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What’s in this tutorial

 We will learn about
— What is a neural network: historical perspective

— What can neural networks model

— What do they actually learn
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Professor, ]
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Carnegie Mellon Univ.
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Part 1: What is a neural network



Neural Networks are taking over!

* Neural networks have become one of the
major thrust areas recently in various pattern
recognition, prediction, and analysis problems

* |n many problems they have established the
state of the art

— Often exceeding previous benchmarks by large
margins



Breakthrough successes with neural
networks
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Breakthrough successes with neural
networks
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Breakthrough successes with neural
networks
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Breakthrough successes with neural
networks
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Successes with neural networks

* And a variety of other problems:
— Image analysis
— Natural language processing
— Speech processing
— Even predicting stock markets!



Neural nets and the employment
market

This guy didn't know This guy learned
about neural networks about neural networks
(a.k.a deep learning) (a.k.a deep learning)



So what are neural networks??

Voice

. Text caption
signal

Transcription Image

Game
State

Next move

e What are these boxes?



So what are neural networks??

* |t begins with this..



So what are neural networks??

"The Thinker!"
by Augustin Rodin

e Or even earlier.. with this..



The magical capacity of humans

* Humans can
— Learn
— Solve problems
— Recognize patterns
— Create
— Cogitate

 Worthy of emulation
e But how do humans “work“?



Cognition and the brain..

* “If the brain was simple enough to be
understood - we would be too simple to
understand it!”

— Marvin Minsky



Early Models of Human Cognition

e Associationism

— Humans learn through association
e 400BC-1900AD: Plato, David Hume, Ivan Pavlov..



What are “Assoaatmns
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e Lightning is generally followed by thunder
— Ergo—“hey here’s a bolt of lightning, we’re going to hear thunder”
— Ergo — “We just heard thunder; did someone get hit by lightning”?

* Associations!
— Actually a pretty good theory that still applies

e But where and how do we store these associations?



Observation: The Brain

e Mid 1800s: The brain is a mass of
interconnected neurons



Brain: Interconnected Neurons

* Many neurons connect jin to each neuron

 Each neuron connects out to mMmany Nneurons



Enter Connectionism

* Alexander Bain, philosopher, mathematician, logician,
linguist, professor

e 1873: The information is in the connections
— The mind and body (1873)



Bain’s Idea : Neural Groupings

e Neurons excite and stimulate each other

* Different combinations of inputs can result in
different outputs




Bain’s Idea : Neural Groupings

e Different intensities of
activation of A lead to

the differences in iy Z
when X and Y are o
activated




Bain’s Idea 2: Making Memories

* “when two impressions concur, or closely
succeed one another, the nerve currents find
some bridge or place of continuity, better or
worse, according to the abundance of nerve
matter available for the transition.”

* Predicts “Hebbian” learning (half a century
before Hebb!)



Bain’s Doubts

“The fundamental cause of the trouble is that in the modern world
the stupid are cocksure while the intelligent are full of doubt.”

— Bertrand Russell

In 1873, Bain postulated that there must be one million neurons and
5 billion connections relating to 200,000 “acquisitions”

In 1883, Bain was concerned that he hadn’t taken into account the
number of “partially formed associations” and the number of neurons
responsible for recall/learning

By the end of his life (1903), recanted all his ideas!
— Too complex; the brain would need too many neurons and connections



MLSE

Connectionism lives on..

The human brain is a connectionist machine
— Bain, A. (1873). Mind and body. The theories of their
relation. London: Henry King.

— Ferrier, D. (1876). The Functions of the Brain. London:
Smith, Elder and Co

Neurons connect to other neurons. &
The processing/capacity of the brain P
is a function of these connections ﬁ\ "“ &

Connectionist machines emulate this structure



Connectionist Machines

-

* Network of processing elements

* All world knowledge is stored in the connections
between the elements



Connectionist Machines

* Neural networks are connectionist machines
— As opposed to Von Neumann Machines

Von Neumann/Harvard Machine Neural Network
PROGRAM
PRU OR NETWORK
DATA
Processing Memory

unit

 The machine has many non-linear processing units
— The program is the connections between these units

e Connections may also define memory



Recap

Neural network based Al has taken over most Al tasks

Neural networks originally began as computational models
of the brain
— Or more generally, models of cognition

The earliest model of cognition was associationism
The more recent model of the brain is connectionist

— Neurons connect to neurons
— The workings of the brain are encoded in these connections

Current neural network models are connectionist machines




Connectionist Machines

* Network of processing elements

* All world knowledge is stored in the
connections between the elements



Connectionist Machines

e Connectionist machines are networks of
units..

e We need a model for the units



MLSP

Modelling the brain

What are the units?
A neuron:

Dendrites

Axon

Signals come in through the dendrites into the Soma
A signal goes out via the axon to other neurons

— Only one axon per neuron
Factoid that may only interest me: Neurons do not undergo cell division

Factoid that may only interest me: Being called a “fathead” may be a
compliment



McCullough and Pitts

e The Doctor and the Hobo..

— Warren McCulloch: Neurophysician

— Walter Pitts: Homeless wannabe logician who
arrived at his door




MLSE

The McCulloch and Pitts model

yi Inputs ~ Weights A single neuron

Output

Threshold T

f

0 T Sum

In

e A mathematical model of a neuron

— McCulloch, W.S. & Pitts, W.H. (1943). A Logical
Calculus of the Ideas Immanent in Nervous Activity,
Bulletin of Mathematical Biophysics, 5:115-137, 1943

 Pitts was only 20 years old at this time

— Threshold Logic



Synaptic Model

* Excitatory synapse: Transmits weighted input
to the neuron

* Inhibitory synapse: Any signal from an
inhibitory synapse forces output to zero

— The activity of any inhibitory synapse absolutely
prevents excitation of the neuron at that time.

* Regardless of other inputs



Simple "networks"

of neurons can perform
Boolean operations BOO I ean G ates
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Figure 1. Diagrams of McCulloch and Pitts nets. In order to send an output pulse,
cach neuron must recerve two excitory inputs and no mhubitory inputs. Lines ending
m a dot represent excitatory connections; lines ending in a hoop represent inhibitory
conneetions.



Criticisms

e Several..

— Claimed their machine could emulate a Turing

machine

* Didn’t provide a learning mechanism..



Donald Hebb

* “Organization of behavior”, 1949

* Alearning mechanism:

— Neurons that fire together wire together



Hebbian Learning

Events at the synapse

Voltage-gated calcium
channels open in the
pre-synaptic membrane

Calcium ions diffuse
into the synaptic knob

An action potential travels down
the axon of the neuron to the
synaptic knob and depolarises
the pre-synaptic membrane

The uptake of calcium ions
triggers the fusion of
the synaptic vesicles with the
pre-synaptic membrane

post-synaptic
membrane

e g

Axonal connection from
neuron X

— Dendrite of neuron Y

If neuron x; repeatedly triggers neuron y, the synaptic knob
connecting x; to y gets larger

In @ mathematical model:

wW; = W; + nNx;y

— Weight of i*" neuron’s input to output neuron y
This simple formula is actually the basis of many learning

algorithms in ML



A better model

B P g i pee 4 "R B

A0 .| b

Frank Rosenblatt
— Psychologist, Logician
— Inventor of the solution to everything, aka the Perceptron (1958)



Simplified mathematical model

* Number of inputs combine linearly

— Threshold log
threshold

Y =<

ic: Fire if combined input exceeds

f
1 ifzwixi+b>0
[

L0 else

MLSE



His “Simple” Perceptron

* Originally assumed could represent any Boolean circuit and
perform any logic
— “the embryo of an electronic computer that [the Navy] expects

will be able to walk, talk, see, write, reproduce itself and be
conscious of its existence,” New York Times (8 July) 1958

— “Frankenstein Monster Designed by Navy That Thinks,” Tulsa,
Oklahoma Times 1958

MLSE



Also provided a learning algorithm

w=w +7(d(x) — y(X)x

Sequential Learning:
d(x) is the desired output in response to input x
y(x) is the actual output in response to x

e Boolean tasks

* Update the weights whenever the perceptron
output is wrong

* Proved convergence



Perceptron

XVY

e Easily shown to mimic any Boolean gate

e But...

MLSE



Perceptron

No solution for XORI
Not universall

X ?

XY

Y

* Minsky and Papert, 1968

MLSE



A single neuron is not enough

* |ndividual elements are weak computational elements

— Marvin Minsky and Seymour Papert, 1969, Perceptrons:
An Introduction to Computational Geometry

 Networked elements are required



Multi-layer Perceptron!

Hidden Layer

» XOR

— The first layer is a “hidden” layer

— Also originally suggested by Minsky and Papert, 1968

48



A more generic model

(A&X&2)|(A&Y))&((X & V)|(X&Z))

* A “multi-layer” perceptron

 Can compose arbitrarily complicated Boolean
functions!

— More on this in the next part



Story so far

Neural networks began as computational models of the brain
Neural network models are connectionist machines
— The comprise networks of neural units
McCullough and Pitt model: Neurons as Boolean threshold units
— Models the brain as performing propositional logic
— But no learning rule
Hebb’s learning rule: Neurons that fire together wire together
— Unstable

Rosenblatt’s perceptron : A variant of the McCulloch and Pitt neuron with
a provably convergent learning rule

— But individual perceptrons are limited in their capacity (Minsky and Papert)

Multi-layer perceptrons can model arbitrarily complex Boolean functions




But our brain is not Boolean

 We have real inputs
* We make non-Boolean inferences/predictions



The perceptron with real inputs

Inputs  Weights
X1

Threshold T

* X;...Xy are real valued
 W,...Wy are real valued

* Unit “fires” if weighted input exceeds a threshold



The perceptron with real inputs
and a real output

Inputs  Weights
X1

Output
»> V

y = sigmoid (2 Wl-xl->

l

| sigmoid

* X,...Xy are real valued
 W,...Wy are real valued

* The output y can also be real valued
— Sometimes viewed as the “probability” of firing
— Is useful to continue assuming Boolean outputs though



A Perceptron on Reals

Inputs  Weights
X1

e A perceptron operates on
real-valued vectors

— This is a linear classifier

1

N

WX twyx,=T




Boolean functions with a real
perceptron

0, 111 0’ 1,1
Q@ ? @

X Y ‘

0,0 Y 1,0 0,0 X

1,0

* Boolean perceptrons are also linear classifiers
— Purple regions have output 1 in the figures
— What are these functions
— Why can we not compose an XOR?



Composing complicated “decision”

boundaries
A

Can now be composed into
“networks"” o compute arbitrary

/\ classification "boundaries”
>

\ /Xl

X5

* Build a network of units with a single output
that fires if the input is in the coloured area

56



Booleans over the reals

* The network must fire if the input is in the
coloured area

57



Booleans over the reals

* The network must fire if the input is in the
coloured area

58



Booleans over the reals

* The network must fire if the input is in the
coloured area

59



Booleans over the reals

<
/\/ / Xl X l % ;‘ O

* The network must fire if the input is in the
coloured area

60



Booleans over the reals

* The network must fire if the input is in the
coloured area

61



Booleans over the reals

* The network must fire if the input is in the
coloured area

62



More complex decision boundaries

* Network to fire if the input is in the yellow area
— “OR” two polygons
— A third layer is required

63



Complex decision boundaries
)

 Can compose very complex decision boundaries

— How complex exactly? More on this in the next part

64



Complex decision boundaries

3 e
i

784 dimensions
(MNIST)

Not 2

784 dimensions

* Classification problems: finding decision
boundaries in high-dimensional space

65



Story so far

 MLPs are connectionist computational models
— Individual perceptrons are computational equivalent of neurons
— The MLP is a layered composition of many perceptrons

e MLPs can model Boolean functions
— Individual perceptrons can act as Boolean gates
— Networks of perceptrons are Boolean functions

* MLPs are Boolean machines
— They represent Boolean functions over linear boundaries
— They can represent arbitrary decision boundaries
— They can be used to classify data



So what does the perceptron really
model?

* |sthere a “semantic” interpretation?



Lets look at the weights
Weights y = {1 if Zwixi >T

0 else

Threshold T

_ {1 if xTw>T
y_
0 else

 What do the weights tell us?

— The neuron fires if the inner product between the
weights and the inputs exceeds a threshold

68



The weight as a “template”

X'w>T

0 > !
COosS -
Output |X|

g T
0 < cos™1 (—)
| X]|

Threshold T

The perceptron fires if the input is within a specified angle
of the weight

Neuron fires if the input vector is close enough to the
weight vector.

— If the input pattern matches the weight pattern closely enough

69



The weight as a template

W X X

Correlation = 0.57 Correlation = 0.82\‘
Y = - 2

0 else

 |f the correlation between the weight pattern
and the inputs exceeds a threshold, fire

* The perceptron is a correlation filter!

70



The MLP as a Boolean function over
feature detectors

DIGIT OR NOT? ‘

@//«

== ———
S Ao = S~

B

* The input layer comprises “feature detectors”
— Detect if certain patterns have occurred in the input

* The network is a Boolean function over the feature detectors

* le.itisimportant for the first layer to capture relevant patterns |



The MLP as a cascade of feature
detectors

DIGIT OR NOT? ‘

e The network is a cascade of feature detectors

— Higher level neurons compose complex templates
from features represented by lower-level neurons

72



Story so far

Multi-layer perceptrons are connectionist computational models

MLPs are Boolean machines
— They can model Boolean functions
— They can represent arbitrary decision boundaries over real inputs

Perceptrons are correlation filters
— They detect patterns in the input

MLPs are Boolean formulae over patterns detected by
perceptrons

— Higher-level perceptrons may also be viewed as feature detectors

Extra: MLP in classification

— The network will fire if the combination of the detected basic features
matches an “acceptable” pattern for a desired class of signal

» E.g. Appropriate combinations of (Nose, Eyes, Eyebrows, Cheek, Chin) = Face
73




MLP as a continuous-valued regression

* Asimple 3-unit MLP with a “summing” output unit can
generate a “square pulse” over an input
— Outputis 1 only if the input lies between T, and T,

— T,and T, can be arbitrarily specified
74



MLP as a continuous-valued regression
4 RN

f\hz |

R hy

N ™ \J

T T, x
i A

* Asimple 3-unit MLP can generate a “square pulse” over an input

* An MLP with many units can model an arbitrary function over an input
— To arbitrary precision

* Simply make the individual pulses narrower

* This generalizes to functions of any number of inputs (next part)
75



Story so far

* Multi-layer perceptrons are connectionist
computational models

 MLPs are classification engines
— They can identify classes in the data
— Individual perceptrons are feature detectors

— The network will fire if the combination of the
detected basic features matches an “acceptable”
pattern for a desired class of signal

 MLP can also model continuous valued functions
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Neural Networks:
Part 2: What can a network
represent



Recap: The perceptron

z = E wix; =T
i

1ifz=0
y= {17

0 else
\

e A threshold unit

— “Fires” if the weighted sum of inputs and the
“bias” T is positive



The “soft” perceptron

zZ = E w;X; — T
i

1
1+ exp(—2)

y

* A “squashing” function instead of a threshold
at the output

— The sigmoid “activation” replaces the threshold

* Activation: The function that acts on the weighted
combination of inputs (and threshold)



Other “activations”

* Does not always have to be a squashing function

* We will continue to assume a “threshold” activation in this
lecture



Recap: the multi-layer perceptron

Deep neural network

hidden layer 1 hidden layer 2 hidden layer 3

input layer

* A network of perceptrons

— Generally “layered”



Note on “depth”

Aside

Deep neural network

* What is a “deep” network
— And what is a “layer”?



Deep Structures

* In any directed network of computational elements with
input source nodes and output sink nodes, “depth” is the
length of the longest path from a source to a sink

— A “source” node in a directed graph is a node that has only
outgoing edges

— A “sink” node is a node that has only incoming edges

oo Lo

e Left: Depth = 2. Right: Depth = 3

MLSE

83



Deep Structures

* Layered deep structure
— The input is the “source”,
— The output nodes are “sinks”

Input to another layer above t
(image with 8 channels)

Number of output

i channels = 8
_ atiny
. H
= Number
= of maps = 8 Input: Black
8| w Layer 1: Red
Number of input tgyz: g \(jzlels\?v
v channels =3 yer =

Layer 4: Blue

< >
Image Size = 200

 “Deep” > Depth greater than 2
 “Depth” of a layer —the depth of the neurons in the layer w.r.t. input

84



The multi-layer perceptron

Deep neural network

hidden layer 1 hidden layer 2 hidden layer 3

* |nputs are real or Boolean stimuli
e Qutputs are real or Boolean values
— Can have multiple outputs for a single input

* What can this network compute?
— What kinds of input/output relationships can it model?



MLPs approximate functions

((A&X&2)|(A&T)&((X & V)| (X&Z))

4 [\

* MLPs can compose Boolean functions
* MLPs can compose real-valued functions

e What are the limitations?



The MLP as a Boolean function

e How well do MLPs model Boolean functions?



The perceptron as a Boolean gate

XVY

* A perceptron can model any simple binary
Boolean gate



Perceptron as a Boolean gate

X1
X7
: N
XL+1 i=L+1
X
,L+2 Will fire only if X, .. X; are all 1
: and X,., .. Xyare all O
XN

 The universal AND gate
— AND any number of inputs

* Any subset of who may be negated



Perceptron as a Boolean gate

X1
X>
. L N
X, Vvl \
XL_|_1 =1 I=L+1
X
.L"'z Will fire only if any of X; .. X; are 1
: or any of X;,, .. XyareO
XN

* The universal OR gate

— OR any number of inputs

* Any subset of who may be negated



Perceptron as a Boolean Gate

Will fire only if the total number of
of X, .. Xythatare 1is at least K

XL+1 1

XL+2 1
Xn
* Universal OR:
— Fire if any K-subset of inputs is “ON”



The perceptron is not enough

XY

* Cannot compute an XOR



Multi-layer perceptron

Hidden Layer

* MLPs can compute the XOR



Multi-layer perceptron

((A&X&2)|(A&Y))&((X & Y)|(X&Z))

1 e o 1
e‘e oto
N

* MLPs can compute more complex Boolean functions

 MLPs can compute any Boolean function

— Since they can emulate individual gates

 MLPs are universal Boolean functions



MLP as Boolean Functions

((A&X&2)|(A&Y))&((X & V)|(X&Z))

3

hidden layer

1 hidden layer 2

Deep neural network

hidden layer

e MLPs are universal Boolean functions

— Any function over any number of inputs and any number
of outputs

* But how many “layers” will they need?



How many layers for a Boolean MLP?

Truth table shows all input combinations
Truth Table for which output is 1

O 0 1 1 0 1
o 1 0 1 1 1
O 1 1 0 0 1
1 0 0 O 1 1
1 0 1 1 1 1
1 1 0 0 1 1

* Expressed in disjunctive normal form



How many layers for a Boolean MLP?

Truth table shows all input combinations
Truth Table for which output is 1

mmmmm Y = X1 X5 X3X,Xs + X1 Xo X3 X4 X5 + X1 X, X3 X, X5 +

X1 X, X3X, X5 + X122X3X4X5 + X1X2X3X4X5

O 0 1 1 0 1
o 1 0 1 1 1
O 1 1 0 0 1
1 0 0 O 1 1
1 0 1 1 1 1
1 1 0 0 1 1

* Expressed in disjunctive normal form



How many layers for a Boolean MLP?

Truth table shows all input combinations
“ble for which output is 1

EAEE v -G X0+ R, Ko X Xs + By Xp Xa XX +

X, XoXaXaXs + X Ko XaXuXs + X, Xo Xa X, X

=
-

Trut

X X,
1 1
0 1
1 O
0O O
1 1
0O O

0
1
0
1
1
1

R = =, O O O

1
1
1
1
1
1

R O O +» ¥» O

* Expressed in disjunctive normal form



How many layers for a Boolean MLP?

Truth table shows all input combinations
Truth Table for which output is 1

mmmmm Y = X, X, X3X,Xs X1 X X3X, X5 +

X1 X X3 X4 Xg + X1 X5 X3 X4 X5 + X1X2X3X4X5

0 01 1 0 1
0 1 0 1 1 1
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 1 1 1 %
-
1 1 0 0 1 1

* Expressed in disjunctive normal form



How many layers for a Boolean MLP?

Truth table shows all input combinations
Truth Table for which output is 1

EAEAEAEAEEEE v = 750X, + KXo R X, Xs AR X X KD+

X Xy KoKy X+ Xo Ko XoX o Xe + X, Ko X oK Xe

O 0 1 1 0 1
o 1 0 1 1 1
O 1 1 0 0 1
1 0 0 O 1 1
1 0 1 1 1 1
1 1 0 0 1 1

Expressed in disjunctive normal form



How many layers for a Boolean MLP?

Truth table shows all input combinations
for which output is 1

Truth Table

mmmmm Y = X XoXa Xu X5 + X1 Xo X3 X4 X5 + X1 X X3 X, X5 +
0O 0 1 1 0 1 X1X2X3X4X5 + X1 X5 X3X4 X5
o 1 0 1 1 1

O 1 1 0 0 1

1 0 0O O 1 1

1 0 1 1 1 1

1 1 0 O 1 1

* Expressed in disjunctive normal form



How many layers for a Boolean MLP?

Truth table shows all input combinations

Truth Table for which output is 1

mmmmm Y = X1 X,X3X4 X5 + Y“ X X5 + X1 X2 X3X4 X5 +

X, X, X X, X5 4@ K, X3 X XDk X1 X, X5 X, X

O 0 1 1 0 1
o 1 0 1 1 1
O 1 1 0 0 1
1 0 0 O 1 1
1 0 1 1 1 1
1 1 0 0 1 1

* Expressed in disjunctive normal form



How many layers for a Boolean MLP?

Truth table shows all input combinations

Truth Table for which output is 1

mmmmm Y = X1 X, X3 X, X5 + X1 X, X3X, X5 ++
X, XX QX X3 KaXs

X1 XoX3 X4 X + X1 X X3 X, Xe +

O 0 1 1 0 1
o 1 0 1 1 1
O 1 1 0 0 1
1 0 0 O 1 1
1 0 1 1 1 1
1 1 0 0 1 1

* Expressed in disjunctive normal form



How many layers for a Boolean MLP?

Truth table shows all input combinations
Truth Table for which output is 1

mmmmm Y = X1 X5 X3X,Xs + X1 Xo X3 X4 X5 + X1 X, X3 X, X5 +

X1 X, X3X, X5 + X1X2X3X4X5 + X1X2X3)?4X5

R, kB Rk, O O O
~ O O L » O
©O B O r O K
O B O O b R
R B kR O Kk O
N T e e

* Expressed in disjunctive normal form



How many layers for a Boolean MLP?

Truth table shows all input combinations
Truth Table for which output is 1

mmmmm Y = X1 X5 X3X,Xs + X1 Xo X3 X4 X5 + X1 X, X3 X, X5 +

X1 X, X3X, X5 + X1X2X3X4X5 + X1X2X3)?4X5

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1 S == =
1100 1 1 x X X X X

* Any truth table can be expressed in this manner!
A one-hidden-layer MLP is a Universal Boolean Function

But what is the largest number of perceptrons required in the
single hidden layer for an N-input-variable function?




Reducing a Boolean Function

YZ
WX o0 01 11 10

This is a "Karnaugh Map”

00
It represents a truth table as a grid

01 Filled boxes represent input combinations
for which output is 1; blank boxes have
output O

11
Adjacent boxes can be "grouped” to

10 reduce the complexity of the DNF formula
for the table

* DNF form:
— Find groups
— Express as reduced DNF



Reducing a Boolean Function
YZ

WX OO0 01 11 10

00 Basic DNF formula will require 7 terms

01

11

10




Reducing a Boolean Function

YZ
Wk/oqmnlo o
00 \1\ ) O=YZ+WXY +XYZ
~——

01 )

¥4,/

11

o )

"4 l
e Reduced DNF form:

— Find groups

— Express as reduced DNF



Reducing a Boolean Function

Y/
Wk/oqmnlo o
' ) O=YZ+WXY +XYZ
00 \1\
~—

01 )

¥4,/

11

o )

\/ |
e Reduced DNF form: W X Y Z

— Find groups

— Express as reduced DNF



Largest irreducible DNF?

YZ
WX 00 01 11 10

00

01

11

10

 What arrangement of ones and zeros simply
cannot be reduced further?



Largest irreducible DNF?

 What arrangement of ones and zeros simply
cannot be reduced further?



Largest irreducible DNF?

YZ
WX 00 01 11 10 oOw many neurons

in a DNF (one-
hidden-layer) MLP
for this Boolean
function?

 What arrangement of ones and zeros simply
cannot be reduced further?



Width of a single-layer Boolean MLP

00
yy00 01 11 10 YZ

« How many neurons in a DNF (one-hidden-
layer) MLP for this Boolean function of 6
variables?



Width of a single-layer Boolean MLP

YZ
WX

NN

Can be generalized: Will require 2N-!
perceptrons in hidden layer
Exponential in N

1U

11

00
yy00 01 11 10 YZ

 How many neurons in a DNF (one-hidden-
layer) MLP for this Boolean function



Width of a single-layer Boolean MLP

YZ
WX

8]0
Can be generalized: Will require 2N-1

perceptrons in hidden layer
Exponential in N

1V

11

How many units if we use multiple layers?

 How many neurons in a DNF (one-hidden-
layer) MLP for this Boolean function




Width of a deep MLP

WX 00 01 11 10

00
oy 00 01 11 10

O=WPXDPYDZ O=UDVDODWDXDY DZ



Multi-layer perceptron XOR

Hidden Layer

* An XOR takes three perceptrons



Width of a deep MLP

WX 00 01 11 10

9 perceptrons

O=WPXDPYDZ

 An XOR needs 3 perceptrons

* This network will require 3x3 = 9 perceptrons



Width of a deep MLP

00
vz
oy 00 01 11 10

O=UpVPWOLXPYPZ

u v W X Y Z 15 perceptrons

 An XOR needs 3 perceptrons

* This network will require 3x5 = 15 perceptrons



Width of a deep MLP

00
vz
oy 00 01 11 10

O=UpVPWOLXPYPZ

More generally, the XOR of N
u v WX Y £ variables will require 3(N-1)
perceptrons!!

 An XOR needs 3 perceptrons

* This network will require 3x5 = 15 perceptrons



Width of a single-layer Boolean MLP

YZ
WX

018

Single hidden layer: Will require 2N-1+1
perceptrons in all (including output unit)
Exponential in N

1V

11

Will require 3(N-1) perceptrons in a deep
network

Linear in NIl

Can be arranged in only 2log,(N) layers




A better representation

S 7

£
SR N N
24242420202 424

X1 XN

0:X1 @Xz@"’@XN

* Only 2log, N layers

— By pairing terms




The challenge of depth

0:X1 @XZ@“.@XN
=72, P2, DDy

W

i

N

* Using only K hidden layers will require O(2(N€/2)) neurons in the Kth layer
— Because the output can be shown to be the XOR of all the outputs of the K-1th
hidden layer

— l.e. reducing the number of layers below the minimum will result in an
exponentially sized network to express the function fully

— A network with fewer than the required number of neurons cannot model the
function



Recap: The need for depth

* Deep Boolean MLPs that scale linearly with
the number of inputs ...

e ...can become exponentially large if recast
using only one layer

* |t gets worse..



The need for depth
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 The wide function can happen at any layer

* Having a few extra layers can greatly reduce network
Size



Depth vs Size in Boolean Circuits

* The XOR is really a parity problem

* Any Boolean circuit of depth d using AND,OR and

NOT gates with unbounded fan-in must have size
oni/d

— Parity, Circuits, and the Polynomial-Time Hierarchy,
M. Furst, J. B. Saxe, and M. Sipser, Mathematical
Systems Theory 1984

— Alternately stated: parity & AC°

» Set of constant-depth polynomial size circuits of unbounded
fan-in elements



Caveat: Not all Boolean functions..

* Not all Boolean circuits have such clear depth-vs-size
tradeoff

 Shannon’s theorem: Forn > 2, there is Boolean function of
n variables that requires at least 2" /n gates

— More correctly, for large n,almost all n-input Boolean functions
need more than 2™ /n gates

* Note: If all Boolean functions over n inputs could be
computed using a circuit of size that is polynomial in n,
P = NP!



Network size: summary

An MLP is a universal Boolean function

But can represent a given function only if
— It is sufficiently wide
— It is sufficiently deep

— Depth can be traded off for (sometimes) exponential growth of the
width of the network

Optimal width and depth depend on the number of variables and
the complexity of the Boolean function

— Complexity: minimal number of terms in DNF formula to represent it



Story so far

Multi-layer perceptrons are Universal Boolean Machines

Even a network with a single hidden layer is a universal
Boolean machine

— But a single-layer network may require an exponentially
large number of perceptrons

Deeper networks may require far fewer neurons than
shallower networks to express the same function

— Could be exponentially smaller



Caveat

* Used asimple “Boolean circuit” analogy for explanation

 We actually have threshold circuit (TC) not, just a Boolean circuit (AC)

— Specifically composed of threshold gates
* More versatile than Boolean gates

— E.g. “atleast K inputs are 1” is a single TC gate, but an exponential size AC
— For fixed depth, Boolean circuits C threshold circuits (strict subset)

— A depth-2 TC parity circuit can be composed with O (n?) weights
* But a network of depth log(n) requires only O(n) weights

— But more generally, for large n, for most Boolean functions, a threshold

circuit that is polynomial in n at optimal depth d becomes exponentially
largeatd — 1

Other formal analyses typically view neural networks as arithmetic
circuits

— Circuits which compute polynomials over any field

 So lets consider functions over the field of reals



The MLP as a classifier

3" e

784 dimensions
(MNIST)

Not 2

784 dimensions

 MLP as a function over real inputs

 MLP as a function that finds a complex “decision
boundary” over a space of reals

131



A Perceptron on Reals

Inputs  Weights
X1

e A perceptron operates on
real-valued vectors

— This is a linear classifier

1

N

WX twyx,=T




Booleans over the reals

* The network must fire if the input is in the
coloured area

133



More complex decision boundaries

* Network to fire if the input is in the yellow area
— “OR” two polygons
— A third layer is required
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Complex decision boundaries
)

 Can compose arbitrarily complex decision

boundaries
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Complex decision boundaries

o

~

J

ok 1Y
(g&k’k«g;

=

O
D
=
=

 Can compose arbitrarily complex decision

boundaries
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Complex decision boundaries

— With only one hidden layer!

* Can compose arbitrarily complex decision boundaries
— How?

137



Exercise: compose this with one

hidden layer

1

X

poundary to the left with only one hidden

ayer?

* How would you compose the decision

138



Composing a Square decision
boundary

* The polygon net

139



Composing a pentagon

* The polygon net

140



Composing a hexagon

141



How about a heptagon

 What are the sums in the different regions?

— A pattern emerges as we consider N > 6..

142



16 sides

 What are the sums in the different regions?

— A pattern emerges as we consider N > 6..
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64 sides

« What are the sums in the different regions?

— A pattern emerges as we consider N > 6..

144



1000 sides

"

 What are the sums in the different regions?

— A pattern emerges as we consider N > 6..

145



Polygon net

* |Increasing the number of sides reduces the area
outside the polygon that have N/2 < Sum < N

146



In the limit

e 2;Vi=N 1—%arccos min(l

radius )
|

’ |x—cent

* Forsmall radius, it’s a near perfect cylinder

— Nin the cylinder, N/2 outside
147



Composing a circle

 The circle net
— Very large number of neurons
— Sum is N inside the circle, N/2 outside everywhere

— Circle can be of arbitrary diameter, at any Iocatior1148



Composing a circle

 The circle net
— Very large number of neurons
— Sum is N/2 inside the circle, O outside everywhere

— Circle can be of arbitrary diameter, at any Iocatior1149



Adding circles @@

* The “sum” of two circles sub nets is exactly N/2
inside either circle, and O outside

150



Composing an arbitrary figure

e Just fit in an arbitrary number of circles

— More accurate approximation with greater number of
smaller circles

— Can achieve arbitrary precision
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MLP: Universal classifier

C oo

 MLPs can capture any classification boundary

* A one-layer MLP can model any classification
boundary

 MLPs are universal classifiers 152



Depth and the universal classifier

* Deeper networks can require far fewer neurons



Optimal depth..

* Formal analyses typically view these as a category of
arithmetic circuits

— Compute polynomials over any field

* Valiant et. al: A polynomial of degree n requires a network of depth
log?(n)

— Cannot be computed with shallower networks
— Nearly all functions are very high or even infinite-order polynomials..

* Bengio et. al: Shows a similar result for sum-product networks
— But only considers two-input units

— Generalized by Mhaskar et al. to all functions that can be expressed as a
binary tree

— Depth/Size analyses of arithmetic circuits still a research
problem



Optimal depth in generic nets

 We look at a different pattern:

— “worst case” decision boundaries

 For threshold-activation networks

— Generalizes to other nets



Optimal depth

N
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* A one-hidden-layer neural network will
require infinite hidden neurons




Optimal depth

* Two-layer network: 56 hidden neurons



Optimal depth
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* Two-layer network: 56 hidden neurons

— 16 neurons in hidden layer 1



Optimal depth

2

1.5

1

0.5

>3 o
-0.5

-1

-2

YNN
rerepy
YNV

rve

2 1.5 -1 0.5 0 0.5 1 1.5 2

* Two-layer network: 56 hidden neurons
— 16 in hidden layer 1
— 40 in hidden layer 2
— 57 total neurons, including output neuron



Optimal depth
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Optimal depth

2

e But this iSjUSt Yl @ YZ @ e @ Y16
— The XOR net will require 16 + 15x3 = 61 neurons
* Greater than the 2-layer network with only 52 neurons



Optimal depth
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* A one-hidden-layer neural network will

finite hidden neurons

require in



Actual linear units
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e 64 basic linear feature detectors



Optimal depth
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: 608 hidden neurons

— 64 in layer 1

— 544 in layer 2
* 609 total neurons (including output neuron)

 Two hidden layers



Optimal depth
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253 neurons

XOR network (12 hidden layers)
The difference in size between the deeper optimal (XOR) net and

shallower nets increases with increasing pattern complexity



Network size?

In this problem the 2-layer net

was quadratic in the number of

lines
— | (N + 2)?/8] neurons in 2" hidden layer
— Not exponential
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— Even though the pattern is an XOR

— Why? k
The data are two-dimensional!

— Only two fully independent features

S
tn

2000000000
(222222222222
40000000000
CE000000000000
CE0000000000000¢
$40000000000¢0
440400000000
0000000000044

— The pattern is exponential in the dimension of the input (two)!

For general case of N mutually intersecting hyperplanes in D dimensions,

D
we will need O ( ) weights (assuming N > D).

(D-1)!
— Increasing input dimensions can increase the worst-case size of the shallower
network exponentially, but not the XOR net

* The size of the XOR net depends only on the number of first-level linear detectors (N)
166



Depth: Summary

* The number of neurons required in a shallow
network is
— Polynomial in the number of basic patterns
— Exponential in the dimensionality of the input
— (this is the worst case)



Story so far

Multi-layer perceptrons are Universal Boolean Machines
— Even a network with a single hidden layer is a universal Boolean machine

Multi-layer perceptrons are Universal Classification Functions
— Even a network with a single hidden layer is a universal classifier

But a single-layer network may require an exponentially large number
of perceptrons than a deep one

Deeper networks may require exponentially fewer neurons than
shallower networks to express the same function

— Could be exponentially smaller
— Deeper networks are more expressive



MLP as a continuous-valued regression

* Asimple 3-unit MLP with a “summing” output unit can
generate a “square pulse” over an input
— Outputis 1 only if the input lies between T, and T,

— T,and T, can be arbitrarily specified
169



MLP as a continuous-valued regression
4 RN

f\hz |

R hy

N ™ \J

T T, x
i A

* Asimple 3-unit MLP can generate a “square pulse” over an input

* An MLP with many units can model an arbitrary function over an input
— To arbitrary precision

* Simply make the individual pulses narrower

* A one-layer MLP can model an arbitrary function of a single input
170



For higher-dimensional functions

* An MLP can compose a cylinder
— N in the circle, N/2 outside



A “true” cylinder

<10

 An MLP can compose a true (almost) cylinder
— N/2 in the circle, 0 outside
— By adding a “bias”
— We will encounter bias terms again

* They are standard components of perceptrons



MLP as a continuous-valued function

 MLPs can actually compose arbitrary functions

— Even with only one layer

* As sums of scaled and shifted cylinders
— To arbitrary precision

* By making the cylinders thinner

— The MLP is a universal approximator!
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Caution: MLPs with additive output
units are universal approximators

 MLPs can actually compose arbitrary functions
e But explanation so far only holds if the output
unit only performs summation

— i.e. does not have an additional “activation”

174



“Proper” networks: Outputs with
activations

Weights

Ill

e Qutput neuron may have actual “activation”

— Threshold, sigmoid, tanh, softplus, rectifier, etc.

 What is the property of such networks?



The network as a function

f:{0,1}"¥- {0,1} Boolean

f:RN -{0,1}  Threshold

f:RN - (0,1) Sigmoid

f:RYN - (-1,1) Tanh

f:RYN - (0,0) Softrectifier, Rectifier

e Output unit with activation function

— Threshold or Sigmoid, or any other

* The network is actually a map from the set of all possible input values to all
possible output values

— All values the activation function of the output neuron



The network as a function

f:{0,1}"¥- {0,1} Boolean

f:RN -{0,1}  Threshold

f:RN - (0,1) Sigmoid

f:RYN - (-1,1) Tanh

f:RYN - (0,0) Softmax,Rectifier

The MLP is a Universal Approximator for the entire class of functions (maps)
it represents!

VM\-VU\- ATTTOC VVTIRTT UUDIVMGIV'IJMI'\—L'VI'

— Threshold or Sigmoid, or any other

* The network is actually a map from the set of all possible input values to all
possible output values

— All values the activation function of the output neuron




The issue of depth

Previous discussion showed that a single-layer MLP is a
universal function approximator

— Can approximate any function to arbitrary precision
— But may require infinite neurons in the layer

More generally, deeper networks will require far fewer
neurons for the same approximation error
— The network is a generic map

* The same principles that apply for Boolean networks apply here

— Can be exponentially fewer than the 1-layer network



Sufficiency of architecture

A network with 16 or more
neurons in the first layer is
capable of representing the
figure to the right perfectly

* A neural network can represent any function provided
it has sufficient capacity

— l.e. sufficiently broad and deep to represent the function

* Not all architectures can represent any function
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Sufficiency of architecture

A network with 16 or more
neurons in the first layer is
capable of representing the
figure to the right perfectly

A network with less than

16 threshold neurons in Why?
the first layer cannot

represent this pattern

exactly

< With caveats..

* A neural network can represent any function provided
it has sufficient capacity

— |.e. sufficiently broad and deep to represent the function

* Not all architectures can represent any function
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A network with 16 or more
neurons in the first layer is
capable of representing the
figure to the right perfectly

A network with less than
16 threshold neurons in
the first layer cannot
represent this pattern
exactly

< With caveats..

* A neural network can represent any function provided
it has sufficient capacity

— |.e. sufficiently broad and deep to represent the function

* Not all architectures can represent any function
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Sufficiency of architectuye

A network with 16 or more
neurons in the first layer is
capable of representing the
figure to the right perfectly

A network with less than

16 threshold neurons in Why?
the first layer cannot

represent this pattern

exactly

< With caveats..

* A neural network can represent any function provided
it has sufficient capacity

— |.e. sufficiently broad and deep to represent the function

* Not all architectures can represent any function
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Sufficiency of architectuye

A network with 16 or more
neurons in the first layer is
capable of representing the
figure to the right perfectly

A network with less than
16 threshold neurons in
the first layer cannot
represent this pattern
exactly

< With caveats..

* A neural network can represent any function provided
it has sufficient capacity

— |.e. sufficiently broad and deep to represent the function

* Not all architectures can represent any function
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Sufficiency of architecture

A network with 16 or more :
neurons in the first layer is
capable of representing the 0
figure to the right perfectly 05

A network with less than
16 neurons in the first
layer cannot represent
this pattern exactly

% With caveats..

A 2-layer network with 16
neurons in the first layer
cannot represent the
pattern with less than 41
neurons in the second layer

* A neural network can represent any function provided
it has sufficient capacity

— l.e. sufficiently broad and deep to represent the function

* Not all architectures can represent any function
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Sufficiency of architecture

A network with 16 or more
threshold neurons in the first
layer is capable of representing
the figure to the right perfectly

A network with less than
16 neurons in the first
layer cannot represent
this pattern exactly

% With caveats..

Why?
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Sufficiency of architecture

This effect is because we
use the threshold activation

It gates information in
the input from later layers

~

The pattern of outputs within
any colored region is identical

Subsequent layers do not obtain enough
information to partition them
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Sufficiency of architecture

»

This effect is because we
use the threshold activation

It gates information in
the input from later layers

Continuous activation functions result in graded output at the layer

The gradation provides information to subsequent layers, to capture
information “missed” by the lower layer (i.e. it “passes” information
to subsequent layers).
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Sufficiency of architecture

This effect is because we
use the threshold activation

It gates information in
the input from later layers

Continuous activation functions result in graded output at the layer

The gradation provides information to subsequent layers, to capture
information “missed” by the lower layer (i.e. it “passes” information
to subsequent layers).

Activations with more gradation (e.g. RELU) pass more information

3 T
| Softplus
| Rectifier
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Width vs. Activations vs. Depth

* Narrow layers can still pass information to
subsequent layers if the activation function is
sufficiently graded

* But will require greater depth, to permit later
layers to capture patterns



Sufficiency of architecture

2

2 -15 -1 -0.5 0 0.5 1 1.5 2
* The capacity of a network has various definitions
— Information or Storage capacity: how many patterns can it remember

— VCdimension
* bounded by the square of the number of weights in the network

— From our perspective: largest number of disconnected convex regions it can represent

* A network with insufficient capacity cannot exactly model a function that requires
a greater minimal number of convex hulls than the capacity of the network

— But can approximate it with error
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The “capacity” of a network

e VCdimension

* A separate lecture

— Koiran and Sontag (1998): For “linear” or threshold units, VC
dimension is proportional to the number of weights

* For units with piecewise linear activation it is proportional to the
square of the number of weights

— Harvey, Liaw, Mehrabian “Nearly-tight VC-dimension bounds for
piecewise linear neural networks” (2017):
e Forany W, Ls.t.W > CL > C?, there exisits a RELU network with < L
layers, < W weights with VC dimension = %logz (%)

— Friedland, Krell, “A Capacity Scaling Law for Artificial Neural

Networks” (2017):

* VCdimension of a linear/threshold net is O(MK), M is the overall
number of hidden neurons, K is the weights per neuron



Lessons

MLPs are universal Boolean function
MLPs are universal classifiers
MLPs are universal function approximators

A single-layer MILP can approximate anything to arbitrary precision
— But could be exponentially or even infinitely wide in its inputs size

Deeper MLPs can achieve the same precision with far fewer
neurons

— Deeper networks are more expressive



Learning the network

* The neural network can approximate any function

e But only if the function is known a priori
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Learning the network

/
J»j\

* |In reality, we will only get a few snapshots of the function

to learn it from

* We must learn the entire function from these “training”
snapshots



General approach to training

Black lines: error when
_\ function is above desired
output

Blue lines: error when
function is below desired
output

F=) 0= f(x, W))?

* Define an error between the actual network output for
any parameter value and the desired output

— E.g. error defined as the sum of the squared error over
individual training instances



General approach to training
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* Problem: Network may just learn the values at the inputs
— Learn the red curve instead of the dotted blue one

* Given only the red vertical bars as inputs

— Need “smoothness” constraints



Data under-specification in learning

/

Consider a binary 100-dimensional input
There are 2190=1030 possible inputs

Complete specification of the function will require specification of 103° output
values

A training set with only 10*° training instances will be off by a factor of 10!°
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Data under-specification in learning

/

Find the function!

Consider a binary 100-dimensional input
There are 2190=1030 possible inputs

Complete specification of the function will require specification of 103° output
values

A training set with only 10*° training instances will be off by a factor of 10!°
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Data under-specification in learning

* MLPs naturally impose constraints X‘/

x
 MLPs are universal approximators \w%

— Arbitrarily increasing size can give o]
you arbitrarily wiggly functions

— The function will remain ill-defined \/
\

on the majority of the space

* For a given number of parameters deeper networks
impose more smoothness than shallow ones

— Each layer works on the already smooth surface output by
the previous layer
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Smoothness through network structure

v

 Smoothness constraints can also be imposed through the network
structure

* For a given number of parameters deeper networks impose more
smoothness than shallow ones

— Each layer works on the already smooth surface output by the previous layeroo



Even when we get it all right

n -> ullk\
[=]-5%

e Typical results (varies with initialization)

* 1000 training points

— Many orders of magnitude more than you usually get

* All the training tricks known to mankind 201



But depth and training data help

3 layers 4 layers 4 layers

6 layers 11 Iayers 6 layers 11 layers

* Deeper networks seem to learn better, for the same 10000 trainin
number of total neurons

— Implicit smoothness constraints

* As opposed to explicit constraints from more conventional
classification models

instances

e Similar functions not learnable using more usual

0 202
pattern-recognition models!! 0



! Machineleaming For SignalProcessing Group

Part 3: What does the network
learn?



Learning in the net

* Problem: Given a collection of input-output
pairs, learn the function



Learning for classification

.
X)#wa® _o*

v 0090 20 0

X1

* When the net must learn to classify..

— Learn the classification boundaries that separate
the training instances



Learning for classification

1 /
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* |n reality

— In general, not really cleanly separated
* So, what is the function we learn?



MLSP
A trivial MLP: a single perceptron
N szl Z=Zwix,-+b

e Learn this function

— A step function across a hyperplane
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MLSP
The simplest MLP: a single perceptron

%, W Z:ZWixi+b
3
o XN
3
“ e*
/’,, ’
3 ’, Z X4
* =
0

e Learn this function
— A step function across a hyperplane

— Given only samples form it

208



Learning the perceptron

»

»
»
»
X2l » »
» .

* 5 : ] X4
» »
. »

* Given a number of input output pairs, learn the weights and bias

—y={ llelwl —b=0

0 otherWlse
— Learn W = [w;..wy] and b, given several (X, y) pairs
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Restating the perceptron

Weights

* Restating the perceptron equation by adding another dimension to X

N+1

‘
=1

. 0 otherwise

where Xy;1 =1

210



The Perceptron Problem

* Find the hyperplane Z?’;ll w;X; = 0 that
perfectly separates the two groups of points

211



Perceptron Learning Algorithm

Given N training instances (X{,Y;), (X5, Y,), ..., (Xy, Yi)
—Yi=41lor—1 <«

Using a +1/-1 representation

T for classes to simplify
Initialize W e

Cycle through the training instances:

While more classification errors
— Fori = 1..N, 4,
0(X;) = sign(WTX;)
« IfO(X;)) Y,
W =W + YX;
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A simple learner: Perceptron Algorithm

* Given N training instances (X, Y1), (X5, Y5), ..., Xy, Yy)

— Y; = 4+1 or —1 (instances are either positive or negative)

* Cycle through the training instances
* Only update W on misclassified instances
* |f instance misclassified:

— |If instance is positive class
W=WwW + X;

— If instance is negative class
W=Ww-X;

213



The Perceptron Algorithm

—*

+1 (blue)
-1(Red) ®

e |nitialize: Randomly initialize the hyperplane
— l.e. randomly initialize the normal vector W
— Classification rule sign(W'X)

— The random initial plane will make mistakes
214



Perceptron Algorithm

PY P Initialization

+1 (blue)
-1(Red) ®

215



Perceptron Algorithm

+1 (blue)
-1(Red) ®

Misclassified positive instance

216



Perceptron Algorithm

+1 (blue)
-1(Red)

217



Perceptron Algorithm

Updated weight vector

Misclassified positive instance, add it to W

218



Perceptron Algorithm

+1 (blue) | “1(Red)

l
Updated hyperplane
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Perceptron Algorithm

Misclassified instance, negative class
o
®
o
®
o
® >

+1 (blue) | “1(Red)

220



Perceptron Algorithm

+1 (blue) | “1(Red)

221



Perceptron Algorithm

+1 (blue) -1(Red)

Misclassified negative instance, subtract it from W
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Perceptron Algorithm

Updated hyperplane

223



Perceptron Algorithm

+1 (blue)

Perfect classification, no more updates

224



Convergence of Perceptron Algorithm

* Guaranteed to converge if classes are linearly
separable

2
R . L
— After no more than (;) misclassifications

» Specifically, when W is initialized to O
— R is length of longest training point

— vy is the best-case closest distance of a training
point from the classifier

e Same as the margin in an SVM

— Intuitively — takes many increments of size y to
undo an error resulting from a step of size R
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In reality: Trivial linear example

 Two-dimensional example
— Blue dots (on the floor) on the “red” side
— Red dots (suspended at Y=1) on the “blue” side
— No line will cleanly separate the two colors

226



Non-linearly separable data: 1-D example

A

* One-dimensional example for visualization
— All (red) dots at Y=1 represent instances of class Y=1
— All (blue) dots at Y=0 are from class Y=0

— The data are not linearly separable
* In this 1-D example, a linear separator is a threshold

* No threshold will cleanly separate red and blue dots .



Undesired Function

= Go @ pd GICD FE-SST—T—¢

222 2222 (eeerozfes e

v

* One-dimensional example for visualization
— All (red) dots at Y=1 represent instances of class Y=1
— All (blue) dots at Y=0 are from class Y=0

— The data are not linearly separable
* In this 1-D example, a linear separator is a threshold
* No threshold will cleanly separate red and blue dots



What if?

y

o coohe ..ﬁ. coee oo

‘—‘—‘—“‘—‘—‘-“.—‘““—U—‘ >
X

* One-dimensional example for visualization
— All (red) dots at Y=1 represent instances of class Y=1
— All (blue) dots at Y=0 are from class Y=0

— The data are not linearly separable
* In this 1-D example, a linear separator is a threshold

* No threshold will cleanly separate red and blue dots o



What if?

V4

90 instances
\‘J/ 10 instances
\v/ ]

X

e What must the value of the function be at this
X?
— 1 because red dominates?

— 0.9 : The average?
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What if?

V4

90 instances
\‘J/ 10 instances
\w/ ]

X

e What must the value of the function be at this
X?

. Estimate: = P(1|X)
— 1 because red dom%enﬂally much more useful than
a simple 1/0 decision

— . ?
0.9 : The average: Also, potentially more realistic




What if?

y

Should an infinitesimal hudge 90 instances

of the red dot change the function
estimate entirely?

If not, how do we estimate P(1]X)? 10 instances
(since the positions of the red and blue X
Values are different) \J

v

e What must the value of the function be at this
X?

. Estimate: = P(1|X)
— 1 because red dom%enﬂally much more useful than
a simple 1/0 decision

— . ?
0.9 : The average: Also, potentially more realistic

£LOL




The probability of y=1

Y
,7\\\
[ J o0 O PO 0000 O 000 O O O
| |
| |
\ \////

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of Y=1 at that point



The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The probability of y=1

V4
///’7\
. o0 O PO 0000 O 000 O O O
| |
| |

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1

[ ] ...IQ 000 0 O 000 O O O

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1

/ \\
\\

o°

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1

/”\

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1

/”\

. ...B......... .o

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1

// \\

. ...K........ ...

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The logistic regression model

1
P(y=1x)=
(y ‘ ) 1+ e—(Wo"‘WNC)

y=1

y=0

* Class 1 becomes increasingly probable going left to right
— Very typical in many problems
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The logistic perceptron

* Asigmoid perceptron with a single input models
the a posteriori probability of the class given the
input



Non-linearly separable data

 Two-dimensional example
— Blue dots (on the floor) on the “red” side
— Red dots (suspended at Y=1) on the “blue” side
— No line will cleanly separate the two colors
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Logistic regression

P(Y =1]|X) = ! Decision: y > 0.5?

1+ exp(—(Ziwixi + WO))

When X is a 2-D variable X,

* This the perceptron with a sigmoid activation
— It actually computes the probability that the input belongs to class 1

— Decision boundaries may be obtained by comparing the probability to a threshold
* These boundaries will be lines (hyperplanes in higher dimensions)

* The sigmoid perceptron is a linear classifier 549



Estimating the model

y

|
P(y‘x) = f(x) = —(Wp+wix)
l+e

* Given the training data (many (x, y) pairs
represented by the dots), estimate wy and wy
for the curve
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Estimating the model

* Easier to represent using ay = +1/-1 notation

y

| |
P(y=1x)= P(y=-lx)=
S ‘ ) |4 o) o ‘ ) ] 4o
|
P(y‘x) = 1+e—y(w0+wlx)
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Estimating the model

* Given: Training data
(X1, ¥1), (X2, ¥2), o, (XN, YN)

* Xs are vectors, ys are binary (0/1) class values
* Total probability of data

P((X1:Y1)» (X2,¥2)) v (XN»)’N)) = HP(Xi:Yi)

1
= | [Pouxoreo = | | mmmms P00
l

l
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Estimating the model

* Likelihood
P(Training data) = 1_[

l

P(X;)

1 + e Yilwotw'X;)

* Log likelihood
log P(Training data) =

Z log P(X;) — Z log (1 + e‘yl'(WOJrWTXi))
i i
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Maximum Likelihood Estimate

Wy, Wy, = argmaxlog P(Training data)
Wo,W1q

Equals (note argmin rather than argmax)

Wo, Wy = argminz: log (1 -+ e—Yi(W0+WTXi))
l

Wo, W

ldentical to minimizing the cross entropy

between the desired output y and actual output
1

14+e~ (W0+WTXi)

Cannot be solved directly, needs gradient descent
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So what about this one?
v/
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* Non-linear classifiers..



First consider the separable case..

.
X)#wa® _o*

v 0090 20 0

X1

* When the net must learn to classify..



First consider the separable case..
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e For a “sufficient” net




First consider the separable case..
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e For a “sufficient” net

* This final perceptron is a linear classifier




First consider the separable case..

e For a “sufficient” net

* This final perceptron is a linear classifier over
the output of the penultimate layer



First consider the separable case..

L 4
L 4
*
*
*
’0
L 4

Y2 : T

.0
L 4
.0
*

.0
*
L 4
.0
*

Y1

* For perfect classification the
output of the penultimate layer must be
linearly separable



First consider the separable case..

*
.0

Y2 T '..

.0
L 4
.0
*

.0
*
L 4
.0
*

Y1

* The rest of the network may be viewed as a transformation that
transforms data from non-linear classes to linearly separable features



First consider the separable case..
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* The rest of the network may be viewed as a transformation that transforms data
from non-linear classes to linearly separable features

— We can now attach any linear classifier above it for perfect classification
— Need not be a perceptron
— E.g. a max-margin classifier



First consider the separable case..
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* This is true of any sufficient structure
— Not just the optimal one
* For insufficient structures, the network may attempt to transform the inputs to
linearly separable features
— Will fail to separate
— The learning algorithm will try to learn the most separating (or least error) boundaries



Mathematically..

Yout = 1+exp(b+WTY)  1+exp(b+WTf(X))
The data are (almost) linearly separable in the space of Y
The network until the second-to-last layer is a non-linear function

f(X) that converts the input space of X into the feature space
Y where the classes are maximally linearly separable



When the data are not separable and
boundaries are not linear..
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* More typical setting for classification
problems



Inseparable classes with an output
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logistic perceptron
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such that the posterior probability may now be

modelled by a logistic



Inseparable classes with an output
logistic perceptron

1

+ e—(wo +wa)

P(Ix) = f(x)= |

 The “feature extraction” layer transforms the data such that
the posterior probability may now be modelled by a logistic

— The output logistic computes the posterior probability of the class
given the input



When the data are not separable and
boundaries are not linear..
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* The output of the network is P(y|x)

— For multi-class networks, it will be the vector of a
posteriori class probabilities



Story so far

* A classification MLP actually comprises two
components

— A “feature extraction network” that converts the
inputs into linearly separable features

* Or nearly linearly separable features

— A final linear classifier that operates on the
linearly separable features



How about the lower layers?

How do the lower layers respond?
— They too compute features
— But how do they look
Manifold hypothesis: For separable classes, the classes are linearly separable on a
non-linear manifold
Layers sequentially “straighten” the data manifold

— Until the final layer, which fully linearizes it



The behavior of the layers

2-3-1 NN: Forward transformations

Mean Squared Error (epoch 0) X

0.5
0.4
03

0
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0.1

0 -0.5

50 100 150 -0.5
Ai=Xe«W +b
5 1

w &
¥ L
L
w
i

0.5 0.5

-0.5 -0.5

* Synthetic example: Feature space



The behavior of the layers

NN: Ir = 0.001
PCA(X)
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The behavior of the layers

NN: Ir = 0.001
Accuracy (epoch 0) PCA(X) PCA(H,)
100
80
60

40

20

-500  -1000

10 20 30 40 50 60 70 8 90

PCA(H,)

PCA(H,)



Changing gears..




Intermediate layers

We've seen what the network learns here




Recall: The basic perceptron

1 lf z W;X; >T
Weights y = -

0 else

Threshold T

_ {1 if xTw>T
Y= 0
else

 What do the weights tell us?

— The neuron fires if the inner product between the
weights and the inputs exceeds a threshold
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Recall: The weight as a “template

X'w>T

Weights

cosf >—
Output |X|

g T
0 < cos™1 (—)
| X]|

Threshold T

144

The perceptron fires if the input is within a specified angle of the weight

— Represents a convex region on the surface of the sphere!
— The network is a Boolean function over these regions.

e The overall decision region can be arbitrarily nonconvex
Neuron fires if the input vector is close enough to the weight vector.
— If the input pattern matches the weight pattern closely enough
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Recall: The weight as a template

W X

Correlation = 0.57 Correlation = 0.82\‘
Y = - y

0 else

 |f the correlation between the weight pattern
and the inputs exceeds a threshold, fire

* The perceptron is a correlation filter!
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Recall: MLP features

DIGIT OR NOT? ‘

!Q

S< Qk S s
S —

," == == ~_ 7=

1234561890

 The lowest layers of a network detect significant features in the
signal
* The signal could be (partially) reconstructed using these features
— Will retain all the significant components of the signal 279




Making it explicit

H5hb

x |2d
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all

x |24

=i

* The signal could be (partially) reconstructed using these features

— Will retain all the significant components of the signal

—  Will this work?

* Simply recompose the detected features



Making it explicit

¢ 1234567RP"

x |2445b6 1881

* The signal could be (partially) reconstructed using these features
— Will retain all the significant components of the signal
* Simply recompose the detected features

—  Will this work? -



Making it explicit: an autoencoder

H5hb

* e

1

all

x |24

=i

* A neural network can be trained to predict the input itself

* This is an autoencoder

* An encoder learns to detect all the most significant patterns in the signals

* A decoder recomposes the signal from the patterns



The Simplest Autencoder

* Asingle hidden unit
 Hidden unit has linear activation

e What will this learn? 283



The Simplest Autencoder

Training: Learning W by minimizing

X L2 divergence
R =wlwx
div(®,x) = [lx — &[|* = [lx — w'wx]|?

W = argmin E[div(%,x)]
w

W = argmin E[||x — wT wx||?]
w

* This is just PCA!
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The Simplest Autencoder

e The autoencoder finds the direction of maximum
energy

— Variance if the input is a zero-mean RV

e All input vectors are mapped onto a point on the
principal axis
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The Simplest Autencoder

e Simply varying the hidden representation will
result in an output that lies along the major
axis

286



The Simplest Autencoder

* Simply varying the hidden representation will result in
an output that lies along the major axis

* This will happen even if the learned output weight is
separate from the input weight

— The minimume-error direction is the principal eigen vector

287



For more detailed AEs without a non-
linearity

Y=WX| | X=WTY| E =X —W"WX]||* Find W to minimize Avg[E]

* This is still just PCA
— The output of the hidden layer will be in the principal subspace

* Even if the recomposition weights are different from the “analysis”
weights 288



Terminology

DECODER

ENCODER

 Terminology:

— Encoder: The “Analysis” net which computes the hidden

representation

— Decoder: The “Synthesis” which recomposes the data from the

hidden representation
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Introducing nonlinearity

DECODER

ENCODER

*  When the hidden layer has a linear activation the decoder represents the best linear manifold to fit
the data

— Varying the hidden value will move along this linear manifold
*  When the hidden layer has non-linear activation, the net performs nonlinear PCA
— The decoder represents the best non-linear manifold to fit the data
— Varying the hidden value will move along this non-linear manifold 290



* With non-linearity
— “Non linear” PCA

— Deeper networks can capture more complicated manifolds

* “Deep” autoencoders
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Some examples
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Encoder is an MLP with 5 residual blocks, each with 64 hidden units.

Two fully-connected layers (2x64, 64, 1).
Decoder is the mirror image.
All non-linearities are exponential linear units (ELU)

-10 4

-20

-10

10

Encoder and decoder have 2 hidden layers of 100 neurons, but
hidden representation is unidimensional

20

Extending the hidden “z” value beyond the values seen in training
does not continue along a helix




Some examples

1.0 4
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gty
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0.0 1
0.0 1
-0.5 4 /
-0.51
-1.01 -1.0
- : : i : : T T T T

 The model is specific to the training data..

— Varying the hidden layer value only generates data along the
learned manifold
* Any input will result in an output along the learned manifold

— But may not generalize beyond the manifold



* When the hidden representation is of lower dimensionality
than the input, often called a “bottleneck” network
— Nonlinear PCA

— Learns the manifold for the data
* |f properly trained



 The decoder can only generate data on the
manifold that the training data lie on

* This also makes it an excellent “generator” of the
distribution of the training data

— Any values applied to the (hidden) input to the
decoder will produce data similar to the training data



The Decoder:

 The decoder represents a source-specific generative
dictionary

* Exciting it will produce typical data from the source!



Sax dictionary

 The decoder represents a source-specific generative
dictionary

e Exciting it will produce typical data from the source!
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The Decoder:

Clarinet dictionary

 The decoder represents a source-specific generative
dictionary

e Exciting it will produce typical data from the source!
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A cute application..

* Signal separation...

* Given a mixed sound from multiple sources,
separate out the sources



Dictionary-based techniques

Compose

* Basicidea: Learn a dictionary of “building blocks” for
each sound source

All signals by the source are composed from entries
from the dictionary for the source
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Dictionary-based techniques

Compose

S22
I )] ] ]| T
H — o

[ON P
Crash  Closed Open Ride Left Right Snare Floor Bass Hi-H

e Learn a similar dictionary for all sources
expected in the signal
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Guitar Drum
music music

Compose Compose

()
;
g E
N J Lo A=
i &
H 'TI e
Crash  Closed Open Ride Ls it Snare Floor Bass Hi-H N
Cymbal  Hi-Hat Hi-Hat Cymbal ke Drum Tom Drum Pead:
m

eft i

* A mixed signal is the linear combination of
signals from the individual sources

— Which are in turn composed of entries from its
dictionary
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e Separation: Identify the combination of
entries from both dictionaries that compose
the mixed signal
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Guitar Drum
music music

Compose Compose

()
:
g E
N L\ e
m = [ ;
1 Nt
Crash  Closed  Op it rigl Snare  Fl Bass  Hi
Cymbal  Hi-Hat  Hi-H Cymbal ck Ra Drum Drum P
om Tom

e Separation: Identify the combination of entries from
both dictionaries that compose the mixed signal

 The composition from the identified dictionary entries gives you
the separated signals
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Learning Dictionaries

D;(0,t) - Dy(F,t) D,(0,t) -+  Dy(F,t)

11~/ AN A
foE10 \ / foe O
fent O/ \ fen20

ST /TN

D;(0,t) - Dl(F t) D,(0,t) - D,(F,t)

e Autoencoder dictionaries for each source

— Operating on (magnitude) spectrograms

For a well-trained network, the “decoder” dictionary is
highly specialized to creating sounds for that source
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Model for mixed signal

testset Cost function
X(f,t)

YO0 YW . YEe ] =) X0 = V(DI

fpE1 ()\7_/ \;/fDEZ 0

L,(0,¢t) - IL(H,1) I,(0,t) = I,(H,t)

Estimate I;() and I, () to minimize cost function J()

 The sum of the outputs of both neural
dictionaries

— For some unknown input
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Separation

Test Process testset B Cost function
X(f, o) 5 LA

von  Ywn - YED 1= >0 - ¥ Ol

fDE1()\7_/ \;/fDEZ 0

1,(0,¢t) -+ I;(H,¢) 1,(0,t) - I,(H,t) H : Hidden layer size

Estimate I; () and I, () to minimize cost function J()

* Given mixed signal and source dictionaries, find
excitation that best recreates mixed signal

— Simple backpropagation
* |Intermediate results are separated signals

307



Example Results

Mixture Separated Separated

Original Original

5-layer dictionary, 600 units wide

* Separating music
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Story for the day

* C(Classification networks learn to predict the a posteriori
probabilities of classes

— The network until the final layer is a feature extractor that
converts the input data to be (almost) linearly separable

— The final layer is a classifier/predictor that operates on linearly
separable data

* Neural networks can be used to perform linear or non-
linear PCA

— “Autoencoders”
— Can also be used to compose constructive dictionaries for data

* Which, in turn can be used to model data distributions



