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• We can learn models that makes predictions extremely well in 

high-dimensional settings. 


• In particular, there are huge progresses in natural processing 

language, computer vision, and reinforcement learning.
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Recent Breakthroughs in AI
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Recent Breakthroughs in AI
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Current Challenges in AI



Judea Pearl — Causality
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Director of the Cognitive Systems Laboratory at 
the University of California, Los Angeles.

In 2011, he won the A. M. Turing Award (the 
highest distinction in computer science and a 
$250,000 prize)

“for fundamental contributions to artificial 
intelligence through the development of a 
calculus for probabilistic and causal reasoning.” 
— Association for Computing Machinery (ACM)

“Deep learning has instead given us machines with truly 
impressive abilities but no intelligence. The difference is 
profound and lies in the absence of a model of reality.”

 — The Book of Why: The New Science of Cause and Effect 

https://amturing.acm.org/award_winners/pearl_2658896.cfm


Yoshua Bengio — Deep Learning
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Professor at the University of Montreal, and the 
Founder and Scientific Director of Mila – Quebec 
AI Institute

“Causality is very important for the next steps of progress of 
machine learning,” —  interview with IEEE Spectrum, 2020. 

In 2018, he won the A. M. Turing Award, with 
 Geoffrey Hinton, and Yann LeCun

“for conceptual and engineering breakthroughs that 
have made deep neural networks a critical 
component of computing.”
 — Association for Computing Machinery (ACM)

https://spectrum.ieee.org/tech-talk/artificial-intelligence/machine-learning/yoshua-bengio-revered-architect-of-ai-has-some-ideas-about-what-to-build-next
https://spectrum.ieee.org/understanding-causality-is-the-next-challenge-for-machine-learning
https://amturing.acm.org/award_winners/bengio_3406375.cfm


Guido W. Imbens & Joshua D. Angrist
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In 2021, they won the Nobel Prize 
in Economics (about $1 million)

“for their methodological contributions 
to the analysis of causal relationships”

Professor of Applied 
Econometrics in 

Stanford University

Guido W. Imbens

Professor of Economics 
at the Massachusetts 
Institute of Technology

Joshua D. Angrist

https://www.nobelprize.org/prizes/economic-sciences/2021/summary/
https://www.nobelprize.org/prizes/economic-sciences/2021/summary/


Why causality is so important?
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Causality is an essential component in the development of the new generation of Artificial Intelligence 
methods, allowing important capabilities such as


Explainability: provides a better understanding of the underlying mechanisms, e.g., learning 
directionality and confounding through causal structure learning.


Reasoning: can determine the effect of unrealized interventions rather than just predicting an 
outcome (i.e., can distinguish between association and causation).    

Fairness: captures and disentangles any mechanisms of discrimination that may be present, 
including direct, indirect-mediated, and indirect-confounded. 


Generalizability: allows the transportability of causal effects across different domains.


Data Fusion: provides language and theory to cohesively combine prior knowledge and data 
from multiple and heterogeneous studies. 



Causal Data Science

Goal is to develop language, criteria, and algorithms for: 


• Data-Fusion: cohesively combining heterogenous datasets, 

• Causal Inference: inferring the effects of interventions, and

• Decision-Making: making robust and generalizable decisions.

99
http://causalfusion.net
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Causality Theory by Judea Pearl
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Causality Theory by Judea Pearl
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https://causality101.net/



Prediction vs Reasoning
Statistical Association vs Causation
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Predictive Tasks
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Correlation between seriousness of fire 
and number of firefighters in action
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X: Number of Firefighters in Action
1 10 15 25

y = 2.3x - 1
R² = 0.92

9

5
32

P(Y = y |X = x) ≠ P(Y = y)

Task: Can I guess how serious/big is the fire by the number of firefighters in action?

Conclusion: The seriousness of fire 
increases with the number of firefighters.

: Number of firefighters in action

: Seriousness of fire

X
Y

Yes!

  is a good predictor of ρXY ≠ 0 ⟹ X Y

Observational 
Probability Distribution



Prediction  Decision-Making / Reasoning?⇒
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Conclusion: The size of the fire increases with the number of firefighters.

In other words, the fewer the firefighters, the smaller the fire.

Should we decrease the number of firefighters to reduce the fire?



Effect of Interventions
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In other words,  is not caused by Y X
 is not a function of Y X: Number of firefighters in action


: Seriousness of fire
X
Y

{X = fX(Y, UX, UXY)
Y = fY(UY, UXY)

Underlying Model 



Effect of Interventions
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In other words,  is not caused by Y X

Conclusion: we cannot change the size of the fire by 
changing the number of firefighters.

 is not a function of Y X: Number of firefighters in action

: Seriousness of fire

X
Y

{X = fX(Y, UX, UXY)
Y = fY(UY, UXY)

Underlying Model 

P(Y = y |do(X = x)) = P(Y = y)
Interventional 

Probability Distribution

The action/intervention on ,   
is independent of 

X do(X = x)
Y

Changing  won’t change the value of X YX = x



Structural Causal Model (SCM)
EXPLAINABILITY AND THE DATA GENERATING MODEL
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Structural Causal Model (SCM)
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Definition:  A structural causal model  (or, data generating model) is a tuple 
, where


• : are endogenous variables


• : are exogenous variables 


• : are functions determining , i.e., , 
 where  are endogenous causes (parents) of  and  are 
exogenous causes of .


•  is the probability distribution over .


Assumption:   is recursive, i.e., there are no feedback (cyclic) mechanisms.

ℳ
⟨V, U, ℱ, P(u)⟩

V = {V1, …, Vn}

U = {U1, …, Um}

ℱ = {f1, …, fn} V vi ← fi(pai, ui)
Pai ⊆ V Vi Ui ⊆ U

Vi

P(U) U

ℳ



ℳx =

V = {X, Y}
U = {UXY, UX, UY}

ℱ = {X = x
Y = fY(x, UY, UXY)

P(U)

Post-Interventional / 
Interventional SCM

Effect of Interventions in SCMs
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Pre-Interventional/
Observational SCM

ℳ =

V = {X, Y}
U = {UXY, UX, UY}

ℱ = {X = fX(UX, UXY)
Y = fY(X, UY, UXY)

P(U)

Can we predict better the value of  after 
making an intervention ?

Y
do(X = x)

 is a cause of  X Y s.t. ∃x Pℳx
(Y = y) ≠ P(Y = y) ⟹P(Y = y |X = x) ≠ P(Y = y) ⟹

Can we predict better the value of  after 
observing que ?

Y
X = x

 is correlated to  X Y

do(X = x)

  P(V) ≐ Pℳ(V) P(V |do(X = x)) ≐ Pℳx
(V)≠

Observational 
Distribution

Interventional 
Distribution



Structural Equation Model (SEM)
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• Linear functions 
• Normal distribution 
• Markovianity / Causal Sufficiency: 

Error terms in  are independent of 
each other (diagonal covariance matrix).

Uℳ =

V = {X, Y, Z}
U = {ϵX, ϵY, ϵZ}

ℱ =
Z = βZ0 + ϵZ

X = βX0 + βXZZ + ϵX

Y = βY0 + βYZZ + βYXX + ϵY)

U ∼ 𝒩 0, Σ =
σX 0 0
0 σY 0
0 0 σZ

Full specification of an SCM requires parametric and distributional assumptions. 
Estimation of such models usually requires strong assumptions (e.g., Markovianity).



SCM: Encoder of Functional Knowledge
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The knowledge required to fully specify an SCM is usually unavailable in practice.

Is it possible to identify the effect of interventions from observational data 
without fully specifying the SCM (i.e., in a non-parametric fashion)? 

Yes, with structural knowledge encoded as a causal diagram!👩🏫



Encoding Structural Causal Knowledge
Acyclic Directed Acyclic Graph (ADMG)  

Causal Diagrams

22



Causal Diagram: Encoder of Structural Knowledge
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An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

Induced Causal Diagram

C

A

B

Background 
Laughing

Funny JokeSelf-
Deprecation

ℳ =

V = {A, B, C}
U = {UA, UB, UC, UAB}

ℱ =
A ← fA(UAB, UA)
B ← fB(UAB, UB)
C ← fC(A, B, UC)

P(U)



Causal Diagram: Encoder of Structural Knowledge
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Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

Induced Causal Diagram

C

A

B

Background 
Laughing

Funny JokeSelf-
Deprecation

Environment 
Culture

UAB
UB

UC

An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

UA
ℳ =

V = {A, B, C}
U = {UA, UB, UC, UAB}

ℱ =
A ← fA(UAB, UA)
B ← fB(UAB, UB)
C ← fC(A, B, UC)

P(U)



Causal Diagram: Encoder of Structural Knowledge
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An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


 if the corresponding  are correlated or  ,  share some argument .

ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

Vi ⤎⤏ Vj Ui, Uj ∈ U fi fj U ∈ U

Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

Induced Causal Diagram

C

A

B

Background 
Laughing

Funny JokeSelf-
Deprecation

Environment 
Culture

UAB
UB

UC

UA
ℳ =

V = {A, B, C}
U = {UA, UB, UC, UAB}

ℱ =
A ← fA(UAB, UA)
B ← fB(UAB, UB)
C ← fC(A, B, UC)

P(U)



Causal Diagram: Encoder of Structural Knowledge
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An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


 if the corresponding  are correlated or  ,  share some argument .

ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

Vi ⤎⤏ Vj Ui, Uj ∈ U fi fj U ∈ U

Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

Induced Causal Diagram

C

A

B

Background 
Laughing

Funny JokeSelf-
Deprecation

Environment 
Culture

UB

UC

UA
ℳ =

V = {A, B, C}
U = {UA, UB, UC, UAB}

ℱ =
A ← fA(UAB, UA)
B ← fB(UAB, UB)
C ← fC(A, B, UC)

P(U)



Causal Diagram: Encoder of Structural Knowledge
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An SCM  induces a causal diagram such that, for every :


, if  appears as argument of .


 if the corresponding  are correlated or  ,  share some argument .

ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

Vi ⤎⤏ Vj Ui, Uj ∈ U fi fj U ∈ U

Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

Induced Causal Diagram

C

A

B

Background 
Laughing

Funny JokeSelf-
Deprecation

Environment 
Culture

ℳ =

V = {A, B, C}
U = {UA, UB, UC, UAB}

ℱ =
A ← fA(UAB, UA)
B ← fB(UAB, UB)
C ← fC(A, B, UC)

P(U)
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{B} {W} {B, W}{}:Z
Does  d-separates  and  ?Z X Y

A set  d-separates  and  if and only if   blocks every path between a node in  and a node in .Z X Y Z X Y

D-Separation and Implied Conditional Independencies

We have that , , and , but (X ⊥⊥ Y)G (X ⊥⊥ Y |B)G (X ⊥⊥ Y |W)G (X ⊥⊥ Y |B, W)G

Global Markov property: (X ⊥⊥ Y |Z)G ⇒ (X ⊥⊥ Y |Z)P
D-separations in  imply 

conditional independencies in 
G

P

Definition (d-separation): A path  in a causal diagram  is said to be d-separated (or blocked) by 
a set of variables  if and only if  contains an inactive triplet in it.

p G
Z p

Definition (inactive):  A triplet  is said to be inactive relative to a set  if the middle node :

1. Is a non-collider and is in ; or

2. Is a collider and neither it nor any of its descendants in .

⟨Vi, Vm, Vj⟩ Z Vm

Z
Z

YX B W



Graphically Explaining Causes and Predictors
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V

Markov Blanket  (MB) of : the bidirected connected component 
(district) of  (excluding  itself) and the parents of the district of , i.e.: 


V
V V V

mbG(V) = disG(V) ∪ PaG(disG(V))∖{V}

Predictors == MB

Causes (direct/indirect)



Randomized Experiments
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Randomized Experiments / Control Trials (e.g. RCT) allow the identification of 
causal effects by leveraging randomization of the treatment assignment. 

RCT

UXY

YX

x0

UXY

YX

x1

YX

UXYG

GX

GX



Pearl’s Inferential Hierarchy 
Associational vs Interventional vs Counterfactual
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What is induced by the SCM?
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ℳ =

V = {X, Y}
U = {UXY, UX, UY}

ℱ = {X = fX(UX, UXY)
Y = fY(X, UY, UXY)

P(U)

Observational SCM Interventional SCM

ℳx =

V = {X, Y}
U = {UXY, UX, UY}

ℱ = {X = x
Y = fY(x, UY, UXY)

P(U)

Observational 
Data

Pℳ(V)
Observational 
Distribution

YX

UXY

Observational

Causal Diagram

Interventional 
Data

Pℳx
(V) ≐

P(V |do(x))
Interventional 
Distribution

do(X = x)

Interventional

Causal Diagram

YX
x

UXY

Loss of Information Loss of Information
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Reality Structural Knowledge Data

 X     Z     Y

∅

 ̂P(Y |X = x)
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N

N

 = ?̂P(Y |do(X = x))
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ℳ =

V = {X, Y}
U = {UXY, UX, UY}

ℱ = {X ← fX(UX, UXY)
Y ← fY(X, UY, UXY)

P(U)

Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

ℳx =

V = {X, Y}
U = {UXY, UX, UY}

ℱ = {X ← x
Y ← fY(x, UY, UXY)

P(U)

🤷

Causal Diagram

YX

G

YX
x

GX

33
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Potential SCMsPotential Causal Diagrams

YX
G1
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YX
G2

YX
G3

YXG4

YX
G5

ℳ11 = ⟨V, U1, ℱ11, P11(u1)⟩

ℳ1k1
= ⟨V, U1, ℱ1k1

, P1k1
(u1)⟩

ℳ21 = ⟨V, U2, ℱ21, P21(u2)⟩

ℳ2k2
= ⟨V, U2, ℱ2k2

, P2k2
(u2)⟩

⋯
⋯

ℳ31 = ⟨V, U3, ℱ31, P31(u3)⟩

ℳ3k3
= ⟨V, U3, ℱ3k3

, P3k3
(u3)⟩

⋯

ℳ41 = ⟨V, U4, ℱ41, P41(u4)⟩

ℳ4k4
= ⟨V, U4, ℱ4k4

, P4k4
(u4)⟩

⋯

ℳ51 = ⟨V, U5, ℱ51, P51(u5)⟩

ℳ5k5
= ⟨V, U5, ℱ5k5

, P5k5
(u5)⟩

⋯

 X     Z     Y

 P(Y |X = x)^

D
N

N

Encoded Knowledge / Assumptions
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YX
G1
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YX
G2

YX
G3

YXG4

YX
G5

ℳ11 = ⟨V, U1, ℱ11, P11(u1)⟩

ℳ1k1
= ⟨V, U1, ℱ1k1

, P1k1
(u1)⟩

ℳ21 = ⟨V, U2, ℱ21, P21(u2)⟩

ℳ2k2
= ⟨V, U2, ℱ2k2

, P2k2
(u2)⟩

⋯
⋯

ℳ31 = ⟨V, U3, ℱ31, P31(u3)⟩

ℳ3k3
= ⟨V, U3, ℱ3k3

, P3k3
(u3)⟩

⋯

ℳ41 = ⟨V, U4, ℱ41, P41(u4)⟩

ℳ4k4
= ⟨V, U4, ℱ4k4

, P4k4
(u4)⟩

⋯

ℳ51 = ⟨V, U5, ℱ51, P51(u5)⟩

ℳ5k5
= ⟨V, U5, ℱ5k5

, P5k5
(u5)⟩

⋯

 X     Z     Y

 P(Y |X = x)^

D
N

N

Encoded Knowledge / Assumptions

Multiple neural nets fit the data equally well, 
leading to different causal explanations! 




      Layer Task / Language Typical Question Examples

Ladder of Causation

36

Counterfactual

 P(yx | x’, y’) 

What if I had acted 
differently?

Was it the aspirin 
that stopped my 

headache?

Associational

 P(y | x) 

What if I see?

How would seeing 
X change my belief 

in Y?


What does a 
symptom tell us 

about the 
disease?

Interventional

 P(y | do(x), c)

What if I do X? 

What would Y be if 
I intervene on X?

Will my headache 
be cured if I take 

aspirin?

* Book of Why & On Pearl’s Hierarchy and the Foundations of Causal Inference,   
E. Bareinboim, J. Correa, D. Ibeling, T. Icard, in press. https://causalai.net/r60.pdf 

ML- (Un)Supervised 
(Decision trees, 
 Deep nets, …)

ML- Reinforcement

(Causal Bayes Net)

Structural  
Causal  
Model

1.
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ee
in

g
2.

 D
oi

ng
3.

 Im
ag

in
in

g 

https://causalai.net/r60.pdf


      Layer Task / Language Typical Question Examples

Ladder of Causation

37

Counterfactual

 P(yx | x’, y’) 

What if I had acted 
differently?

Was it the aspirin 
that stopped my 

headache?

Associational

 P(y | x) 

What if I see?

How would seeing 
X change my belief 

in Y?


What does a 
symptom tell us 

about the 
disease?

Interventional

 P(y | do(x), c)

What if I do X? 

What would Y be if 
I intervene on X?

Will my headache 
be cured if I take 

aspirin?

* Book of Why & On Pearl’s Hierarchy and the Foundations of Causal Inference,   
E. Bareinboim, J. Correa, D. Ibeling, T. Icard, in press. https://causalai.net/r60.pdf 

ML- (Un)Supervised 
(Decision trees, 
 Deep nets, …)

ML- Reinforcement 

(MDPs, POMDPs, 

Causal Bayes Net)

Structural  
Causal  
Model

1.
 S

ee
in

g
2.

 D
oi

ng
3.

 Im
ag

in
in

g 
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  Cross-layer inferences: 


most of the inferences are 
 



most of the available data 
 



Doing


Seeing


https://causalai.net/r60.pdf
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Potential SCMsPotential Causal Diagrams

YX
G1
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YX
G2

YX
G3

YXG4

YX
G5

ℳ11 = ⟨V, U1, ℱ11, P11(u1)⟩

ℳ1k1
= ⟨V, U1, ℱ1k1

, P1k1
(u1)⟩

ℳ21 = ⟨V, U2, ℱ21, P21(u2)⟩

ℳ2k2
= ⟨V, U2, ℱ2k2

, P2k2
(u2)⟩

⋯
⋯

ℳ31 = ⟨V, U3, ℱ31, P31(u3)⟩

ℳ3k3
= ⟨V, U3, ℱ3k3

, P3k3
(u3)⟩

⋯

ℳ41 = ⟨V, U4, ℱ41, P41(u4)⟩

ℳ4k4
= ⟨V, U4, ℱ4k4

, P4k4
(u4)⟩

⋯

ℳ51 = ⟨V, U5, ℱ51, P51(u5)⟩

ℳ5k5
= ⟨V, U5, ℱ5k5

, P5k5
(u5)⟩

⋯

ℒ1 ℒ2 ℒ3

Causal Hierarchy Theorem : to answer questions in 
layer i, we need information from layer i or higher. 


 X     Z     Y

 P(Y |X = x)^

D
N

N



Association vs Causation
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https://xkcd.com/925/ - Creative Commons Attribution-NonCommercial 2.5 License.

Will we be able to decide the true relationship just by “seeing” more data? 

orCancerMobile 
Phone CancerMobile 

Phoneor CancerMobile 
Phone ?CancerMobile 

Phoneor
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Causal Effect Identification
Graphical Criteria, Do-Calculus, and ID-Algorithm



Causal Effect

41

The causal effect of a (set of) treatment variable(s)  on a (set of) outcome variable(s)  is a quantity 
derived from  that tells us how much  changes due to an intervention .

X Y
P(Y |do(X)) Y do(X = x)

• Average Treatment Effect (ATE) for discrete treatments:


,


defined for two treatment levels  and  of . 

𝔼[Y |do(X = x′￼)] − 𝔼[Y |do(X = x)]

x′￼ x X

Examples:

• Average Treatment Effect (ATE) for continuous treatments, 


, for all and .
∂𝔼[Yi |do(Xj = xj)]

∂xj
Yi ∈ Y, Xj ∈ X

Jacobian of , where 

, 

and  is the space of all possible values 
that  might take on

𝔼[Y |do(X = x)]

𝔼[Y |do(X = x)] = ∫Ωy

yP(y |do(x))dy

ΩY
Y

where  𝔼[Y |do(X = x)] = ∑
y∈ΩY

yP(y |do(x))

The derivative shows the rate of change of  w.r.t. Y do(X = x)



Classical Causal Effect Identification
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Inference

Engine

3 Probability Distributions
P(x, m, y)

1 Query
P(y |do(x))

Solution
yes / no

Available 
Distributions

Interventional 
Distribution

👍

P(y |do(x)) = ∑
m

P(m |x) ∑
x′￼

P(y |m, x′￼)P(x′￼)

2 Causal Contraints

YX M

• Tian, J. and Pearl, J. A General Identification Condition for Causal Effects. In Proceedings of the Eighteenth National 
Conference on Artificial Intelligence (AAAI 2002), pp. 567–573, Menlo Park, CA, 2002. AAAI Press/MIT Press.

Observational Distribution

Structural knowledge 
available



YX

Z

The Effect Identification Problem

43

Causal Effect Identifiability: The causal effect of a (set of) treatment variable(s)  on a (set of) outcome 
variable(s)  is said to be identifiable from a causal diagram  and the probability of the observed variables 

 if the interventional distribution  is uniquely computable, i.e., if for every pair of SCMs  and 
 that induce  and ,  = .

X
Y G

P(V) P(Y |do(X)) ℳ1
ℳ2 G Pℳ1(V) = Pℳ2(V) = P(V) > 0 Pℳ1(Y |do(X)) = Pℳ2(Y |do(X)) P(Y |do(X))

In words, causal effect identifiability means that, no matter the form of true SCM, 
for all models  agreeing with , they also agree in . ℳ ⟨G, P(V)⟩ P(y |do(x))

 P(X, Y, Z)True Model ℳ1k1
= ⟨V, U1, ℱ1k1

, P1k1
(u1)⟩

ℳ11 = ⟨V, U1, ℱ11, P11(u1)⟩

⋯  P(Y |do(X))

(Observed) (Inferred)(Unobserved)



The Effect Identification Problem
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Causal Effect Identifiability: The causal effect of a (set of) treatment variable(s)  on a (set of) outcome 
variable(s)  is said to be identifiable from a causal diagram  and the probability of the observed variables 

 if the interventional distribution  is uniquely computable, i.e., if for every pair of SCMs  and 
 that induce  and ,  = .

X
Y G

P(V) P(Y |do(X)) ℳ1
ℳ2 G Pℳ1(V) = Pℳ2(V) = P(V) > 0 Pℳ1(Y |do(X)) = Pℳ2(Y |do(X)) P(Y |do(X))

In words, causal effect identifiability means that, no matter the form of true SCM, 
for all models  agreeing with , they also agree in . ℳ ⟨G, P(V)⟩ P(y |do(x))

Identifiable Non-Identifiable



Tools for Causal Identification
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1. Truncated Factorization / G-computation formula


2. Graphical criteria 

1. Parent adjustment

2. Backdoor Adjustment 

3. Front-door Adjustment


3. Do-Calculus (a.k.a Causal Calculus)

4. Identify Algorithm (a.k.a. ID algorithm)

Jin Tian. Studies in causal reasoning and learning. PhD thesis, University of California, Los Angeles, 2002.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press, New York. http://
dx.doi.org/10.1017/CBO9780511803161

Markovian 
Models

A few interesting  
(albeit still constrained)  

scenarios 

General  
Semi-Markovian   

Scenarios 

http://dx.doi.org/10.1017/CBO9780511803161
http://dx.doi.org/10.1017/CBO9780511803161
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Px(v) ≐ P(v |do(x)) = ∏
Vi∈V∖X

Px(vi |pai)
X=x

Truncated Factorization — Markovian: Let  be a causal diagram for the collection  of all 
interventional distributions , for any . It follows that  factorizes as:

G P*
Px(V) X ⊆ V Px(V)

Follows from  
being Markov relative to 

Px(v) ≐ P(v |do(x))
GX

= ∏
Vi∈V∖X

P(vi |pai)
X=x

Markovian SCMs have the modularity 
property, i.e., Px(vi |pai) = P(vi |pai)

• In Markovian Models, the joint interventional distribution (and hence any causal effect) is always identifiable. 

• This factorization is a.k.a “manipulation theorem” (Spirtes et al. 1993) or G-computation (Robins 1986, p. 1423).

Identification in Markovian Models

P(y |do(x)) = ∑
V∖(Y∪X)

∏
Vi∈V∖X

P(vi |pai)
X=x

Causal Effect of  on :X Y



Example: Identifiable Effect
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do(X = x)

P(x, y, z) = P(z)P(x |z)P(y |x, z)

  ⟹ P(y |do(x)) = ∑
z

P(z)P(y |x, z)

YX

ZG

YX

ZGX

P(y |do(x)) = ∑
V∖(Y∪X)

∏
Vi∈V∖X

Px(vi |pai)
X=x

Causal Effect of  on :X Y

P(y, z |do(x)) = P(z)P(y |x, z)
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Let  be a causal graph with no unmeasured parents.


Then, the effect of  on  is given by:


G

X Y

P(y |do(x)) = ∑
pax

P (y |x, pax) P (pax)

Pax = {Z1, Z2}

P(y |do(x)) = ∑
z1,z2

P (y |x, z1, z2) P (z1, z2)
PaX = {Z1, Z2}

X = {X}
Y = {Y}

Proof follows from the truncated 
factorization for Markovian models!

YX

Z3

Z1

Z2

Identification in Semi-Markovian Models
Adjustment over parents:
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YX

Z3

Z1

Z2

Pax = {Z1, Z2}

P(y |do(x)) = ∑
z1,z2

P (y |x, z1, z2) P (z1, z2)
PaX = {Z1, Z2}

X = {X}
Y = {Y}

After conditioning on the parents, the association 
between  and  is only due to the direct path. X Y

Let  be a causal graph with no unmeasured parents.


Then, the effect of  on  is given by:


G

X Y

P(y |do(x)) = ∑
pax

P (y |x, pax) P (pax)

Adjustment over parents:

Identification in Semi-Markovian Models

Proof follows from the truncated 
factorization for Markovian models!
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Pax = {Z2}
Ux = {UX,Z2}

YX

Z3

Z1

Z2
P(y |do(x)) = ?

Identification in Semi-Markovian Models

Let  be a causal graph with no unmeasured parents.


Then, the effect of  on  is given by:


G

X Y

P(y |do(x)) = ∑
pax

P (y |x, pax) P (pax)

Adjustment over parents:
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Pax = {Z2}
Ux = {UX,Z2}

P(y |do(x)) = ∑
z1,z2

P (y |x, z1, z2) P (z1, z2)
YX

Z3

Z1

Z2

Let  be a causal graph with no unmeasured parents.


Then, the effect of  on  is given by:


G

X Y

P(y |do(x)) = ∑
pax

P (y |x, pax) P (pax)

Adjustment over parents:

Identification in Semi-Markovian Models
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Pax = {Z2}
Ux = {UX,Z2}

P(y |do(x)) = ∑
z1,z2

P (y |x, z1, z2) P (z1, z2)
YX

Z3

Z1

Z2

After conditioning on the , the association between 
 and  is also due to a spurious / confounding path. 

{Z1, Z2}
X Y

Let  be a causal graph with no unmeasured parents.


Then, the effect of  on  is given by:


G

X Y

P(y |do(x)) = ∑
pax

P (y |x, pax) P (pax)

Adjustment over parents:

Identification in Semi-Markovian Models



Backdoor Adjustment
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Z = {Z1, Z3}

Let  be a set of treatment variables and  a set of outcome variables in the causal graph .  


If there exists a set  such that:


1. for every  and ,  blocks every path between  and  that has an arrow into , and


2. no node in  is a descendant of a variable  (all variables in  are pre-treatment)


Then,  satisfies the backdoor criterion for  and, then the effect of  on  is given by:


X Y G
Z

X ∈ X Y ∈ Y Z X Y X

Z X ∈ X Z

Z (X, Y) X Y

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

Also known as confounding paths, or 
backdoor paths. 

Judea Pearl. Comment: Graphical models, causality and intervention. Stat. Sci., 8:266–269, 1993.

, a set of covariates, 
admissible for backdoor 

adjustment

Z
Z = {Z1}

X = {X}
Y = {Y} YX

Z3

Z1

Z2



Backdoor Adjustment
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Z = {Z1, Z3}
X = {X}
Y = {Y}

Let  be a set of treatment variables and  a set of outcome variables in the causal graph .  


If there exists a set  such that:


1. for every  and ,  blocks every path between  and  that has an arrow into , and


2. no node in  is a descendant of a variable  (all variables in  are pre-treatment)


Then,  satisfies the backdoor criterion for  and, then the effect of  on  is given by:


X Y G
Z

X ∈ X Y ∈ Y Z X Y X

Z X ∈ X Z

Z (X, Y) X Y

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

Also known as confounding paths, or 
backdoor paths. 

Judea Pearl. Comment: Graphical models, causality and intervention. Stat. Sci., 8:266–269, 1993.

, a set of covariates, 
admissible for backdoor 

adjustment

Z
Z = {Z1}

YX

Z3

Z1

Z2

Z = {Z1, Z2, Z3}



Backdoor Adjustment
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Z = {Z1, Z3}
X = {X}
Y = {Y}

Let  be a set of treatment variables and  a set of outcome variables in the causal graph .  


If there exists a set  such that:


1. for every  and ,  blocks every path between  and  that has an arrow into , and


2. no node in  is a descendant of a variable  (all variables in  are pre-treatment)


Then,  satisfies the backdoor criterion for  and, then the effect of  on  is given by:


X Y G
Z

X ∈ X Y ∈ Y Z X Y X

Z X ∈ X Z

Z (X, Y) X Y

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

Also known as confounding paths, or 
backdoor paths. 

Judea Pearl. Comment: Graphical models, causality and intervention. Stat. Sci., 8:266–269, 1993.

, a set of covariates, 
admissible for backdoor 

adjustment

Z
Z = {Z1}

YX

Z3

Z1

Z2

Z = {Z1, Z2}



Estimation via Propensity Scores
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= ∑
z

P(y, x, z)
P(x |z)

Only if  satisfies the BD criterion, 
Inverse Probability Weighting/

Propensity Score can be used to 
estimate .

Z

P(y |do(x))

Theorem: If the set  satisfies the parent / backdoor criterion w.r.t. the ordered pair 
 in the causal graph , then the causal effect of  on  is identifiable 

(uniquely computable)  and given by: 

Z
(X, Y) G X Y

P(y |do(x)) = ∑
z

P(y |x, z)P(z)

propensity score  
neural nets

= ∑
z

P(y |x, z)P(x |z)P(z)
P(x |z)

56

Backdoor Adjustment  
Conditional Ignorability: 

 

≡

Yx ⊥⊥ X |Z

Z = {Z1, Z3}

Z = {Z1}

YX

Z3

Z1

Z2



Let  be a set of treatment variables and  a set of outcome variables in the causal graph .  

If there exists a set  such that:


1.  intercepts all directed paths from any vertex  to any vertex ;

2. There is no unblocked back-door path from any vertex  to vertex ; and

3. All back-door paths from any vertex  to any vertex  are blocked by .


Then,  satisfies the front-door criterion and, then the effect of  on  is given by:


X Y G
M

M X ∈ X Y ∈ Y
X ∈ X M ∈ M

M ∈ M Y ∈ Y X
M X Y

P(y |do(x)) = ∑
m

P(m |x) ∑
x′￼

P(y |m, x′￼)P(x′￼)

What if backdoor adjustment does not work?

57

Identification via Front-Door Adjustment

YX M

M = {M}

X = {X}
Y = {Y}

YX M1

M2 M = {M1, M2}

YX M YX M



Many scenarios beyond back-door and front-door!
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YX

Z2

Z1

Napkin

And many others…. 

YX

Z2

Z1

M

Unnamed

P(y |do(x)) =
∑z2

P(x, y |z1, z2)P(z2)

∑z2
P(x |z1, z2)P(z2)

P(y |do(x)) = ∑
z2,z3

P(y |x, z1, z2, z3)P(z2)

∑
z1

P(z3 |x, z1)P(z1)

YX

Z

M

Conditional Front-Door

P(y |do(x)) = ∑
m,z

P(m |x, z)

∑
x′￼

P(y |m, x′￼, z)P(x′￼, z)



Do-Calculus (a.k.a. Causal Calculus) 
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Theorem: Let   be any disjoint subjects of variables.


Rule 1 (Insertion/Deletion of Observations)





Rule 2 (Exchange of Actions and Observations)





Rule 3 (Insertion/Deletion of Actions)


X, Y, Z, W

P(y |do(w), x, z) = P(y |do(w), z),  if (Y ⊥⊥ X |Z, W)GW

P(y |do(w), do(x), z) = P(y |do(w), x, z),  if (Y ⊥⊥ X |Z, W)GWX

P(y |do(w), do(x), z) = P(y |do(w), z),  if (Y ⊥⊥ X |Z, W)GW,X(Z)

Graphical conditions implying invariances between  
observational ( ) and interventional ( ) distributionsℒ1 ℒ2

: graph  after removing the incoming arrows into  and the outgoing arrows from ;

: set of -nodes that are not ancestors of any -node in . 

GWX G W X
X(Z) X Z GW

Pearl, 1995



P(y |do(x)) = ∑
m

P(y |do(x), m)P(m |do(x))

= ∑
x′￼

∑
m

P(y |do(m), x′￼)P(x′￼|do(m))P(m |x)

= ∑
m

P(y |do(x), do(m))P(m |do(x))

= ∑
m

P(y |do(x), do(m))P(m |x)

= ∑
m

P(y |do(m))P(m |x)

= ∑
x′￼

∑
m

P(y |m, x′￼)P(x′￼|m)P(m |x)

= ∑
x′￼

∑
m

P(y |m, x′￼)P(x′￼|do(m))P(m |x)

Probability Axioms

Probability Axioms

Rule 2

Rule 2

Rule 3

Rule 3

Rule 2

60

X YM

👍

Identification in Non-Markovian Models



The Identify (ID) Algorithm

61Jin Tian. Studies in causal reasoning and learning. PhD thesis, University of California, Los Angeles, 2002.  Link

https://ftp.cs.ucla.edu/pub/stat_ser/r309.pdf


Causal Effect Identification

62

Inference

Engine

3 Probability Distributions
P(x, m, y)

1 Query
P(y |do(x))

Solution
yes / no

Available 
Distributions

Interventional 
Distribution

👍

P(y |do(x)) = ∑
m

P(m |x) ∑
x′￼

P(y |m, x′￼)P(x′￼)

2 Causal Contraints

YX M

• Tian, J. and Pearl, J. A General Identification Condition for Causal Effects. In Proceedings of the Eighteenth National 
Conference on Artificial Intelligence (AAAI 2002), pp. 567–573, Menlo Park, CA, 2002. AAAI Press/MIT Press.

Observational Distribution

ID-Algorithm and many 
recent generalizations.



More on Causal Effect Identification
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Identification from observational and experimental data: 

Lee, S., Correa, J., and Bareinboim, E. (2019). General identifiability with arbitrary 
surrogate experiments. In Proceedings of the 35th Conference on Uncertainty in 
Artificial Intelligence, volume 35, Tel Aviv, Israel. AUAI Press. Link


Identification of stochastic/soft (and possibly imperfect) interventions:


Correa, J. and Bareinboim, E. (2020). A calculus for stochastic interventions: Causal 
effect identification and surrogate experiments. In Proceedings of the 34th AAAI 
Conference on Artificial Intelligence, New York, NY. AAAI Press. Link


Identification and Estimation via Deep Neural Networks: 


Xia, K., Lee, K.-Z., Bengio, Y., and Bareinboim, E. (2021). The causal-neural 
connection: Expressiveness, learnability, and inference. Advances in Neural Information 
Processing Systems, 34. Link

https://proceedings.mlr.press/v115/lee20b.html
https://doi.org/10.1609/aaai.v34i06.6567
http://www.apple.com


Identification and Estimation via Deep Neural Networks
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Trained Model: 
-NCM 𝒢 ̂M

: Endogenous variables

: Create one for every bidirected clique

: Feedforward neural network for each 

variable in  with parents from the graph

: All 

V ̂U ̂ℱ
V

P( ̂U ) Unif(0,1)

X Z Y

𝒢

True Model: 
SCM ℳ*

Inductive bias based on the causal 
diagram: the enforced constraints 
empower the NCM with the ability to 
solve causal inference tasks.

X Z Y

UXY

UZ

̂fX

̂fZ
̂fY

-Constrained NCM𝒢



Expressiveness of NCMs

65

True Model: 
SCM ℳ*

: Endogenous variables

: Exogenous variables

: Set of functions for variables in 


: Probability distribution over 

V
U
ℱ V
P(U) U

Trained Model: 
NCM ̂M

: Endogenous variables

: Exogenous variables

: Feedforward neural network 

for each variable in 

: All 

V ̂U ̂ℱ
V

P( ̂U ) Unif(0,1)

Thm: For any SCM , there exists an NCM  such that  matches  on all three PCH layers!ℳ* ̂M ̂M ℳ*

L1 L2 L3
̂L1

̂L2 ̂L3

Graph 𝒢

Constraint

Training

?
Query Q = P(Y = 1 ∣ do(X = 1))

This does not imply that the estimated NCM matches the true SCM !̂M ℳ*



Solution: A Neural Algorithm for Identification

66

Maximize and minimize the 
induced causal query  while 

maintaining -consistency (can be 
done with likelihood estimation).

Q
L1

Thm. :  is identifiable if 
and only if they match!

Q

Corol: If  is identifiable, then we 
can compute it by performing the 

mutilation procedure on !

Q

̂M

 The approach is equivalent to established symbolic approaches (Thm. 4), and in identifiable cases, 
the result is an NCM that can serve as a proxy model for estimating the query (Corol. 2).



Can we relax some 
causal assumptions?

67



Causal Effect Identification

68

Inference

Engine

3 Probability Distributions
P(x, m, y)

1 Query
P(y |do(x))

Solution
yes / no

Available 
Distributions

Interventional 
Distribution

👍

P(y |do(x)) = ∑
m

P(m |x) ∑
x′￼

P(y |m, x′￼)P(x′￼)

2 Causal Contraints

YX M

• Tian, J. and Pearl, J. A General Identification Condition for Causal Effects. In Proceedings of the Eighteenth National 
Conference on Artificial Intelligence (AAAI 2002), pp. 567–573, Menlo Park, CA, 2002. AAAI Press/MIT Press.

Observational Distribution

Usually hard to be 
fully specified.



Is a Causal Diagram Still Too Much?
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Causal diagrams are powerful tools that allow for inferences based on weaker 
knowledge (structural invariances) than the encoded in the true, underlying SCM. 

Still, structural knowledge for every pair of variables may not be available in 
many real-world, complex, high-dimensional systems.

Is it possible to relax the assumption of having a fully specified causal diagram 
and still be able to identify a causal effect?

Question: 



Partially Understood Systems

70

YX S
( ) Lisinopril

( ) Sleep Quality 

( ) Stroke

X
S
Y

A causal diagram cannot be specified given the existing knowledge!

A DCB

How can we identify  in this case?P(y |do(x))

) Age

( ) Blood pressure

( ) Comorbidities

( ) Medication history

A
B
C
D



Cluster DAGs (C-DAGs)
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YX S
( ) Lisinopril

( ) Sleep Quality 

( ) Stroke

X
S
Y

A DCB

A cluster DAG  over a given partition  of  is compatible with a causal 
diagram  over  if for every :


•   if  and  such that 


•  if  and  such that 


and  contains no cycles.

GC C = {C1, …, Ck} V
G V Ci, Cj ∈ C

Ci → Cj ∃Vi ∈ Ci Vj ∈ Cj Vi → Vj

Ci ⤎⤏ Cj ∃Vi ∈ Ci Vj ∈ Cj Vi ⤎⤏ Vj

GC

{{X}, {S}, {Y}, {A, B, C, D}}

) Age

( ) Blood pressure

( ) Comorbidities

( ) Medication history

A
B
C
D



Partially Understood Systems
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YX S

A DCB

YX S

A DCB

YX S

A DCB

Can we infer causal effects without deciding 
on any one particular causal diagram?

Many causal diagrams are compatible with 
the current knowledge!

YX S

A DCB

Can be seen as an equivalence class of causal 
diagrams, where any relationships are allowed among 

the variables within each cluster. 

⋯



C-DAG: Flexible Encoder of Model Assumptions

73

One cluster of size N  
(no knowledge)

YX S

A DCB

…

(partial knowledge - C-DAG)

YX S

A D
CB

N clusters of size one 
(full knowledge - DAG)

YX S

A D
CB



C-DAG: Flexible Encoder of Model Assumptions
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One cluster of size N  
(no knowledge)

YX S

A DCB

…

(partial knowledge - C-DAG)

YX S

A D
CB

N clusters of size one 
(full knowledge - DAG)

YX S

A D
CB

Clusters are manually created by domain experts:


- due to lack of knowledge, consensus, or interest on the internal causal structure;


- to communicate relationships among semantically meaningful entities.



Identification of Causal Effects from C-DAGs
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Inference

Engine

3 Data
P(x, m1, m2, m3, y)

1 Query
P(y |do(x))

Solution
yes / no

P(y |do(x)) = ∑
m123

P(m123 |x) ∑
x′￼

P(y |m123, x′￼)P(x′￼)

2 C-DAG

YX M1,2,3

Available 
(Observational) 

Distribution

Inferred 
(Interventional) 

Distribution 👍

Anand, T. V., Ribeiro A. H., Tian, J., & Bareinboim, E. (2023). Causal Effect Identification in Cluster DAGs. In 
Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence.



Effect Identifiabiliy given a C-DAG
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An effect identifiable in a C-DAG  is identifiable in all compatible 
causal diagrams  using the same identification formula!

GC
G

YX

GC

YX

Z2Z1G2

G1

YX

Z2Z1

P(y |do(x)) =

∑
z1,z2

P(y |x, z1, z2)P(z1, z2)

P(y |do(x)) =

∑
z1,z2

P(y |x, z1, z2)P(z1, z2)

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

Z1 Z2



Effect Non-Identifiabiliy given a C-DAG
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An effect is not identifiable in a C-DAG  if there exists at least one 
compatible causal diagrams  in which the effect is not identifiable.

GC
G

YX

Z1 Z2

GC

YX

Z2Z1G2

G1

YX

Z2Z1

 is not identifiableP(y |do(x))

 is 
not identifiable
P(y |do(x))

P(y |do(x)) =

∑
z1,z2

P(y |x, z1, z2)P(z1, z2)



Beyond Backdoor Adjustment
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P(y |do(x)) = ∑
m

P(m |x) ∑
x′￼

P(y |m, x′￼)P(x′￼)

Again, an effect identifiable in a C-DAG  is identifiable in all 
compatible causal diagrams  using the same identification formula!

GC
G

YX

Z1 Z2

GC P(y |do(x)) = ∑
m1,m2

P(m1, m2 |x)

∑
x′￼

P(y |m1, m2, x′￼)P(x′￼)

M1
M2

P(y |do(x)) = ∑
m1,m2

P(m1, m2 |x)

∑
x′￼

P(y |m1, m2, x′￼)P(x′￼)

G1

YX
M1

Z2Z1

M2

G2

YX M2

Z2Z1

M1



What if no knowledge is available?

79

Can we learn a causal diagram  from observational data?𝒢

In non-parametric settings, we can’t learn the true causal diagram, but algorithms 
such as the Fast Causal Inference (FCI) can learn a graphical representation of its 
Markov equivalence class!

Causal Discovery:

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent 
confounders and selection bias. Artificial Intelligence, 172(16):1873–1896. Link

http://dx.doi.org/10.1016/j.artint.2008.08.001


Fast Causal Inference (FCI) 

A constraint-based causal discovery algorithms that 
accounts for unobserved confounders

80

Causal Discovery



Causal Discovery
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Assumptions: the observed distribution is the marginal of a distribution  that satisfies the 
following conditions for the true causal diagram  (an ADMG): 

P
G

1) I-Map / Semi-Markov Condition:  for any disjoint subsets ,  and :

.

X Y Z
(X ⊥⊥ Y |Z)G ⇒ (X ⊥⊥ Y |Z)P

2)   Faithfulness Condition:  for any disjoint subsets ,  and : 

.

X Y Z
(X ⊥⊥ Y |Z)P ⇒ (X ⊥⊥ Y |Z)G

Note: Estimation of the marginal distribution from limited data requires and additional assumption: 

3) An adequate conditional independence test is available.

Goal: Learn a graphical representation of the Markov Equivalence Class from observational data.

 is an I-Map of G P
 is semi-Markov 
relative to .

P
G

 is faithful to P G



Fast Causal Inference (FCI) Algorithm
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FCI: Learn a PAG  representing the Markov Equivalence Class (MEC) from , i.e.:𝒫 P

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders and 
selection bias. Artificial Intelligence, 172(16):1873–1896. Link

(X ⊥⊥ Y |Z)𝒫 ⇔ (X ⊥⊥ Y |Z)P;G

       ancestrally

       non-ancestrality

       spurious association

       selection bias 

A B ⟹
A B ⟹
A B ⟹
A B ⟹

Jaber A., Ribeiro A. H., Zhang, J., Bareinboim, E. Causal Identification under Markov Equivalence - Calculus, Algorithm, and 
Completeness. In Proceedings of the 36th Annual Conference on Neural Information Processing Systems, NeurIPS 2022. (Link)

Every non-circle edge mark represents an invariance in the MEC in terms of 
ancestral and non-ancestral relationships

    Circle      non-invariance⟹

Arrowhead   non-ancestrality 
Tail       ancestrally

⟹
⟹

Evaluated through 
m-separation

http://dx.doi.org/10.1016/j.artint.2008.08.001
https://causalai.net/r86a.pdf


Conditional Independence Tests
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Gaussian errors and independent observations: partial correlation test

Zhang, K., Peters, J., Janzing, D., & Schölkopf, B. (2012). Kernel-based conditional independence test 
and application in causal discovery. In: Uncertainty in artificial intelligence. AUAI Press; 2011. p. 804–13

R package: https://cran.r-project.org/web/packages/CondIndTests

Ribeiro A.H., Soler J.M.P. (2020). Learning Genetic and environmental graphical models from family data, 
Statistics in Medicine. 
R package: https://github.com/adele/FamilyBasedPGMs

Kernel-based non-parametric test:

Fisher, R.A. (1921). On the" Probable Error" of a Coefficient of Correlation Deduced from a Small Sample. 
R package: https://cran.r-project.org/web/packages/pcalg/

Gaussian errors and correlated observations (family data) :

Continuous (conditional Gaussian) or Discrete (Binary, Ordinal, Multinomial) - Linear Regression 
• Tsagris, M., Borboudakis, G., Lagani, V. et al.  (2018) Constraint-based causal discovery with mixed 

data. Int J Data Sci Anal 6, 19–30. (Link)

• R package: https://cran.r-project.org/web/packages/MXM/

https://cran.r-project.org/web/packages/CondIndTests
https://github.com/adele/FamilyBasedPGMs
https://cran.r-project.org/web/packages/pcalg/
https://doi.org/10.1007/s41060-018-0097-y
https://cran.r-project.org/web/packages/MXM/


Learning Structural Invariances

Conditional 
(in)dependencies

P(v)
X ⊥⊥ Y

X ⊥⊥ Z
Z ⊥⊥ Y
X ⊥⊥ Y |Z

Data
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ℳ1 =

V = {X, Y, Z}
U = {Ux, UY, UZ}

ℱ =
X ← fX(UX)
Z ← fZ(X, Y, UZ)
Y ← fY(UY)

P(U)

⋮

ℳN−1 =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(Y, UXZ, UZ)
Y ← fY(UY)

P(U)

ℳN =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(UXZ, UYZ, UZ)
Y ← fY(UYZ, UY)

P(U)

P(x, y, z) = P(z |x, y)P(x |y)P(y)
= P(z |x, y)P(x)P(y)

Markov Equivalence Class 
(MEC)

Z YX

Z YX

Z YX

Z YX

⋮

⋮



Learning Structural Invariances

Conditional 
(in)dependencies

P(v)
X ⊥⊥ Y

X ⊥⊥ Z
Z ⊥⊥ Y
X ⊥⊥ Y |Z

Data
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ℳ1 =

V = {X, Y, Z}
U = {Ux, UY, UZ}

ℱ =
X ← fX(UX)
Z ← fZ(X, Y, UZ)
Y ← fY(UY)

P(U)

⋮

ℳN−1 =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(Y, UXZ, UZ)
Y ← fY(UY)

P(U)

ℳN =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(UXZ, UYZ, UZ)
Y ← fY(UYZ, UY)

P(U)

Z YX

MEC Representation
Partial Ancestral Graph (PAG)

P(x, y, z) = P(z |x, y)P(x |y)P(y)
= P(z |x, y)P(x)P(y)

Markov Equivalence Class 
(MEC)

Z YX

Z YX

Z YX

Z YX

⋮

Causal 
Discovery

FCI algorithm

⋮

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders 
and selection bias. Artificial Intelligence, 172(16):1873–1896. Link

http://dx.doi.org/10.1016/j.artint.2008.08.001


Other examples
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Z YX

Underlying Causal Diagram Partial Ancestral Graph

Z YX Z YX

Z YX

X
Z

W
YA X

Z

W
YA

Z YX W

FCI
Data E.C.

YX ZWYX ZW

Z YX W

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders 
and selection bias. Artificial Intelligence, 172(16):1873–1896. Link

http://dx.doi.org/10.1016/j.artint.2008.08.001


Fast Causal Inference (FCI) Algorithm
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X W YZ

FCI Rules
(R1) − (R10)

X W YZ

Partial Ancestral Graph 
(PAG)

X W YZ

Skeleton

Conditional 
Independence Tests

True (unknown) 
causal diagram

X W YZ

Complete Graph

 is not an ancestor of  or .Z X W
  and  are ancestors of .Z W Y

X ⊥⊥ W
X ⊥⊥ Y |Z, W

Implied by the PAG 
using m-separation

X ⊥⊥ W
X ⊥⊥ Y |Z, W

Implied by the ADMG 
using d-separation

observed in 
the data

X ⊥⊥ W
X ⊥⊥ Y |Z, W

  is not confounded with .Z Y



PAG represents the Markov Equivalence Class
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X W YZ

Partial Ancestral Graph 
(PAG)

True (unknown) 
causal diagram

 is not an ancestor of  or .Z X W

  and  are ancestors of .Z W Y

  is not confounded with .Z Y

X W YZ

X W YZ

X W YZ

⋮ X ⊥⊥ W
X ⊥⊥ Y |Z, W



More on Causal Discovery
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Causal discovery from observational and experimental data:


• Gonçalo Rui Alves Faria, Andre Martins, Mario A. T. Figueiredo. Differentiable Causal 
Discovery Under Latent Interventions. Proceedings of the First Conference on Causal 
Learning and Reasoning, PMLR 177:253-274, 2022.


• Kocaoglu, M., Jaber, A., Shanmugam, K., Bareinboim, E. Characterization and Learning 
of Causal Graphs with Latent Variables from Soft Interventions. In Proceedings of the 
33rd Annual Conference on Neural Information Processing Systems. 2019. 


• Jaber, A., Kocaoglu, M., Shanmugam, K., Bareinboim, E. Causal Discovery from Soft 
Interventions with Unknown Targets: Characterization & Learning. In Advances in 
Neural Information Processing Systems 2020.

http://causalai.net/r47.pdf
http://causalai.net/r47.pdf
http://causalai.net/r47.pdf
http://causalai.net/r67.pdf
http://causalai.net/r67.pdf
http://causalai.net/r67.pdf
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Can we identify causal effects from the equivalence class?

Effect Identification: 

Recently, we proposed complete calculus and algorithms for the identification 
of marginal and conditional causal effect in PAGs!

Jaber A., Ribeiro A. H., Zhang, J., Bareinboim, E. (2022) Causal Identification under Markov Equivalence - Calculus, Algorithm, 
and Completeness. In Proceedings of the 36th Annual Conference on Neural Information Processing Systems, NeurIPS. (Link)

Causal Identification from PAGs

Perkovic, E., Textor, J. C., Kalisch, M., & Maathuis, M. H. (2018). Complete graphical characterization and construction of 
adjustment sets in Markov equivalence classes of ancestral graphs. Journal of Machine Learning Research 18 (2018) 1-62

For Covariate Adjustment, we can use the Generalized Adjustment Criterion.

https://causalai.net/r86a.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf
https://www.jmlr.org/papers/volume18/16-319/16-319.pdf


General Identification in Markov Equivalence Classes
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IDP / CIDP

3 Data
P(x, m, y)

1 Query
P(y |do(x))

Solution
yes / no

Available 
Distributions

Interventional 
Distribution

👍

P(y |do(x)) = ∑
z

P(y |x, z)P(z)

Observational Distribution

2 PAG

YX

ZW

Jaber A., Ribeiro A. H., Zhang, J., Bareinboim, E. Causal Identification under Markov Equivalence - Calculus, Algorithm, and 
Completeness. In Proceedings of the 36th Annual Conference on Neural Information Processing Systems, NeurIPS 2022. (Link)

The CIDP and IDP algorithms are 
available at the PAGId R package:

https://github.com/adele/PAGId

https://causalai.net/r86a.pdf
https://github.com/adele/PAGId


Effect Identifiabiliy given a PAG
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An effect identifiable in a PAG  is identifiable in all causal diagrams  in the 
Markov Equivalence Class using the same identification formula!

𝒫 G

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

YX

ZW
𝒫

P(y |do(x)) =

∑
z

P(y |x, z)P(z)YX

ZW
G2

P(y |do(x)) =

∑
z

P(y |x, z)P(z)
YX

ZW
G1



Effect Non-Identifiabiliy given a PAG
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An effect not identifiable in a PAG  is not identifiable in at least one 
causal diagrams  in the Markov Equivalence Class

𝒫
G

𝒫
P(y |do(x)) =

∑
z

P(y |x, z)P(z)YX

ZWG1

YX

ZW

 is 
not identifiable
P(y |do(x))

G2

YX

ZW
 is 

not identifiable
P(y |do(x))



Causal Inference Workflow
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Continuous Process of Scientific Discovery and Causal Hypothesis Refinement
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Continuous Process of Scientific Discovery and Causal Hypothesis Refinement

Causal Inference Workflow



There is much more to learn…
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1. Generalized Effect Identification: 

- For when multiple observational and experimental datasets are available, possible 

under partial observability.

2. Partial Identification:


- For when the effect is not point-identifiable, but an interval for it can be derived.

3. Effect Transportability:


- For when the target is a different population/domain.

4. Counterfactual Identification:


- Identification of  quantities, such as  and .

5. Fairness Evaluation: 


- To identify path-specify effects related to protective variables.  

6. Effect Estimation beyond backdoor scenarios:


- Via doubly robust machine learning and different plug-in density estimators.


ℒ3 P(yx |x′￼) P(yx |x′￼, z)



Conclusions
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Causal inference can help overcome critical challenges in Artificial Intelligence, 
including robustness, generalizability, explainability, and fairness.  


Causal Data Science: principled way of combining data and substantive 
knowledge about the phenomenon under investigation to generate causal 
explanations and better decision-making. 


Recent developments for causal inference when knowledge is largely unavailable 
and coarse are expected to help the practice of causal data analysis and meet 
the growing demand in the Empirical Sciences for sound causal explanations 
and more robust and generalizable decision-making. 



Thank you! :)
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adele.ribeiro@uni-marburg.de 

Feel free to reach out to me if you have any questions:

mailto:adele.ribeiro@uni-marburg.de

