al.  (2018) Constraint-based causal discovery with mixed 

data. Int J Data Sci Anal 6, 19–30. (Link)

• R package: https://cran.r-project.org/web/packages/MXM/

https://cran.r-project.org/web/packages/CondIndTests
https://github.com/adele/FamilyBasedPGMs
https://cran.r-project.org/web/packages/pcalg/
https://doi.org/10.1007/s41060-018-0097-y
https://cran.r-project.org/web/packages/MXM/


PAG: Representation of the Markov Equivalence Class
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X W YZ

Partial Ancestral Graph 
(PAG)

True  
(unknown)  

causal diagram

 is not an ancestor of  or .Z X W

  and  are ancestors of .Z W Y

  is not confounded with .Z Y

X W YZ

X W YZ

X W YZ

⋮ X ⊥⊥ W
X ⊥⊥ Y |Z, W

V
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Z YX

Underlying Causal Diagram Partial Ancestral Graph

Z YX Z YX

Z YX

X
Z

W
YA X

Z

W
YA

Z YX W

FCI
Data E.C.

YX ZWYX ZW

Z YX W

Fast Causal Inference (FCI) Algorithm



Developments in Causal Discovery with Unobserved Confounding
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Going Beyond the Markov Equivalence Class:

1. Causal Discovery with Interventional Data

• Jaber, A., Kocaoglu, M., Shanmugam, K. and Bareinboim, E., (2020). Causal discovery from soft 

interventions with unknown targets: Characterization and learning. Advances in neural information 
processing systems, 33, pp.9551-9561.


• A. Li, A. Jaber, E. Bareinboim. Causal discovery from observational and interventional data across 
multiple environments. (2023) In Proceedings of the 37th Annual Conference on Neural Information 
Processing Systems — NeurIPS-23. 



Developments in Causal Discovery with Unobserved Confounding
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Going Beyond the Markov Equivalence Class:

2. Causal Discovery with Prior Knowledge


• Wang, T. Z., Qin, T. and Zhou, Z.H., (2022). Sound and complete causal 
identification with latent variables given local background knowledge. Advances 
in Neural Information Processing Systems, 35, pp.10325-10338.

3. Human-in-the-Loop Probabilistic Causal Discovery


• da Silva, T., Silva, E., Ribeiro, A., Góis, A., Heider, D.,  
Kaski, S., & Mesquita, D. (2023). Human-in-the-Loop  
Causal Discovery under Latent Confounding using  
Ancestral GFlowNets. arXiv:2309.12032.



Developments in Causal Discovery with Unobserved Confounding
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4. Causal Discovery in Linear Models

• Tashiro, T., Shimizu, S., Hyvärinen, A., & Washio, T. (2014). 

ParceLiNGAM: A causal ordering method robust against latent 
confounders. Neural computation, 26(1), 57-83.


• Wang, Y. S., & Drton, M. (2023). Causal discovery with 
unobserved confounding and non-Gaussian data. Journal of 
Machine Learning Research, 24(271), 1-61.

Going Beyond the Markov Equivalence Class:

Relax the causal sufficiency 
assumption of LinGAN by  

Shimizu et al., 2006: 
order / ancestral identifiability 

under linear systems with  
non-gaussian error terms

FCI-CDC: causal direction 
criterion (CDC) allows pairwise 
orientation in (weakly) additive 
noise models with independent 

causal mechanisms.

5. Causal Discovery for Additive Noise Models

• Van Diepen, M. M., Bucur, I. G., Heskes, T., & Claassen, T. (2023). 

Beyond the Markov Equivalence Class: Extending Causal Discovery 
under Latent Confounding. In Conference on Causal Learning and 
Reasoning (pp. 707-725). PMLR.



Developments in Causal Discovery with Unobserved Confounding
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1. Causal Discovery with Cycles


• Bongers, S., Forré, P., Peters, J., & Mooij, J. M. (2021). Foundations of structural causal models 
with cycles and latent variables. The Annals of Statistics, 49(5), 2885-2915.


• Claassen, T.  &; Mooij, J.M.. (2023). Establishing Markov equivalence in cyclic directed graphs. 
Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, PMLR 
216:433-442, 2023.


2. Causal Discovery from Time-Series Data


• Gerhardus, A., & Runge, J. (2020). High-recall causal discovery for autocorrelated time series with 
latent confounders. Advances in Neural Information Processing Systems (NeurIPS 2020), 33, 
12615-12625.


Learning Dynamic Systems:
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Can we identify causal effects from the equivalence class?

Effect Identification: 

Recently, we proposed complete calculus and algorithms for the identification 
of marginal and conditional causal effect in PAGs!

Jaber A., Ribeiro A. H., Zhang, J., Bareinboim, E. (2022) Causal Identification under Markov Equivalence - Calculus, Algorithm, 
and Completeness. In Proceedings of the 36th Annual Conference on Neural Information Processing Systems, NeurIPS. (Link)

Causal Identification from PAGs

Perkovic, E., Textor, J. C., Kalisch, M., & Maathuis, M. H. (2018). Complete graphical characterization and construction of 
adjustment sets in Markov equivalence classes of ancestral graphs. Journal of Machine Learning Research 18 (2018) 1-62

For Covariate Adjustment, we can use the Generalized Adjustment Criterion.

https://causalai.net/r86a.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf
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Inference 
Engine

3 Data
P(x, y, z, w)

1 Query
P(y |do(x))

Solution
yes / no

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

2 PAG

YX

ZW

Available 
(Observational) 
Distribution

Inferred 
(Interventional) 
Distribution 👍

Can be constructed in a fully 
data-driven way!

Observational Distribution
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Adjustment 
Criterion

3 Data
P(x, y, z, w)

1 Query
P(y |do(x))

Solution
yes / no

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

2 PAG

YX

ZW

Available 
(Observational) 
Distribution

Inferred 
(Interventional) 
Distribution 👍

Observational Distribution

Perkovic, E., Textor, J. C., Kalisch, M., & Maathuis, M. H. (2018). Complete graphical characterization and 
construction of adjustment sets in Markov equivalence classes of ancestral graphs. Journal of Machine Learning 
Research 18 (2018) 1-62

Identification is possible only when the 
Generalized Adjustment Criterion applies.

https://www.jmlr.org/papers/volume18/16-319/16-319.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf


General Identification in Markov Equivalence Classes
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IDP / CIDP

3 Data
P(x, y, z, w)

1 Query
P(y |do(x))

Solution
yes / no

P(y |do(x)) =
P(y1, y4, y5 |x1) . P(y2y3, y4, y5 |x2)

P(y4, y5)

2 PAG

X1

X2

Y1

Y2 Y3 Y4

Y5
Available 

(Observational) 
Distribution

Inferred 
(Interventional) 

Distribution 👍
Observational Distribution

Jaber A., Ribeiro A. H., Zhang, J., Bareinboim, E. (2022) Causal Identification under Markov Equivalence - 
Calculus, Algorithm, and Completeness. In Proceedings of the 36th Annual Conference on Neural Information 
Processing Systems (NeurIPS 2022).

Complete algorithms,  
available at the PAGId R package:

https://github.com/adele/PAGId

https://github.com/adele/PAGId


Effect Identifiabiliy given a PAG
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An effect identifiable in a PAG  is identifiable in all causal diagrams  in the 
Markov Equivalence Class using the same identification formula!

𝒫 G

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

YX

ZW
𝒫

P(y |do(x)) =

∑
z

P(y |x, z)P(z)YX

ZW
G2

P(y |do(x)) =

∑
z

P(y |x, z)P(z)
YX

ZW
G1



Effect Non-Identifiabiliy given a PAG
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An effect not identifiable in a PAG  is not identifiable in at least one 
causal diagrams  in the Markov Equivalence Class

𝒫
G

𝒫
P(y |do(x)) =

∑
z

P(y |x, z)P(z)YX

ZWG1

YX

ZW

 is 
not identifiable
P(y |do(x))

G2

YX

ZW
 is 

not identifiable
P(y |do(x))



Causal Inference Workflow
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Continuous Process of Scientific Discovery and Causal Hypothesis Refinement
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Continuous Process of Scientific Discovery and Causal Hypothesis Refinement

Causal Inference Workflow



Many other Topics in Causal Inference
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1. Causal Representation Learning & Causal Abstraction

2. Causal Reinforcement Learning

3. Fairness & Mediation Analysis

4. Individual Treatment Effect (ITE) Estimation

5. Data-Driven Covariate Selection for Adjustment

6. Partial Effect Identification

7. Many more… 



Causal Representation Learning & Causal Abstraction
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Coarse-grained causal models:

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., 
Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). 
Toward causal representation learning. Proceedings 
of the IEEE, 109(5), 612-634.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9363924
https://auai.org/uai2017/proceedings/papers/11.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/26435/26207
https://ojs.aaai.org/index.php/AAAI/article/view/26435/26207
https://ojs.aaai.org/index.php/AAAI/article/view/26435/26207
https://arxiv.org/pdf/2401.02602


Causal Reinforcement Learning
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 http://crl.causalai.net

By Elias Bareinboim’s Research Group

http://cr.causalai.net


Fairness and Mediation Analysis
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D. Plecko, E. Bareinboim. A Causal Framework for 
Decomposing Spurious Variations. In Proceedings of 
the 37th Annual Conference on Neural Information 
Processing Systems — NeurIPS-23.

https://causalai.net/r90.pdf
https://causalai.net/r93.pdf


Individual Treatment Effect (ITE) Estimation
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Johansson, F.D., Shalit, U., Kallus, N. and 
Sontag, D., 2022. Generalization bounds and 
representation learning for estimation of 
potential outcomes and causal effects. Journal 
of Machine Learning Research, 23(166), pp.1-50.

Other related works 
cited within, such as:

https://proceedings.mlr.press/v70/shalit17a.html
https://www.jmlr.org/papers/volume23/19-511/19-511.pdf
https://proceedings.mlr.press/v48/johansson16.pdf


Data-Driven Covariate Selection for Adjustment

91

Abhin Shah, Karthikeyan Shanmugam, and 
Kartik Ahuja. Finding valid adjustments under 
non-ignorability with minimal DAG knowledge. In 
International Conference on Artificial Intelligence 
and Statistics (AISTATS - 2022), pages 5538–5562. 
PMLR, 2022.

https://proceedings.mlr.press/v151/shah22a/shah22a.pdf
https://proceedings.mlr.press/v108/gultchin20a/gultchin20a.pdf


Partial Effect Identification
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Related: Jakob Zeitler, and Ricardo Silva. (2022) The Causal Marginal Polytope for Bounding 
Treatment Effects arXiv preprint arXiv:2202.13851 - https://arxiv.org/pdf/2202.13851.pdf 

Kirtan Padh, Jakob Zeitler, David Watson, Matt 
Kusner, Ricardo Silva, Niki Kilbertus; Proceedings 
of the Second Conference on Causal Learning and 
Reasoning, PMLR 213:142-176

https://arxiv.org/pdf/2202.13851.pdf
https://openreview.net/pdf?id=iop8rRYtggi


Thank you! :)
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adele.ribeiro@uni-marburg.de 

Feel free to reach out to me if you have any questions:

mailto:adele.ribeiro@uni-marburg.de

