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y Linear Models?

® |n 2023, deep neural networks are ubiquitous!

® Why a lecture on linear models?

v The underlying machine learning concepts are the same
v" The theory (statistics and optimization) are much better understood
v' Linear models are still widely used (very effective if data is scarce)

v' Linear models are a component of deep networks.

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 2/107



Linear Classifiers and Neural Networks
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Linear Classifiers and Neural Networks
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Today’s Roadmap

® | inear regression

Binary and multi-class classification

Linear classifiers: perceptron, logistic regression, SVMs

Softmax and sparsemax

Regularization

Optimization: stochastic gradient descent

Similarity-based classifiers and kernels.
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Some Notation: Inputs and Outputs

® lnput x e X

v’ e.g., a news article, a sentence, an image, ...
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Some Notation: Inputs and Outputs

® lnput x e X

v’ e.g., a news article, a sentence, an image, ...

e Qutputy € Y

v/ e.g., spam/not spam, a topic, an image segmentation

® Input/output pair: (x,y) € X x Y
v/ e.g., a news article together with a topic
v e.g., a sentence together with its translation

v e.g., an image partitioned into segmentation regions
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Supervised Machine Learning

® Given a collection of input/output pairs (training data)

D = (x1,y1)s - (xn,yn) € X x Y
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e . learn a predictor h: X — Y.
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Supervised Machine Learning

® Given a collection of input/output pairs (training data)

D = (x1,y1)s - (xn,yn) € X x Y

e . learn a predictor h: X — Y.

To use it for a new input x € X, predict/infer y = h(x).

Hopefully, ¥ =~ y most of the time, i.e., h should generalize.

e Standard approach: empirical risk minimization (ERM):
N
h = arg min 2 L(h(xi). yi)

where L is a loss function and H a model class.
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Regression vs Classification

Regression: continuous/quantitative Y;

Classification: discrete/categorical Y.
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Regression vs Classification

Regression: continuous/quantitative Y;

Classification: discrete/categorical Y.

® Regression: Y =R, orY =10, 1], or Y =R, or ...
v e.g., given a news article, how much time a user will spend reading it?
® Multivariate regression: Y = RK orY=RK orYy = Ak, or ...
v e.g., denoise an image, estimate class probabilities, ...
¢ Binary classification: Y = {£1}
v e.g., spam detection, fraud detection, ...
¢ Multi-class classification: Y = {1,2,..., K} (order is irrelevant)
v e.g., topic classification, image classification, ...
® Structured classification: Y exponentially large and structured

v’ e.g., machine translation, caption generation, image segmentation, ...
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® Sometimes reductions are convenient:

v’ logistic regression reduces classification to regression
v' one-vs-all reduces multi-class to binary

v' greedy search reduces structured classification to multi-class
® .. but other times it's better to tackle the problem in its native form.

® More later!
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Feature Representations
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Feature Representations

® Feature engineering is (was?) an important step for linear models:

v Bag-of-words features for text, parts-of-speech, ...

v SIFT features and wavelet representations in computer vision

Image gradients Keypoint descriptor

v Other categorical, Boolean, continuous features, ...

v" Decades of research in machine learning, natural language processing,
computer vision, image analysis, speech processing, ...
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Feature Representations

Feature represent information about an “object” x

e Typical approach: a feature map ¢ : X — RP

¢(x) is a (maybe high-dimensional) feature vector

Feature vectors may mix categorical and continuous features

Categorical features can be reduced to one-hot binary features:

e, :=(0,...,0, ‘1 ,0,...,0) € {0, 1}* represents class y

~

position y
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Feature Engineering and NLP Pipelines

® (lassical NLP pipelines consist of stacking together several linear
classifiers

® Each classifier's predictions are used to handcraft features for other
classifiers
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Feature Engineering and NLP Pipelines

® (lassical NLP pipelines consist of stacking together several linear
classifiers

® Each classifier's predictions are used to handcraft features for other
classifiers

® Examples of features:
v" Word occurrences (binary feature)
v Word counts (numerical feature)

v POS tags; e.g., adjective counts for sentiment analysis

v Spell checker; e.g., misspellings counts for spam detection
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Example: Translation Quality Estimation

Google # 0 @

Translate Tum off instant translation | €
English Spanish French Detectlanguage ~ 4,  French Spanish Portuguese ~

does machine translation work? * | Le travail de traduction automatique?

LONE N - R 35000 | WD O < ’
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M. Figueiredo and A. Martins (IST)

Example: Translation Quality Estimation

Wrong translation!
Google

o8&

Tum off instant translation | €

Translate

English Spanish French Detectlanguage ~

Ch Spanish Portuguese ~

Le travail de traduction automatique?

does machine translation work?

30/5000

Goal: estimate the quality of a translation on the fly (without a reference)!

Linear Models

LxMLS 2023 12 /107



Example: Translation Quality Estimation

Hand-crafted features:

® no of tokens in the source/target segment

® language model probability of source/target segment and their ratio

® average number of translations per source word

® ratio of brackets and punctuation symbols in source & target segments

® ratio of numbers, content/non-content words in source & target segments
® ratio of nouns/verbs/etc in the source & target segments

® % of dependency relations b/w constituents in source & target segments
® diff in depth of the syntactic trees of source & target segments

® diff in no of PP/NP/VP/ADJP/ADVP/CONJP in source & target

® diff in no of person/location/organization entities in source & target

® features and global score of the SMT system

® number of distinct hypotheses in the n-best list

® 1-3-gram LM probabilities using translations in the n-best to train the LM
® average size of the target phrases

® proportion of pruned search graph nodes;

® proportion of recombined graph nodes.

13 /107



Representation/Feature Engineering vs Learning

® Feature engineering (FE) is a “black art”:

v/ it can be very time-consuming

v it requires deep domain knowledge (e.g., linguistics in NLP)
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Representation/Feature Engineering vs Learning

Feature engineering (FE) is a “black art”:

v/ it can be very time-consuming

v it requires deep domain knowledge (e.g., linguistics in NLP)

FE allows encoding prior knowledge, it is a form of inductive bias

FE is still widely used in practice, specially in data-scarce scenarios

Modern alternative: representation learning a.k.a. deep learning

Tomorrow's lecture, by Bhiksha Raj
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@ Regression
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Regression

e Qutput is a quantity, a number, thus Y C R,
® Example: given an article, how long will a user spend reading it?

Summer Schools and Machine
Learning. A beautiful love story!

@33 Mohan Acharya (Follow
}ar\7,2019 1" Alin [l {INAREEL

v' x is number of words of the article

v’y is the reading time, in minutes
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Regression

e Qutput is a quantity, a number, thus Y C R,
® Example: given an article, how long will a user spend reading it?

Summer Schools and Machine
Learning. A beautiful love story!

@S Mohan Acharya [Eollow
- Jar\7,2019 W EEDQ

v' x is number of words of the article

v’y is the reading time, in minutes

® How to define a model that yields a prediction y from x?
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Linear Regression

e First take: assume y = wx + b 5 . .',” ':?':':"'
® Model parameters: w and b 54 ':'.t:":.; ’
® Given training data £ . e
D = {(x;,yi)}",, how to Ey-a
estimate w and b? . ;'.'f:.
".

X (words)
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Linear Regression

e First take: assume y = wx + b ’ . :a STy
o 8 3% °
® Model parameters: w and b ﬁ“ te i
® Given training data g . o
D= {(X,-,y,-)}fvzl, how to > g
estimate w and b? e
5'.
I‘.
0

X (words)
® Least squares (LS) criterion: fit w and b on the training set by solving

N
(Ws, bs) = arg m|n Z (wx; + b))
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Linear Regression
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e Often a linear dependency of y on x is a poor assumption
e Second take: assume y = w’ ¢(x), where ¢(x) is a feature vector
v oeg ¢(x)=[1,x,x%...,xP]  (polynomial features degree < D)

v the bias b is captured by the constant feature ¢g(x) =1

® Minimize squared loss: Z(y,- - (wT¢(X,-)))2 = | Xw — y||3, where

1

P(x)" i

Son) T o
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Linear Regression

e Often a linear dependency of y on x is a poor assumption
e Second take: assume y = w’ ¢(x), where ¢(x) is a feature vector
v oeg ¢(x)=[1,x,x%...,xP]  (polynomial features degree < D)

v the bias b is captured by the constant feature ¢g(x) =1

® Minimize squared loss: Z(y,- - (wT¢(x,-)))2 = | Xw — y||3, where
o(xa)’ %1
X = : Y =1
d(xn) " YN

® Closed form solution: s = arg ming, || Xw — y||3 = (X" X)"1X Ty
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Linear Regression

e Often a linear dependency of y on x is a poor assumption
e Second take: assume y = w’ ¢(x), where ¢(x) is a feature vector
v oeg ¢(x)=[1,x,x%...,xP]  (polynomial features degree < D)

v the bias b is captured by the constant feature ¢g(x) =1

® Minimize squared loss: Z(y,- - (wT¢(X,-)))2 = | Xw — y||3, where

1

P(x)" i
d(xn) " YN

® Closed form solution: s = arg ming, || Xw — y||3 = (X" X)"1X Ty

o Still called linear regression: linear w.r.t. the model parameters w.
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Linear Regression: D =1 vs
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Linear Regression: D =1vs D =2
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Overfitting and Underfitting

® We saw above an example of underfitting (D = 1).

® Choosing D = 2 "seems OK"
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Overfitting and Underfitting

® We saw above an example of underfitting (D = 1).
® Choosing D = 2 "seems OK"

® However, if the model is too complex, overfitting may occur:

¥
v

Underfitting x Balanced Overfitting
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Overfitting and Underfitting

® We saw above an example of underfitting (D = 1).
® Choosing D = 2 "seems OK"

® However, if the model is too complex, overfitting may occur:

Underfitting x Balanced Overfitting

® Avoiding overfitting:
v regularization (later)

v/ some way to choose D (model complexity)
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Inductive Biases

iredo and A. M

CURVE-FITTING METHODS
PND THE MESSAGES THEY SEND

“TM SOPHISTICATED, NOT
LKE THOSE BUMBLING
POLYNOMIAL PEDPLE"

“I NEED TO CONNECT THESE
TO UNES, BUT MY FIRST IDEA
DIDN'T HAVE ENOUGH MATH:

T CLICKED ‘SMOOTH “THAD P IDEA FOR HOU/
LNES N EXCEL  CLEPN VP THE DATR.
\JHAT DO YOU THINK?"

“IM MAKING A

‘SCATTER PLOT BUT
I DONT WANT TO!

“LHAE A THEORY,
AND TS 15 THE ONLY
DRTA T COULD FIND.

A5 YOU CAN SEE, THIS
MODEL SMOOTHLY FTs
THE= WAIT MOND DOVT
EXTEND IT APARARY"

Linear Models

from xkcd.com
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Least Squares: Probabilistic Interpretation

® The least squares criterion has a probabilistic interpretation.
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® The least squares criterion has a probabilistic interpretation.

® Assume the following probabilistic observation model:

yi =w*T$(x;) + ni

where

v n; ~N(0,02) are independent Gaussian, with o2 fixed

v' w™ are the “true” model parameters.
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Least Squares: Probabilistic Interpretation

® The least squares criterion has a probabilistic interpretation.

® Assume the following probabilistic observation model:

yi =w*T$(x;) + ni

where

v n; ~N(0,02) are independent Gaussian, with o2 fixed

v' w™ are the “true” model parameters.

] That iS, P(y,‘|X,'; 'LU) = 2:;_02 exp(_w>

® Then, W is the maximum likelihood (ML) estimate under this model.
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One-Slide Proof

® Proof:
Wy = argmlgxP(yl,...,yN|x1,....,xN;w)
N
= argmax[] PUyi | x11w)
i=1

N
= arg muaJXZ log P(y; | xi; w)

i=1
N - wTd(x))?

= argm£x2—(yl 112702¢(X:)) — log(V2mo)
i=1 constant
N

— gmin3 01— w7 G) = 1
i=1
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One-Slide Proof

® Proof:
Wy = argmlgxP(yl,...,yN|x1,....,xN;w)
N
= argmax[] PUyi | x11w)
i=1

N
= arg muaJXZ log P(y; | xi; w)

i=1
N
(yi —w’ $(x))?
= arg maxz - 5 — log(v27o)
w4 20 —_————
i=1 constant
N
— argmin 30w o) = e
i=1

® Conclusion: LS linear regression < ML under Gaussian noise.
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Other Regression Losses

e Squared loss: L(y,y) = %(y -y

® Absolute error loss: L(y,y) = |y — V|

1 )2 y
R 1o, ifly—yl<1
® Huber loss: L(y,y) = { fy()i yyyz 3oif ;i —j/:; > 1

—— Squared loss
—— Absolute loss
—— Huber loss
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Other Regression Losses

e Squared loss: L(y,y) = %(y -y

¢ Absolute error loss: L(y,y) = |y —¥| (least absolute deviation)

1 )2 y

~ 1/, ifly —=vi<1

® Huber loss: L(y,y) = { fy()i yyyz 1if ;i —j/:; >1
1 > 1.

robustness to outliers
—— Squared loss
¢ —— Absolute loss °
—— Huber loss b4
3
e o
2 4
¢
1 &
)
-3 -2 -1 ] 1 2 3 — least-squares fit least absolute deviations fit
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Ridge Regression and Regularization

® Recall that LS linear regression has a closed form solution:

s = (XTX) X Ty,
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Ridge Regression and Regularization

® Recall that LS linear regression has a closed form solution:
A Ty\-1lyT
Wi = (X' X)Xy,

® What if X X is not invertible? (for example, with colinear features)
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Ridge Regression and Regularization

® Recall that LS linear regression has a closed form solution:

s = (XTX) X Ty,
® What if X X is not invertible? (for example, with colinear features)
® Standard approach: ridge regression:

Wigee = (XX +AN)7IX Ty,
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Ridge Regression and Regularization

® Recall that LS linear regression has a closed form solution:
s = (X' X)Xy,
® What if X X is not invertible? (for example, with colinear features)
® Standard approach: ridge regression:
Wiage = (XX +M)IX Ty,
® This is equivalent to (with ||w]||3 = Y=, w?, the squared /> norm)

Ilbridge - arg mui’n wa - y”2 + )\H'LUH%
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Ridge Regression and Regularization

® Recall that LS linear regression has a closed form solution:

s = (XTX) X Ty,

What if X7 X is not invertible? (for example, with colinear features)

Standard approach: ridge regression:

Wigee = (XX +AN)7IX Ty,

This is equivalent to (with ||wl||3 = >_; w?, the squared ¢, norm)

Ilbridge - arg mui’n wa - y”2 + )\H'LUH%

U regularization is also called weight decay, or penalized LS.

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 25 /107



Maximum A Posteriori Regression

® Assume a prior distribution w ~ N(0, 721)
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Maximum A Posteriori Regression

® Assume a prior distribution w ~ N(0, 721)
® Maximum a posteriori (MAP) criterion;

wMAP = 3rgm£XP(w|)/17'--a)/N;Xl,m,XN)

P(w) P(y1, ... e
= argmax (w) (y17 7.yN’X]_7 Xva)
w P(ylv"'vyN‘Xl,...XN)
= arg m£X(|og P(w) + log P(y1, ..., yn|x1, ...xn; w))

wl? i_(yn —w ¢(x,))?

552 -+ constant
o

N
= argmin Mw|® +> (yo — wTd(xn))? (with A = o2 /7?)

n=1
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Maximum A Posteriori Regression

® Assume a prior distribution w ~ N(0, 721)
® Maximum a posteriori (MAP) criterion;

wMAP = 3rgm£XP(w|)/17'--a)/N;Xl,m,XN)

P(w) P(y1, ... e
= argmax (w) (y17 7.yN’X]_7 Xva)
w P(ylv"'vyN‘Xl,...XN)
= arg m£X(|og P(w) + log P(y1, ..., yn|x1, ...xn; w))

wl? i_(yn —w ¢(x,))?

552 -+ constant
o

N
= argmin Mw|® +> (yo — wTd(xn))? (with A = o2 /7?)

n=1

® Conclusion: ¢y regularizarion < MAP regression with Gaussian prior.
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Ridge Regression: Optimal )\

® Even if W5 can be computed, W, may be better.

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 27 /107



Ridge Regression: Optimal )\

® Even if W5 can be computed, W, may be better.

® Example: fitting an order-14 polynomial to 21 points,
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Ridge Regress Optimal

® Even if W5 can be computed, W, may be better.

® Example: fitting an order-14 polynomial to 21 points,

Inlambda -20.135

mean squared error
25

=L} - train mse
test mse

nambda -8.571

log lambda
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@ Classification
Perceptron
Logistic Regression
Support Vector Machines

Sparsemax

28 /107
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Binary Classification

® Before multi-class classification, we look at binary classification
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Binary Classification

® Before multi-class classification, we look at binary classification

® Output set Y = {—1,+1}
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Binary Classification

® Before multi-class classification, we look at binary classification
® Output set Y = {—1,+1}

® Example: Given a news article, is it true or fake?

v/ x is the news article, represented a feature vector ¢(x)

V' y can be either true (41) or fake (—1)
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Binary Classification

Before multi-class classification, we look at binary classification

Output set Y = {—1,+1}

Example: Given a news article, is it true or fake?

v/ x is the news article, represented a feature vector ¢(x)

V' y can be either true (41) or fake (—1)

How to define a model to predict y from x?
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Linear Classifier

® Defined by

~ . f ! b
y = sign(w ' ¢(x) + b) = { i ;f zTigg i b i 8
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Linear Classifier

® Defined by

~ . f ! b
y = sign(w ' ¢(x) + b) = { i ;f zTigg i b i 8

® Intuitively, w’ ¢(x) + b is a “score” for the positive class
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Linear Classifier

® Defined by

~ . f ! b
y = sign(w ' ¢(x) + b) = { i ;f zTigg i b i 8

e Intuitively, w’ ¢(x) + b is a “score” for the positive class
Y p

® The sign function converts from continuous to binary
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Linear Classifier

Defined by

~ . f ! b
y = sign(w ' ¢(x) + b) = { i ;f zTigg i b i 8

® Intuitively, w’ ¢(x) + b is a “score” for the positive class

The sign function converts from continuous to binary

e Decision boundary: w ' ¢(x)+ b = 0 (hyperplane defined by w and b)
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Linear Classifier

Defined by

~ . f ! b
y = sign(w ' ¢(x) + b) = { i ;f zTigg i b i 8

® Intuitively, w’ ¢(x) + b is a “score” for the positive class

The sign function converts from continuous to binary

e Decision boundary: w ' ¢(x)+ b = 0 (hyperplane defined by w and b)

Also called a hyperplane classifier
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Linear Classifier

¢ (w, b) define an hyperplane that splits the space into two halfs

2 \
== Points along line

have scores of 0

o

2 [[wll

LxMLS 2023 31/107

Linear Models

M. Figueiredo and A. Martins (IST)



Linear Classifier

¢ (w, b) define an hyperplane that splits the space into two halfs

2 \
== Points along line

have scores of 0

o

-2

® How to learn it from training data D = {(x;, y;)}V.,?

Linear Models LxMLS 2023

M. Figueiredo and A. Martins (IST)
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Linear Separability

e A dataset D is linearly separable if there exists (w, b) such that
classification is perfect

Separable Not separable
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Linear Separability

e A dataset D is linearly separable if there exists (w, b) such that
classification is perfect

Separable Not separable

® We next present an (old!) algorithm that finds such an hyperplane, if
it exists.
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Linear Classifier: No Bias Term

® It is common to ommit the bias term b: ¥ = sign(w " ¢(x))
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Linear Classifier: No Bias Term

® It is common to ommit the bias term b: ¥ = sign(w " ¢(x))

® |n this case, the decision boundary is a hyperplane that passes
through the origin
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Linear Classifier: No Bias Term

® It is common to ommit the bias term b: ¥ = sign(w " ¢(x))

® |n this case, the decision boundary is a hyperplane that passes
through the origin
® There is no loss of generality:

v' Add a constant feature to ¢(x): ¢o(x) =1

v The corresponding weight wy is a bias term b
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@ Classification

Perceptron
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Perceptron (Rosenblatt, 1958)

® |nvented in 1957 at the
Cornell Aeronautical
Laboratory by Frank
Rosenblatt

® |mplemented in custom-built
hardware as the “Mark 1
perceptron,” designed for
image recognition

® 400 photocells, randomly
connected to the “neurons.”
Weights were encoded in
potentiometers

L]
i
i
i
i
i
i
l:ﬁ
|

L

B

A
]
I
i
|

M

® Weight updates during
learning were performed by
(Extracted from Wlklpedla) electric motors.
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Perceptron in the News...

NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to

ings, Perceptron will make mis-
takes at first, but will grow,
wiser as it gains experience, he
said, .

Dr: Rosenblatt, a research!
i at the -Cornell

Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be .con-|
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704” com-
puter—learned to differentiate
between right and left after|
fifty aftempts in the Navy's
demonstration for newsmen.,

The service said it would use
this principle to build the first|
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be!
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
‘signer of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-

psy
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers.

Withont Human Controls ‘

The Navy said the perceptron
would be the- first non-living
mechanism “capable of receiv-
ing, recognizing and identifying
its surroundings without -any
human training or control.” I

The “brain” is designed to
remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. .

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted.

Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-

1958 New York
Times...

In today’s demonstration, the
“704” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q” for the left
squares and “O"” for the right
squares.

Dr. Rosenblatt said he could
explain why the machine
learned only in highly teéchnical
terms. But he said the computer
had undergone a ‘‘self-induced
change in the wiring diagram.”
The first Perceptron will
have about 1,000 electronic
“association cells” receiving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive

duce t s on an y
line and which would be con-'

man brain. As do human be-

igueiredo and A. Martins (I

scious of their existence.

cells, di: 100,000,000 con-

nections with the eyes.
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Perceptron in the News...

NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer,
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be . con-|
scious of its existence,

The embryo—the Weather,
Bureau's $2,000,000 “704” com-|
puter—learned to differentiate
between right and left after|
fifty aftempts in the Navy's
demonstration for newsmen.,

The service said it would use|
this principle to build the first|
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
|signer of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-

man brain. As do human be-

iredo and A. Martins (I

ings, Perceptron will make mis-
takes at first, but will grow,|
wiser as it gains experience, he
said. .

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers.

‘Without Human Controls

The Navy said the perceptron
would be the. first non-living
mechanism “capable of receiv-
ing, recognizing and identifying
its surroundings without -any
human training or control.” I

The “brain” is designed to
remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. .

Later Perceptrons will be able
to recognize people and call out
their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted.

Mr, Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly
|line and which would be con-
|scious of their existence.

Linear Models

1958 New York
Times...

In today’'s demonstration, the
“704” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q” for the left
squares and “O” for the right
squares.

Dr. Rosenblatt said he could
explain why the machine
learned only in highly technical
terms. But he said the computer
had undergone a ‘“self-induced
change in the wiring diagram.”
The first Perceptron will
have about 1,000 electronic

jon cells” T g
electrical impulses from an eye-
like scanning device with
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes.
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Perceptron Algorithm

® Online algorithm: process one data point at each round
@ Take one x;; apply the current model to make a prediction for it
@ |If prediction is correct, do nothing

© Else, correct w by adding/subtracting feature vector ¢(x;)

® For simplicity, omit the bias b: assume a constant feature ¢(x) = 1
as explained earlier.
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Perceptron Algorithm

input: labeled data D
initialize w(® =0
initialize k = 0 (number of mistakes)
repeat
get new training example (x;, ;)
predict 7 = sign(w® " p(x;))
if y; # y; then
update w1 = wk) + y;p(x)
increment k
end if
until maximum number of epochs
output: model weights w(¥)
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Perceptron’s Mistake Bound

® Some definitions:

v' the training data is linearly separable with margin v > 0 iff there is a
weight vector w with ||u|| = 1 such that

Yi uT¢(Xi) >, Vi
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Perceptron’s Mistake Bound

® Some definitions:

v' the training data is linearly separable with margin v > 0 iff there is a
weight vector w with ||u|| = 1 such that

Yi uT¢(Xi) >, Vi

v radius of the data: R = max; [|¢(x)].
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Perceptron’s Mistake Bound

® Some definitions:

v' the training data is linearly separable with margin v > 0 iff there is a
weight vector w with ||u|| = 1 such that

Yi uT¢(Xi) >, Vi

v radius of the data: R = max; ||¢(x;)].

® Then, the following bound of the number of mistakes holds:

Theorem (Novikoff, 1962)

The perceptron algorithm is guaranteed to find a separating hyperplane
2

after at most % mistakes.

LxMLS 2023 39 /107
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One-Slide Proof

® Recall that w(**1) = w(k) + y;¢(x;) and that |Ju| =1

¢ Lower bound on |[w(**+D|:

uTwl ) = wTw® 4y é(x)
> uw) +y
> k.
Thus: [Jw* D] = |lu| [|[w D || > wTwk D > ky (Cauchy-Schwarz)
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One-Slide Proof

® Recall that w(**1) = w(k) + y;¢(x;) and that |Ju| =1

¢ Lower bound on |[w(**+D|:

uTwl ) = wTw® 4y é(x)
> uw) +y
> k.
Thus: [Jw* D] = |lu| [|[w D || > wTwk D > ky (Cauchy-Schwarz)

e Upper bound on |[wk+1)|;

<0
—_——
[ DR = (w®2 4 () |2 + 2y (x)
< w2 + R?
< kR2
® Equating both sides: (kv)? < kR? = k < R?/~? (QED).

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 40 /107



What a Simple Perceptron Can and Can’t Do

® Remember: the decision boundary is linear (linear classifier)
® It can solve linearly separable problems (OR, AND)

OR (x1,$2) ‘AND (x_lv fl'fg) AND (xlvx_Q)

A 4 ,
I~ A A ! A s O I o o,
N N N /7 N y;
) N ) , ) ,
N 7
0 o A o], o o 0 o 7 A
/7
N > ’ >
0 I 0 I 0 o
xrq T T
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What a Simple Perceptron Can and Can’t Do

® .. but it can’t solve non-linearly separable problems such as simple
XOR (unless input is transformed into a better representation):

XOR (ml,l'g) XOR (I1,$2)
A =R
I A o |az| A
I S
0 o A 2o o N_aA
5 < N
0 L S0 L
T1 AND (l'_l,l'g)

® This result is often attributed to Minsky and Papert (1969) but was
known well before.
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Limitations of the Perceptr

Marvin L. Minsky and Seymour A. Papert

=
i)
°
[#3]
o
@
|
=

b

® Minsky and Papert (1996) showed
limitations of multi-layer
perceptrons and fostered an “Al
winter” period.

Perceptrons

Reissue of |

An Introduction to Computational Geometry

u}
o)
I
i
it

D¢
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Multi-Class Classification

¢ Consider multi-class problems, with |Y| = K > 2 labels (classes).
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¢ Consider multi-class problems, with |Y| = K > 2 labels (classes).

® Reduction approaches:

V" One-vs-all (OVA): one binary classifier per label, with all the other
classes as negative examples. Choose the class with the highest score.
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V" One-vs-all (OVA): one binary classifier per label, with all the other
classes as negative examples. Choose the class with the highest score.

v" One-vs-one (OVO): train K(K — 1)/2 pairwise classifiers and use
majority voting.
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® Reduction approaches:

V" One-vs-all (OVA): one binary classifier per label, with all the other
classes as negative examples. Choose the class with the highest score.

v" One-vs-one (OVO): train K(K — 1)/2 pairwise classifiers and use
majority voting.

v Error correcting codes (ECoC): use a redundant binary code for each
class and train one classifier per bit.

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 44 /107



Multi-Class Classification

¢ Consider multi-class problems, with |Y| = K > 2 labels (classes).

® Reduction approaches:

V" One-vs-all (OVA): one binary classifier per label, with all the other
classes as negative examples. Choose the class with the highest score.

v" One-vs-one (OVO): train K(K — 1)/2 pairwise classifiers and use
majority voting.

v Error correcting codes (ECoC): use a redundant binary code for each
class and train one classifier per bit.

® Here, we consider classifiers that tackle the multiple classes directly.
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Multi-Class Linear Classifiers

® Parametrized by a weight matrix W € RK*P (one weight per
feature/label pair) and a bias vector b € RK:

w] b
W = : , b=
w; bK
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Multi-Class Linear Classifiers

® Parametrized by a weight matrix W € RK*P (one weight per
feature/label pair) and a bias vector b € RK:

w] b
W = : , b=
w; bK

® Equivalently, K weight vectors w, € RP and K scalars b, eR
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Multi-Class Linear Classifiers

® Parametrized by a weight matrix W € RK*P (one weight per
feature/label pair) and a bias vector b € RK:

w] b
W = : , b=
w; bK

® Equivalently, K weight vectors w, € RP and K scalars b, eR

® Score of each class: linear combination of features and their weights
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Multi-Class Linear Classifiers

® Parametrized by a weight matrix W € RK*P (one weight per
feature/label pair) and a bias vector b € RK:

w] b
W = : , b=
w; bK

® Equivalently, K weight vectors w, € RP and K scalars b, eR
® Score of each class: linear combination of features and their weights

® Predict the y which maximizes the score:

y = argmax w, " ¢(x) + b,
y€Y
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Multi-Class Linear Classifiers

® Parametrized by a weight matrix W € RK*P (one weight per
feature/label pair) and a bias vector b € RK:

® Equivalently, K weight vectors w, € RP and K scalars b, eR
® Score of each class: linear combination of features and their weights

® Predict the y which maximizes the score:

y =arg max w, " ¢(x) + b, = arg max(W¢(x) + b)
e
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Multi-Class Linear Classifier

e (W,b) split the feature space into regions delimited by hyperplanes.

® Each region in the intersection of K — 1 half-spaces.

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 46 /107



Commonly Used Notation in Neural Networks

/

Handcrafted
Features Cat

Linear Classifier

y =argmax (Wo(x) +b), W= |w/ |,b=|b,
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Multi-Class Recovers Binary

e With two classes (e.g. Y = {+1,—1}), we recover the binary
classifier:

-~ T
= arg max w x)+ b
y g max, wy @(x) + by
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Multi-Class Recovers Binary

e With two classes (e.g. Y = {+1,—1}), we recover the binary
classifier:

-~ T
= arg max w x)+ b
y g max, wy @(x) + by

41 ifwpTo(x) + by > w1 T(x) + by
o —1 otherwise
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Multi-Class Recovers Binary

e With two classes (e.g. Y = {+1,—1}), we recover the binary
classifier:

-
b
arg max, wy o(x) + by

_ { +1 if w7 o(x) + b > w1 @(x) + by

<)
I

—1 otherwise

= sign((wi1 —w_1)"p(x) + (b1 — b_1)).
—_— —_——

w b
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Multi-Class Recovers Binary

e With two classes (e.g. Y = {+1,—1}), we recover the binary
classifier:

-
b
arg max, wy o(x) + by

_ { +1 if w7 o(x) + b > w1 @(x) + by

<)
I

—1 otherwise

= sign((wi1 —w_1)"p(x) + (b1 — b_1)).
—_— —_——

w b

® Only half of the parameters are needed.
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Linear Classifiers (Binary vs Multi-Class)

® Prediction rule (omitting the bias term, without loss of generality):

linear in wy,

——~—
y = h(x) = arg max w, " p(x)
ye

® The decision boundary is defined by the intersection of half spaces

® In the binary case (|Y| = 2) this corresponds to a hyperplane classifier

L S

LxMLS 2023 49 /107
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Perceptron Algorithm: Multi-Class

input: labeled data D
initialize W(© =0
initialize k = 0 (number of mistakes)
repeat
get new training example (x;, y;)

ict 7 — (k)7
predict y; = arg max,cy w, ’ @(x;)

if y; # y; then

k+1 k
update w)(,l. +1) = w§,, ) + ¢(X;) {increase weight of gold class}
k+1 k
update ’w}(? +1) = ’LUEA/ )—d)(X,') {decrease weight of incorrect classes}
increment k

end if
until maximum number of epochs
output: model weights W (k)
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Linear Classifier

y =argmax(We(x)+b), W=| : |, b=
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Class Probabilities

® What if we need/want class probabilities?
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Class Probabilities

® What if we need/want class probabilities?

® How to map fro K label scores to a probability distribution over Y?
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Class Probabilities

® What if we need/want class probabilities?

® How to map fro K label scores to a probability distribution over Y?

® Two possible mappings: softmax, a.k.a. logistic regression (next) and
sparsemax (later).
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@ Classification

Logistic Regression
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Logistic Regression

® Recall: a linear model gives score w, " ¢(x) for class y
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Logistic Regression

® Recall: a linear model gives score 'wquS(x) for class y

® Mapping scores to posterior class conditional probabilities:

exp\w T X
P(y|x) = W where Z, = 3 exp(w, T $(x))

y'eyY
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Logistic Regression

® Recall: a linear model gives score 'wquS(x) for class y

® Mapping scores to posterior class conditional probabilities:

X Tp(x
P(y|x) = eP(’wyqu()), where Z, = Z exp(w, T ¢(x))
x y'eY

® Softmax transformation: exponentiation followed by normalization.
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Logistic Regression

® Recall: a linear model gives score 'wquS(x) for class y

® Mapping scores to posterior class conditional probabilities:

-
exp(w, ' ¢p(x
P(y|x) = (yZ()) where Z, = Z exp(w, T ¢(x))
x y'ey
® Softmax transformation: exponentiation followed by normalization.

® Adding a constant to all the scores does not change the probabilities.
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Logistic Regression

® Recall: a linear model gives score 'wquS(x) for class y

® Mapping scores to posterior class conditional probabilities:

exp\w T X
P(y|x) = W where Z, = 3 exp(w, T $(x))

y'eyY

Softmax transformation: exponentiation followed by normalization.

Adding a constant to all the scores does not change the probabilities.

Zy doesn't depend on y: still a linear classifier. E.g., the MAP rule,
argmax P(y|x) = argmax exp(w,’ ¢(x))
y y

= argmax w,’ ¢(x)
y
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Logistic Regression

® Recall: a linear model gives score w, " ¢(x) for class y

® Mapping scores to posterior class conditional probabilities:

exp\w T X
P(y|x) = W where Z, = 3 exp(w, T $(x))

y'eyY

Softmax transformation: exponentiation followed by normalization.

Adding a constant to all the scores does not change the probabilities.

Zy doesn't depend on y: still a linear classifier. E.g., the MAP rule,
argmax P(y|x) = argmax exp(w,’ ¢(x))
y y

= argmax w,’ ¢(x)
y

® Allows for cost-sensitive decisions, beyond simple MAP.
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Binary Logistic Regression

® Binary case: Y = {£1}
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Binary Logistic Regression

® Binary case: Y = {£1}

e Scores: 0 for y = —1 and w' ¢(x) for y = 1

exp(w” ¢(x))
exp(0) + exp(w T ¢(x))
1

1+ exp(—w’ ¢(x))
o(w’ P(x)).

Ply=+1|x) =
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Binary Logistic Regression

® Binary case: Y = {£1}

e Scores: 0 for y = —1 and w' ¢(x) for y = 1

exp(w” ¢(x))
exp(0) + exp(w T ¢(x))
1

1+ exp(—w’ ¢(x))
o(w’ P(x)).

Ply=+1|x) =

® Sigmoid, or logistic, transformation (more later!)
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Sigmoid/Logistic Transformation

1

Ziz I logistic(u) = I _e::k(}l;()u)
0.7
1 06
O'(Z) = ]_—FT 05
0.4
03}
0.2f
01F
7010 -5 5 10

So

Widely used in neural networks (more tomorrow!)

“Squashes” a real number into [0, 1]

The output can be interpreted as a probability

Positive, bounded, strictly increasing, differentiable
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Binary Logistic Regression

® In two dimensions, i.e., w, ¢(x) € R?
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Binary Logistic Regression

® In two dimensions, i.e., w, ¢(x) € R?

® MAP boundary, P(y = +1| x) =1/2 < w'¢(x) =0, is linear
w.r.t. ¢(x).
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Binary Logistic Regression

® In two dimensions, i.e., w, ¢(x) € R?

® MAP boundary, P(y = +1| x) =1/2 < w'¢(x) =0, is linear
w.r.t. ¢(x).

® Some other threshold, P(y = +1 | x) =7 < w' ¢(x) = log(:Z);
linear w.r.t. ¢(x).
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Multinomial Logistic Regression

exp(wy " ¢(x))
>y exp(wy T ¢(x))

® Recall W = [wy, ..., wx] € RK*P and Py (y|x) =

® How do we learn weights W7
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Multinomial Logistic Regression

exp(wy " ¢(x))
>y exp(wy T ¢(x))

® Recall W = [wy, ..., wx] € RK*P and Py (y|x) =

® How do we learn weights W7

® Maximize the conditional log-likelihood, given training data:

o~

N N
W = argmaxiog (HPW(th))—argrgivn—;logpw(yt|xt)—

t=1 =
N

a3~ (106 esptn ") o) |
= Ye

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 58 /107



Multinomial Logistic Regression

exp(wy " ¢(x))
>y exp(wy T ¢(x))

® Recall W = [wy, ..., wx] € RK*P and Py (y|x) =

® How do we learn weights W7

® Maximize the conditional log-likelihood, given training data:

o~

N N
W = argmaxlog (H PW(yt|Xt)> = argmin — ; log Pw (ye|x:) =

t=1 =

N
a3~ (106 esptn ") o) |
= Ye

® W is set to assign as much probability as possible to the correct
labels!
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Logistic Regression

® This objective function is strictly convex

T I
non-convex convex convex, not strictly
strictly convex
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Logistic Regression

® This objective function is strictly convex

T I
non-convex convex convex, not strictly
strictly convex

® Proof left as exercise! (hint, compute second derivatives, i.e., Hessian)
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Logistic Regression

® This objective function is strictly convex

T I
non-convex convex convex, not strictly
strictly convex

® Proof left as exercise! (hint, compute second derivatives, i.e., Hessian)

® Therefore any local minimum is a global minimum
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Logistic Regression

® This objective function is strictly convex

T I
non-convex convex convex, not strictly
strictly convex

® Proof left as exercise! (hint, compute second derivatives, i.e., Hessian)

® Therefore any local minimum is a global minimum

® No closed form solution, but many numerical techniques
v' Gradient methods (gradient descent, conjugate gradient)

v" Quasi-Newton methods (L-BFGS, ...)
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Recap: Gradient Descent

e Goal: minimize f : RY — R, for differentiable objective function f
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Recap: Gradient Descent

e Goal: minimize f : RY — R, for differentiable objective function f

® Take small steps in the negative gradient direction until a stopping
criterion is met:
X)X (6) /r}(t)Vf(x(t))
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Recap: Gradient Descent

e Goal: minimize f : RY — R, for differentiable objective function f

® Take small steps in the negative gradient direction until a stopping

criterion is met:
X)X (6) /r}(t)Vf(x(t))

® Choosing the step-size: crucial for convergence and performance.
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Recap: Gradient Descent

Goal: minimize f : RY — R, for differentiable objective function f

Take small steps in the negative gradient direction until a stopping
criterion is met:
X)X (6) /r)(t)Vf(x(t))

Choosing the step-size: crucial for convergence and performance.

GD may work well, or not so well. There are many ways to improve it.

without momentum

with momentum
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Gradient Descent

® QObjective function in logistic regression:

N

3 LW (o) (1o Y explw, T6(x)) — w, " $(x))
t=1 Y

t=1
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Gradient Descent

® QObjective function in logistic regression:

N

S LW (v y0) = (1o > exp(w, T () — w, T(x))
t=1 y!

=1

H.

® Gradient descent:
v Set WO =0

v lterate until convergence (for suitable stepsize 7y):

Wi = W Ty (S LW (x0))
— W(k) — nkzyzl VWL(W(k)v (Xt7yf))
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Gradient Descent

® QObjective function in logistic regression:

N

S LW (v y0) = (1o > exp(w, T () — w, T(x))
t=1 y!

=1

H.

® Gradient descent:
v Set WO =0

v lterate until convergence (for suitable stepsize 7y):
Wi = W Ty (S LW (x0))
— W(k) — nkzyzl VWL(W(k)v (Xt7yf))

o Vi L(WK) is gradient of w.r.t. W, computed at W (¥)
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Gradient Descent

® QObjective function in logistic regression:

N

S LW (v y0) = (1o > exp(w, T () — w, T(x))
t=1 y!

=1

H.

® Gradient descent:
v Set W =0
v lterate until convergence (for suitable stepsize 7y):
Wk = W vy (S LW (x,0))
= WO -3l Vw LW (xe,30))
o Vi L(WK) is gradient of w.r.t. W, computed at W (¥)

® | convex = gradient descent converges to global optimum
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Stochastic Gradient Descent

® Stochastic approximation of the gradient (more frequent updates,
convenient with large datasets)
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Stochastic Gradient Descent

® Stochastic approximation of the gradient (more frequent updates,
convenient with large datasets)

e Set W = 0 and iterate until convergence:
v Pick (x¢, y:) randomly
v Update W+ = W) — 5y LW (xq, y4))
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Stochastic Gradient Descent

® Stochastic approximation of the gradient (more frequent updates,
convenient with large datasets)

e Set W = 0 and iterate until convergence:
v Pick (x¢, y:) randomly
v Update W+ = W) — 5y LW (xq, y4))

® je. approximate the gradient with noisy, unbiased, version using a
single sample
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Stochastic Gradient Descent

® Stochastic approximation of the gradient (more frequent updates,
convenient with large datasets)

e Set W = 0 and iterate until convergence:
v Pick (x¢, y:) randomly
v Update W+ = W) — 5y LW (xq, y4))

® je. approximate the gradient with noisy, unbiased, version using a
single sample

® Variants exist in-between batch and stochastic: mini-batches
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Stochastic Gradient Descent

® Stochastic approximation of the gradient (more frequent updates,
convenient with large datasets)

e Set W = 0 and iterate until convergence:
v Pick (x¢, y:) randomly
v Update W) = W) — 5 7y L(W X, (x, )

® je. approximate the gradient with noisy, unbiased, version using a
single sample

® Variants exist in-between batch and stochastic: mini-batches

e All guaranteed to find the optimal W (for suitable step sizes)
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SGD: Visual Summary

Finite sums Expectation

f@) € 1Y filx) f(@) & E,(f(z,2))

Vi) =213, Vfi(z) Vf(z) = E;(VF(z,2))
. V()
¥ VF(z,2)
Z~EZ
Draw i € {1,...,n} uniformly. Draw z ~ z

Tk41 = Tk — T]gi.;(aﬂk) Tp4+1 = Tk — TkVF(l‘, Z)

Theorem: If f is strongly convex and 7 ~ 1/k,

E(lzx — 2*[?) = O(1/k)

o oo
Figure by Gabriel Peyre. Highly recommended: twitter.com/gabrielpeyre

y
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Batch, Stochastic, and Minibatch Gradient Descent

® Minibatch: instead of single sample, sample subset B C {1,..., N}.

® Use average gradient on minibatch:

wk+l) — wk) _ 77k|B|ZVWL (Xtv)/t))

teB

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent
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Computing the Gradient

® All this requires computing Vyy L(W; (x¢, y¢)), where

LW (x,y)) = log ) exp(w, " (x)) — wy $(x)

y
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Computing the Gradient

® All this requires computing Vyy L(W; (x¢, y¢)), where

LW (x,y)) = log ) exp(w, " (x)) — wy $(x)

yl

® Some reminders:

v Vw log F(W) = £ Vw F(W)

F(W

v Vwexp F(W) =exp(F(W))VwF(W)
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Computing the Gradient

® All this requires computing Vyy L(W; (x¢, y¢)), where

LW (x,y)) = log ) exp(w, " (x)) — wy $(x)

yl

® Some reminders:

v Vw log F(W) = £ Vw F(W)

F(W

v Vwexp F(W) =exp(F(W))VwF(W)
® One-hot vector representation of class y:

e, =[0,...,0, 1 ,0,...,0]" € {0,1}¥, such that 17e, = 1
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Computing the Gradient: Step by Step

VwlWi(xy)) = Vw (logzexp(wy/T<Z>(X))—wyT¢(X)>

y
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Computing the Gradient: Step by Step

VwlWi(xy)) = Vw (logzexp(wy/T<Z>(X))—wyT¢(X)>

y

Vi log ) exp(w,: T ¢(x))=Vwwy " ¢(x)
y/
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Computing the Gradient: Step by Step

VwlWi(xy)) = Vw (logzexp(wy/T<Z>(X))—wyT¢(X)>

y!

Vw log»_ exp(w, " ¢(x))—Vww, " ¢(x)
y’
1

>, exp(w, /T o(x))

va exp(w, T(x)—eyb(x)T
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Computing the Gradient: Step by Step

Vw L(W; (x,y))

M. Figueiredo and A. Martins (IST)

Vw (Iog > exp(w, T<Z>(X))—wyT¢(X)>
y’
Vv log 3" expluw, T 6(x))~ Voww, T b(x)
y’
1
>, exp(w, /T o(x))

va exp(w, T(x)—eyb(x)T

—Zexpwf X))\Vww, " p(x)—eyp(x) "
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Computing the Gradient: Step by Step

Vw L(W; (x,y))

M. Figueiredo and A. Martins (IST)

Vw (Iog > exp(w, T<Z>(X))—wyT¢(X)>
y’
Vv log 3" expluw, T 6(x))~ Voww, T b(x)
y’
1
>, exp(w, /T o(x))

vaexp(w To(x))—eyd(x)
—Zexpwf X))Vww, T d(x)—eyd(x)"

ex Tp(x
Z M e, ¢(X)T feyqb(x)-r

/

y
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Computing the Gradient: Step by Step

Vwl(W;(x,y)) =

M. Figueiredo and A. Martins (IST)

Vw (Iog > exp(w, T<Z>(X))—wyT¢(X)>
y’
Vv log 3" expluw, T 6(x))~ Voww, T b(x)
y’
1
>, exp(w, /T o(x))

va exp(w, T(x)—eyb(x)T

—Zexpwf X))Vww, T p(x)—ey(x) "

> exp(wy' T(x))

Z ey/cﬁ(x)Tfeyqb(x)-r

/

y

> Pw (Y [x)e, d(x) " —eyd(x) "
y/
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Computing the Gradient: Step by Step

Vwl(W;(x,y)) =

M. Figueiredo and A. Martins (IST)

Vw (Iog > exp(w, T<Z>(X))—wyT¢(X)>
y’
Vv log 3" expluw, T 6(x))~ Voww, T b(x)
y’
1
>, exp(w, /T o(x))

va exp(w, T(x)—eyb(x)T

—Zexpwf X))Vww, T p(x)—ey(x) "

> exp(wy' T(x))

Z ey/cﬁ(x)Tfeyqb(x)-r

/

y

> Pw (Y [x)e, d(x) " —eyd(x) "
y/

Pw(yx) | —ey | 6(x)T
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Logistic Regression Summary

e (Conditional class probabilities:

Pw (y[x) =
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Logistic Regression Summary

e (Conditional class probabilities:

exp(wy " $(x))

Pw (y|x) = 7

® Set weights to maximize conditional log-likelihood of training data:

—

W =arg mvaxz log Py (yt|xt) = arg miny, Z L(W; (xt, yt))
t t
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Logistic Regression Summary

e (Conditional class probabilities:

exp(wy " $(x))

Pw (y|x) = 7

® Set weights to maximize conditional log-likelihood of training data:

—

W =arg maxz log Py (yt|xt) = arg miny, Z L(W; (xt, yt))

® Gradient can be computed

Vw L(W; (x ZPW y'[X)eyd(x) " —eyd(x)"

thus (S)GD (or any gradient-based algorithm) can be used.
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The Story So Far

® | ogistic regression is discriminative: maximizes conditional likelihood

V' also called log-linear model and max-entropy classifier
v" no closed form solution.

v stochastic gradient updates (SGD):

Wk = w4 (e, 0(x ZPW (V'Ix) ey op(x)"
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The Story So Far

® | ogistic regression is discriminative: maximizes conditional likelihood

V' also called log-linear model and max-entropy classifier
v" no closed form solution.

v stochastic gradient updates (SGD):
WD = w9 4 | e, g(x ZPW (V'P)ey o)’

® Perceptron is a discriminative, non-probabilistic classifier

v perceptron updates:

WD =W 1 e,0(x)" —ese(x) "
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The Story So Far

® | ogistic regression is discriminative: maximizes conditional likelihood

V' also called log-linear model and max-entropy classifier
v" no closed form solution.

v stochastic gradient updates (SGD):
WD = w9 4 | e, g(x ZPW (V'P)ey o)’

® Perceptron is a discriminative, non-probabilistic classifier
v perceptron updates:
WD =W 1 e,0(x)" —ese(x) "

® | ogistic regression SGD updates and perceptron updates look similar!
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@ Classification

Support Vector Machines
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Maximizing Margin

® | et v > 0 denote the margin, and set the goal of maximizing it
max
5 Y

subject to
U]l =1
uy G(xe) — uyB(xe) > 7

V(Xt,)/t) € vayl € ‘%
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Maximizing Margin

® | et v > 0 denote the margin, and set the goal of maximizing it
max
2x

subject to
U]l =1
u;; (xt) — u;d)(xt) >
V(xt,yt) € D,Vy' €Y

® Note: the solution ensures a separating hyperplane, if there is one
(zero training error) — due to the hard constraint
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Maximizing Margin

® | et v > 0 denote the margin, and set the goal of maximizing it
max
2x

subject to
U]l =1
u;; (xt) — u;d)(xt) >
V(xt,yt) € D,Vy' €Y

® Note: the solution ensures a separating hyperplane, if there is one
(zero training error) — due to the hard constraint

® Fix ||U|| = 1 since increasing ||U]| trivially produces larger margin
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Maximum Margin < Minimum Norm

Max Margin:

Min Norm:
max -~y
U min ~[|W|P
w2
subject to
< such that:
U =1

w; (xt) — wyT,qS(xt) >1

uy,p(x) — uyplx) >y ) € Doy’ <
X ) )
Y(x,ye) € D,Vy' €Y o g

¢ Instead of fixing ||U|| we fix the margin to 1

1ol _ 1

® Make substitution W = %; then we have [|W| = =5 = 2
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Maximum Margin < Minimum Norm

Max Margin:

Min Norm:
max -y 1
u min 7HW\|2
w2
subject to
< such that:
U =1

w; (xt) — 'wyT,qS(xt) >1

uy,p(x) — uyplx) >y ) € Doy’ <
X ) )
Y(x,ye) € D,Vy' €Y o g

¢ Instead of fixing ||U|| we fix the margin to 1

1ol _ 1

® Make substitution W = %; then we have [|W| = =5 = 2

® Quadratic programming (QP) problem: well known convex problem,
for which there are several techniques.
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Support Vector Machines

® What if data is not separable?
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Support Vector Machines

® What if data is not separable? Introduce and penalize slacks

¢ Slacks allow (penalized) violation of the margin constraints
_ 1 N
W = argminy, ¢ §||W||2 + CZ&
t=1
subject to

wyTt (xt) — w}qf)(xt) >1—-¢&and & >0

V(xt,y:) € D and Vy' € Y
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Support Vector Machines

® What if data is not separable? Introduce and penalize slacks

¢ Slacks allow (penalized) violation of the margin constraints

N

— . 1

W = argminy ¢ E||W||2 +CY &
t=1

subject to
T T
wy, d(xt) —w,d(x) 21— & and & >0

V(xt,y:) € D and Vy' € Y

® | arger C: more examples correctly classified, but smaller margin.
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Support Vector Machines

® What if data is not separable? Introduce and penalize slacks

¢ Slacks allow (penalized) violation of the margin constraints

N
— . 1
W = argminy ¢ E||W||2 +CY &

t=1

subject to
T T
wy, d(xt) —w,d(x) 21— & and & >0

V(xt,y:) € D and Vy' € Y
® | arger C: more examples correctly classified, but smaller margin.

® |f data is separable, optimal solution has & =0, Vi
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Support Vector Machines: Hinge Loss View

N
) 1
W:argmani §‘|W’|2+ngt

t=1

subject to

w]d(xe) —wld(x) =1 & Wy £y
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Support Vector Machines: Hinge Loss View

N
) 1
W:argmani §‘|W’|2+ngt

t=1

subject to

'w}-,’; (xe) — ;Pijft 'w)-/r/(/-"(xt) >1-&
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Support Vector Machines: Hinge Loss View

N
) 1
W:argmani §‘|W’|2+ngt

t=1

subject to

§e > 1+ ;P;;ft 'w;:(,i)(xt) - 'w;; (xt)
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Support Vector Machines: Hinge Loss View

)

N
A
W:argwn 2|]W||2+;§t A=—
subject to

§e > 1+ ;P;;ft 'w;:(,i)(xt) - 'w;; (xt)
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Support Vector Machines: Hinge Loss View

N
A
W = in Z||W||? A= —
arg min 2H I +t§_1§t
subject to

§e > 1+ ;P;;ft 'w;:(,i)(xt) - 'w;; (xt)

o If W classifies (x¢, y¢) with margin 1, penalty £ =0
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Support Vector Machines: Hinge Loss View

N
A
W = in Z||W||? A= —
arg min 2H I +t§_1§t
subject to

§e > 1+ ;P;;ft 'w;:(,i)(xt) - ’w;,’;qf)(xt)

o If W classifies (x¢, y¢) with margin 1, penalty £ =0

* Otherwise penalty/slack & =14 max,r,, w/ ¢(x:) — wy, P(x:)
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Support Vector Machines: Hinge Loss View

N
A
W = in Z||W||? § A= —
argmin S |IWI +t:1§t C
subject to

T T
§e > 1+ ;p;;i Wy, P(xt) — wy, d(xt)
o If W classifies (x¢, y¢) with margin 1, penalty £ =0
* Otherwise penalty/slack & =14 max,r,, w/ ¢(x:) — wy, P(x:)

® Hinge loss:

LW (xt, y¢)) = max (0,1 + f‘f‘;X 'w;:qb(xt) - w;;qb(xt))
Y 7yt
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Support Vector Machines: Hinge Loss View

e SVM QP formulation:
A\ N
— A )
W~ arein 5IWI+ 3

subject to

> 14 max w)p(x) — wy,

y'#y Yt (Xf)> for t = 1,...,N
t
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Support Vector Machines: Hinge Loss View

e SVM QP formulation:

N
— A
W =argmin Z[[WI[*+3 &

t=1

subject to

> 14 max w)p(x) — wy,

y'#y Yt (Xf)> for t = 1,...,N
t

® Hinge loss equivalent:

N margin of sample t

. A
W = arg min (; max (0,1 — (w;qﬁ(xt) - ;pi;i w;t,‘b(xt))) + EHWW

L(W; (Xu}’t))

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 74 /107



Loss
we= Zero_One
== Hinge

=== |ogistic

~N

' ' '

0
Margin m=yf(x)

¢ Hinge: h(u) = max{0,1 — u}: piecewise linear, not everywhere
differentiable.
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Loss
we= Zero_One
== Hinge

=== |ogistic

~N

' ' '

0
Margin m=yf(x)

¢ Hinge: h(u) = max{0,1 — u}: piecewise linear, not everywhere
differentiable.

® Cannot use gradient descent
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Loss
we= Zero_One
== Hinge

=== |ogistic

~N

' ' '

0
Margin m=yf(x)

¢ Hinge: h(u) = max{0,1 — u}: piecewise linear, not everywhere
differentiable.

® Cannot use gradient descent

® But can use subgradient descent (almost the same)!
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Subgradients

f(x)

f(x1) + g{ (z — z1),
1 _'_‘_f(Iz) = gg(:r — x3)
£ f @) 4 95 (2 = 22)

e Defined for convex functions f : RP - R
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Subgradients

f(x)

f(x1) + g{ (z — z1),
1 _'_‘_f(l“:e) = gg(:r — x3)
S (@2) + 3 (@ = 22)

e Defined for convex functions f : RP - R

® Generalizes the notion of gradient: in points where f is differentiable,
there is a single subgradient which equals the gradient.
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Subgradients

f(x)

flx) + g (z — 21),
_'_‘_f(l“:e) = gg(:r — x3)
A COREACIED)

e Defined for convex functions f : RP — R

® Generalizes the notion of gradient: in points where f is differentiable,
there is a single subgradient which equals the gradient.

® At points where f is non-differentiable, there are infinitely many
subgradients (an interval for D = 1).
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Subgradients

f(x)

flx) + g (z — 21),
) _'_‘.f(l“z) + g; (z — x2)
A COR T CEED)

e Defined for convex functions f : RP — R

® Generalizes the notion of gradient: in points where f is differentiable,
there is a single subgradient which equals the gradient.

® At points where f is non-differentiable, there are infinitely many
subgradients (an interval for D = 1).

® For D =1 (figure above), a subgradient at x, is the slope of any
tangent that stays below the function.
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Subgradients: Hinge Function

¢ Hinge: h(u) = max{0,1 — u}
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Subgradients: Hinge Function

¢ Hinge: h(u) = max{0,1 — u}

® Subgradients:

v Foru<1, Vyh(u)=-1

v Foru>1,V,h(u)=0
v For u=1, V,h(u) = any number in [~1, 0].
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Subgradients: Hinge Function

¢ Hinge: h(u) = max{0,1 — u}

® Subgradients:

v Foru<1, Vyh(u)=-1

v Foru>1,V,h(u)=0

v For u=1, V,h(u) = any number in [~1, 0].

® Can take a subgradient at u =1 to be 0
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Subgradients: Hinge Function

¢ Hinge: h(u) = max{0,1 — u}
® Subgradients:

v Foru<1, V,h(u) = -1

v Foru>1, V,h(u)=0

v For u=1, V,h(u) = any number in [~1, 0].
® Can take a subgradient at u =1 to be 0

® For some f(x) = h(g(x)), if g is differentiable, a valid choice is thus

- [0, ifg(x)>1
VFx) = { —Vg(x), ifg(x)<1
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Perceptron and Hinge-Loss

® SVM subgradient update (ignoring ||W ||? term):

0, if w;:qﬁ(xt) — maxy .y, wyth)(xt) >1

wk+) — wk)—
)= (e, —ey,)P(x:)T, otherwise, w/ y = arg max,., wqub(xt)
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Perceptron and Hinge-Loss

® SVM subgradient update (ignoring ||W ||? term):

0, if w;:qﬁ(xt) — maxy .y, wyth)(xt) >1

wk+) — wk)—
)= (e, —ey,)P(x:)T, otherwise, w/ y = arg max,., wqub(xt)

® Perceptron update is similar (but not equal):

Wkt W(k)—n 0, if wyTt (x¢) — max, wde)(xt) >0
(ey — ey )p(x:)T, otherwise, w/ y = arg maxy, w/ ¢(x:)

where n =1
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Perceptron and Hinge-Loss

® SVM subgradient update (ignoring ||W ||? term):

0, if w;:qﬁ(xt) — maxy .y, 'wyT¢>(xt) >1

wk+) — wk)—
)= (e, —ey,)P(x:)T, otherwise, w/ y = arg max,., wqub(xt)

® Perceptron update is similar (but not equal):

Wkt W(k)—n 0, if wyTt (x¢) — max, wde)(xt) >0
(ey — ey )p(x:)T, otherwise, w/ y = arg maxy, w/ ¢(x:)

where n =1
® Perceptron = SGD with zero-margin hinge-loss:

max (0,}r/n;y>t< wqui)(xt)—wythb(xt)) = ReLU(}rp;}/)t( 'wqub(xt)—'w; (xt))
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Outline

@ Classification

Sparsemax
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Obtaining Probabilities

* Mapping from score vector z € RIYl to probability distribution over Y

T\
*z A AK_lz{VGR_}EZZV,':l}

]

probability simplex

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 80 /107



Obtaining Probabilities

* Mapping from score vector z € RIYl to probability distribution over Y

T\
*z A AK_lz{VGR_}EZZV,':l}

]

probability simplex

® Any such mapping p : R — Ay _1 should satisfy:

v forany z € RY and a € R, p(z + a) = p(2)
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Obtaining Probabilities

* Mapping from score vector z € RIYl to probability distribution over Y

T\
*z A AK_lz{VGR_}EZZV,':l}

]

probability simplex

® Any such mapping p : R — Ay _1 should satisfy:

v forany z € RY and a € R, p(z + a) = p(2)

v/ permutation equivariance: P, p(Pz) = Pp(z), ¥ permutation matrix P
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Obtaining Probabilities

* Mapping from score vector z € RIYl to probability distribution over Y

T\
*z A AK_lz{VGR_}EZZV,':l}

]

probability simplex

® Any such mapping p : R — Ay _1 should satisfy:

v forany z € RY and a € R, p(z + a) = p(2)
v/ permutation equivariance: P, p(Pz) = Pp(z), ¥ permutation matrix P

v’ monotonicity: z; >z = (p(2)), > (p(z))j
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Obtaining Probabilities

* Mapping from score vector z € RIYl to probability distribution over Y

T\
*z A AK_lz{VER_}EZZV,':l}

]

probability simplex

® Any such mapping p : R — Ay _1 should satisfy:

v forany z € RY and a € R, p(z + a) = p(2)
v/ permutation equivariance: P, p(Pz) = Pp(z), ¥ permutation matrix P

v’ monotonicity: z; >z = (p(2)), > (p(z))j

® \We already saw one such mapping: softmax. Next: sparsemax.
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Recap: Softmax Transformation

® Classical choice is softmax : Rl — Ay

exp(z1) exp(2)y|)

>oiexp(z) 7 X exp(z)

softmax(z) =
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Recap: Softmax Transformation

® Classical choice is softmax : Rl — Ay

exp(z1) exp(2)y|)

>oiexp(z) 7 X exp(z)

softmax(z) =

® Underlies logistic regression!
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Recap: Softmax Transformation

® Classical choice is softmax : Rl — Ay

exp(z1) exp(2)y|)

>oiexp(z) 7 X exp(z)

softmax(z) =

® Underlies logistic regression!

® Resulte has full support: (softmax(z)), > 0,Vz,i € {1,..., [Y[}
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Recap: Softmax Transformation

Classical choice is softmax : Rl — Ay _;:

exp(z1) exp(2)y|)

>oiexp(z) 7 X exp(z)

softmax(z) =

Underlies logistic regression!

Resulte has full support: (softmax(z)), > 0,Vz,i € {1,..., [Y[}

A disadvantage if a sparse distribution is desired (keeping only the
most probable classes, in an adaptive way).
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Recap: Softmax Transformation

Classical choice is softmax : Rl — Ay _;:

softmax(z) =

exp(z1)

exp(zyy|)

>oiexp(z) 7 X exp(z)

Underlies logistic regression!

Resulte has full support: (softmax(z)), > 0,Vz,i € {1,..., [Y[}

A disadvantage if a sparse distribution is desired (keeping only the
most probable classes, in an adaptive way).

e Common workaround: threshold and renormalize.

M. Figueiredo and A. Martins (IST)

Linear Models

LxMLS 2023
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Sparsemax (Martins and Astudillo, 2016)

e A sparse-friendly alternative is sparsemax : RIYI — Ay_1.
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Sparsemax (Martins and Astudillo, 2016)

e A sparse-friendly alternative is sparsemax : RIYI — Ay_1.

e Key idea: Euclidean projection of z onto the probability simplex

sparsemax(z) :=arg min |p— z|°.
PEAy|-1
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Sparsemax (Martins and Astudillo, 2016)

e A sparse-friendly alternative is sparsemax : RIYI — Ay_1.

e Key idea: Euclidean projection of z onto the probability simplex

sparsemax(z) := arg min
PEA |1

Ip - z|°.

® May be at the boundary of the simplex, in which case sparsemax(z) is

sparse (has zeros)
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Sparsemax (Martins and Astudillo, 2016)

sparsemax(z) := arg min
PEA |1

Ip - z|°.

sparse (has zeros)

M. Figueiredo and A. Martins (IST) Linear Models

A sparse-friendly alternative is sparsemax : R4 — Ay_1.

Key idea: Euclidean projection of z onto the probability simplex

Retains many properties of softmax, namely differentiability

LxMLS 2023

May be at the boundary of the simplex, in which case sparsemax(z) is
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Sparsemax (Martins and Astudillo, 2016)

A sparse-friendly alternative is sparsemax : R4 — Ay_1.

Key idea: Euclidean projection of z onto the probability simplex

sparsemax(z) :=arg min |p— z|°.
PEAy|-1

May be at the boundary of the simplex, in which case sparsemax(z) is
sparse (has zeros)

Retains many properties of softmax, namely differentiability

Can be computed efficiently, with cost at most O(|Y| log|Y])
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Sparsemax (Martins and Astudillo, 2016)

sparsemax(z) :=arg min |p— z|°.
PEAy|-1

sparse (has zeros)

Essentially: sorting, shifting, and thresholding.

M. Figueiredo and A. Martins (IST) Linear Models

A sparse-friendly alternative is sparsemax : R4 — Ay_1.

Key idea: Euclidean projection of z onto the probability simplex

Retains many properties of softmax, namely differentiability

Can be computed efficiently, with cost at most O(|Y| log|Y])

LxMLS 2023

May be at the boundary of the simplex, in which case sparsemax(z) is

82/107



The Binary Case

e Y = {1, 2}, parametrize z = (t,0)

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 83 /107



The Binary Case

e Y = {1, 2}, parametrize z = (t,0)
® The binary softmax is the logistic (sigmoid) function:

1

softmax; (2) = 1+ exp(—t)
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The Binary Case

e Y = {1, 2}, parametrize z = (t,0)
® The binary softmax is the logistic (sigmoid) function:

1

softmax; (2) = 1+ exp(—t)

® The binary sparsemax is a “hardened” version of the sigmoid:
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The Binary Case

e Y = {1, 2}, parametrize z = (t,0)
® The binary softmax is the logistic (sigmoid) function:

1

softmax; (2) = 1+ exp(—t)

® The binary sparsemax is a “hardened” version of the sigmoid:

ol | ==+ softmax, ([t,0])
—  sparsemax, ([t,0])
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® Parameterize z = (t1, t2,0) and plot softmax;(z) and sparsemax,(z)
as a function of t; and t
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Ternary Case

® Parameterize z = (t1, t2,0) and plot softmax;(z) and sparsemax,(z)

as a function of t; and t
® sparsemax is piecewise linear, but asymptotically similar to softmax
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Softmax, sparsemax, and argmax

® Sparsemax is in-between softmax and argmax

softmax(z) sparsemax(z) argmax(z)
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0

(Same z = [1.0716, —1.1221, —0.3288, 0.3368, 0.0425])
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Softmax, sparsemax, and argmax

® Sparsemax is in-between softmax and argmax

softmax(z) sparsemax(z) argmax(z)
1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0

(Same z = [1.0716, —1.1221, —0.3288, 0.3368, 0.0425])

e It is (it may be) sparse, but differentiable.
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® We may include a “temperature” parameter T in softmax and
sparsemax:

® Scale the argument by 1/T: softmax(z/T) and sparsemax(z/T)
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® We may include a “temperature” parameter T in softmax and
sparsemax:

® Scale the argument by 1/T: softmax(z/T) and sparsemax(z/T)
® Zero temperature limit:

lim softmax(z/T) = lim sparsemax(z/T) = argmax(z)
T—0 T—0
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® We may include a “temperature” parameter T in softmax and
sparsemax:

® Scale the argument by 1/T: softmax(z/T) and sparsemax(z/T)
® Zero temperature limit:
lim softmax(z/T) = lim sparsemax(z/T) = argmax(z)
T—0 T—0

® High temperature limit:

Tlinoo softmax(z/T) = #Eosparsemax(z/T) = (I’?ﬂ""’ \‘zJI)
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® We may include a “temperature” parameter T in softmax and
sparsemax:

Scale the argument by 1/T: softmax(z/T) and sparsemax(z/T)
® Zero temperature limit:

lim softmax(z/T) = ﬁmo sparsemax(z/T) = argmax(z)
—>

T—0
® High temperature limit:
Tlinoo softmax(z/T) = #Eosparsemax(z/T) = (I’?ﬂ""’ \‘zJI)
[ ]

The temperature controls how peaked the softmax is and how sparse
the sparsemax is.
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Loss Function for Sparsemax?

® The common choice for softmax:

v the classifier estimates P(y = ¢ | x; W)
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Loss Function for Sparsemax?

® The common choice for softmax:

v the classifier estimates P(y = ¢ | x; W)

v loss is the negative log-likelihood:

LW;(x,y)) = —logP(y|x;W)
= —log [softmax(z(x))],,

where z.(x) is the score of class c.
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v loss is the negative log-likelihood:

LW;(x,y)) = —logP(y|x;W)
= —log [softmax(z(x))],,

where z.(x) is the score of class c.

® | oss gradient:

VLW (x,y)) = — (ey¢(x) = softmax(2(x))¢(x)" )
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Loss Function for Sparsemax?

® The common choice for softmax:

v the classifier estimates P(y = ¢ | x; W)

v loss is the negative log-likelihood:

LW;(x,y)) = —logP(y|x;W)
= —log [softmax(z(x))],,

where z.(x) is the score of class c.

® | oss gradient:
VLW (x,y)) = — (ey¢(x) = softmax(2(x))¢(x)" )

® Not directly applicable to sparsemax: cannot compute log(0)
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Sparsemax Loss(Martins and Astudillo, 2016)

® The natural choice for a sparsemax output layer

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 88 /107



Sparsemax Loss(Martins and Astudillo, 2016)

® The natural choice for a sparsemax output layer

e Compute estimates P(y | x; W) using sparsemax

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 88 /107



Sparsemax Loss(Martins and Astudillo,

® The natural choice for a sparsemax output layer
e Compute estimates P(y | x; W) using sparsemax

® We would like the gradient to have the form:

VwlL(W;(x,y)) =— <ey¢(x)T — sparsemax(z(x))(],’)(x)T)
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Sparsemax Loss(Martins and Astudillo,

® The natural choice for a sparsemax output layer

e Compute estimates P(y | x; W) using sparsemax

We would like the gradient to have the form:

VwlL(W;(x,y)) =— <ey¢(x)T — sparsemax(z(x))(],’)(x)T)

This is achieved with the sparsemax loss:
L(W;(x,y)) = —z,(x) + %H sparsemax(z(x))||? — z(x) T sparsemax(z(x)),

where z,(x) is the score of class y.
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Classification Losses (Binary Case)

® | et the correct label be y = 1 and define s = zp — z.

® Sparsemax loss in 2D becomes a “classification Huber loss":

4.0

3.5 1

3.0

2.5

2.0

M. Figueiredo and A. Martins (IST)

— 0/1

—— Logistic

—— Hinge

—— Perceptron
---- Squared (clf.)
—— Sparsemax loss
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Outline

© Regularization
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® If a model is too complex (too many parameters), there is a the risk
of overfitting:

[
Ll
X

Underfitting X Balanced Overfitting

® \We saw one example already with polynomial regression.
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Regularization

® Regularization aims at preventing overfitting
e N
argmin 3" LW (x, 7)) + A (W)

t=1

Q(W): regularization function; A: regularization parameter.
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Regularization

® Regularization aims at preventing overfitting
e N
argmin 3" LW (x, 7)) + A (W)

t=1
Q(W): regularization function; A: regularization parameter.

® /5 regularization (or Gaussian prior) promotes small weights:

QW) =W =1 w3 =1>""w;
y Yy
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Regularization

® Regularization aims at preventing overfitting
e N
argmin 3" LW (x, 7)) + A (W)

t=1
Q(W): regularization function; A: regularization parameter.

® /5 regularization (or Gaussian prior) promotes small weights:
QW) =3IWI5=3> llwl3=3> > w,
y y J

® /1 regularization (Laplacian prior) promotes sparse weights!

QAW) = Wil = lhwyls = 303 Iyl
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Regularization

® Regularization aims at preventing overfitting
e N
argmin 3" LW (x, 7)) + A (W)

t=1
Q(W): regularization function; A: regularization parameter.

® /5 regularization (or Gaussian prior) promotes small weights:
2 2 2
QW) =3IWI5=3> llwl3=3> > w,
y y J
® /1 regularization (Laplacian prior) promotes sparse weights!

QAW) = Wil = lhwyls = 303 Iyl

® Easy to use /> in gradient methods, since VW%HWH% =W.
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Regularization

® Regularization aims at preventing overfitting
e N
argmin 3" LW (x, 7)) + A (W)

t=1
Q(W): regularization function; A: regularization parameter.

® /5 regularization (or Gaussian prior) promotes small weights:
2 2 2
QW) =3IWI5=3> llwl3=3> > w,
y y J
® /1 regularization (Laplacian prior) promotes sparse weights!

QAW) = Wil = lhwyls = 303 Iyl

® Easy to use /> in gradient methods, since VW%HWH% =W.

® Not so easy to use {1 regularization.
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Bias, Variance, and their Tradeoff

low complexity / strong regularization

s true function f(x)
e trainsetl

- A trainset2
m  trainset3

250

200

Low variance

High bias
100

50
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Bias, Variance, and their Tradeoff

low complexity / strong regularization high complexity / weak regularization
° m true function f(x) m= true function f(x)

250 e trainsetl 250 @ trainset 1

™ A trainset 2 A trainset2

200 m  train set 3 200 ® trainset3

A
150 Low variance 150 Low bias
High bias High variance
100 100
50 50
0 0
-15 -10 -5 0 5 10 -15 -10 -5 0 5 10
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Bias, Variance, and their Tradeoff

low complexity / strong regularization high complexity / weak regularization
° m true function f(x) m= true function f(x)

250 e trainsetl 250 @ trainset 1

™ A trainset2 A trainset2

200 m  trainset3 200 m trainset3

A
150 Low variance 150 Low bias
High bias High variance
100 100
50 50
o 0
-15 -10 -5 0 5 10 -15 -10 -5 0 5 10
underfitting overfitting
— —_—

Test Error

Error

model complexityox 1/
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Double Descent

® A more modern view, compatible with large deep networks:

under-fitting . over-fitting

under-parameterized over-parameterized
. Test risk Test risk
&V) 'ﬁ “classical” “modern”
E_;: Q?: interpolating regime
N - .
~ ‘Training risk ~ < Training risk:
sweet spot v — _ S~ . _interpolation threshold
Complexity of H Complexity of H
(a) U-shaped “bias-variance” risk curve

(b) “double descent” risk curve
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Double Descent

® A more modern view, compatible with large deep networks:

under-fitting . over-fitting

under-parameterized over-parameterized
. Test risk Test risk
=5 ] =4 “classical” “modern”
E_;: Q?: interpolating regime
N - .
< Training risk ~ o Training risk:
sweet spot v — _ S~ . _interpolation threshold
Complexity of H Complexity of H
(a) U-shaped “bias-variance” risk curve

(b) “double descent” risk curve

® |n the interpolating regime, use minimum-norm criterion:

interpolation
—~ I
W = in [W?, subject to Y L(W; =0
argmin |[W|?, subject to 2. (W (xt, yt))
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Double Descent

® A more modern view, compatible with large deep networks:

under-fitting . over-fitting

under-parameterized
. Test risk

over-parameterized

Risk

Test risk
% “classical” “modern”
interpolating regime
&z polating reg
% : "
~ ‘Traini it < ining risk:
Training risk ~ < Training risk:
sweet spot v — _ S~ ./interpolation threshold
Complexity of H Complexity of H
(a) U-shaped “bias-variance” risk curve

(b) “double descent” risk curve

® |n the interpolating regime, use minimum-norm criterion:

interpolation

-~

N
Tx7 . 2 .
L . j—
W = argmin ||[W]|“, subject to E (W (xt,y:)) =0

t=1
® Active research topic, pioneered by M. Belkin (2018).
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Double Descent: Intuition

underparametrized

- = = =
2 2 3 3

Mean Squared Error

-
L

107

107

Polynomial Regression

Test
Train
= Interpolation Threshold
underparametrized overparametrized
10° 10! 102

Num Parameters (Num Features)

interpolation threshold

Schaeffer et al, 2023
arXiv:2303.14151vl

overparametrized
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Outline

O Non-Linear Models

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 96 /107



: Linear Classifiers

® We have covered:
v Perceptron
v' Logistic and Sparsemax regression

v Support vector machines

® All lead to convex optimization problems = no issues with local
minima/initialization

® All assume the feature map ¢ is well engineered such that the data is
(nearly) linearly separable
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What If Data Are Not Linearly Separable?
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® Engineer better features (often works!)

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 98 /107



What If Data Are Not Linearly Separable?

® Engineer better features (often works!)

® Use kernel methods:
v work implicitly in high-dimensional feature spaces

V' ... but still need to choose/design a good kernel
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What If Data Are Not Linearly Separable?

® Engineer better features (often works!)

® Use kernel methods:
v work implicitly in high-dimensional feature spaces

V' ... but still need to choose/design a good kernel

® Use one of many other methods: trees, random forests, nearest

neighbors, ...
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What If Data Are Not Linearly Separable?

® Engineer better features (often works!)

® Use kernel methods:
v work implicitly in high-dimensional feature spaces
V' ... but still need to choose/design a good kernel

® Use one of many other methods: trees, random forests, nearest
neighbors, ...

® Use deep neural networks (tomorrow's lecture!)
v embrace non-convexity and local minima
v instead of engineering features/kernels, engineer the model
architecture,
v’ ...and use many tricks of the trade.
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Nearest Neighbor Classifiers

® Instead of “training”, keep all the data D = {(x;, y;)",}

® For a test sample x, return the majority class in the k nearest
neighbors in {x1,..., xy}
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Nearest Neighbor Classifiers

® Instead of “training”, keep all the data D = {(x;, y;)",}
neighbors in {x1,...,xy}

® For a test sample x, return the majority class in the k nearest
k=1

<

>
!

o

1 T s 4
class probability estimates

s
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Nearest Neighbor Classifiers
® Instead of “training”, keep all the data D = {(x;, y;)",}
® For a test sample x, return the majority class in the k nearest
neighbors in {x1,...,xy}
k=1

intrinsically explainable

o

T

B

a

s

M. Figueiredo and A. Martins (IST)

!
class probability estimates
® Pros: no training, easy implementation, few assumptions, intuitive,
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Nearest Neighbor Classifiers

® Instead of “training”, keep all the data D = {(x;, y;)",}

® For a test sample x, return the majority class in the k nearest
neighbors in {x1,...,xy}

k=1

1 o T B 3 a

class probability estimates

® Pros: no training, easy implementation, few assumptions, intuitive,
intrinsically explainable

® Cons: store all the data, need to define distance, not top (but decent)

performance, slow with large high-dim datasets (but there are tricks!)
LxMLS 2023 99 /107
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Nearest Neighbor Classifiers: Obsolete?

“Low-Resource” Text Classification: A Parameter-Free Classification
Method with Compressors

Zhiying Jiang'?, Matthew Y.R. Yang!, Mikhail Tsirlin', ACL 2023, July 9-14
Raphael Tang', Yiqin Dai’> and Jimmy Lin!

alemal_lve [ . s that s_easy_, 12l twelg .l. Model/Dataset | Ki y K De g p
and universal in text classification: a combi- Shot Full | Sshot | Full | Sshol | Full | Sshot | Full | Sshot | Full | Sshot
nation of a simple compressor like gzip with BI-LSTM+Atin | 0.843 | 02535006 | 0872 | 0254005 | 0948 | 0.369:0053 | 0.863 | 0357500 | 0952 | 0534000
a k-nearest-neighbor classifier. Without any HAN 0820 | 0.137:005 | 0.881 | 0.190z009 | 0981 | 0.362z0119 | 0.887 | 026410042 | 0.957 | 0.425:00m
training our method achieves re fastText__| 0.869 | 0.170:0057 | 0.883 | 0.245:0242 | 0.870 | 0.248z0.105 | 0.874 | 03470255 | 0930 | 0.5455005
sults that are competitive with non-pretrained W2V 0.874 | 0.281:023% | 0.904 | 0288019 | 0.993 | 04810155 | 0.892 | 0.373:0341 | 0.943 | 0.14Tz0005
deep learning methods on six in-distribution SentBERT | 0.788 | 0.292:0062 | 0.886 | 0.31420060 | 0.992 [ 0.629:0.143 | 0.822 | 0.436:0081 | 0.860 | 0.485:006
datasets. It even outperforms BERT on all five BERT 0.838 | 0.240:0060 [ 0.879 | 0.386:0099 | 0.979 | 0.409:00s8 | 0.897 [ 0.396:0096 | 0.952 | 0.221:0041
00D datasets, including four low-resource lan-| mBERT | 0.835 | 0.229:0066 | 0.874 | 0.324z0071 | 0983 | 0.4652004s | 0.906 | 0.5580.169 | 0.953 | 0.282:0060
guages. Our method also excels in the few-shot. gzip (ours) 0.891 | 0.458:006s 0.905 0.541:00s6 0.998 0.652:004 | 0.927 0.627:0072 | 0.975 0.649:0061
setting, where labeled data are too scarce to| ) ) o .
train DNNs effectively. Code is available at Table 5: Test accuracy on OOD datasets with 95% confidence interval over five trials in five-shot setting.
B ————
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Features vs Similarities

® Two perspectives on building machine learning systems:
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Features vs Similarities

® Two perspectives on building machine learning systems:

@ Feature-based: describe object properties via features and build models
that use them.

v everything that we have seen so far, recall the feature map ¢(x)
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Features vs Similarities

® Two perspectives on building machine learning systems:
@ Feature-based: describe object properties via features and build models
that use them.

v everything that we have seen so far, recall the feature map ¢(x)

@ Similarity-based: don't describe objects by their properties; rather,
build systems based on comparing objects to each other

V' k nearest neighbors (previous slide); Gaussian processes; kernel
methods (next)
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Features vs Similarities

® Two perspectives on building machine learning systems:
@ Feature-based: describe object properties via features and build models
that use them.

v everything that we have seen so far, recall the feature map ¢(x)

@ Similarity-based: don't describe objects by their properties; rather,
build systems based on comparing objects to each other

V' k nearest neighbors (previous slide); Gaussian processes; kernel
methods (next)

® Sometimes the diference is unclear
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Kernels

¢ Consider the set of objects X (no assumptions)
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® A kernel is a similarity function x : X x X — R between pairs of
objects.

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 102 /107



Kernels

¢ Consider the set of objects X (no assumptions)

® A kernel is a similarity function x : X x X — R between pairs of
objects.

® A valid kernel is symmetric
K (xi, Xj) = k(x5 X;)

and positive semi-definite (next)
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Kernels

¢ Consider the set of objects X (no assumptions)

® A kernel is a similarity function x : X x X — R between pairs of
objects.

® A valid kernel is symmetric
K (xi, Xj) = k(x5 X;)
and positive semi-definite (next)
® Given set of objects {xi, ..., xy }, the Gram matrix K is the N x N

matrix defined as:
Ki.j = k(xi, x})
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Kernels

¢ Consider the set of objects X (no assumptions)

® A kernel is a similarity function x : X x X — R between pairs of
objects.

® A valid kernel is symmetric
K (xi, Xj) = k(x5 X;)
and positive semi-definite (next)
® Given set of objects {xi, ..., xy }, the Gram matrix K is the N x N

matrix defined as:
Ki.j = k(xi, x})

® The kernel is positive semi-definite if, for all N € N, all sets of N
objects {x1,...,xy} C X, and any v € RN

vKv' >0
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Kernels

® Mercer's Theorem: for any kernel x : X x X — R, there exists some
feature mapping ¢ : X — X, such that

K(xi, %) = d(xi) - P(x;)
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Kernels

® Mercer's Theorem: for any kernel x : X x X — R, there exists some
feature mapping ¢ : X — X, such that

K(xi, %) = d(xi) - P(x;)

® A kernel corresponds to some a mapping in some implicit feature
space!
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Kernels

® Mercer's Theorem: for any kernel x : X x X — R, there exists some
feature mapping ¢ : X — X, such that

K(xi, %) = d(xi) - P(x;)

® A kernel corresponds to some a mapping in some implicit feature
space!

o Kernel trick: take a feature-based model (SVMs, logistic); replace
explicit feature computations with kernel evaluations!

'wqu')(x E g ajyk(x,x;) for some o, € R
i=1 yey
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Kernels

® Mercer's Theorem: for any kernel x : X x X — R, there exists some
feature mapping ¢ : X — X, such that
k(xi, %) = @(xi) - P(x))
® A kernel corresponds to some a mapping in some implicit feature
space!
o Kernel trick: take a feature-based model (SVMs, logistic); replace
explicit feature computations with kernel evaluations!
N
w, T P(x) = Z Z ajyk(x,x;) for some o, € R
i=1yeY
® Extremely popular idea in the 1990-2000s!
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Kernel Trick lllustration
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Kernel Trick lllustration

® Take X = R?; feature map: o([x1, x2]) = [x12, V2x1 xo, x22] c R3
600 9(z) = [ Vo 2] 12 Vin 2 A
= X} 72 4 2x1z1%020 + X3 23

= (ax]- [z, 2])°
= k(x,z)
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Kernel Trick lllustration

® Take X = R?; feature map: o([x1, x2]) = [x12, V2x1 xo, x22] c R3
600 9(z) = [ Vo 2] 12 Vin 2 A
= X12 212 + 2x121X020 + x22 222
= (ax]- [z, 2])?

= k(x,z)

® The inner product in R3 is a function of the inner product in R?
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Kernels = Tractable Non-Linearity

® A linear classifier in a higher dimensional feature space is a non-linear
classifier in the original space
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® A linear classifier in a higher dimensional feature space is a non-linear
classifier in the original space

® Computing a non-linear kernel is often better computationally than
calculating the corresponding dot product in the high dimension
feature space
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® Computing a non-linear kernel is often better computationally than
calculating the corresponding dot product in the high dimension
feature space

® Many models can be “kernelized” — learning algorithms generally
solve the dual optimization problem (also convex)
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Kernels = Tractable Non-Linearity

A linear classifier in a higher dimensional feature space is a non-linear
classifier in the original space

® Computing a non-linear kernel is often better computationally than
calculating the corresponding dot product in the high dimension

feature space

® Many models can be “kernelized” — learning algorithms generally
solve the dual optimization problem (also convex)

® Drawback: quadratic dependency on dataset size
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Kernels = Tractable Non-Linearity

A linear classifier in a higher dimensional feature space is a non-linear
classifier in the original space

® Computing a non-linear kernel is often better computationally than
calculating the corresponding dot product in the high dimension
feature space

® Many models can be “kernelized” — learning algorithms generally
solve the dual optimization problem (also convex)

® Drawback: quadratic dependency on dataset size
e Kernels decouple the learning algorithm (e.g., logistic, SVM) from the

nature of the data: strings, images, sets, signals, graphs, probability
distributions, ...

M. Figueiredo and A. Martins (IST) Linear Models LxMLS 2023 105 /107



Conclusions

® | inear models are a broad class including the well-known perceptron,
logistic regression, support vector machines

® They all involve manipulating weights and features

® They either lead to closed-form solutions or convex optimization
problems (no local minima)

® Stochastic gradient descent is useful if training datasets are large

® However, linear models rely on specification of feature representations

® Tomorrow: methods that learn internal representations
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Recommended Books

PATTERNS! Learning Theory from First Principles
PREDICTIONS, -
AND ACTIONS Avit 18, 20
Foundations of Machine Learning
Francis Bach

francis.bachinria.fr

https://www.di.ens.fr/~fbach/Itfp_book.pdf

\ Machine Learning
i Anlintroduction

Moritz Hardt Kevin P. Murphy
Benjamin Recht

https://mistory.org/ https://probml.github.io/pmi-book/book1.html
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Recommended Books

PATTERNS; Learning Theory from First Principles
PREDICTIONS, DRAFT
AND ACTIONS A 19,2028
Foundations of Machine Learning

Francis Bach

francis.bach@inria. fr
https://www.di.ens.fr/~fbach/tfp_book.pdf Probabilistic
Machine Learning

Moritz Hardt Kevin P. Murphy
Benjamin Recht
https://mistory.org/ https://probml.github.io/pmi-book/book1.html

Thank you!  Questions?
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