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Recent Breakthroughs in Al

* We can learn models that makes predictions extremely well in

high-dimensional settings.

* In particular, there are huge progresses in natural processing

language, computer vision, and reinforcement learning.
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Current Challenges in Al
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Judea Pearl — Causality

Director of the Cognitive Systems Laboratory at
/ the University of California, Los Angeles.
In 2011, he won the A. M. Turing Award (the

highest distinction in computer science and a
$250,000 prize)

“for fundamental contributions to artificial
intelligence through the development of a
calculus for probabilistic and causal reasoning.’

— Association for Computing Machinery (ACM)

)

"Deep learning has instead given us machines with truly
impressive abilities but no intelligence. The difference is
profound and lies in the absence of a model of reality.”

— The Book of Why: The New Science of Cause and Effect



https://amturing.acm.org/award_winners/pearl_2658896.cfm

Yoshua Bengio — Deep Learning

Professor at the University of Montreal, and the
Founder and Scientific Director of Mila — Quebec
Al Institute

In 2018, he won the A. M. Turing Award, with
Geoffrey Hinton, and Yann LeCun

“for conceptual and engineering breakthroughs that
have made deep neural networks a critical
component of computing.”

— Association for Computing Machinery (ACM)

“Causality is very important for the next steps of progress of
machine learning,” — interview with /[EEE Spectrum, 2020.
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https://spectrum.ieee.org/tech-talk/artificial-intelligence/machine-learning/yoshua-bengio-revered-architect-of-ai-has-some-ideas-about-what-to-build-next
https://spectrum.ieee.org/understanding-causality-is-the-next-challenge-for-machine-learning
https://amturing.acm.org/award_winners/bengio_3406375.cfm

Guido W. Imbens & Joshua D. Angrist

In 2021, they won the Nobel Prize
in Economics (about $1 million)

“for their methodological contributions
to the analysis of causal relationships”
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Why causality is so important?

Causality is an essential component in the development of the new generation of Artificial Intelligence
methods, allowing important capabilities such as

Explainability: provides a better understanding of the underlying mechanisms, e.g., learning
directionality and confounding through causal structure learning.

Reasoning: can determine the effect of unrealized interventions rather than just predicting an
outcome (i.e., can distinguish between association and causation).

Fairness: captures and disentangles any mechanisms of discrimination that may be present,
including direct, indirect-mediated, and indirect-confounded.

Generalizability: allows the transportability of causal effects across different domains.

Data Fusion: provides language and theory to cohesively combine prior knowledge and data
from multiple and heterogeneous studies.



Causal Data Science

Goal is to develop language, criteria, and algorithms for:

e Data-Fusion: cohesively combining heterogenous datasets,
e Causal Inference: inferring the effects of interventions, and
 Decision-Making: making robust and generalizable decisions.

Causal inference and the data-fusion problem

b

Elias Bareinboim?® ' and Judea Pearl®

“Department of Computer Science, University of California, Los Angeles, CA 90095; and IDDepartment of Computer Science, Purdue University, West
Lafayette, IN 47907

Edited by Richard M. Shiffrin, Indiana University, Bloomington, IN, and approved March 15, 2016 (received for review June 29, 2015)
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Causality Theory by Judea Pearl
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Causality Theory by Judea Pearl

https://causality101.net/
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Prediction vs Reasoning

Statistical Association vs Causation

12



Predictive Tasks

Task: Can | guess how serious/big is the fire by the number of firefighters in action?

Correlation between seriousness of fire

|
Yes! and number of firefighters in action
, 10 9
X: Number of firefighters in action 7 y=23x-1
- - c £ 75 R2=0.92
Y: Seriousness of fire g L -
O 1
35 25 32
pxy # 0 = Xis a good predictor of Y g o . é é
1 10 15 25
P(Y = y ‘X = x) # P(Y = y) X: Number of Firefighters in Action
& Observational Conclusion: The seriousness of fire
Probability Distribution increases with the number of firefighters.

13



Prediction = Decision-Making / Reasoning?

Conclusion: The size of the fire increases with the number of firefighters.

In other words, the fewer the firefighters, the smaller the fire.

Should we decrease the number of firefighters to reduce the fire?

14



Effect of Interventions

X: Number of firefighters in action
Y: Seriousness of fire

{X = fx(Y, Uy, Uyy)
Y = fi{Uy, Uxy)

Underlying Model

Y is not a function of X

In other words, Y is not caused by X

15



Effect of Interventions

X: Number of firefighters in action Y'is not a function of X
Y: Seriousness of fire In other words, Y is not caused by X
Changing X won’t change the value of Y
X=X
X = 15Uy Uyy) P(Y = y|do(X = 1)) = P(Y = y)
Y :fY( U Ys U XY) _ Interventional

Probability Distribution

Underlying Model The action/intervention on X, do(X = x)

is independent of Y

Conclusion: we cannot change the size of the fire by
changing the number of firefighters.

10



Structural Causal Model (SCM)

EXPLAINABILITY AND THE DATA GENERATING MODEL

17



Structural Causal Model (SCM)

Definition: A structural causal model .Z (or, data generating model) is a tuple
(V,U, #,P(u)), where

» V=1{V,,...,V }: are endogenous variables
- U={U,,...,U,}: are exogenous variables

o F = {fi,...,/,}: are functions determining V, i.e., v. « f(pa;, u.),
where Pa; C V are endogenous causes (parents) of V;and U; C U are
exogenous causes of V..

« P(U) is the probability distribution over U.

Assumption: .Z is recursive, i.e., there are no feedback (cyclic) mechanisms.

18



Effect of Interventions in SCMs

Pre-Interventional/ Post-Interventional /
Observational SCM Interventional SCM
V={X,Y) V=1{X7Y}

U = {(Uyy, Uy, Uy} do(X = x) U = (Uxy, Uy, Uy}

M = Z — {X = Jx(Ux, Uyy) »

M = o — {X=x
Y — f Y(X ’ UYa UXY)

Y — f Y(-x ’ UYa UXY)

P(U) P(U)
* Observational * Interventional
Distribution Distribution
P(V)=P (V) 7 P(V|do(X =x)) =P , (V)
Can we predict better the value of Y after Can we predict better the value of Y after
observing que X = x? making an intervention do(X = x)?

P(Y=y|X=x)# P(Y=y) = Xis correlated to Y dxst. Py (Y=y)#P(Y=y) = Xisacauseof ¥ |



Structural Equation Model (SEM)

V={X,Y,7Z}
v e * Linear functions
F — )Z(z,Zzo ‘_'l‘_;z 74  Normal distribution
M = y — ﬁj(())_l_ ﬁjZZZ N ﬁjXX fe) . Markovianifcy / Cau§al Sufficiency:
Error terms in U are independent of
6 0 0 each other (diagonal covariance matrix).
U~A410,2= |0 oy O
0 0 o

Full specification of an SCM requires parametric and distributional assumptions.

Estimation of such models usually requires strong assumptions (e.g., Markovianity).



SCM: Encoder of Functional Knowledge

The knowledge required to fully specify an SCM is usually unavailable in practice.

Is it possible to identify the effect of interventions from observational data
without fully specifying the SCM (i.e., in a non-parametric fashion)?

ﬁ Yes, with structural knowledge encoded as a causal diagram!

===

21



Encoding Structural Causal Knowledge

Acyclic Directed Acyclic Graph (ADMG)
Causal Diagrams

22



Causal Diagram: Encoder of Structural Knowledge

Structural Causal Model (SCM) Induced Causal Diagram
= (V.U,#, P(u))
Background
= {A,B, C} Laughing
U = (Up. Up, Ups Uyy) @
W = A < fa(Upp, Uy) -
9 — B (—fB(UAB, UB)
C < jf-(A,B,U;) G
P(U) Self-
Deprecation ~ runny Joke

An SCM A/ = (V,U, F, P(u)) induces a causal diagram such that, for every V., V.e V:

V; — V., if V; appears as argument ofjj- e F

23



Causal Diagram: Encoder of Structural Knowledge

Structural Causal Model (SCM) Induced Causal Diagram
=(V.U,#, P(u))

Environment  Background
— {A,B,C) Culture Laughing

vV
U= {U,, Uz Uy Uyp) @ @ @
A« f,(Uyp Uy)

B (@

Self-
Deprecation

pP(U)
Funny Joke

An SCM A/ = (V,U, F, P(u)) induces a causal diagram such that, for every V., V.e V:

V; — V., if V; appears as argument ofjj- e F

24



Causal Diagram: Encoder of Structural Knowledge

Structural Causal Model (SCM) Induced Causal Diagram
=(V.U,#, P(u))

Environment  Background
— {A,B,C) Culture Laughing

vV
U= {U,, Uz Uy Uyp) @ @ @
A« f,(Uyp Uy)

B (@

Self-
Deprecation

pP(U)
Funny Joke

An SCM ./ = (V, U, #, P(u)) induces a causal diagram such that, for every V,, V. € V:
V, = V., if V; appears as argument ofjj- e F
V; «-> V. if the corresponding U;, U; € U are correlated or f; , f; share some argument U € U.
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Causal Diagram: Encoder of Structural Knowledge

Structural Causal Model (SCM) Induced Causal Diagram
=(V.U,#, P(u))

Environment  Background
— {A,B,C) Culture Laughing

U= Uy U, Uc, Uppl

o W) (AU,

M = '
F = B (_fB(UABa UB) >
B (8 )—(c)~o
o Self-
Deprecation Funny Joke

An SCM ./ = (V, U, #, P(u)) induces a causal diagram such that, for every V,, V. € V:
V, = V., if V; appears as argument ofjj- e F
V; «-> V. if the corresponding U;, U; € U are correlated or f; , f; share some argument U € U.
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Causal Diagram: Encoder of Structural Knowledge

Structural Causal Model (SCM) Induced Causal Diagram
=(V.U,#, P(u))

Environment  Background
— {A,B,C) Culture Laughing

U= Uy U, Uc, Uppl
A < fa(Upp, Uy)

M =
F = B (_fB(UABa UB) >
C(_fC(AaBa Uc) .
o Self-
Deprecation Funny Joke

An SCM ./ = (V, U, #, P(u)) induces a causal diagram such that, for every V,, V. € V:
V, = V., if V; appears as argument ofjj- e F
V; «-> V. if the corresponding U;, U; € U are correlated or f; , f; share some argument U € U.
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D-Separation and Implied Conditional Independencies

Definition (inactive): A triplet (V.,V . V]) is said to be inactive relative to a set Z if the middle node V :

1. Is a non-collider and is in Z.; or
2. Is a collider and neither it nor any of its descendants in Z.

Definition (d-separation): A path p in a causal diagram G is said to be d-separated (or blocked) by
a set of variables Z if and only if p contains an inactive triplet in it.

A set Z, d-separates X and Y if and only if Z blocks every path between a node in X and a node inY.

AT AT e et 4 Does Z. d-separates X and Y ?
& E—W W zdsgm wm wen

We have that (X LL Y), (X LL Y|B)g, and (X KLY | W), but (X LY | B, W),

D-separations in G imply
conditional independencies in P

— — e ——— e —————

|
1
|

Global Markov property: (X 1L Y |Z);=> X 1L Y |Z),




Graphically Explaining Causes and Predictors

O—Q ~-O—0—-C0

< > ‘ @ ...... O ......... Q : O R
‘ Q_’Q O Causes (direct/indirect)

Markov Blanket (MB) of V: the bidirected connected component
(district) of V' (excluding V itself) and the parents of the district of V, i.e.:

mbg(V) = disg(V) U Pag(disg(V))\{V} oo



Randomized Experiments

Randomized Experiments / Control Trials (e.g. RCT) allow the identification of
causal effects by leveraging randomization of the treatment assignment.

Gy

- @—@
®— @—@
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Pearl’s Inferential Hierarchy

Associational vs Interventional vs Counterfactual

31



What is induced by the SCM?

Observational SCM Interventional SCM

V=1 V= {X,7)
U = {Uyy, Ux, Uy} U = {Uyy, U, Uy}
M = F = {XzfX(U)O Uxy) M, = o _ {sz
Y = fy(X, Uy, Uyy) | Y = fy(x, Uy, Uyy)
P(U) P(U)

| Loss of Information

B x UXY‘ . B
S “u P (V) — C @ Py (V)= —
@ @ Observational = P(V | do(x)) ':'
Observational Distribution Se[;\;?alona Interventional Interventional Inter\[/)ear;zonal

Causal Diagram Causal Diagram Distribution 2



Reality ~ Structural Knowledge Data

Structural Causal Model (SCM) c DI
W = (V, U. %, P(u)) ausal Diagram X 7 %

V={X,Y}
U = (Uxy, Uy, Uy}

Y « (X, Uy, Uyy)
P(U)

Observational

Interventional
N
|
Y
||
~ [~
11
<>
=
S
3
=
g

P(Y|do(X = x)) =2

33




Data Potential Causal Diagrams Potential SCMs

/ ﬂll N <V Ul’fll’Pll(ul)>

\ %1]( il <V Ulatff]k 9P]k (u1)> True MOdel

/ M > =V, Uzad"zppm(“z))
\> Mo, =V, Uzad"zk , Py (1y))

5%

(XX
X
£

/%31 = (V, U3»</'31»P31(u3)>

f
\4?\ e
}}.{b( {

iiiiiiiiii
hidden layer 1 hidden layer 2

Observational

/ M4y =V, U4»J’41»P41(“4)>
\ M g, = (V5 U4af 4k Par (1))

/ M sy =V, US’J'51»P51(“5)>
\ Msi.. = (V, US?‘/'Sk’PSk (us))

uoneziilaweled
UeINOMJeN
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Data Potential Causal Diagrams Potential SCMs

/ My =V, Uy, J’n Pyi(uy))

\ ﬂlk =(V, U1 J’lk P1k (u1)> True Model

G, Y / Mo =V, Uy, J'21 Py;(uy))
\ Mo, =V, Uz F ok Por, (1))

/%31 = (V, U, J’sl P;(u3))

@ @ \ M, =V, U3 F 3y P31, (W3))

1» Pyp(ay))

Observational

Multiple neural nets fit the data equally well,

leading to different causal explanations! ko Pt (097

1» P51 (us))

) =,

uonezisweled
uelnoMJen
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Ladder of Causation

3. Imagining

2. Doing

1. Seeing

Layer Task / Language Typical Question Examples
Counterfactual Sguoturlal What if | had acted \3/]2? :t:)hpepgcsjprlrzl;]
o\’ ausa ' N
Pyx | X’, y’) ool differently” Headache?
ML- Reinforcement | \what if | do X? | Will my headache

Interventional
P(y | do(x), c)

Associational
P(y | )

(Causal Bayes Net)

ML- (Un)Supervised

(Decision trees,
Deep nets, ...)

What would Y be if
| iIntervene on X?

g 0SSR A a8 DS R S RO T X . _p s
S Amty z - 4 / - - i

)

What if | see?
How would seeing

X change my belief
inY?

be cured if | take
aspirin?

What does a
symptom tell us
about the
disease”?

* Book of Why & On Pearl’s Hierarchy and the Foundations of Causal Inference,
E. Bareinboim, J. Correa, D. Ibeling, T. Icard, in press. https://causalai.net/r60.pdf

360


https://causalai.net/r60.pdf

Ladder of Causation

3. Imagining

2. Doing

1. Seeing

Cross-layer inferences:

Doing

most of the inferences are
about causal effects
(policies, treatments, decisions)

most of the available data
IS observational,
passively collected

37
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Data Potential Causal Diagrams Potential SCMs

/ My =V, Uy, J’11 Py(ay))

\ ﬂlk =(V, U1 J’lk P1k (u1)> True Model

G, Y / Mo =V, Uy, J'21 Py;(uy))
\> Mo, =V, Uz F ok Por, (1))

/%31 = (V, U, J’sl P;(u3))

@ @ \ M, =V, U3 F 3y P31, (W3))

N N My =V, Uy, F 41, Pyy(0y))

Observational

Causal Hierarchy Theorem : to answer questions in
layer 1, we need information from layer 1 or higher. &
5(“5)>

————— S

SRS -
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Association vs Causation

ANOTHER HUGE. STUDY | HUH? YOURE NOT... THERE ARE 50
FOUND No EVIDENCE THAT UNITED STATES: MANY PROBLEMS WITH THAT.

CELL PHONES CAUSE CANCER. WELL, TAKE | &0 JUST TO BE SAFE, UNTIL
NHAT WA THE WHO.THKaG? |/ A LOOK. TOTRL CANCER T SEE MORE DATA TM

INCIDENCE
( T THINK THEY JUsT GOING To ASSUME CANCER
GOT 1T BACKIWARD. CAVSES CELL PHONES.

https://xkcd.com/925/ - Creative Commons Attribution-NonCommercial 2.5 License.

Will we be able to decide the true relationship just by “seeing” more data”?

..............
.......

Mobile Mobile Mobile Mobile
—> <— — ?
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Causal Effect Identification
Graphical Criteria, Do-Calculus, and ID-Algorithm

40



Causal Effect

The causal effect of a (set of) treatment variable(s) X on a (set of) outcome variable(s) Y is a quantity
derived from P(Y | do(X)) that tells us how much Y changes due to an intervention do(X = X).

Examples:

* Average Treatment Effect (ATE) for discrete treatments:

_[Y ‘ dO(X — X/)] . _[Y ‘ dO(X — X)], where E[Y | do(X = X)] = Z yP(y | do(x))

YEQy

defined for two treatment levels X’ and X of X.

» Average Treatment Effect (ATE) for continuous treatments, Jacobian of E[Y | do(X = X)], where

OE[Y;| dO(Xj _ xj)] E[Y [do(X =Xx)| = ), YP(y | do(x))dy,

,forall ¥; € Y,and X; € X. y

axj and 2y is the space of all possible values
that Y might take on
The derivative shows the rate of change of Y w.r.t. do(X = X)

41



Classical Causal Effect Identification

Structural knowledge
available

O ooy —
P(y|do(x))

Inference .
. Solution
. Engine —
e Causal Contraints es)/ no
@——»@*@ P(yldo() = Y, POm|x) D P(y|m,x)PX)
Interventional Available
e Probability Distributions Distribution ™ Distributions

P(x,m,y) Observational Distribution

 Tian, J. and Pearl, J. A General ldentification Condition for Causal Effects. In Proceedings of the Eighteenth National
Conference on Artificial Intelligence (AAAI 2002), pp. 567-573, Menlo Park, CA, 2002. AAAIl Press/MIT Press.
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The Effect Identification Problem

Causal Effect Identifiability: The causal effect of a (set of) treatment variable(s) X on a (set of) outcome
variable(s) Y is said to be identifiable from a causal diagram G and the probability of the observed variables

P(V) if the interventional distribution P(Y | do(X)) is uniquely computable, i.e., if for every pair of SCMs ./, and
M » that induce G and P#1(V) = P*>(V) = P(V) > 0, P“(Y | do(X)) = P*(Y | do(X)) = P(Y | do(X)).

My =V, U, F1, Pr(uy))

P(Y|do(X))

(Unobserved) (Observed) 5 (Inferred)
Tl’ue MOdel %1]{1 — <V9 Ula 91]{19 Plkl(u1)>

@%@\
\

In words, causal effect identifiability means that, no matter the form of true SCM,
for all models . agreeing with (G, P(V)), they also agree in P(y | do(X)). .




The Effect Identification Problem

Causal Effect Identifiability: The causal effect of a (set of) treatment variable(s) X on a (set of) outcome
variable(s) Y is said to be identifiable from a causal diagram G and the probability of the observed variables

P(V) if the interventional distribution P(Y | do(X)) is uniquely computable, i.e., if for every pair of SCMs ./, and
M » that induce G and P#1(V) = P*>(V) = P(V) > 0, P“(Y | do(X)) = P*(Y | do(X)) = P(Y | do(X)).

|dentifiable Non-ldentifiable
Models
iInducing
P(v)
et —>

Same

6"\ P(y | do(x))/;-}

Models
compatible
with GG

Different
All models Py | do(x)) !

In words, causal effect identifiability means that, no matter the form of true SCM,
for all models . agreeing with (G, P(V)), they also agree in P(y | do(X)). "



Tools for Causal Identification

1. Truncated Factorization / G-computation formula Mag(g;’;g”

2. Graphical criteria
1. Parent adjustment

A few interesting
(albeit still constrained)

2. Backdoor Adjustment scenarios
3. Front-door Adjustment

3. Do-Calculus (a.k.a Causal Calculus) General
Semi-Markovian
4. ldentify Algorithm (a.k.a. ID algorithm) Scenarios

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press, New York. http://
dx.doi.org/10.1017/CBO9/7/80511803161

Jin Tian. Studies in causal reasoning and learning. PhD thesis, University of California, Los Angeles, 2002. 45
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ldentification in Markovian Models

Truncated Factorization — Markovian: Let G be a causal diagram for the collection P.. of all
interventional distributions P (V), for any X C V. It follows that P,(V) factorizes as:

P.(v) = P(V|do(x)) = H P.(v| pa)) Follows from P, (V) = P(v|do(x))
VeV\X X=x being Markov relative to Gy
— H P(v;| pa;) - Markovian SCMs have the modularity
Vev\X X=x property, i.e., P, (v;| pa) = P(v;| pa;)

Causal Effect of X on Y: P(y|do(x)) = Z H P(v|pa))
V\(YUX) VeV\X X=X

* In Markovian Models, the joint interventional distribution (and hence any causal effect) is always identifiable.

* This factorization is a.k.a “manipulation theorem” (Spirtes et al. 1993) or G-computation (Robins 1986, p. 1423).
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Example: |ldentifiable Effect

Causal Effect of X on Y: P(y|do(x)) = Z H P (v;|pa))
V\(YUX) V.eV\X X=x

P(x,y,7) = P(2)P(x|2)P(y|x, 2) P(y,z|do(x)) = P(2)P(y|x, z)

_, P(y|do(x)) = ) P()P(y|x,2)

47



ldentification in Semi-Markovian Models

Adjustment over parents:

Let G be a causal graph with no unmeasured parents.

Then, the effect of X on Y is given by:
Proof follows from the truncated

P(y|do(x)) = Z P (y | X, pax) P <an> factorization for Markovian models!
pa,
X = {X)}
Y = {Y}
P(y ‘ do(x)) = Z P (Y\X, {1 Zz) P (Zl’ Zz)

Zl 922

48



ldentification in Semi-Markovian Models

Adjustment over parents:

Let G be a causal graph with no unmeasured parents.

Then, the effect of X on Y is given by:
Proof follows from the truncated

P(y|do(x)) = Z P (y | X, pax) P <an> factorization for Markovian models!
pa,
X = {X)}
Y = {Y}
P(y ‘ do(x)) = 2 P (y ‘xa {1 Zz) P (Zl’ Z2)

Zl 9Z2

After conditioning on the parents, the association
between X and Y is only due to the direct path.

49



ldentification in Semi-Markovian Models

Adjustment over parents:

Let G be a causal graph with no unmeasured parents.

Then, the effect of X on Y is given by:

P(y|dox)) = ) P (yIxpa,) P (pa,)

pa,

P(y|do(x)) ="

50



ldentification in Semi-Markovian Models

Adjustment over parents:

Let G be a causal graph with no unmeasured parents.

Then, the effect of X on Y is given by:

P(y|dox)) = ) P (yIxpa,) P (pa,)
-

P(yldo)) = ) P (y1%2,2%) P (2,2)

Zl 9Z2
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ldentification in Semi-Markovian Models

Adjustment over parents:

Let G be a causal graph with no unmeasured parents.

Then, the effect of X on Y is given by:

P(y|dox)) = ) P (yIx pa,) P (pa,)
-

4 p <

o @ POIdo) = Y P (yxa.) P () X

Pa.= {2} After conditioning on the {Z,;, Z,}, the association between

_ X and Y is also due to a spurious / confounding path.
Ux — {UX,ZZ} P 9P

52



Backdoor Adjustment

Also known as confounding paths, or
backdoor paths.

Let X be a set of treatment variables and Y a set of outcome variables in the causal graph G.
If there exists a set Z such that:

1. forevery X € X and Y € Y, Z blocks every path between X and Y that has an arrow into X, and
2. no node in Z is a descendant of a variable X € X (all variables in Z are pre-treatment)

Then, Z satisfies the backdoor criterion for (X, Y) and, then the effect of X on Y is given by:

/ P(y|do(x)) = ) P (y|x.z) P (2)

/., a set of covariates,
admissible for backdoor
adjustment X = {X}
Y ={Y}

1 = {Z1}

| : ARV

Judea Pearl. Comment: Graphical models, causality and intervention. Stat. Sci., 8:266-269, 1993.



Backdoor Adjustment

Also known as confounding paths, or
backdoor paths.

Let X be a set of treatment variables and Y a set of outcome variables in the causal graph G.
If there exists a set Z such that:

1. forevery X € X and Y € Y, Z blocks every path between X and Y that has an arrow into X, and
2. no node in Z is a descendant of a variable X € X (all variables in Z are pre-treatment)

Then, Z satisfies the backdoor criterion for (X, Y) and, then the effect of X on Y is given by:

/ P(y|do(x)) = ) P (y|x.z) P (2)

/., a set of covariates,
admissible for backdoor
adjustment X = {X}
Y ={Y}

1 = {Z1}
,{ 1 = {7,725}

Judea Pearl. Comment: Graphical models, causality and intervention. Stat. Sci., 8:266-269, 1993. 54



Backdoor Adjustment

Also known as confounding paths, or
backdoor paths.

Let X be a set of treatment variables and Y a set of outcome variables in the causal graph G.
If there exists a set Z such that:

1. forevery X € X and Y € Y, Z blocks every path between X and Y that has an arrow into X, and
2. no node in Z is a descendant of a variable X € X (all variables in Z are pre-treatment)

Then, Z satisfies the backdoor criterion for (X, Y) and, then the effect of X on Y is given by:

/ P(y\do(x»—ZP (vIx.2) P2

= {4}
7., a set of covariates, @ . ‘/’@ _
admissible for backdoor - L=124)
adjustment X = {X} : ={Z,.2,} X
Y = {1

Judea Pearl. Comment: Graphical models, causality and intervention. Stat. Sci., 8:266-269, 1993. 55



Estimation via Propensity Scores

Theorem: If the set Z satisfies the parent / backdoor criterion w.r.t. the ordered pair
(X, Y) in the causal graph G, then the causal effect of X on Y is identifiable
(uniquely computable) and given by:

Backdoor Adjustment =
Conditional Ignorability: ~ P(y | do(x)) = 2 P(y|x,z)P(z)
Y. 1l X|Z /

:ZP()"X,Z)P(X‘Z)P(Z) Z={ZI}
P(x|z)
Only if Zi satisfies the BD criterion, £

Inverse Probability Weighting/
Propensity Score can be usedto —

propensity score
estimate P(y | do(x)).

neural nets
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What if backdoor adjustment does not work?

Identification via Front-Door Adjustment

Let X be a set of treatment variables and Y a set of outcome variables in the causal graph G.
If there exists a set M such that:
1. M intercepts all directed paths from any vertex X € X to any vertex Y € Y;
2. There is no unblocked back-door path from any vertex X € X to vertex M € M; and
3. All back-door paths from any vertex M € M to any vertex ¥ € Y are blocked by X.

Then, M satisfies the front-door criterion and, then the effect of X on Y is given by:

P(y|do(x)) = )' P(m|x) ) P(y|m,x)P(x)

= {X}
@—@—:@ @\@r@ W @_'@_'@

= (M} = {M,, M,}



Many scenarios beyond back-door and front-door!

. . .
0’ “ *
. L 2 *
. . .
PN L 2 L )
. 4 .
. & .
. d -
. ' n
‘ n u
@ . .

Conditional Front-Door Napkin Unnamed
P(x,y|z,2,)P
P(y|do(x)) = Z P(m|x,z) P(y|do(x)) = ZZZ 712, 2)P) P(y|do(x)) = Z P(y|x,z, 29, 23)P(2)
e 2., P(x]21,22)P(z) 22,2
Z P(y|m,x',2)P(x’, 2) Z P(z3 | x, 1) P(zy)

And many others.... cq



Do-Calculus (a.k.a. Causal Calculus)

Graphical conditions implying invariances between Pearl, 1995
observational (<Z'|) and interventional (&£') distributions

Theorem: Let X, Y, Z, W be any disjoint subjects of variables.

Rule 1 (Insertion/Deletion of Observations)
P(y | do(w), x,z) = P(y |do(w),z), if (Y 1L X|Z, W)g_

Rule 2 (Exchange of Actions and Observations)

P(y | do(w), do(x),z) = P(y | do(w),x,2), if (Y 1L X|Z, W)g__

Rule 3 (Insertion/Deletion of Actions)

P(y| do(w), do(x),z) = P(y |do(w),z), if (Y L X|Z,W)g_

Gwx: graph G after removing the incoming arrows into W and the outgoing arrows from X;

X(Z): set of X-nodes that are not ancestors of any Z-node in Gyy. 50



ldentification in Non-Markovian Models

- O gy,
4444
& N

/’ ‘\‘
X M Y
P(y|do(x)) = Z P(y|do(x), m)P(m | do(x)) Probability Axioms
— Zm: P(y | do(x), do(m))P(m | do(x)) Rule 2
= i P(y|do(x), do(m))P(m | x) Rule 2
= f‘, P(y | do(m))P(m | x) Rule 3
- i Z P(y | do(m), x)P(x'| do(m))P(m | x) Probability Axioms
= i i P(y|m,x"P(x"| do(m))P(m | x) Rule 2

p——— i e —

a =Y Y POy Imx)P&|mP(m|x) ™

S T —
\,\
—

e~

Rule 3

m

e —— —— S — ———
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The Identify (ID) Algorithm

Algorithm 1 ID(x, y) given Causal Diagram G

Input: two disjoint sets X, Y C V
Output: Expression for Py(y) or FATL
1: Let D = AH(Y)QV\X

2: Let the c-components of Gp be D;, 1 =1,...,k
3: Px(y) =) d\y | [; IDENTIFY(D;, V, P)

4: function IDENTIFY(C, T, Q = Q|T))
5: if C = T then return Q[T

/* Let SP denote the c-component of { B} in G */

6: ifdB € T\ C such that S® N ch(B) = () then
7: Compute Q|T \ { B}| from Q; > Lemma 1
8: return IDENTIFY(C, T \ {B},Q|T \ {B}])
9: else
10: throw FATL

Lemma 1. Given a causal diagram D over V, X € T C V,
and P\, i.e., an expression for Q|T|. If X is not in the
same c-component with a child in Dr, then Q[T \ {X}] is
identifiable and given by

Pv\t

QIT\ {X})] = 5%

]xZ@ﬁ] (2)

where S is the c-component of X in Dt and Q[S* ] is com-
putable from P\ by [Tian, 2002, Lemma 11].

Jin Tian. Studies in causal reasoning and learning. PhD thesis, University of California, Los Angeles, 2002. Link

o


https://ftp.cs.ucla.edu/pub/stat_ser/r309.pdf

Causal Effect Identification

a Query

P(y|do(x))

Inference

Engine
e Causal Contraints J

-----

P(y|do(x)) = ) P(m|x) ) P(y|m,x)P(x)

Interventional Available
Distribution ' Distributions

€ rrobability Distributions

P(x,m,y) Observational Distribution

 Tian, J. and Pearl, J. A General ldentification Condition for Causal Effects. In Proceedings of the Eighteenth National
Conference on Artificial Intelligence (AAAI 2002), pp. 567-573, Menlo Park, CA, 2002. AAAIl Press/MIT Press.



More on Causal Effect Identification

Identification from observational and experimental data:

Lee, S., Correa, J., and Bareinboim, E. (2019). General identifiability with arbitrary
surrogate experiments. In Proceedings of the 35th Conference on Uncertainty in
Artificial Intelligence, volume 35, Tel Aviv, Israel. AUAI Press. Link

Identification of stochastic/soft (and possibly imperfect) interventions:

Correa, J. and Bareinboim, E. (2020). A calculus for stochastic interventions: Causal
effect identification and surrogate experiments. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence, New York, NY. AAAI Press. Link

Identification and Estimation via Deep Neural Networks:

Xia, K., Lee, K.-Z., Bengio, Y., and Bareinboim, E. (2021). The causal-neural
connection: Expressiveness, learnability, and inference. Advances in Neural Information
Processing Systems, 34. Link

03


https://proceedings.mlr.press/v115/lee20b.html
https://doi.org/10.1609/aaai.v34i06.6567
http://www.apple.com

ldentification and Estimation via Deep Neural Networks

__________
- ~

- n

\g ~

Sua ) T—@

Trained Model;
G-NCM M

V: Endogenous variables

U : Create one for every bidirected clique

F . Feedforward neural network for each
variable in V with parents from the graph

P(U): All Unif(0,1)

I r N
(ORY:S
he

ﬁ & -Constrained NCM
—>

/7 fy
(" ) [ )
OB

Inductive bias based on the causal
diagram: the enforced constraints
empower the NCM with the abillity to
solve causal inference tasks.

64



Expressiveness of NCMs

Graph & Trained Model:
True Model: jert T . Vi
: NCM M
SCM A * — O-0O-0O |

V: Endogenous variables
U : Exogenous variables
F : Feedforward neural network

Constraint
V: Endogenous variables

U: Exogenous variables

F : Set of functions for variables in V
P(U): Probability distribution over U PCU ): All Unif(0,1)

for each variable in V

Thm: For any SCM . *, there exists an NCM ]/W\ such that ]/W\ matches .4 * on all three PCH layers!

This does not imply that the estimated NCM M matches the true SCM /! 65



Solution: A Neural Algorithm for Identification

Maximize and minimize the

Algorithm 1: Identifying/estimating queries with NCMs. | |
induced causal query O while

Input : causal query Q = P(y | do(x)), L1 data P(v), and

causal diagram G maintaining L-consistency (can be
Output: P’ (y | do(x)) if identifiable, FAIL otherwise. done with likelihood estimation).
M <+ NCM(V, G) // from Def. /
0* .« arg ming PM(® (y|do(x)) st. L1(M(8))=P(v) Thm. : O is identifiable if

07 o —arg maxg PM (@ (y|do(x)) st. L1(M(8))=P(v) _— and only if they match!

it P ©@min) (y | do(x)) # PM©@max) (y | do(x)) then
| return FAIL
else

NN N W -

Corol: If O is identifiable, then we
<—— can compute it by performing the

mutilation procedure on M !

return PM(O;:lin)(y | do(x)) // choose min or max
arbitrarily

The approach is equivalent to established symbolic approaches (Thm. 4), and in identifiable cases,
the result is an NCM that can serve as a proxy model for estimating the query (Corol. 2).

06



Can we relax some
causal assumptions?

6/



Causal Effect Identification

Usually hard to be
fully specified.

a Query

P(y|do(x))

Inference .
. Solution
. Engine —
e Causal Contraints es)/ no
@——»@*@ P(yldo() = Y, POm|x) D P(y|m,x)PX)
Interventional Available
e Probability Distributions Distribution ™ Distributions

P(x,m,y) Observational Distribution

 Tian, J. and Pearl, J. A General ldentification Condition for Causal Effects. In Proceedings of the Eighteenth National
Conference on Artificial Intelligence (AAAI 2002), pp. 567-573, Menlo Park, CA, 2002. AAAIl Press/MIT Press. A8



s a Causal Diagram Still Too Much?

Causal diagrams are powerful tools that allow for inferences based on weaker
knowledge (structural invariances) than the encoded in the true, underlying SCM.

Still, structural knowledge for every pair of variables may not be available in
many real-world, complex, high-dimensional systems.

Question:

Is it possible to relax the assumption of having a fully specified causal diagram
and still be able to identify a causal effect”?
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Partially Understood Systems

A) Age

(B) Blood pressure @ @ @
(C) Comorbidities
(D) Medication history

) Lisinopril

(X
() Sleep Quality @_,@_,@
(Y) Stroke

A causal diagram cannot be specified given the existing knowledge!

How can we identify P(y | do(x)) in this case?

70



Cluster DAGs (C-DAGsS)

A) Age

(B) Blood pressure
(C) Comorbidities

(D) Medication history
(X) Lisinopril

(S) Sleep Quality
(Y) Stroke

X 51 Y514, B, G Dy

A cluster DAG G over a given partition C = {C,, ..., C,} of V is compatible with a causal
diagram G over V if for every C;, C; € C:

. ;- C; if 3V, e Ciand V; € C;such that V, - 'V,
o Cl €--> C] If 3‘/1 = Cl and ‘/] = C] such that ‘/l €--> ‘/]

and G contains no cycles.

[a



Partially Understood Systems

Many causal diagrams are compatible with e G
the current knowledge! /

@@@ . o

Can be seen as an equivalence class of causal
diagrams, where any relationships are allowed among
the variables within each cluster.

Can we infer causal effects without deciding
on any one particular causal diagram?

(2



C-DAG: Flexible Encoder of Model Assumptions

N clusters of size one One cluster of size N
(full knowledge - DAG) (partial knowledge - C-DAG) (no knowledge)

73



C-DAG: Flexible Encoder of Model Assumptions

N clusters of size one One cluster of size N
(full knowledge - DAG) (partial knowledge - C-DAG) (no knowledge)

Clusters are manually created by domain experts:
- due to lack of knowledge, consensus, or interest on the internal causal structure;

- to communicate relationships among semantically meaningful entities.

4



ldentification of Causal Effects from C-DAGs

Inference .
Solution

Engine

C-DAG es)/ no
@ P(y|do(x)) = ), P(myy|x) ) P(y|myys,x)P(x)
My23 X’
Inferred Available
Data (Interventional) (Observational)
Distribution Distribution

P(x, m{, m,, my, y) o =

Anand, T. V., Ribeiro A. H., Tian, J., & Bareinboim, E. (2023). Causal Effect Identification in Cluster DAGs. In
Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence. 75



Effect Identifiabiliy given a C-DAG

P(y|do(x)) =
ZP(Y‘X» 21, 2)P(21, 2)

Zl ’Z2

P(y|do(x)) =
ZP(Y‘X» 21, 2)P(21, 2)

Zl 9Z2

An effect identifiable in a C-DAG G is identifiable in all compatible
causal diagrams G using the same identification formula!

/0



Effect Non-ldentifiabiliy given a C-DAG

P(y|do(x)) is
not identifiable

P(y|do(x)) =
D POIx2, )P, )

21542

An effect is not identifiable in a C-DAG G if there exists at least one
compatible causal diagrams G in which the effect is not identifiable.

’r



Beyond Backdoor Adjustment

Again, an effect identifiable in a C-DAG GC IS identifiable in all
compatible causal diagrams G using the same identification formula!

/8



What if no knowledge is available?

Can we learn a causal diagram & from observational data?

Causal Discovery:

In hon-parametric settings, we can’t learn the true causal diagram, but algorithms
such as the Fast Causal Inference (FCI) can learn a graphical representation of its
Markov equivalence class!

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent

confounders and selection bias. Artificial Intelligence, 172(16):1873-1896. Link
79


http://dx.doi.org/10.1016/j.artint.2008.08.001

Causal Discovery

Fast Causal Inference (FCI)

A constraint-based causal discovery algorithms that
accounts for unobserved confounders

30



Causal Discovery

Goal: Learn a graphical representation of the Markov Equivalence Class from observational data.

Assumptions: the observed distribution is the marginal of a distribution P that satisfies the
following conditions for the true causal diagram G (an ADMG):

1) 1-Map / Semi-Markov Condition: for any disjoint subsets X, Y and Z.: (G is an I-Map of P
XLULY[Z);=> X1 Y|[Z)p. P is semi-Markov
relative to G.

2) Faithfulness Condition: for any disjoint subsets X, Y and Z.:
XULY|Z)p=>X1LY|Z). P is faithful to G

Note: Estimation of the marginal distribution from limited data requires and additional assumption:

3) An adequate conditional independence test is available.

81



Fast Causal Inference (FCI) Algorithm

FCI: Learn a PAG & representing the Markov Equivalence Class (MEC) from P, i.e.:

XUY|Z)yo XILY|Z)p Evaluated through

_ ~_____ m-separation

Every non-circle edge mark represents an invariance in the MEC in terms of
ancestral and non-ancestral relationships

A —— B = ancestrally

A o—» B = non-ancestrality

A «— B — spurious association
A+——B = selection bias

Arrowhead — non-ancestrality
TailT —— ancestrally

Circle — non-invariance

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders and
selection bias. Artificial Intelligence, 172(16):1873-1896. Link

Jaber A., Ribeiro A. H., Zhang, J., Bareinboim, E. Causal Identification under Markov Equivalence - Calculus, Algorithm, and
Completeness. In Proceedings of the 36th Annual Conference on Neural Information Processing Systems, NeurlPS 2022. (Link) 82


http://dx.doi.org/10.1016/j.artint.2008.08.001
https://causalai.net/r86a.pdf

Conditional Independence Tests

Gaussian errors and independent observations: partial correlation test

Fisher, R.A. (1921). On the" Probable Error" of a Coefficient of Correlation Deduced from a Small Sample.

R package: https://cran.r-project.org/web/packages/pcalg/

Kernel-based non-parametric test:

Zhang, K., Peters, J., Janzing, D., & Scholkopf, B. (2012). Kernel-based conditional independence test
and application in causal discovery. In: Uncertainty in artificial intelligence. AUAI Press; 2011. p.804-13
R package: https://cran.r-project.org/web/packages/CondindTests

Continuous (conditional Gaussian) or Discrete (Binary, Ordinal, Multinomial) - Linear Regression

e Tsagris, M., Borboudakis, G., Lagani, V. et al. (2018) Constraint-based causal discovery with mixed

data. Int J Data Sci Anal 6, 19-30. (Link)
* R package: https://cran.r-project.org/web/packages/MXM/

Gaussian errors and correlated observations (family data) :

Ribeiro A.H., Soler J.M.P. (2020). Learning Genetic and environmental graphical models from family data,
Statistics in Medicine.
R package: https://github.com/adele/FamilyBasedPGMs
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https://cran.r-project.org/web/packages/CondIndTests
https://github.com/adele/FamilyBasedPGMs
https://cran.r-project.org/web/packages/pcalg/
https://doi.org/10.1007/s41060-018-0097-y
https://cran.r-project.org/web/packages/MXM/

Learning Structural Invariances

Vo) Markov Equivalence Class
U:{Ux9UY’UZ} [
. Conditional
e (in)dependencies
Y < (Uy) Data
P(U \
| P(U) . P(V)
pobeie i SN [ [ X J'LY ......
U = Uz Uyz. Ux, Uy, Uz} ey _>X | L/Z —_
- (X « fi(Uyz Uy)
%N—l_< (7ot ZﬁfZ(YaUXZ’UZ) ZAH_/Y
: Y < fy(Uy)
. / X HY|Z
(V={X,Y,Z) -
iz {UXZ’ UYZ’ UXa UYa UZ} P(’x’ y3 Z) T P(Z x’ y)P(x | y)P(y)
‘. X < £(Uyz, Uy) = P(z|x,y)P(x)P(y)

Z < f7(Uxz, Uyz, Uy)
kYefY(UYZ’ Uy)

F =

A\

 P(U)



Learning Structural Invariances

Vo) Markov Equivalence Class
U= {U, Uy, Uy} ..
L Conditional ~ (MEC)
4. L (in)Jdependencies | |
. | .
. i \ Data , Partial Ancestral Graph (PAG)
“ : P(v) * .
: | ; W Causal MEC Representation
v L XA Y | | ~ Discovery
Stnn 22| —hr 1~ | [ | EZ=2 @00
(X < fi(Uyz, Uy) ‘i‘ ‘}
T F =12 U Uy XY ] “‘ .‘ FCI algorithm
; Y « fy(Uy) H: “‘ . "
V= x v | | |
U = (Uyy Uy, Uy, Uy, Uy} P(x.y,2) = Pz|x,y)P(x[)P(y) ] ; !
o | P = PGl )PWPY) | |
- F =1 Z < [;(Uxz, Uy, Uy) ! ] | )
Y — f(Uyz. Uy) | |
P(U) - -

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders
and selection bias. Artificial Intelligence, 172(16):1873-1896. Link 80


http://dx.doi.org/10.1016/j.artint.2008.08.001

Other examples

Underlying Causal Diagram Partial Ancestral Graph

i O COp—(Z)e—(7)
@ —2)~() Data ___ EC Foe(D)

. —» | FCI |—> N
@\@/@'@ @%@MC@_'@
@_.@< ..... .@4_@ @H@H@H@D

ORGSO 0 (WX 2( D

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders
and selection bias. Artificial Intelligence, 172(16):1873-1896. Link 86



http://dx.doi.org/10.1016/j.artint.2008.08.001

Fast Causal Inference (FCI) Algorithm

True unknown) /N 4T Implied by the ADMG
causal diagram )¢ J_|_ Y| Z W using d-separation

Conditional

Complete Graph X1 W
XUY|ZW

observed In
the data

Independence Tests

Skeleton

FCI Rules
(R1) — (R10)

Partial Ancestral Graph
(PAG)

Implied by the PAG X1 W
using m-separation X1 Y|ZW

/. is not an ancestor of X or W.
/., and W are ancestors of Y.

/. is not confounded with Y. q7



PAG represents the Markov Equivalence Class

True (unknown)
causal diagram

Partial Ancestral Graph
(PAG)

/. is not an ancestor of X or W.

/., and W are ancestors of Y.

/. is not confounded with Y.

X1 W
X1 Y|ZW
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More on Causal Discovery

Causal discovery from observational and experimental data:

* Goncalo Rui Alves Faria, Andre Martins, Mario A. T. Figueiredo. Differentiable Causal
Discovery Under Latent Interventions. Proceedings of the First Conference on Causal
Learning and Reasoning, PMLR 177:253-274, 2022.

 Kocaoglu, M., Jaber, A., Shanmugam, K., Bareinboim, E. Characterization and Learning
of Causal Graphs with Latent Variables from Soft Interventions. In Proceedings of the
33rd Annual Conference on Neural Information Processing Systems. 2019.

« Jaber, A., Kocaoglu, M., Shanmugam, K., Bareinboim, E. Causal Discovery from Soft
Interventions with Unknown Targets: Characterization & Learning. In Advances in
Neural Information Processing Systems 2020.

39


http://causalai.net/r47.pdf
http://causalai.net/r47.pdf
http://causalai.net/r47.pdf
http://causalai.net/r67.pdf
http://causalai.net/r67.pdf
http://causalai.net/r67.pdf

Causal Identification from PAGs

Can we identify causal effects from the equivalence class?

Effect Identification:

For Covariate Adjustment, we can use the Generalized Adjustment Criterion.

Recently, we proposed complete calculus and algorithms for the identification
of marginal and conditional causal effect in PAGs!

Perkovic, E., Textor, J. C., Kalisch, M., & Maathuis, M. H. (2018). Complete graphical characterization and construction of
adjustment sets in Markov equivalence classes of ancestral graphs. Journal of Machine Learning Research 18 (2018) 1-62

Jaber A., Ribeiro A. H., Zhang, J., Bareinboim, E. (2022) Causal Identification under Markov Equivalence - Calculus, Algorithm,
and Completeness. In Proceedings of the 36th Annual Conference on Neural Information Processing Systems, NeurlPS. (Link)
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General ldentification in Markov Equivalence Classes

'The CIDP and IDP algorithms are

,t

'available at the PAGId R package:
| https:/github.com/adele/PAGId |

Query
P(y|do(x))

IDP / CIDP !ution

P(y|do(x)) = ) P(y|x,2)P(2)

Interventional Available
Distribution ' Distributions

P(x,m,y) Observational Distribution

Jaber A., Ribeiro A. H., Zhang, J., Bareinboim, E. Causal Identification under Markov Equivalence - Calculus, Algorithm, and
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Effect Identifiabiliy given a PAG

G

. @ /@v Py | do(x) =
W @ LY
\ G2 @
P(y | do(x) =
P Y- P ,
(y | do(x)) ; (y ‘X,Z) (2) @ EP(y\x, 2)P(2)

An effect identifiable in a PAG & is identifiable in all causal diagrams G in the
Markov Equivalence Class using the same identification formula!
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Effect Non-ldentifiabiliy given a PAG

-------- a
Gl
P(y|do(x)) =
X Z P(v|x,2)P(z)

, Gy, e .
oy @
P(y|do(x)) is C)‘ """"" y
not identifiable

An effect not identifiable in a PAG &£ is not identifiable in at least one
causal diagrams G in the Markov Equivalence Class

P(y|do(x)) is
not identifiable
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Causal Inference Workflow

Continuous Process of Scientific Discovery and Causal Hypothesis Refinement

new discoveries(t+1)

S M T e ettt e ettt et
(Unobserved Nature) :
Z « f2(U,) queries(t)
X « fx(Z, Ux) . new
/ Y — f,X. Z Uy i Q  insights
P(U;, Uy, U) > knowledge(t) . |
causal hypothesis (t) nswerable Experimental
5 L e
\ """""" . o validation(t)
data(tf A — distributions(t) —> \\; y T not new
A z 0/ answerable Cha”enges

perform new observations
and/or experiments(t+1)

[.A Statistical Learning B Causal Learning C CausalInference D Causal Exp. Design]
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Causal Inference Workflow

Continuous Process of Scientific Discovery and Causal Hypothesis Refinement

new discoveries(t+1)

S M T e ettt e ettt et
(Unobserved Nature) :
Z + fz(Uy) queries(t)
X « fx(Z, Ux) . new
/ Y — f,X. Z .Uy i S\E  insights
P(Uz, Uy, U) > knowledge(t) . |
causal hypothesis (t) o Experimental
5 L answerable P
\ """"""" . o validation(t)
data(tf A — distributions(t) —> \\iv — not new
A z 0/ answel’able Cha”enges

perform new observations
and/or experiments(t+1)

[.A Statistical Learning B Causal Learning C CausalInference D Causal Exp. Design]
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There 1Is much more to learn...

1. Generalized Effect |dentification:
- For when multiple observational and experimental datasets are available, possible
under partial observability.
2. Partial Identification:
- For when the effect is not point-identifiable, but an interval for it can be derived.
3. Effect Transportability:
- For when the target is a different population/domain.
4. Counterfactual Identification:

- Identification of &5 quantities, such as P(y, | x’) and P(y, | X/, z).

5. Fairness Evaluation:
- To identify path-specify effects related to protective variables.
6. Effect Estimation beyond backdoor scenarios:
- Via doubly robust machine learning and different plug-in density estimators.



Conclusions

Causal inference can help overcome critical challenges in Artificial Intelligence,
iIncluding robustness, generalizability, explainability, and fairness.

Causal Data Science: principled way of combining data and substantive
knowledge about the phenomenon under investigation to generate causal
explanations and better decision-making.

Recent developments for causal inference when knowledge is largely unavailable
and coarse are expected to help the practice of causal data analysis and meet
the growing demand in the Empirical Sciences for sound causal explanations
and more robust and generalizable decision-making.
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Thank you! :

Feel free to reach out to me if you have any questions;

adele.ribeiro@uni-marburg.de
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