
Intro to Neural Networks

Lisbon Machine Learning School
8 July 2021

What’s in this tutorial

• We will learn about
– What is a neural network: historical perspective
– What can neural networks model
– What do they actually learn

Instructor

• Bhiksha Raj
Professor,
Language Technologies Institute
(Also: MLD, ECE, Music Tech)
Carnegie Mellon Univ.

• bhiksha@cs.cmu.edu

Part 1: What is a neural network

Neural Networks are taking over!

• Neural networks have become one of the
major thrust areas recently in various pattern
recognition, prediction, and analysis problems

• In many problems they have established the
state of the art
– Often exceeding previous benchmarks by large

margins

Breakthrough successes with neural
networks

Breakthrough successes with neural
networks

Breakthrough successes with neural
networks

8

Breakthrough successes with neural
networks

Breakthrough successes with neural
networks

Successes with neural networks

• And a variety of other problems:
– Image analysis
– Natural language processing
– Speech processing
– Even predicting stock markets!

Neural nets and the employment
market

This guy didn’t know
about neural networks
(a.k.a deep learning)

This guy learned
about neural networks
(a.k.a deep learning)

So what are neural networks??

• What are these boxes?

N.Net
Voice
signal Transcription N.NetImage Text caption

N.Net
Game
State Next move

So what are neural networks??

• It begins with this..

So what are neural networks??

• Or even earlier.. with this..

“The Thinker!”
by Augustin Rodin

The magical capacity of humans

• Humans can
– Learn
– Solve problems
– Recognize patterns
– Create
– Cogitate
– …

• Worthy of emulation
• But how do humans “work“?

Dante!

Cognition and the brain..

• “If the brain was simple enough to be
understood - we would be too simple to
understand it!”
– Marvin Minsky

Early Models of Human Cognition

• Associationism
– Humans learn through association

• 400BC-1900AD: Plato, David Hume, Ivan Pavlov..

What are “Associations”

• Lightning is generally followed by thunder
– Ergo – “hey here’s a bolt of lightning, we’re going to hear thunder”
– Ergo – “We just heard thunder; did someone get hit by lightning”?

• Associations!
– Actually a pretty good theory that still applies

• But where and how do we store these associations?

Observation: The Brain

• Mid 1800s: The brain is a mass of
interconnected neurons

Brain: Interconnected Neurons

• Many neurons connect in to each neuron
• Each neuron connects out to many neurons

Enter Connectionism

• Alexander Bain, philosopher, mathematician, logician,
linguist, professor

• 1873: The information is in the connections
– The mind and body (1873)

Bain’s Idea : Neural Groupings

• Neurons excite and stimulate each other
• Different combinations of inputs can result in

different outputs

Bain’s Idea : Neural Groupings

• Different intensities of
activation of A lead to
the differences in
when X and Y are
activated

Bain’s Idea 2: Making Memories

• “when two impressions concur, or closely
succeed one another, the nerve currents find
some bridge or place of continuity, better or
worse, according to the abundance of nerve
matter available for the transition.”

• Predicts “Hebbian” learning (half a century
before Hebb!)

Bain’s Doubts
• “The fundamental cause of the trouble is that in the modern world

the stupid are cocksure while the intelligent are full of doubt.”
– Bertrand Russell

• In 1873, Bain postulated that there must be one million neurons and
5 billion connections relating to 200,000 “acquisitions”

• In 1883, Bain was concerned that he hadn’t taken into account the
number of “partially formed associations” and the number of neurons
responsible for recall/learning

• By the end of his life (1903), recanted all his ideas!
– Too complex; the brain would need too many neurons and connections

Connectionism lives on..

• The human brain is a connectionist machine
– Bain, A. (1873). Mind and body. The theories of their

relation. London: Henry King.
– Ferrier, D. (1876). The Functions of the Brain. London:

Smith, Elder and Co

• Neurons connect to other neurons.
The processing/capacity of the brain
is a function of these connections

• Connectionist machines emulate this structure

Connectionist Machines

• Network of processing elements
• All world knowledge is stored in the connections

between the elements

Connectionist Machines

• Neural networks are connectionist machines
– As opposed to Von Neumann Machines

• The machine has many non-linear processing units
– The program is the connections between these units

• Connections may also define memory

PROCESSOR
PROGRAM

DATA

MemoryProcessing
unit

Von Neumann/Harvard Machine

NETWORK

Neural Network

Recap

• Neural network based AI has taken over most AI tasks
• Neural networks originally began as computational models

of the brain
– Or more generally, models of cognition

• The earliest model of cognition was associationism
• The more recent model of the brain is connectionist

– Neurons connect to neurons
– The workings of the brain are encoded in these connections

• Current neural network models are connectionist machines

Connectionist Machines

• Network of processing elements

• All world knowledge is stored in the
connections between the elements

Connectionist Machines

• Connectionist machines are networks of
units..

• We need a model for the units

Modelling the brain

• What are the units?
• A neuron:

• Signals come in through the dendrites into the Soma
• A signal goes out via the axon to other neurons

– Only one axon per neuron

• Factoid that may only interest me: Neurons do not undergo cell division
• Factoid that may only interest me: Being called a “fathead” may be a

compliment

Dendrites

Soma

Axon

McCullough and Pitts

• The Doctor and the Hobo..
– Warren McCulloch: Neurophysician
– Walter Pitts: Homeless wannabe logician who

arrived at his door

The McCulloch and Pitts model

• A mathematical model of a neuron
– McCulloch, W.S. & Pitts, W.H. (1943). A Logical

Calculus of the Ideas Immanent in Nervous Activity,
Bulletin of Mathematical Biophysics, 5:115-137, 1943
• Pitts was only 20 years old at this time

– Threshold Logic

A single neuron

Synaptic Model

• Excitatory synapse: Transmits weighted input
to the neuron

• Inhibitory synapse: Any signal from an
inhibitory synapse forces output to zero
– The activity of any inhibitory synapse absolutely

prevents excitation of the neuron at that time.
• Regardless of other inputs

Boolean Gates
Simple “networks”
of neurons can perform
Boolean operations

Criticisms

• Several..
– Claimed their machine could emulate a Turing

machine

• Didn’t provide a learning mechanism..

Donald Hebb

• “Organization of behavior”, 1949
• A learning mechanism:

– Neurons that fire together wire together

Hebbian Learning

• If neuron ௜ repeatedly triggers neuron , the synaptic knob
connecting ௜ to gets larger

• In a mathematical model:

௜ ௜ ௜

– Weight of th neuron’s input to output neuron

• This simple formula is actually the basis of many learning
algorithms in ML

Dendrite of neuron Y

Axonal connection from
neuron X

A better model

• Frank Rosenblatt
– Psychologist, Logician
– Inventor of the solution to everything, aka the Perceptron (1958)

Simplified mathematical model

• Number of inputs combine linearly
– Threshold logic: Fire if combined input exceeds

threshold

His “Simple” Perceptron

• Originally assumed could represent any Boolean circuit and
perform any logic
– “the embryo of an electronic computer that [the Navy] expects

will be able to walk, talk, see, write, reproduce itself and be
conscious of its existence,” New York Times (8 July) 1958

– “Frankenstein Monster Designed by Navy That Thinks,” Tulsa,
Oklahoma Times 1958

Also provided a learning algorithm

• Boolean tasks
• Update the weights whenever the perceptron

output is wrong
• Proved convergence

Sequential Learning:
is the desired output in response to input
is the actual output in response to

Perceptron

• Easily shown to mimic any Boolean gate

• But…

X

Y

1

1
2

X

Y

1

1
1

0X
-1

Perceptron

X

Y

?

?
?

No solution for XOR!
Not universal!

• Minsky and Papert, 1968

A single neuron is not enough

• Individual elements are weak computational elements
– Marvin Minsky and Seymour Papert, 1969, Perceptrons:

An Introduction to Computational Geometry

• Networked elements are required

Multi-layer Perceptron!

• XOR
– The first layer is a “hidden” layer

– Also originally suggested by Minsky and Papert, 1968
48

1

1

1

-1

1

-1

X

Y

1

-1

2

Hidden Layer

A more generic model

• A “multi-layer” perceptron
• Can compose arbitrarily complicated Boolean

functions!
– More on this in the next part

12 1 1 12 1 1

X Y Z A

10 11

12

1
1 1-111 -1

1 1

1 -1 1 1

11

Story so far
• Neural networks began as computational models of the brain
• Neural network models are connectionist machines

– The comprise networks of neural units

• McCullough and Pitt model: Neurons as Boolean threshold units
– Models the brain as performing propositional logic
– But no learning rule

• Hebb’s learning rule: Neurons that fire together wire together
– Unstable

• Rosenblatt’s perceptron : A variant of the McCulloch and Pitt neuron with
a provably convergent learning rule
– But individual perceptrons are limited in their capacity (Minsky and Papert)

• Multi-layer perceptrons can model arbitrarily complex Boolean functions

But our brain is not Boolean

• We have real inputs
• We make non-Boolean inferences/predictions

The perceptron with real inputs

• x1…xN are real valued

• W1…WN are real valued

• Unit “fires” if weighted input exceeds a threshold

x1

x2

x3

xN

The perceptron with real inputs
and a real output

• x1…xN are real valued
• W1…WN are real valued
• The output y can also be real valued

– Sometimes viewed as the “probability” of firing
– Is useful to continue assuming Boolean outputs though

sigmoid ௜ ௜

௜

x1

x2

x3

xN

A Perceptron on Reals

• A perceptron operates on
real-valued vectors
– This is a linear classifier 54

x1

x2
w1x1+w2x2=T

௜ ௜

௜

x1

x2

1
0

x1

x2

x3

xN

Boolean functions with a real
perceptron

• Boolean perceptrons are also linear classifiers
– Purple regions have output 1 in the figures
– What are these functions
– Why can we not compose an XOR?

Y

X

0,0

0,1

1,0

1,1

Y

X

0,0

0,1

1,0

1,1

X

Y

0,0

0,1

1,0

1,1

Composing complicated “decision”
boundaries

• Build a network of units with a single output
that fires if the input is in the coloured area

56

x1

x2
Can now be composed into
“networks” to compute arbitrary
classification “boundaries”

Booleans over the reals

• The network must fire if the input is in the
coloured area

57

x1

x2

x1x2

Booleans over the reals

• The network must fire if the input is in the
coloured area

58

x1

x2

x1x2

Booleans over the reals

• The network must fire if the input is in the
coloured area

59

x1

x2

x1x2

Booleans over the reals

• The network must fire if the input is in the
coloured area

60

x1

x2

x1x2

Booleans over the reals

• The network must fire if the input is in the
coloured area

61

x1

x2

x1x2

Booleans over the reals

• The network must fire if the input is in the
coloured area

62

x1

x2

x1

x2

AND

5

4
4

4

4

4

3

3

3

33 x1x2

௜

ே

௜ୀଵ

y1 y5y2 y3 y4

More complex decision boundaries

• Network to fire if the input is in the yellow area
– “OR” two polygons
– A third layer is required

63

x2

AND AND

OR

x1 x1 x2

Complex decision boundaries

• Can compose very complex decision boundaries
– How complex exactly? More on this in the next part

64

Complex decision boundaries

• Classification problems: finding decision
boundaries in high-dimensional space

65

784 dimensions
(MNIST)

784 dimensions

2

Story so far
• MLPs are connectionist computational models

– Individual perceptrons are computational equivalent of neurons
– The MLP is a layered composition of many perceptrons

• MLPs can model Boolean functions
– Individual perceptrons can act as Boolean gates
– Networks of perceptrons are Boolean functions

• MLPs are Boolean machines
– They represent Boolean functions over linear boundaries
– They can represent arbitrary decision boundaries
– They can be used to classify data

66

So what does the perceptron really
model?

• Is there a “semantic” interpretation?

Lets look at the weights

• What do the weights tell us?
– The neuron fires if the inner product between the

weights and the inputs exceeds a threshold
68

x1

x2

x3

xN

௜ ௜

௜

்

The weight as a “template”

• The perceptron fires if the input is within a specified angle
of the weight

• Neuron fires if the input vector is close enough to the
weight vector.
– If the input pattern matches the weight pattern closely enough

69

w
𝑻

ି𝟏

x1

x2

x3

xN

The weight as a template

• If the correlation between the weight pattern
and the inputs exceeds a threshold, fire

• The perceptron is a correlation filter!
70

W X X

Correlation = 0.57 Correlation = 0.82
𝑦 = ൞

1 𝑖𝑓 ෍ 𝑤௜x௜ ≥ 𝑇

௜

0 𝑒𝑙𝑠𝑒

The MLP as a Boolean function over
feature detectors

• The input layer comprises “feature detectors”
– Detect if certain patterns have occurred in the input

• The network is a Boolean function over the feature detectors
• I.e. it is important for the first layer to capture relevant patterns 71

DIGIT OR NOT?

The MLP as a cascade of feature
detectors

• The network is a cascade of feature detectors
– Higher level neurons compose complex templates

from features represented by lower-level neurons
72

DIGIT OR NOT?

Story so far
• Multi-layer perceptrons are connectionist computational models
• MLPs are Boolean machines

– They can model Boolean functions
– They can represent arbitrary decision boundaries over real inputs

• Perceptrons are correlation filters
– They detect patterns in the input

• MLPs are Boolean formulae over patterns detected by
perceptrons
– Higher-level perceptrons may also be viewed as feature detectors

• Extra: MLP in classification
– The network will fire if the combination of the detected basic features

matches an “acceptable” pattern for a desired class of signal
• E.g. Appropriate combinations of (Nose, Eyes, Eyebrows, Cheek, Chin)  Face

73

MLP as a continuous-valued regression

• A simple 3-unit MLP with a “summing” output unit can
generate a “square pulse” over an input
– Output is 1 only if the input lies between T1 and T2

– T1 and T2 can be arbitrarily specified
74

+x
1

T1

T2
1

T1

T2

1

-1
T1 T2 x

f(x)

MLP as a continuous-valued regression

• A simple 3-unit MLP can generate a “square pulse” over an input
• An MLP with many units can model an arbitrary function over an input

– To arbitrary precision
• Simply make the individual pulses narrower

• This generalizes to functions of any number of inputs (next part)
75

x
1

T1

T2
1

T1

T2

1

-1
T1 T2 x

f(x)
x

+× ℎଵ

× ℎଶ

× ℎ௡

ℎଵ

ℎଶ

ℎ௡

Story so far
• Multi-layer perceptrons are connectionist

computational models

• MLPs are classification engines
– They can identify classes in the data

– Individual perceptrons are feature detectors

– The network will fire if the combination of the
detected basic features matches an “acceptable”
pattern for a desired class of signal

• MLP can also model continuous valued functions76

Neural Networks:
Part 2: What can a network

represent

Recap: The perceptron

• A threshold unit
– “Fires” if the weighted sum of inputs and the

“bias” T is positive

+.....

ଵ

ଶ

ଷ

ே

௜ ௜

௜

ଵ

ଶ

ଷ

ே

The “soft” perceptron

• A “squashing” function instead of a threshold
at the output
– The sigmoid “activation” replaces the threshold

• Activation: The function that acts on the weighted
combination of inputs (and threshold)

+.....

ଵ

ଶ

ଷ

ே

ଵ

ଶ

ଷ

ே

௜ ௜

௜

Other “activations”

• Does not always have to be a squashing function
• We will continue to assume a “threshold” activation in this

lecture

sigmoid tanh

+.....

xଵ

xଶ

xଷ

xே
𝑏

𝑧

𝑦

𝑤ଵ

𝑤ଶ

𝑤ଷ

𝑤ே

Recap: the multi-layer perceptron

• A network of perceptrons
– Generally “layered”

Aside: Note on “depth”

• What is a “deep” network
– And what is a “layer”?

Deep Structures
• In any directed network of computational elements with

input source nodes and output sink nodes, “depth” is the
length of the longest path from a source to a sink
– A “source” node in a directed graph is a node that has only

outgoing edges
– A “sink” node is a node that has only incoming edges

• Left: Depth = 2. Right: Depth = 3
83

Deep Structures
• Layered deep structure

– The input is the “source”,
– The output nodes are “sinks”

• “Deep”  Depth greater than 2
• “Depth” of a layer – the depth of the neurons in the layer w.r.t. input

84

Input: Black
Layer 1: Red
Layer 2: Green
Layer 3: Yellow
Layer 4: Blue

The multi-layer perceptron

• Inputs are real or Boolean stimuli
• Outputs are real or Boolean values

– Can have multiple outputs for a single input
• What can this network compute?

– What kinds of input/output relationships can it model?

MLPs approximate functions

• MLPs can compose Boolean functions
• MLPs can compose real-valued functions
• What are the limitations?

12 1 1 12 1 1

X Y Z A

10 11

12

1
1 1-111 -1

1 1

1 -1 1 1

11

x

ℎଶ

ℎ௡

The MLP as a Boolean function

• How well do MLPs model Boolean functions?

The perceptron as a Boolean gate

• A perceptron can model any simple binary
Boolean gate

X

Y

1

1
2

X

Y

1

1
1

0X
-1

Perceptron as a Boolean gate

• The universal AND gate
– AND any number of inputs

• Any subset of who may be negated

1

1

L
1

-1
-1

-1 Will fire only if X1 .. XL are all 1
and XL+1 .. XN are all 0

Perceptron as a Boolean gate

• The universal OR gate
– OR any number of inputs

• Any subset of who may be negated

1

1

L-N+1
1

-1
-1

-1 Will fire only if any of X1 .. XL are 1
or any of XL+1 .. XN are 0

Perceptron as a Boolean Gate

• Universal OR:
– Fire if any K-subset of inputs is “ON”

1

1

K
1

1
1

1

Will fire only if the total number of
of X1 .. XN that are 1 is at least K

The perceptron is not enough

• Cannot compute an XOR

X

Y

?

?
?

Multi-layer perceptron

• MLPs can compute the XOR

1

1

1

-1

1

-1

X

Y

1

-1

2

Hidden Layer

Multi-layer perceptron

• MLPs can compute more complex Boolean functions

• MLPs can compute any Boolean function
– Since they can emulate individual gates

• MLPs are universal Boolean functions

12 1 1 12 1 1

X Y Z A

10 11

12

1
1 1-111 -1

1 1

1 -1 1 1

11

MLP as Boolean Functions

• MLPs are universal Boolean functions
– Any function over any number of inputs and any number

of outputs
• But how many “layers” will they need?

12 1 1 12 1 1

X Y Z A

10 11

12

1
1 1-111 -1

1 1

1 -1 1 1

11

How many layers for a Boolean MLP?

• Expressed in disjunctive normal form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth Table

Truth table shows all input combinations
for which output is 1

How many layers for a Boolean MLP?

• Expressed in disjunctive normal form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth Table

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

Truth table shows all input combinations
for which output is 1

How many layers for a Boolean MLP?

• Expressed in disjunctive normal form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth Table

Truth table shows all input combinations
for which output is 1

X1 X2 X3 X4 X5

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

How many layers for a Boolean MLP?

• Expressed in disjunctive normal form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth Table

Truth table shows all input combinations
for which output is 1

X1 X2 X3 X4 X5

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

How many layers for a Boolean MLP?

• Expressed in disjunctive normal form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth Table

Truth table shows all input combinations
for which output is 1

X1 X2 X3 X4 X5

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

How many layers for a Boolean MLP?

• Expressed in disjunctive normal form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth Table

Truth table shows all input combinations
for which output is 1

X1 X2 X3 X4 X5

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

How many layers for a Boolean MLP?

• Expressed in disjunctive normal form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth Table

Truth table shows all input combinations
for which output is 1

X1 X2 X3 X4 X5

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

How many layers for a Boolean MLP?

• Expressed in disjunctive normal form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth Table

Truth table shows all input combinations
for which output is 1

X1 X2 X3 X4 X5

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

How many layers for a Boolean MLP?

• Expressed in disjunctive normal form

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth Table

Truth table shows all input combinations
for which output is 1

X1 X2 X3 X4 X5

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

How many layers for a Boolean MLP?

• Any truth table can be expressed in this manner!
• A one-hidden-layer MLP is a Universal Boolean Function

X1 X2 X3 X4 X5 Y

0 0 1 1 0 1

0 1 0 1 1 1

0 1 1 0 0 1

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

Truth Table

Truth table shows all input combinations
for which output is 1

X1 X2 X3 X4 X5

But what is the largest number of perceptrons required in the
single hidden layer for an N-input-variable function?

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ ଵ ଶ ଷ ସ ହ

Reducing a Boolean Function

• DNF form:
– Find groups
– Express as reduced DNF

This is a “Karnaugh Map”

It represents a truth table as a grid
Filled boxes represent input combinations
for which output is 1; blank boxes have
output 0

Adjacent boxes can be “grouped” to
reduce the complexity of the DNF formula
for the table

00 01 11 10

00

01

11

10

YZ
WX

Reducing a Boolean Function
00 01 11 10

00

01

11

10

YZ
WX

Basic DNF formula will require 7 terms

Reducing a Boolean Function

• Reduced DNF form:
– Find groups
– Express as reduced DNF

00 01 11 10

00

01

11

10

YZ
WX

Reducing a Boolean Function

• Reduced DNF form:
– Find groups
– Express as reduced DNF

00 01 11 10

00

01

11

10

YZ
WX

W X Y Z

Largest irreducible DNF?

• What arrangement of ones and zeros simply
cannot be reduced further?

00 01 11 10

00

01

11

10

YZ
WX

Largest irreducible DNF?

• What arrangement of ones and zeros simply
cannot be reduced further?

00 01 11 10

00

01

11

10

YZ
WX

Largest irreducible DNF?

• What arrangement of ones and zeros simply
cannot be reduced further?

00 01 11 10

00

01

11

10

YZ
WX How many neurons

in a DNF (one-
hidden-layer) MLP
for this Boolean
function?

• How many neurons in a DNF (one-hidden-
layer) MLP for this Boolean function of 6
variables?

00 01 11 10

00

01

11

10

YZ
WX

10
11

01
00 YZUV

Width of a single-layer Boolean MLP

• How many neurons in a DNF (one-hidden-
layer) MLP for this Boolean function

00 01 11 10

00

01

11

10

YZ
WX

10
11

01
00 YZUV

Width of a single-layer Boolean MLP

Can be generalized: Will require 2N-1

perceptrons in hidden layer
Exponential in N

• How many neurons in a DNF (one-hidden-
layer) MLP for this Boolean function

00 01 11 10

00

01

11

10

YZ
WX

10
11

01
00 YZUV

Width of a single-layer Boolean MLP

Can be generalized: Will require 2N-1

perceptrons in hidden layer
Exponential in N

How many units if we use multiple layers?

00 01 11 10

00

01

11

10

YZ
WX

10
11

01
00 YZ

UV

Width of a deep MLP
00 01 11 10

00

01

11

10

YZ
WX

Multi-layer perceptron XOR

• An XOR takes three perceptrons

1

1

1

-1

1

-1

X

Y

1

-1

2

Hidden Layer

• An XOR needs 3 perceptrons

• This network will require 3x3 = 9 perceptrons

Width of a deep MLP
00 01 11 10

00

01

11

10

YZ
WX

W X Y Z

9 perceptrons

• An XOR needs 3 perceptrons

• This network will require 3x5 = 15 perceptrons

Width of a deep MLP

U V W X Y Z

00 01 11 10

00

01

11

10

YZ
WX

10
11

01
00 YZ

UV

15 perceptrons

• An XOR needs 3 perceptrons

• This network will require 3x5 = 15 perceptrons

Width of a deep MLP

U V W X Y Z

00 01 11 10

00

01

11

10

YZ
WX

10
11

01
00 YZ

UV

More generally, the XOR of N
variables will require 3(N-1)
perceptrons!!

• How many neurons in a DNF (one-hidden-
layer) MLP for this Boolean function

00 01 11 10

00

01

11

10

YZ
WX

10
11

01
00 YZUV

Width of a single-layer Boolean MLP

Single hidden layer: Will require 2N-1+1
perceptrons in all (including output unit)
Exponential in N

Will require 3(N-1) perceptrons in a deep
network
Linear in N!!!
Can be arranged in only 2log2(N) layers

A better representation

• Only layers
– By pairing terms
– 2 layers per XOR

𝑋ଵ 𝑋ே

…

𝑍ଵ 𝑍ெ

The challenge of depth

• Using only K hidden layers will require O(2(N-K/2)) neurons in the Kth layer
– Because the output can be shown to be the XOR of all the outputs of the K-1th

hidden layer
– I.e. reducing the number of layers below the minimum will result in an

exponentially sized network to express the function fully
– A network with fewer than the required number of neurons cannot model the

function

……

𝑋ଵ 𝑋ே

Recap: The need for depth

• Deep Boolean MLPs that scale linearly with
the number of inputs …

• … can become exponentially large if recast
using only one layer

• It gets worse..

The need for depth

• The wide function can happen at any layer
• Having a few extra layers can greatly reduce network

size

X1 X2 X3 X4 X5

a b c d e f

Depth vs Size in Boolean Circuits

• The XOR is really a parity problem

• Any Boolean circuit of depth using AND,OR and
NOT gates with unbounded fan-in must have size

– Parity, Circuits, and the Polynomial-Time Hierarchy,
M. Furst, J. B. Saxe, and M. Sipser, Mathematical
Systems Theory 1984

– Alternately stated:
• Set of constant-depth polynomial size circuits of unbounded

fan-in elements
126

Caveat: Not all Boolean functions..

• Not all Boolean circuits have such clear depth-vs-size
tradeoff

• Shannon’s theorem: For , there is Boolean function of
variables that requires at least gates

– More correctly, for large ,almost all n-input Boolean functions
need more than ௡ gates

• Note: If all Boolean functions over inputs could be
computed using a circuit of size that is polynomial in ,
P = NP!

127

Network size: summary

• An MLP is a universal Boolean function

• But can represent a given function only if
– It is sufficiently wide
– It is sufficiently deep
– Depth can be traded off for (sometimes) exponential growth of the

width of the network

• Optimal width and depth depend on the number of variables and
the complexity of the Boolean function
– Complexity: minimal number of terms in DNF formula to represent it

Story so far

• Multi-layer perceptrons are Universal Boolean Machines

• Even a network with a single hidden layer is a universal
Boolean machine
– But a single-layer network may require an exponentially

large number of perceptrons

• Deeper networks may require far fewer neurons than
shallower networks to express the same function
– Could be exponentially smaller

Caveat
• Used a simple “Boolean circuit” analogy for explanation
• We actually have threshold circuit (TC) not, just a Boolean circuit (AC)

– Specifically composed of threshold gates
• More versatile than Boolean gates

– E.g. “at least K inputs are 1” is a single TC gate, but an exponential size AC
– For fixed depth, 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑐𝑖𝑟𝑐𝑢𝑖𝑡𝑠 ⊂ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑐𝑖𝑟𝑐𝑢𝑖𝑡𝑠 (strict subset)

– A depth-2 TC parity circuit can be composed with ଶ weights
• But a network of depth log (𝑛) requires only 𝒪 𝑛 weights

– But more generally, for large , for most Boolean functions, a threshold
circuit that is polynomial in at optimal depth becomes exponentially
large at

• Other formal analyses typically view neural networks as arithmetic
circuits
– Circuits which compute polynomials over any field

• So lets consider functions over the field of reals 130

The MLP as a classifier

• MLP as a function over real inputs

• MLP as a function that finds a complex “decision
boundary” over a space of reals

131

784 dimensions
(MNIST)

784 dimensions

2

A Perceptron on Reals

• A perceptron operates on
real-valued vectors
– This is a linear classifier 132

x1

x2
w1x1+w2x2=T

௜ ௜

௜

x1

x2

1
0

x1

x2

x3

xN

Booleans over the reals

• The network must fire if the input is in the
coloured area

133

x1

x2

x1

x2

AND

5

4
4

4

4

4

3

3

3

33 x1x2

௜

ே

௜ୀଵ

y1 y5y2 y3 y4

More complex decision boundaries

• Network to fire if the input is in the yellow area
– “OR” two polygons
– A third layer is required

134

x2

AND AND

OR

x1 x1 x2

Complex decision boundaries

• Can compose arbitrarily complex decision
boundaries

135

Complex decision boundaries

• Can compose arbitrarily complex decision
boundaries

136

AND

OR

x1 x2

Complex decision boundaries

• Can compose arbitrarily complex decision boundaries
– With only one hidden layer!

– How?
137

AND

OR

x1 x2

Exercise: compose this with one
hidden layer

• How would you compose the decision
boundary to the left with only one hidden
layer?

138

x1 x2

x2

x1

Composing a Square decision
boundary

• The polygon net

139

4

x1x2

෍ y௜

ସ

௜ୀଵ

≥ 4?

y1 y2 y3 y4

2

2

2

2

Composing a pentagon

• The polygon net
140

5

44

4

4

4

x1x2

෍ y௜

ହ

௜ୀଵ

≥ 5?

y1 y5y2 y3 y4

2

2

2

2

2

3

3 3

3

3

Composing a hexagon

• The polygon net

141

6

5
5

5
5

5

5

x1x2

෍ y௜

ே

௜ୀଵ

≥ 6?

y1 y5y2 y3 y4 y6

3

3

3

3

3

3

4

4

4

44

How about a heptagon

• What are the sums in the different regions?
– A pattern emerges as we consider N > 6..

142

16 sides

• What are the sums in the different regions?
– A pattern emerges as we consider N > 6..

143

64 sides

• What are the sums in the different regions?
– A pattern emerges as we consider N > 6..

144

1000 sides

• What are the sums in the different regions?
– A pattern emerges as we consider N > 6..

145

Polygon net

• Increasing the number of sides reduces the area
outside the polygon that have N/2 < Sum < N

146

x1x2

෍ y௜

ே

௜ୀଵ

≥ 𝑁?

y1 y5y2 y3 y4

In the limit

• ௜௜
ଵ

గ

௥௔ௗ௜௨௦

𝐱ି௖௘௡௧

• For small radius, it’s a near perfect cylinder
– N in the cylinder, N/2 outside

147

x1x2

෍ y௜

ே

௜ୀଵ

≥ 𝑁?

y1 y5y2 y3 y4

N

N/2

Composing a circle

• The circle net
– Very large number of neurons

– Sum is N inside the circle, N/2 outside everywhere

– Circle can be of arbitrary diameter, at any location
148

N

N/2

෍ y௜

ே

௜ୀଵ

≥ 𝑁?

Composing a circle

• The circle net
– Very large number of neurons

– Sum is N/2 inside the circle, 0 outside everywhere

– Circle can be of arbitrary diameter, at any location
149

N/2

0

෍ 𝐲𝒊

𝑵

𝒊ୀ𝟏

−
𝑵

𝟐
> 𝟎?

1

−𝑁/2

Adding circles

• The “sum” of two circles sub nets is exactly N/2
inside either circle, and 0 outside

150

෍ 𝐲𝒊

𝟐𝑵

𝒊ୀ𝟏

− 𝑵 > 𝟎?

Composing an arbitrary figure

• Just fit in an arbitrary number of circles
– More accurate approximation with greater number of

smaller circles
– Can achieve arbitrary precision

151

෍ 𝐲𝒊

𝑲𝑵

𝒊ୀ𝟏

−
𝑲𝑵

𝟐
> 𝟎?

MLP: Universal classifier

• MLPs can capture any classification boundary
• A one-layer MLP can model any classification

boundary
• MLPs are universal classifiers 152

෍ 𝐲𝒊

𝑲𝑵

𝒊ୀ𝟏

−
𝑲𝑵

𝟐
> 𝟎?

Depth and the universal classifier

• Deeper networks can require far fewer neurons

x2

x1 x1 x2

Optimal depth..

• Formal analyses typically view these as a category of
arithmetic circuits
– Compute polynomials over any field

• Valiant et. al: A polynomial of degree n requires a network of depth
ଶ

– Cannot be computed with shallower networks
– Nearly all functions are very high or even infinite-order polynomials..

• Bengio et. al: Shows a similar result for sum-product networks
– But only considers two-input units
– Generalized by Mhaskar et al. to all functions that can be expressed as a

binary tree

– Depth/Size analyses of arithmetic circuits still a research
problem

154

Optimal depth in generic nets

• We look at a different pattern:
– “worst case” decision boundaries

• For threshold-activation networks
– Generalizes to other nets

155

Optimal depth

• A one-hidden-layer neural network will
require infinite hidden neurons

෍ 𝐲𝒊

𝑵

𝒊ୀ𝟏

−
𝑵

𝟐
> 𝟎?

Optimal depth

• Two-layer network: 56 hidden neurons

Optimal depth

• Two-layer network: 56 hidden neurons
– 16 neurons in hidden layer 1

ଵ ଶ ଷ ଵ଺

ଵ଺

ଵ ଶ ଷ ସ

ହ ଼

ଽ ଵଶ

ଵଷ ଵସ ଵହ

଺ ଻

ଵ଴ ଵଵ

Optimal depth

• Two-layer network: 56 hidden neurons
– 16 in hidden layer 1
– 40 in hidden layer 2
– 57 total neurons, including output neuron

Optimal depth

• But this is just

ଵ ଶ ଷ ଵ଺

ଵ଺

ଵ ଶ ଷ ସ

ହ ଼

ଽ ଵଶ

ଵଷ ଵସ ଵହ

଺ ଻

ଵ଴ ଵଵ

Optimal depth

• But this is just
– The XOR net will require 16 + 15x3 = 61 neurons

• Greater than the 2-layer network with only 52 neurons

Optimal depth

• A one-hidden-layer neural network will
require infinite hidden neurons

෍ 𝐲𝒊

𝑲𝑵

𝒊ୀ𝟏

−
𝑲𝑵

𝟐
> 𝟎?

Actual linear units

• 64 basic linear feature detectors

ଵ ଶ ଷ ଺ସ….

Optimal depth

• Two hidden layers: 608 hidden neurons
– 64 in layer 1
– 544 in layer 2

• 609 total neurons (including output neuron)

….
….

Optimal depth

• XOR network (12 hidden layers): 253 neurons
• The difference in size between the deeper optimal (XOR) net and

shallower nets increases with increasing pattern complexity

….….….….….….

Network size?
• In this problem the 2-layer net

was quadratic in the number of
lines
– ଶ neurons in 2nd hidden layer
– Not exponential
– Even though the pattern is an XOR
– Why?

• The data are two-dimensional!
– Only two fully independent features
– The pattern is exponential in the dimension of the input (two)!

• For general case of mutually intersecting hyperplanes in dimensions,

we will need ேವ

(஽ିଵ)!
weights (assuming).

– Increasing input dimensions can increase the worst-case size of the shallower
network exponentially, but not the XOR net
• The size of the XOR net depends only on the number of first-level linear detectors (𝑁)

166

Depth: Summary

• The number of neurons required in a shallow
network is
– Polynomial in the number of basic patterns
– Exponential in the dimensionality of the input
– (this is the worst case)

Story so far
• Multi-layer perceptrons are Universal Boolean Machines

– Even a network with a single hidden layer is a universal Boolean machine

• Multi-layer perceptrons are Universal Classification Functions
– Even a network with a single hidden layer is a universal classifier

• But a single-layer network may require an exponentially large number
of perceptrons than a deep one

• Deeper networks may require exponentially fewer neurons than
shallower networks to express the same function
– Could be exponentially smaller
– Deeper networks are more expressive

MLP as a continuous-valued regression

• A simple 3-unit MLP with a “summing” output unit can
generate a “square pulse” over an input
– Output is 1 only if the input lies between T1 and T2

– T1 and T2 can be arbitrarily specified
169

+x
1

T1

T2
1

T1

T2

1

-1
T1 T2 x

f(x)

MLP as a continuous-valued regression

• A simple 3-unit MLP can generate a “square pulse” over an input
• An MLP with many units can model an arbitrary function over an input

– To arbitrary precision
• Simply make the individual pulses narrower

• A one-layer MLP can model an arbitrary function of a single input
170

x
1

T1

T2
1

T1

T2

1

-1
T1 T2 x

f(x)
x

+× ℎଵ

× ℎଶ

× ℎ௡

ℎଵ

ℎଶ

ℎ௡

For higher-dimensional functions

• An MLP can compose a cylinder
– N in the circle, N/2 outside

N

N/2

+

A “true” cylinder

• An MLP can compose a true (almost) cylinder
– N/2 in the circle, 0 outside
– By adding a “bias”
– We will encounter bias terms again

• They are standard components of perceptrons

N/2

0

+

1

-N/2

+

MLP as a continuous-valued function

• MLPs can actually compose arbitrary functions
– Even with only one layer

• As sums of scaled and shifted cylinders

– To arbitrary precision
• By making the cylinders thinner

– The MLP is a universal approximator!
173

ଵ

ଶ

௡

ଵ
ଶ

௡

+

Caution: MLPs with additive output
units are universal approximators

• MLPs can actually compose arbitrary functions

• But explanation so far only holds if the output
unit only performs summation
– i.e. does not have an additional “activation”

174

ଵ

ଶ

௡

ଵ
ଶ

௡

௜ ௜

ே

௜ୀଵ

“Proper” networks: Outputs with
activations

• Output neuron may have actual “activation”
– Threshold, sigmoid, tanh, softplus, rectifier, etc.

• What is the property of such networks?

x1
x2

x3

xN

sigmoid tanh

The network as a function

• Output unit with activation function
– Threshold or Sigmoid, or any other

• The network is actually a map from the set of all possible input values to all
possible output values
– All values the activation function of the output neuron

ே

ே

ே

ே

ே

The network as a function

• Output unit with activation function
– Threshold or Sigmoid, or any other

• The network is actually a map from the set of all possible input values to all
possible output values
– All values the activation function of the output neuron

ே

ே

ே

ே

The MLP is a Universal Approximator for the entire class of functions (maps)
it represents!

ே

The issue of depth

• Previous discussion showed that a single-layer MLP is a
universal function approximator
– Can approximate any function to arbitrary precision
– But may require infinite neurons in the layer

• More generally, deeper networks will require far fewer
neurons for the same approximation error
– The network is a generic map

• The same principles that apply for Boolean networks apply here

– Can be exponentially fewer than the 1-layer network

178

Sufficiency of architecture

• A neural network can represent any function provided
it has sufficient capacity
– I.e. sufficiently broad and deep to represent the function

• Not all architectures can represent any function

A network with 16 or more
neurons in the first layer is
capable of representing the
figure to the right perfectly

…..

179

Sufficiency of architecture

• A neural network can represent any function provided
it has sufficient capacity
– I.e. sufficiently broad and deep to represent the function

• Not all architectures can represent any function

A network with 16 or more
neurons in the first layer is
capable of representing the
figure to the right perfectly

A network with less than
16 threshold neurons in
the first layer cannot
represent this pattern
exactly
 With caveats..

…..

Why?

180

Sufficiency of architecture

• A neural network can represent any function provided
it has sufficient capacity
– I.e. sufficiently broad and deep to represent the function

• Not all architectures can represent any function

A network with 16 or more
neurons in the first layer is
capable of representing the
figure to the right perfectly

A network with less than
16 threshold neurons in
the first layer cannot
represent this pattern
exactly
 With caveats..

…..

181

Sufficiency of architecture

• A neural network can represent any function provided
it has sufficient capacity
– I.e. sufficiently broad and deep to represent the function

• Not all architectures can represent any function

A network with 16 or more
neurons in the first layer is
capable of representing the
figure to the right perfectly

A network with less than
16 threshold neurons in
the first layer cannot
represent this pattern
exactly
 With caveats..

…..

182

Why?

Sufficiency of architecture

• A neural network can represent any function provided
it has sufficient capacity
– I.e. sufficiently broad and deep to represent the function

• Not all architectures can represent any function

A network with 16 or more
neurons in the first layer is
capable of representing the
figure to the right perfectly

A network with less than
16 threshold neurons in
the first layer cannot
represent this pattern
exactly
 With caveats..

…..

183

Sufficiency of architecture

• A neural network can represent any function provided
it has sufficient capacity
– I.e. sufficiently broad and deep to represent the function

• Not all architectures can represent any function

A network with 16 or more
neurons in the first layer is
capable of representing the
figure to the right perfectly

A network with less than
16 neurons in the first
layer cannot represent
this pattern exactly
 With caveats..

…..

A 2-layer network with 16
neurons in the first layer
cannot represent the
pattern with less than 41
neurons in the second layer

184

Sufficiency of architecture
A network with 16 or more
threshold neurons in the first
layer is capable of representing
the figure to the right perfectly

A network with less than
16 neurons in the first
layer cannot represent
this pattern exactly
 With caveats..

…..

Why?

185

Sufficiency of architecture
This effect is because we
use the threshold activation

It gates information in
the input from later layers

The pattern of outputs within
any colored region is identical

Subsequent layers do not obtain enough
information to partition them

186

Sufficiency of architecture
This effect is because we
use the threshold activation

It gates information in
the input from later layers

Continuous activation functions result in graded output at the layer

The gradation provides information to subsequent layers, to capture
information “missed” by the lower layer (i.e. it “passes” information
to subsequent layers).

187

Sufficiency of architecture
This effect is because we
use the threshold activation

It gates information in
the input from later layers

Continuous activation functions result in graded output at the layer

The gradation provides information to subsequent layers, to capture
information “missed” by the lower layer (i.e. it “passes” information
to subsequent layers).

Activations with more gradation (e.g. RELU) pass more information

188

Width vs. Activations vs. Depth

• Narrow layers can still pass information to
subsequent layers if the activation function is
sufficiently graded

• But will require greater depth, to permit later
layers to capture patterns

189

Sufficiency of architecture

• The capacity of a network has various definitions
– Information or Storage capacity: how many patterns can it remember
– VC dimension

• bounded by the square of the number of weights in the network

– From our perspective: largest number of disconnected convex regions it can represent

• A network with insufficient capacity cannot exactly model a function that requires
a greater minimal number of convex hulls than the capacity of the network
– But can approximate it with error

190

The “capacity” of a network
• VC dimension
• A separate lecture

– Koiran and Sontag (1998): For “linear” or threshold units, VC
dimension is proportional to the number of weights
• For units with piecewise linear activation it is proportional to the

square of the number of weights

– Harvey, Liaw, Mehrabian “Nearly-tight VC-dimension bounds for
piecewise linear neural networks” (2017):
• For any , s.t. ଶ, there exisits a RELU network with

layers, weights with VC dimension ௐ௅

஼ ଶ
ௐ

௅

– Friedland, Krell, “A Capacity Scaling Law for Artificial Neural
Networks” (2017):
• VC dimension of a linear/threshold net is , is the overall

number of hidden neurons, is the weights per neuron
191

Lessons

• MLPs are universal Boolean function
• MLPs are universal classifiers
• MLPs are universal function approximators

• A single-layer MLP can approximate anything to arbitrary precision
– But could be exponentially or even infinitely wide in its inputs size

• Deeper MLPs can achieve the same precision with far fewer
neurons
– Deeper networks are more expressive

Learning the network

• The neural network can approximate any function
• But only if the function is known a priori

193

Learning the network

• In reality, we will only get a few snapshots of the function
to learn it from

• We must learn the entire function from these “training”
snapshots

General approach to training

• Define an error between the actual network output for
any parameter value and the desired output
– E.g. error defined as the sum of the squared error over

individual training instances

Blue lines: error when
function is below desired
output

Black lines: error when
function is above desired
output

௜ ௜
ଶ

௜

General approach to training

• Problem: Network may just learn the values at the inputs
– Learn the red curve instead of the dotted blue one

• Given only the red vertical bars as inputs

– Need “smoothness” constraints

Data under-specification in learning

• Consider a binary 100-dimensional input
• There are 2100=1030 possible inputs
• Complete specification of the function will require specification of 1030 output

values
• A training set with only 1015 training instances will be off by a factor of 1015

197

Data under-specification in learning

• Consider a binary 100-dimensional input
• There are 2100=1030 possible inputs
• Complete specification of the function will require specification of 1030 output

values
• A training set with only 1015 training instances will be off by a factor of 1015

198

Find the function!

Data under-specification in learning
• MLPs naturally impose constraints

• MLPs are universal approximators
– Arbitrarily increasing size can give

you arbitrarily wiggly functions
– The function will remain ill-defined

on the majority of the space

• For a given number of parameters deeper networks
impose more smoothness than shallow ones
– Each layer works on the already smooth surface output by

the previous layer

199

Smoothness through network structure

• Smoothness constraints can also be imposed through the network
structure

• For a given number of parameters deeper networks impose more
smoothness than shallow ones
– Each layer works on the already smooth surface output by the previous layer200

• Typical results (varies with initialization)
• 1000 training points

– Many orders of magnitude more than you usually get

• All the training tricks known to mankind 201

Even when we get it all right

But depth and training data help

• Deeper networks seem to learn better, for the same
number of total neurons
– Implicit smoothness constraints

• As opposed to explicit constraints from more conventional
classification models

• Similar functions not learnable using more usual
pattern-recognition models!! 202

6 layers 11 layers

3 layers 4 layers

6 layers 11 layers

3 layers 4 layers

10000 training instances

Part 3: What does the network
learn?

Learning in the net

• Problem: Given a collection of input-output
pairs, learn the function

Learning for classification

• When the net must learn to classify..
– Learn the classification boundaries that separate

the training instances

x2

x1

Learning for classification

• In reality
– In general, not really cleanly separated

• So, what is the function we learn?

x2

A trivial MLP: a single perceptron

• Learn this function
– A step function across a hyperplane

207

x1

x2

x1

x2 1
0

• Learn this function
– A step function across a hyperplane

– Given only samples form it
208

x1

x2

x1

x2

The simplest MLP: a single perceptron

Learning the perceptron

• Given a number of input output pairs, learn the weights and bias

– ௜ ௜
ே
௜ୀଵ

– Learn ଵ ே , given several (X, y) pairs
209

+.....

ଵ

ଶ

ଷ

ே

ଵ

ଶ

ଷ

ேx1

x2

Restating the perceptron

• Restating the perceptron equation by adding another dimension to

௜ ௜

ேାଵ

௜ୀଵ

where ேାଵ

x1

x2

x3

xN
WN+1xN+1=1

210

The Perceptron Problem

• Find the hyperplane that
perfectly separates the two groups of points

211

Perceptron Learning Algorithm
• Given training instances

– ௜ or

• Initialize
• Cycle through the training instances:
• While more classification errors

– For 𝑡𝑟𝑎𝑖𝑛

௜
்

௜

• If ௜ ௜

௜ ௜

212

Using a +1/-1 representation
for classes to simplify
notation

A simple learner: Perceptron Algorithm

• Given training instances
– or (instances are either positive or negative)

• Cycle through the training instances
• Only update on misclassified instances
• If instance misclassified:

– If instance is positive class

– If instance is negative class

213

The Perceptron Algorithm

• Initialize: Randomly initialize the hyperplane
– I.e. randomly initialize the normal vector
– Classification rule ்

– The random initial plane will make mistakes
214

-1(Red)

+1 (blue)

Perceptron Algorithm

215

-1(Red)

Initialization

+1 (blue)

Perceptron Algorithm

216

-1(Red)

Misclassified positive instance

+1 (blue)

Perceptron Algorithm

217

-1(Red)

+1 (blue)

Perceptron Algorithm

218

Updated weight vector

Misclassified positive instance, add it to W

Perceptron Algorithm

219

-1(Red)

Updated hyperplane

+1 (blue)

Perceptron Algorithm

220

-1(Red)

Misclassified instance, negative class

+1 (blue)

Perceptron Algorithm

221

-1(Red)+1 (blue)

Perceptron Algorithm

222

-1(Red)

Misclassified negative instance, subtract it from W

+1 (blue)

Perceptron Algorithm

223

-1(Red)

Updated hyperplane

+1 (blue)

Perceptron Algorithm

224

-1(Red)

Perfect classification, no more updates

+1 (blue)

Convergence of Perceptron Algorithm

• Guaranteed to converge if classes are linearly
separable

– After no more than misclassifications

• Specifically, when W is initialized to 0

– is length of longest training point
– is the best-case closest distance of a training

point from the classifier
• Same as the margin in an SVM

– Intuitively – takes many increments of size to
undo an error resulting from a step of size

225

In reality: Trivial linear example

• Two-dimensional example
– Blue dots (on the floor) on the “red” side
– Red dots (suspended at Y=1) on the “blue” side
– No line will cleanly separate the two colors

226

226

x1

x2

Non-linearly separable data: 1-D example

• One-dimensional example for visualization
– All (red) dots at Y=1 represent instances of class Y=1
– All (blue) dots at Y=0 are from class Y=0
– The data are not linearly separable

• In this 1-D example, a linear separator is a threshold
• No threshold will cleanly separate red and blue dots

227

x

y

Undesired Function

• One-dimensional example for visualization
– All (red) dots at Y=1 represent instances of class Y=1
– All (blue) dots at Y=0 are from class Y=0
– The data are not linearly separable

• In this 1-D example, a linear separator is a threshold
• No threshold will cleanly separate red and blue dots

228

x

y

What if?

• One-dimensional example for visualization
– All (red) dots at Y=1 represent instances of class Y=1
– All (blue) dots at Y=0 are from class Y=0
– The data are not linearly separable

• In this 1-D example, a linear separator is a threshold
• No threshold will cleanly separate red and blue dots

229

x

y

What if?

• What must the value of the function be at this
X?
– 1 because red dominates?

– 0.9 : The average?
230

x

y

10 instances

90 instances

What if?

• What must the value of the function be at this
X?
– 1 because red dominates?

– 0.9 : The average?
231

x

y

10 instances

90 instances

Estimate:
Potentially much more useful than
a simple 1/0 decision
Also, potentially more realistic

What if?

• What must the value of the function be at this
X?
– 1 because red dominates?

– 0.9 : The average?
232

x

y

10 instances

90 instances

Estimate:
Potentially much more useful than
a simple 1/0 decision
Also, potentially more realistic

Should an infinitesimal nudge
of the red dot change the function
estimate entirely?

If not, how do we estimate 𝑃(1|𝑋)?
(since the positions of the red and blue X
Values are different)

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of Y=1 at that point

233

x

y

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

234

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

235

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

236

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

237

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

238

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

239

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

240

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

241

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

242

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

243

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

244

x

y

The probability of y=1

• Consider this differently: at each point look at a small
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point

245

x

y

The probability of y=1

The logistic regression model

246

)(1

1
)1(xwwe
xyP




y=0

y=1

x

• Class 1 becomes increasingly probable going left to right
– Very typical in many problems

The logistic perceptron

• A sigmoid perceptron with a single input models
the a posteriori probability of the class given the
input

)(1

1
)(xwwe
xyP




ଵ

଴

Non-linearly separable data

• Two-dimensional example
– Blue dots (on the floor) on the “red” side
– Red dots (suspended at Y=1) on the “blue” side
– No line will cleanly separate the two colors

248

248

x1

x2

Logistic regression

• This the perceptron with a sigmoid activation
– It actually computes the probability that the input belongs to class 1
– Decision boundaries may be obtained by comparing the probability to a threshold

• These boundaries will be lines (hyperplanes in higher dimensions)
• The sigmoid perceptron is a linear classifier

249

When X is a 2-D variable x1

x2

Decision: y > 0.5?
௜ ௜௜ ଴

ଶ

଴

ଵ

ଵ ଶ

Estimating the model

• Given the training data (many pairs
represented by the dots), estimate and
for the curve

250

x

y

)(1

1
)()(xwwe
xfxyP




Estimating the model

251

x

y

)(1

1
)1(xwwe
xyP


)(1

1
)1(xwwe
xyP




)(1

1
)(xwwye
xyP




• Easier to represent using a y = +1/-1 notation

Estimating the model

• Given: Training data

• s are vectors, s are binary (0/1) class values
• Total probability of data

೔ బ
೅

೔

252

Estimating the model

• Likelihood

೔ బ
೅

೔

• Log likelihood

253

Maximum Likelihood Estimate

బ భ

• Equals (note argmin rather than argmax)

• Identical to minimizing the cross entropy
between the desired output and actual output

• Cannot be solved directly, needs gradient descent
254

So what about this one?

• Non-linear classifiers..

x2

First consider the separable case..

• When the net must learn to classify..

x2

x1

First consider the separable case..

• For a “sufficient” net

x2

x1
x1 x2

First consider the separable case..

• For a “sufficient” net
• This final perceptron is a linear classifier

x2

x1
x1 x2

First consider the separable case..

• For a “sufficient” net
• This final perceptron is a linear classifier over

the output of the penultimate layer

x2

x1
x1 x2

???

ଵ ଶ

First consider the separable case..

• For perfect classification the
output of the penultimate layer must be
linearly separable

x1 x2

y2

y1

ଵ ଶ

First consider the separable case..

• The rest of the network may be viewed as a transformation that
transforms data from non-linear classes to linearly separable features
– We can now attach any linear classifier above it for perfect classification
– Need not be a perceptron
– In fact, slapping on an SVM on top of the features may be more generalizable!

x1 x2

y2

y1

First consider the separable case..

• The rest of the network may be viewed as a transformation that transforms data
from non-linear classes to linearly separable features
– We can now attach any linear classifier above it for perfect classification
– Need not be a perceptron
– E.g. a max-margin classifier

x1 x2

y2

y1

ଵ ଶ

First consider the separable case..

• This is true of any sufficient structure
– Not just the optimal one

• For insufficient structures, the network may attempt to transform the inputs to
linearly separable features
– Will fail to separate
– The learning algorithm will try to learn the most separating (or least error) boundaries

x1 x2

ଵ ଶ

y2

y1

Mathematically..

• ௢௨௧
ଵ

ଵାୣ୶୮ ௕ାௐ೅௒

ଵ

ଵାୣ୶୮ ௕ାௐ೅௙(௑)

• The data are (almost) linearly separable in the space of
• The network until the second-to-last layer is a non-linear function

that converts the input space of into the feature space
where the classes are maximally linearly separable

x1 x2

ଵ ଶ

௢௨௧

When the data are not separable and
boundaries are not linear..

• More typical setting for classification
problems

x2

x1

Inseparable classes with an output
logistic perceptron

• The “feature extraction” layer transforms the data
such that the posterior probability may now be
modelled by a logistic

x1 x2

y2

y1

ଵ ଶ

Inseparable classes with an output
logistic perceptron

• The “feature extraction” layer transforms the data such that
the posterior probability may now be modelled by a logistic
– The output logistic computes the posterior probability of the class

given the input

267

x1

x2

x

y

)(1

1
)()(

xww T

e
xfxyP

 


When the data are not separable and
boundaries are not linear..

• The output of the network is
– For multi-class networks, it will be the vector of a

posteriori class probabilities

x2

x1 x2

Story so far

• A classification MLP actually comprises two
components
– A “feature extraction network” that converts the

inputs into linearly separable features
• Or nearly linearly separable features

– A final linear classifier that operates on the
linearly separable features

How about the lower layers?

• How do the lower layers respond?
– They too compute features
– But how do they look

• Manifold hypothesis: For separable classes, the classes are linearly separable on a
non-linear manifold

• Layers sequentially “straighten” the data manifold
– Until the final layer, which fully linearizes it

x1 x2

ଵ ଶ

The behavior of the layers

• Synthetic example: Feature space

The behavior of the layers

• CIFAR

The behavior of the layers

• CIFAR

Changing gears..

x1 x2

We’ve seen what the network learns here

But what about here?

Intermediate layers

Recall: The basic perceptron

• What do the weights tell us?
– The neuron fires if the inner product between the

weights and the inputs exceeds a threshold
276

x1

x2

x3

xN

௜ ௜

௜

்

Recall: The weight as a “template”

• The perceptron fires if the input is within a specified angle of the weight
– Represents a convex region on the surface of the sphere!
– The network is a Boolean function over these regions.

• The overall decision region can be arbitrarily nonconvex

• Neuron fires if the input vector is close enough to the weight vector.
– If the input pattern matches the weight pattern closely enough

277

w
𝑻

ି𝟏

x1

x2

x3

xN

Recall: The weight as a template

• If the correlation between the weight pattern
and the inputs exceeds a threshold, fire

• The perceptron is a correlation filter!
278

W X X

Correlation = 0.57 Correlation = 0.82
𝑦 = ൞

1 𝑖𝑓 ෍ 𝑤௜x௜ ≥ 𝑇

௜

0 𝑒𝑙𝑠𝑒

Recall: MLP features

• The lowest layers of a network detect significant features in the
signal

• The signal could be (partially) reconstructed using these features
– Will retain all the significant components of the signal 279

DIGIT OR NOT?

Making it explicit

• The signal could be (partially) reconstructed using these features
– Will retain all the significant components of the signal

• Simply recompose the detected features
– Will this work?

280

Making it explicit

• The signal could be (partially) reconstructed using these features
– Will retain all the significant components of the signal

• Simply recompose the detected features
– Will this work?

281

Making it explicit: an autoencoder

• A neural network can be trained to predict the input itself
• This is an autoencoder
• An encoder learns to detect all the most significant patterns in the signals
• A decoder recomposes the signal from the patterns 282

The Simplest Autencoder

• A single hidden unit

• Hidden unit has linear activation

• What will this learn? 283

The Simplest Autencoder

• This is just PCA!

284

𝐱

𝐱ො

𝒘

𝒘𝑻

Training: Learning by minimizing
L2 divergence

The Simplest Autencoder

• The autoencoder finds the direction of maximum
energy
– Variance if the input is a zero-mean RV

• All input vectors are mapped onto a point on the
principal axis 285

𝐱

𝐱ො

𝒘

𝒘𝑻

The Simplest Autencoder

• Simply varying the hidden representation will
result in an output that lies along the major
axis

286

𝐱ො

𝒘𝑻

𝒛

The Simplest Autencoder

287

𝐱

𝐱ො

𝒘

𝒖𝑻

• Simply varying the hidden representation will result in
an output that lies along the major axis

• This will happen even if the learned output weight is
separate from the input weight
– The minimum-error direction is the principal eigen vector

For more detailed AEs without a non-
linearity

• This is still just PCA
– The output of the hidden layer will be in the principal subspace

• Even if the recomposition weights are different from the “analysis”
weights 288

Find W to minimize Avg[E]

Terminology

• Terminology:
– Encoder: The “Analysis” net which computes the hidden

representation
– Decoder: The “Synthesis” which recomposes the data from the

hidden representation
289

ENCODER

DECODER

Introducing nonlinearity

• When the hidden layer has a linear activation the decoder represents the best linear manifold to fit
the data
– Varying the hidden value will move along this linear manifold

• When the hidden layer has non-linear activation, the net performs nonlinear PCA
– The decoder represents the best non-linear manifold to fit the data
– Varying the hidden value will move along this non-linear manifold 290

ENCODER

DECODER

The AE

• With non-linearity
– “Non linear” PCA

– Deeper networks can capture more complicated manifolds
• “Deep” autoencoders

291

ENCODER

DECODER

Some examples

• 2-D input
• Encoder and decoder have 2 hidden layers of 100 neurons, but

hidden representation is unidimensional
• Extending the hidden “z” value beyond the values seen in training

does not continue along a helix

Encoder is an MLP with 5 residual blocks, each with 64 hidden units.
Two fully-connected layers (2x64, 64, 1).
Decoder is the mirror image.
All non-linearities are exponential linear units (ELU)

Some examples

• The model is specific to the training data..
– Varying the hidden layer value only generates data along the

learned manifold
• Any input will result in an output along the learned manifold

– But may not generalize beyond the manifold

The AE

• When the hidden representation is of lower dimensionality
than the input, often called a “bottleneck” network
– Nonlinear PCA
– Learns the manifold for the data

• If properly trained
294

ENCODER

DECODER

The AE

• The decoder can only generate data on the
manifold that the training data lie on

• This also makes it an excellent “generator” of the
distribution of the training data
– Any values applied to the (hidden) input to the

decoder will produce data similar to the training data
295

DECODER

The Decoder:

• The decoder represents a source-specific generative
dictionary

• Exciting it will produce typical data from the source!

296

DECODER

DECODER

The Decoder:

• The decoder represents a source-specific generative
dictionary

• Exciting it will produce typical data from the source!

297

Sax dictionary

The Decoder:

• The decoder represents a source-specific generative
dictionary

• Exciting it will produce typical data from the source!

298

DECODER

Clarinet dictionary

A cute application..

• Signal separation…

• Given a mixed sound from multiple sources,
separate out the sources

Dictionary-based techniques

• Basic idea: Learn a dictionary of “building blocks” for
each sound source

• All signals by the source are composed from entries
from the dictionary for the source

300

Compose

Dictionary-based techniques

• Learn a similar dictionary for all sources
expected in the signal

301

Compose

Dictionary-based techniques

• A mixed signal is the linear combination of
signals from the individual sources
– Which are in turn composed of entries from its

dictionary
302

Compose

Guitar
music

Drum
music

Compose

+

Dictionary-based techniques

• Separation: Identify the combination of
entries from both dictionaries that compose
the mixed signal

303

+

Dictionary-based techniques

• Separation: Identify the combination of entries from
both dictionaries that compose the mixed signal
• The composition from the identified dictionary entries gives you

the separated signals

304

+
Compose

Guitar
music

Drum
music

Compose

Learning Dictionaries

• Autoencoder dictionaries for each source
– Operating on (magnitude) spectrograms

• For a well-trained network, the “decoder” dictionary is
highly specialized to creating sounds for that source

𝐷ଵ(0, 𝑡) 𝐷ଵ(𝐹, 𝑡)…
…

𝐷ଶ(0, 𝑡) 𝐷ଶ(𝐹, 𝑡)…
…

…
𝐷ଵ(0, 𝑡) 𝐷෡ଵ(𝐹, 𝑡) 𝐷෡ଶ(0, 𝑡) 𝐷෡ଶ(𝐹, 𝑡)… …

ୈ୉ଵ

୉୒ଵ

ୈ୉

୉୒ଶ

305

Model for mixed signal

• The sum of the outputs of both neural
dictionaries
– For some unknown input

ୈ୉ଵ ୈ୉ଶ

𝑌(0, 𝑡) Y(𝐹, 𝑡)…𝑌(1, 𝑡)

… …

𝐼ଵ(0, 𝑡) … 𝐼ଵ(𝐻, 𝑡)

… …

𝐼ଶ(0, 𝑡) … 𝐼ଶ(𝐻, 𝑡)

Estimate ଵ and ଶ to minimize cost function

testset
𝑋(𝑓, 𝑡)

Cost function

𝐽 = ෍ 𝑋 𝑓, 𝑡 − 𝑌 𝑓, 𝑡 ଶ

𝛼 𝛽
𝛽

𝛽
𝛼

𝛼

306

Separation

• Given mixed signal and source dictionaries, find
excitation that best recreates mixed signal
– Simple backpropagation

• Intermediate results are separated signals

Test Process

ୈ୉ଵ ୈ୉ଶ

𝑌(0, 𝑡) Y(𝐹, 𝑡)…𝑌(1, 𝑡)

… …

𝐼ଵ(0, 𝑡) … 𝐼ଵ(𝐻, 𝑡)

… …

𝐼ଶ(0, 𝑡) … 𝐼ଶ(𝐻, 𝑡) 𝐻 : Hidden layer size

Estimate ଵ and ଶ to minimize cost function

testset
𝑋(𝑓, 𝑡)

Cost function

𝐽 = ෍ 𝑋 𝑓, 𝑡 − 𝑌 𝑓, 𝑡 ଶ

𝛼 𝛽
𝛽

𝛽
𝛼

𝛼

307

Example Results

• Separating music

308

5-layer dictionary, 600 units wide

Mixture Separated

Original

Separated

Original

Story for the day
• Classification networks learn to predict the a posteriori

probabilities of classes
– The network until the final layer is a feature extractor that

converts the input data to be (almost) linearly separable
– The final layer is a classifier/predictor that operates on linearly

separable data

• Neural networks can be used to perform linear or non-
linear PCA
– “Autoencoders”
– Can also be used to compose constructive dictionaries for data

• Which, in turn can be used to model data distributions

