Learning Structured Predictors

Xavier Carreras

https://dmetrics.com
Outline

Part I
 Introduction
 Four Approaches to Sequence Prediction
 Greedy Sequence Prediction

Part II
 Factored Sequence Prediction
 Algorithms for Factored Models
 Log-linear Factored Models

Part III
 Structured Perceptron
 Log-linear Models and CRFs
 Dependency Parsing
 Summary and Conclusion
Supervised (Structured) Prediction

- Learning to predict: given training data

\[\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(m)}, y^{(m)})\} \]

learn a predictor \(x \rightarrow y \) that works well on unseen inputs \(x \)

- Non-Structured Prediction: outputs \(y \) are atomic
 - Binary classification: \(y \in \{-1, +1\} \)
 - Multiclass classification: \(y \in \{1, 2, \ldots, L\} \)

- Structured Prediction: outputs \(y \) are structured
 - Sequence prediction: \(y \) are sequences
 - Parsing: \(y \) are trees
 - \ldots
Named Entity Recognition

y PER - QNT - - ORG ORG - TIME
x Jim bought 300 shares of Acme Corp. in 2006
Named Entity Recognition

\[
\begin{align*}
y & \quad \text{PER} \quad - \quad \text{QNT} \quad - \quad - \quad \text{ORG} \quad \text{ORG} \quad - \quad \text{TIME} \\
x & \quad \text{Jim} \quad \text{bought} \quad 300 \quad \text{shares} \quad \text{of} \quad \text{Acme Corp.} \quad \text{in} \quad 2006
\end{align*}
\]

\[
\begin{align*}
y & \quad \text{PER} \quad \text{PER} \quad - \quad - \quad \text{LOC} \\
x & \quad \text{Jack} \quad \text{London} \quad \text{went} \quad \text{to} \quad \text{Paris}
\end{align*}
\]

\[
\begin{align*}
y & \quad \text{PER} \quad \text{PER} \quad - \quad - \quad \text{LOC} \\
x & \quad \text{Paris} \quad \text{Jackson} \quad \text{went} \quad \text{to} \quad \text{London}
\end{align*}
\]

\[
\begin{align*}
y & \quad \text{PER} \quad - \quad - \quad \text{LOC} \\
x & \quad \text{Jackie} \quad \text{went} \quad \text{to} \quad \text{Lisdon}
\end{align*}
\]
Part-of-speech Tagging

\[
y \quad \text{NOUN} \quad \text{NOUN} \quad \text{VERB} \quad \text{NOUN} \quad .
\]

\[
x \quad \text{Fruit} \quad \text{flies} \quad \text{like} \quad \text{bananas} \quad .
\]
Syntactic Dependency Parsing

x are sentences
y are syntactic dependency trees
Machine Translation

\[
\begin{align*}
x & \quad \text{are sentences in some source language (e.g. French)} \\
y & \quad \text{are sentence translations in a target language (e.g. English)}
\end{align*}
\]
Object Detection

\(x \) are images

\(y \) are grids labeled with object types

(Kumar and Hebert, 2003)
Object Detection

\(x \) are images

\(y \) are grids labeled with object types

(Kumar and Hebert, 2003)
Today’s Goals

▶ Introduce basic concepts for structured prediction
 ▶ We will focus on sequence prediction

▶ What can we can borrow from standard classification?
 ▶ Learning paradigms and algorithms, in essence, work here too
 ▶ However, computations behind algorithms are prohibitive

▶ Today’s main topics:
 ▶ Transition systems versus factored models
 ▶ Feature representations of structured input-output pairs
 ▶ Prediction algorithms
 ▶ Learning algorithms: Perceptron and CRF
 ▶ Local and global learning losses

▶ Topics not covered:
 ▶ NLP task overviews, evaluation, state-of-the-art systems
 ▶ Hidden (structured) representations
 ▶ Unsupervised learning (induction of labeled sequences and trees)
Outline

Part I
 Introduction
 Four Approaches to Sequence Prediction
 Greedy Sequence Prediction

Part II
 Factored Sequence Prediction
 Algorithms for Factored Models
 Log-linear Factored Models

Part III
 Structured Perceptron
 Log-linear Models and CRFs
 Dependency Parsing
 Summary and Conclusion
Sequence Prediction

y PER PER - - LOC
x Jack London went to Paris
Sequence Prediction

- $x = x_1 x_2 \ldots x_n$ are input sequences, $x_i \in \mathcal{X}$
- $y = y_1 y_2 \ldots y_n$ are output sequences, $y_i \in \{1, \ldots, L\}$

Goal: given training data

$$\{ (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(m)}, y^{(m)}) \}$$

learn a predictor $x \rightarrow y$ that *works well* on unseen inputs x

- What is the form of our prediction model?
Exponentially-many Solutions

- Let $\mathcal{Y} = \{-, \text{PER}, \text{LOC}\}$

- The solution space (all output sequences):

<table>
<thead>
<tr>
<th>Jack</th>
<th>London</th>
<th>went</th>
<th>to</th>
<th>Paris</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PER</td>
<td>PER</td>
<td>PER</td>
<td>PER</td>
<td>PER</td>
</tr>
<tr>
<td>LOC</td>
<td>LOC</td>
<td>LOC</td>
<td>LOC</td>
<td>LOC</td>
</tr>
</tbody>
</table>

- Each path is a possible solution

- For an input sequence of size n, there are $|\mathcal{Y}|^n$ possible outputs
Exponentially-many Solutions

- Let $\mathcal{Y} = \{-, \text{PER}, \text{LOC}\}$

- The solution space (all output sequences):

 Each path is a possible solution

- For an input sequence of size n, there are $|\mathcal{Y}|^n$ possible outputs
Approach 1: Label Classifiers

- Scoring of individual labels at each position
 \[
 \hat{y}_t = \arg\max_{l \in \{\text{LOC, PER, -}\}} \text{score}(x, t, l)
 \]

- For linear models, \(\text{score}(x, t, l) = w \cdot f(x, t, l)\)
 - \(f(x, t, l) \in \mathbb{R}^d\) represents an assignment of label \(l\) for \(x_t\)
 - \(w \in \mathbb{R}^d\) is a vector of parameters (learned), has a weight for each feature in \(f\)

- Can capture interactions between full input \(x\) and one output label \(l\)
 e.g.: current word, surrounding words, capitalization, prefix-suffix, gazetteer, ...

- Can not capture interactions between output labels!
Approach 2: Transition-based Sequence Prediction

▶ Score one label at a time, left-to-right, conditioning on previous predictions:

\[\hat{y}_t = \arg\max_{l \in \{\text{LOC, PER, -}\}} \text{score}(x, t, l, \hat{y}_{1:t-1}) \]

▶ Captures interactions between full input \(x \) and prefixes of the output sequence
▶ Greedy predictions, prone to search errors even with beam search
▶ Why left-to-right and not right-to-left?
Approach 3: Factored Sequence Prediction

- Scoring of label bigrams (pairs of adjacent labels) at each position:

\[\hat{y} = \arg\max_{y \in \mathcal{Y}^n} \text{score}(x, y) = \arg\max_{y \in \mathcal{Y}^n} \sum_{i=1}^{n} \text{score}(x, i, y_{i-1}, y_i) \]

- Output sequence factored into label bigrams
- Captures interactions between full input x and factors of output sequence
- Prediction is exact for many types of factorizations
Approach 4: Re-Ranking

\[\hat{y} = \arg\max_{y \in A(\mathcal{Y}_n)} \text{score}(x, y) \]

- Scoring of full inputs and outputs: very expressive!
- Relies on an active set \(A(\mathcal{Y}_n) \) of full outputs, enumerated exhaustively
- A base model is used to select active set
 - The base model follows one of the previous approaches
Sequence Prediction: Summary of Approaches

<table>
<thead>
<tr>
<th>Approach</th>
<th>Input-Output Representation</th>
<th>Exact Prediction?</th>
</tr>
</thead>
<tbody>
<tr>
<td>label classifiers</td>
<td>only individual labels</td>
<td>yes</td>
</tr>
<tr>
<td>transition-based</td>
<td>full history of decisions</td>
<td>no (greedy, beam search)</td>
</tr>
<tr>
<td>factored</td>
<td>label factors</td>
<td>yes</td>
</tr>
<tr>
<td>re-ranking</td>
<td>full</td>
<td>limited to active set</td>
</tr>
</tbody>
</table>

Take home message 1: expressivity-tractability trade-off

Take home message 2: always pick the simplest approach that suits the task at hand
Sequence Prediction: Summary of Approaches

<table>
<thead>
<tr>
<th>Approach</th>
<th>Input-output representation</th>
<th>Exact Prediction?</th>
</tr>
</thead>
<tbody>
<tr>
<td>label classifiers</td>
<td>only individual labels</td>
<td>yes</td>
</tr>
<tr>
<td>transition-based</td>
<td>full history of decisions</td>
<td>no (greedy, beam search)</td>
</tr>
<tr>
<td>factored</td>
<td>label factors</td>
<td>yes</td>
</tr>
<tr>
<td>re-ranking</td>
<td>full</td>
<td>limited to active set</td>
</tr>
</tbody>
</table>

Take home message 1: expressivity-tractability trade-off
Take home message 2: always pick the simplest approach that suits the task at hand
Outline

Part I
 Introduction
 Four Approaches to Sequence Prediction
 Greedy Sequence Prediction

Part II
 Factored Sequence Prediction
 Algorithms for Factored Models
 Log-linear Factored Models

Part III
 Structured Perceptron
 Log-linear Models and CRFs
 Dependency Parsing
 Summary and Conclusion
Greedy Sequence Prediction

- Run a greedy classifier left-to-right:
 - For $t = 1 \ldots n$:
 $$\hat{y}_t = \arg\max_{l \in \{\text{loc, per, -}\}} \text{score}(x, t, l, \hat{y}_{1:t-1})$$

- What is the form of $\text{score}(x, t, l, \hat{y}_{1:t-1})$?
 - We focus on linear scoring functions: $\text{score}(x, t, l, \hat{y}_{1:t-1}) = w \cdot f(x, t, l, \hat{y}_{1:t-1})$
Representations in Greedy Sequence Prediction

- In linear greedy sequence prediction, at time t
 \[
 \text{score}(x, t, l, \hat{y}_{1:t-1}) = w \cdot f(x, t, l, \hat{y}_{1:t-1})
 \]

- $w \in \mathbb{R}^d$ is a parameter vector, to be learned
- $f(x, t, l, \hat{y}_{1:t-1}) \in \mathbb{R}^d$ is a feature vector
- Goal: guess the correct l at position t
- How to construct $f(x, t, l, \hat{y}_{1:t-1})$?
 - New trend: representation learning
 - Old school: manually with feature templates
In linear greedy sequence prediction, at time t

$$\text{score}(x, t, l, \hat{y}_{1:t-1}) = w \cdot f(x, t, l, \hat{y}_{1:t-1})$$

- $w \in \mathbb{R}^d$ is a parameter vector, to be learned
- $f(x, t, l, \hat{y}_{1:t-1}) \in \mathbb{R}^d$ is a feature vector
- Goal: guess the correct l at position t
- How to construct $f(x, t, l, \hat{y}_{1:t-1})$?
 - New trend: representation learning
 - Old school: manually with feature templates
Indicator Features for One Label Only

- \(f(x, t, l) \) is a vector of \(d \) features representing label \(l \) for \(x_t \)
- What’s in a feature \(f_j(x, t, l) \)?
 - Anything we can compute using \(x \) and \(t \) and \(l \)
 - Anything that indicates whether \(l \) is (not) a good label for \(x_t \)
- **Indicator features**: binary-valued features looking at:
 - a simple pattern of \(x \) and target position \(t \)
 - and the candidate label \(l \) for position \(t \)

\[
f_j(x, t, l) = \begin{cases}
1 & \text{if } x_t = \text{London and } l = \text{LOC} \\
0 & \text{otherwise}
\end{cases}
\]

\[
f_k(x, t, l) = \begin{cases}
1 & \text{if } x_{t+1} = \text{went and } l = \text{LOC} \\
0 & \text{otherwise}
\end{cases}
\]

- Indicator features produce **sparse** feature vectors
Feature Templates

- Feature templates generate many indicator features.
- A feature template is identified by a type, and a number of values.
 - Example: template \(\text{WORD} \) indicates the current word
 \[
 f_{\langle \text{WORD},a,w \rangle}(x,t,l) = \begin{cases}
 1 & \text{if } x_t = w \text{ and } l = a \\
 0 & \text{otherwise}
 \end{cases}
 \]
 - A feature of this type is identified by the tuple \(\langle \text{WORD}, a, w \rangle \).
 - Generates a feature for every label \(a \in Y \) and every word \(w \).
- Feature vectors and weight vectors are indexed by feature tuples.
Feature Templates

- Feature templates generate many indicator features
- A feature template is identified by a type, and a number of values
 - Example: template `WORD` indicates the current word
 \[
 f_{\langle \text{WORD},a,w \rangle}(x,t,l) = \begin{cases}
 1 & \text{if } x_t = w \text{ and } l = a \\
 0 & \text{otherwise}
 \end{cases}
 \]
 - A feature of this type is identified by the tuple \(\langle \text{WORD}, a, w \rangle \)
 - Generates a feature for every label \(a \in \mathcal{Y} \) and every word \(w \)
- Feature vectors and weight vectors are indexed by feature tuples
- In feature-based models:
 - Define feature templates manually
 - Instantiate the templates on every set of values in the training data
 \(\rightarrow \) generates a very high-dimensional feature space
 - Define parameter vector \(w \) indexed by such feature tuples
 - Let the learning algorithm choose the relevant features
More Features for NE Recognition

Jack London went to Paris

In practice, construct $f(x, t, l)$ by . . .

- Define a number of simple patterns of x and t
 - current word x_t
 - is x_t capitalized?
 - x_t has digits?
 - prefixes/suffixes of size 1, 2, 3, . . .
 - is x_t a known location?
 - is x_t a known person?
 - next word
 - previous word
 - current and next words together
 - other combinations

- Define feature templates by combining patterns with labels l
- Generate actual features by instantiating templates on training data
Feature Templates in Greedy Sequence Prediction

\[
y \text{ PER} \quad \text{PER} \quad - \\
x \quad \text{Jack London} \quad \text{went to Paris}
\]

- \(f(x, t, l, \hat{y}_{1:t-1}) \) has access to all preceding labels
- Example: A template for word + current label + previous label:

\[
f_{(WB, a, b, w)}(x, t, l, \hat{y}_{1:t-1}) = \begin{cases}
1 & \text{if } x_t = w \text{ and } \\
& \hat{y}_{t-1} = a \text{ and } l = b \\
0 & \text{otherwise}
\end{cases}
\]

- In practice:
 - Preceding labels next to \(t \)
 - Bag-of-labels in \(\hat{y}_{1:t-1} \)
 - Combinations with other features
- Neural networks automatically induce “good” features out of \(x \) and \(\hat{y}_{1:t-1} \)
Transition Systems (general form)

- Given an input x, a transition system defines:
 - A set of states $S(x)$
 - An initial state $s_0 \in S(x)$, and a set of final states $S_\infty \subseteq S(x)$
 - A set of allowed actions $A(s, x)$ for all $s \in S(x)$
 - A transition function $\text{transition} : s \times a \to s'$
 - A scoring function: $\text{score} : x \times s \times a \to \mathbb{R}$

- To predict output y from input x:
 - $s = s_0$
 - while $s \not\in S_\infty$:
 - $a = \arg\max_{a \in A(s, x)} \text{score}(x, s, a)$
 - $s = \text{transition}(s, a)$
 - extract y from s

- Simple, very fast and expressive! Very popular in NLP:
 - Greedy sequence prediction (one label at a time, left-to-right or right-to-left)
 - Shift-reduce parsing (more later)
 - Word segmentation, machine translation, ...
Greedy Predictions are not Optimal, even with Beam Search

- Greedy sequence predictions can not undo decisions at a later stage
- Sometimes the model is right at a global scope, but not at each greedy step!
- Solution: Beam Search
 - General *local search* method
 - Maintains several good hypotheses, instead of just the best one
 - Many strategies, sometimes specific to the task and transition system
 - Empirically, it often improves over greedy search
Greedy Predictions are not Optimal, even with Beam Search

- Greedy sequence predictions can not undo decisions at a later stage
- Sometimes the model is right at a global scope, but not at each greedy step!
- Solution: Beam Search
 - General *local search* method
 - Maintains several good hypotheses, instead of just the best one
 - Many strategies, sometimes specific to the task and transition system
 - Empirically, it often improves over greedy search
Outline

Part I
 Introduction
 Four Approaches to Sequence Prediction
 Greedy Sequence Prediction

Part II
 Factored Sequence Prediction
 Algorithms for Factored Models
 Log-linear Factored Models

Part III
 Structured Perceptron
 Log-linear Models and CRFs
 Dependency Parsing
 Summary and Conclusion
Factored Sequence Predictors

\[\hat{y} = \arg \max_{y \in \mathcal{Y}^n} \sum_{i=1}^{n} \text{score}(x, i, y_{i-1}, y_i) \]

Next questions:

- What is the form of \(\text{score}(x, i, a, b) \)?
 We will use linear scoring functions: \(\text{score}(x, i, a, b) = w \cdot f(x, i, a, b) \)

- There are exponentially-many sequences \(y \) for a given \(x \), how do we solve the \(\arg \max \) problem?
Representations Factored at Bigrams

\[\textbf{y}: \quad \text{PER} \quad \text{PER} \quad - \quad - \quad \text{LOC} \]
\[\textbf{x}: \quad \text{Jack} \quad \text{London} \quad \text{went} \quad \text{to} \quad \text{Paris} \]

1. \(\text{score}(\textbf{x}, i, a, b) = \mathbf{w} \cdot \mathbf{f}(\textbf{x}, i, a, b) \)

2. \(\mathbf{f}(\textbf{x}, i, y_{i-1}, y_i) \)
 - A \(d \)-dimensional feature vector of a label bigram at \(i \)
 - Each dimension is typically a boolean indicator (0 or 1)

3. \(\mathbf{f}(\textbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}(\textbf{x}, i, y_{i-1}, y_i) \)
 - A \(d \)-dimensional feature vector of the entire \(\mathbf{y} \)
 - Aggregated representation by summing bigram feature vectors
 - Each dimension is now a count of a feature pattern
Representations Factored at Bigrams

\[
\begin{align*}
&\mathbf{y}: \text{PER} \quad \text{PER} \quad - \quad - \quad \text{LOC} \\
&\mathbf{x}: \text{Jack} \quad \text{London} \quad \text{went} \quad \text{to} \quad \text{Paris}
\end{align*}
\]

- \(\text{score}(\mathbf{x}, i, a, b) = \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, a, b)\)
- \(\mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)\)
 - A \(d\)-dimensional feature vector of a label bigram at \(i\)
 - Each dimension is typically a boolean indicator (0 or 1)

- \(\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)\)
 - A \(d\)-dimensional feature vector of the entire \(\mathbf{y}\)
 - Aggregated representation by summing bigram feature vectors
 - Each dimension is now a count of a feature pattern
Linear Factored Sequence Prediction

argmax \quad \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) \quad \text{where} \quad \mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_{i})

- Note the linearity of the expression:

\[
\text{score}(\mathbf{x}, \mathbf{y}) = \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) \\
= \mathbf{w} \cdot \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_{i}) \\
= \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_{i}) \\
= \sum_{i=1}^{n} \text{score}(\mathbf{x}, i, y_{i-1}, y_{i})
\]
Assume we have a score function \(\text{score}(x, i, a, b)\)

Given \(x_{1:n}\) find:

\[
\arg\max_{y \in \mathcal{Y}^n} \sum_{i=1}^{n} \text{score}(x, i, y_{i-1}, y_i)
\]

Use the Viterbi algorithm, takes \(O(n|\mathcal{Y}|^2)\)

Notational change: since \(x_{1:n}\) is fixed we will use

\[s(i, a, b) = \text{score}(x, i, a, b)\]
Outline

Part I
 Introduction
 Four Approaches to Sequence Prediction
 Greedy Sequence Prediction

Part II
 Factored Sequence Prediction
 Algorithms for Factored Models
 Log-linear Factored Models

Part III
 Structured Perceptron
 Log-linear Models and CRFs
 Dependency Parsing
 Summary and Conclusion
Viterbi for Factored Sequence Models

- Given scores $s(i, a, b)$ for each position i and output bigram a, b, find:

$$\arg\max_{y \in \mathcal{Y}^n} \sum_{i=1}^{n} s(i, y_{i-1}, y_i)$$

- Intuition: consider this example x and two alternative solutions y and y':

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Jack</td>
<td>London</td>
<td>went</td>
<td>to</td>
<td>Paris</td>
<td>before</td>
<td>visiting</td>
<td>Lisbon</td>
</tr>
<tr>
<td>y</td>
<td>PER</td>
<td>LOC</td>
<td>-</td>
<td>-</td>
<td>LOC</td>
<td>-</td>
<td>-</td>
<td>LOC</td>
</tr>
<tr>
<td>y'</td>
<td>PER</td>
<td>PER</td>
<td>-</td>
<td>-</td>
<td>LOC</td>
<td>-</td>
<td>-</td>
<td>LOC</td>
</tr>
</tbody>
</table>

- What is the score of y' relative to the score of y?

$$s(x, y') = s(x, y) + \quad -$$

$$+ \quad -$$
Viterbi for Factored Sequence Models

- Given scores $s(i, a, b)$ for each position i and output bigram a, b, find:

$$\arg\max_{y \in \mathcal{Y}^n} \sum_{i=1}^{n} s(i, y_{i-1}, y_i)$$

- Intuition: consider this example x and two alternative solutions y and y':

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Jack</td>
<td>London</td>
<td>went</td>
<td>to</td>
<td>Paris</td>
<td>before</td>
<td>visiting</td>
<td>Lisbon</td>
</tr>
<tr>
<td>y</td>
<td>PER</td>
<td>LOC</td>
<td>-</td>
<td>-</td>
<td>LOC</td>
<td>-</td>
<td>-</td>
<td>LOC</td>
</tr>
<tr>
<td>y'</td>
<td>PER</td>
<td>PER</td>
<td>-</td>
<td>-</td>
<td>LOC</td>
<td>-</td>
<td>-</td>
<td>LOC</td>
</tr>
</tbody>
</table>

- What is the score of y' relative to the score of y?

$$s(x, y') = s(x, y) + s(2, \text{PER, PER}) - s(2, \text{PER, LOC}) + s(3, \text{PER, -}) - s(3, \text{LOC, -})$$

output sequences that share bigrams also share their scores
Viterbi recurrence

- Viterbi is a dynamic programming algorithm that uses the following recurrence

- Assume that, for a certain position i and each label $l \in \mathcal{Y}$, we have the best sub-sequence from positions 1 to i ending with label l:

 $1 \quad \cdots \quad i \quad i + 1$

 best subsequence with $y_i = \text{PER}$

 best subsequence with $y_i = \text{LOC}$

 best subsequence with $y_i = -$

- What is the best sequence up to position $i + 1$ with $y_{i+1} = \text{LOC}$?
Viterbi recurrence

- Viterbi is a dynamic programming algorithm that uses the following recurrence
- Assume that, for a certain position i and each label $l \in \mathcal{Y}$, we have the best sub-sequence from positions 1 to i ending with label l:

$$
\begin{array}{cccc}
1 & \cdots & i & i+1 \\
\hline \\
\text{best subsequence with } y_i = \text{PER} \\
\text{best subsequence with } y_i = \text{LOC} \\
\text{best subsequence with } y_i = - \\
\end{array}
$$

- What is the best sequence up to position $i + 1$ with $y_{i+1} = \text{LOC}$?
Viterbi recurrence

- Viterbi is a dynamic programming algorithm that uses the following recurrence
- Assume that, for a certain position i and each label $l \in \mathcal{Y}$, we have the best sub-sequence from positions 1 to i ending with label l:

$$
\begin{align*}
1 & \cdots & i & i+1 \\
\text{best subsequence with } y_i = \text{PER} & & s(i+1, \text{PER, LOC}) \\
\text{best subsequence with } y_i = \text{LOC} & & s(i+1, \text{LOC, LOC}) \\
\text{best subsequence with } y_i = - & & s(i+1, -, \text{LOC})
\end{align*}
$$

- What is the best sequence up to position $i+1$ with $y_{i+1} = \text{LOC}$?
Viterbi for Factored Sequence Models

\[\hat{y} = \arg\max_{y \in \mathcal{Y}^n} \sum_{i=1}^n s(i, y_{i-1}, y_i) \]

▶ **Definition:** score of optimal sequence for \(x_{1:i}\) ending with \(a \in \mathcal{Y}\)

\[\delta(i, a) = \max_{y \in \mathcal{Y}^i : y_i = a} \sum_{j=1}^i s(j, y_{j-1}, y_j) \]

▶ Use the following recursions, for all \(a \in \mathcal{Y}\), for \(i = 2 \ldots n\):

\[\delta(1, a) = s(1, y_0 = \text{NULL}, a) \]
\[\delta(i, a) = \max_{b \in \mathcal{Y}} \delta(i - 1, b) + s(i, b, a) \]

▶ The optimal score for \(x\) is \(\max_{a \in \mathcal{Y}} \delta(n, a)\)

▶ The optimal sequence \(\hat{y}\) can be recovered through *back-pointers*

▶ Cost: \(O(n |\mathcal{Y}|^2)\)
Viterbi for Factored Sequence Models

\[
\hat{y} = \arg\max_{y \in \mathcal{Y}^n} \sum_{i=1}^{n} s(i, y_{i-1}, y_i)
\]

Definition: score of optimal sequence for \(x_{1:i} \) ending with \(a \in \mathcal{Y} \)

\[
\delta(i, a) = \max_{y \in \mathcal{Y}^{i-1}: y_i = a} \sum_{j=1}^{i} s(j, y_{j-1}, y_j)
\]

Use the following recursions, for all \(a \in \mathcal{Y} \), for \(i = 2 \ldots n \):

\[
\begin{align*}
\delta(1, a) &= s(1, y_0 = \text{NULL}, a) \\
\delta(i, a) &= \max_{b \in \mathcal{Y}} \delta(i - 1, b) + s(i, b, a)
\end{align*}
\]

The optimal score for \(x \) is \(\max_{a \in \mathcal{Y}} \delta(n, a) \)

The optimal sequence \(\hat{y} \) can be recovered through back-pointers

Homework: rewrite the Viterbi equations such that the algorithm proceeds right-to-left. Observe that the factored model remains the same (i.e. it is not a directional model)
Variations of Viterbi

- **Sparse Viterbi**
 - Only a few labels in \mathcal{Y} apply to a position
 - Only a few label bigrams are possible
 - A sparse implementation cuts the $O(|\mathcal{Y}|^2)$ factor

- **Higher-order Viterbi**: factorize at trigrams instead of bigrams
 - Cost $O(n|\mathcal{Y}|^3)$
 - Very common in POS tagging (using sparse Viterbi to cut the $O(|\mathcal{Y}|^3)$ cost factor)

- **k-best Viterbi**: return the best k sequences (not just the single best)
 - Used in re-ranking approaches and some loss functions

- **Forward-Backward**: Viterbi for sum-product computations (instead of max-sum)
The Viterbi algorithm solves a max-sum recurrence

\[
\max_{\mathbf{y} \in Y^n} \sum_{i=1}^{n} s(i, y_{i-1}, y_i)
\]

The sum-product recurrence is also very useful (more later)

\[
\sum_{\mathbf{y} \in Y^n} \prod_{i=1}^{n} s(i, y_{i-1}, y_i)
\]

The same style of dynamic programming works
Forward Algorithm

\[\sum_{y \in \mathcal{Y}^n} \prod_{i=1}^{n} s(i, y_{i-1}, y_i) \]

Definition: forward quantities

\[\alpha(i, a) = \sum_{y_1: \in \mathcal{Y}^i: y_i = a} \prod_{j=1}^{i} s(j, y_{j-1}, y_j) \]

Use the following recursions, for all \(a \in \mathcal{Y}, \) for \(i = 2 \ldots n:\)

\[\alpha(i, a) = s(1, y_0 = \text{NULL}, a) \]

\[\alpha(i, a) = \sum_{b \in \mathcal{Y}} \alpha(i - 1, b) \ast s(i, b, a) \]

The total sum-product is \(\sum_a \alpha(n, a) \)

Like Viterbi, the forward algorithm runs in \(O(n|\mathcal{Y}|^2) \)
Backward Algorithm

\[\sum_{\mathbf{y} \in \mathcal{Y}^n} \prod_{i=1}^{n} s(i, y_{i-1}, y_i) \]

- **Definition:** backward quantities

\[\beta(i, a) = \sum_{\mathbf{y}_{i:n} \in \mathcal{Y}^{(n-i+1)}: y_i = a} \prod_{j=i+1}^{n} s(j, y_{j-1}, y_j) \]

- Now the recursions run **backwards**! For all \(a \in \mathcal{Y} \), for \(i = n - 1 \ldots 1 \):

\[
\begin{align*}
\beta(n, a) & = 1 \\
\beta(i, a) & = \sum_{b \in \mathcal{Y}} s(i, a, b) * \beta(i + 1, b)
\end{align*}
\]

- The total sum-product is \(\sum_{a} s(1, y_0 = \text{NULL}, a) * \beta(1, a) \)

- Like Viterbi and forward algorithms, the backward algorithm runs in \(O(n|\mathcal{Y}|^2) \)
Outline

Part I
 Introduction
 Four Approaches to Sequence Prediction
 Greedy Sequence Prediction

Part II
 Factored Sequence Prediction
 Algorithms for Factored Models
 Log-linear Factored Models

Part III
 Structured Perceptron
 Log-linear Models and CRFs
 Dependency Parsing
 Summary and Conclusion
Log-linear Models for Sequence Prediction

- Model the conditional distribution:

\[\Pr(y \mid x; w) = \frac{\exp \{w \cdot f(x, y)\}}{Z(x; w)} \]

where

- \(f(x, y) \) represents \(x \) and \(y \) with \(d \) features
- \(w \in \mathbb{R}^d \) are the parameters of the model
- \(Z(x; w) \) is a normalizer called the *partition function*

\[Z(x; w) = \sum_{z \in \mathcal{Y}^*} \exp \{w \cdot f(x, z)\} \]

- To predict the best sequence

\[\arg\max_{y \in \mathcal{Y}^n} \Pr(y \mid x) \]

\[42/83 \]
Let’s take the log of the conditional probability:

\[
\log \Pr(y \mid x; w) = \log \frac{\exp\{w \cdot f(x, y)\}}{Z(x; w)} = w \cdot f(x, y) - \log \sum_y \exp\{w \cdot f(x, y)\} = w \cdot f(x, y) - \log Z(x; w)
\]

Partition function: \(Z(x; w) = \sum_z \exp\{w \cdot f(x, z)\} \)

\(\log Z(x; w) \) is a constant for a fixed \(x \)

In the log space, computations are linear, i.e., we model log-probabilities using a linear predictor
Making Predictions with Log-Linear Models

- For tractability, assume $f(x, y)$ decomposes into bigrams:

$$f(x_{1:n}, y_{1:n}) = \sum_{i=1}^{n} f(x, i, y_{i-1}, y_i)$$

- Given w, given $x_{1:n}$, find:

$$\arg\max_{y_{1:n}} \Pr(y_{1:n} | x_{1:n}; w) = \frac{\exp \left\{ \sum_{i=1}^{n} w \cdot f(x, i, y_{i-1}, y_i) \right\}}{Z(x; w)}$$

$$= \max_{y} \exp \left\{ \sum_{i=1}^{n} w \cdot f(x, i, y_{i-1}, y_i) \right\}$$

$$= \max_{y} \sum_{i=1}^{n} w \cdot f(x, i, y_{i-1}, y_i)$$

- We can use the Viterbi algorithm
Making Predictions with Log-Linear Models

- For tractability, assume \(f(x, y) \) decomposes into bigrams:

\[
f(x_{1:n}, y_{1:n}) = \sum_{i=1}^{n} f(x, i, y_{i-1}, y_i)
\]

- Given \(w \), given \(x_{1:n} \), find:

\[
\arg\max_{y_{1:n}} \Pr(y_{1:n} | x_{1:n}; w) = \max_y \exp \left\{ \sum_{i=1}^{n} w \cdot f(x, i, y_{i-1}, y_i) \right\} \frac{1}{Z(x; w)}
\]

\[
= \max_y \exp \left\{ \sum_{i=1}^{n} w \cdot f(x, i, y_{i-1}, y_i) \right\}
\]

\[
= \max_y \sum_{i=1}^{n} w \cdot f(x, i, y_{i-1}, y_i)
\]

- We can use the Viterbi algorithm
Probability of an Output Sequence given an Input Sequence

- Given \(x \) and \(y \), compute \(\Pr(y \mid x; w) = \frac{\exp\{w \cdot f(x, y)\}}{Z(x; w)} \)

- To compute \(Z(x; w) \) we need to sum over \(Y^n \!

- But with some algebraic massaging: (let \(s(i, y_{i-1}, y_i) = w \cdot f(x, i, y_{i-1}, y_i) \))

\[
Z(x; w) = \sum_y \exp\{w \cdot f(x, y)\}
= \sum_y \exp \left\{ \sum_{i=1}^n s(i, y_{i-1}, y_i) \right\}
= \sum_y \prod_{i=1}^n \exp \{s(i, y_{i-1}, y_i)\}
\]

- \(Z(x; w) \) is a sum-product computation: forward algorithm (with exponentiated scores)!
 - \(Z(x; w) = \sum_a \alpha(n, a) \)
Marginal Probability of a Single Label

What’s the probability that token i has label a?

We need to compute the marginal distribution of y_i:

$$
\mu_i(a) = \Pr(y_i = a | x; w) = \sum_{y \in \mathcal{Y}^n : y_i = a} \Pr(y | x; w)
$$

(algebraic massaging)

$$
= \frac{\alpha(i, a) \ast \beta(i, a)}{Z(x; w)}
$$

Use forward-backward (using exponentiated scores)

Recall that $Z(x; w) = \sum_l \alpha(n, l)$
Marginal Probability of a Single Label

What's the probability that token i has label a?

We need to compute the marginal distribution of y_i:

$$
\mu_i(a) = \Pr(y_i = a|x; w) = \sum_{y \in Y^n: y_i = a} \Pr(y|x; w)
$$

= (algebraic massaging)

= $\alpha(i, a) \cdot \beta(i, a)$

= $\frac{\alpha(i, a) \cdot \beta(i, a)}{Z(x; w)}$

Use forward-backward (using exponentiated scores)

Recall that $Z(x; w) = \sum_l \alpha(n, l)$
Marginal Probability of a Label Bigram

What’s the probability that token $i - 1$ has label a and token i has label b?

We need to compute the marginal distribution of label bigrams at position i:

$$
\mu_i(a, b) = \Pr(y_{i-1} = a, y_i = b | x; w) = \sum_{y \in Y^n : y_{i-1} = a, y_i = b} \Pr(y | x; w)
$$

(algebraic massaging)

$$
= \alpha(i - 1, a) \exp \{ w \cdot f(x, i, a, b) \} \beta(i, b) / Z(x; w)
$$

Again forward-backward (using exponentiated scores)

Recall that $Z(x; w) = \sum_l \alpha(n, l)$
Marginal Probability of a Label Bigram

What’s the probability that token \(i - 1\) has label \(a\) and token \(i\) has label \(b\)?

We need to compute the marginal distribution of label bigrams at position \(i\):

\[
\mu_i(a, b) = \Pr(y_{i-1} = a, y_i = b | x; w) = \sum_{y \in Y^n: y_{i-1} = a, y_i = b} \Pr(y | x; w)
\]

\[
= \alpha(i - 1, a) * \exp\{w \cdot f(x, i, a, b)\} * \beta(i, b) / Z(x; w)
\]

Again forward-backward (using exponentiated scores)

Recall that \(Z(x; w) = \sum_l \alpha(n, l)\)
Linear Factored Sequence Prediction

$$\arg\max_{y \in Y^n} w \cdot f(x, y)$$

- Factored representation, e.g. based on bigrams

$$f(x, y) = \sum_{i=1}^{n} f(x, i, y_{i-1}, y_i)$$

- Flexible, arbitrary features of full x and the factors
- Efficient prediction using Viterbi
- In probabilistic models, efficient computation of marginals using Forward-Backward
- Next, learning w:
 - The Structured Perceptron
 - Probabilistic log-linear models:
 - Local learning, a.k.a. Maximum-Entropy Markov Models
 - Global learning, a.k.a. Conditional Random Fields
Outline

Part I
 Introduction
 Four Approaches to Sequence Prediction
 Greedy Sequence Prediction

Part II
 Factored Sequence Prediction
 Algorithms for Factored Models
 Log-linear Factored Models

Part III
 Structured Perceptron
 Log-linear Models and CRFs
 Dependency Parsing
 Summary and Conclusion
The Structured Perceptron
Collins (2002)

- Set $w = 0$
- For $t = 1 \ldots T$
 - For each training example (x, y)
 1. Compute $z = \text{argmax}_z \ w \cdot f(x, z)$
 2. If $z \neq y$

 $$w \leftarrow w + f(x, y) - f(x, z)$$

- Return w
The Structured Perceptron + Averaging
Freund and Schapire (1999); Collins (2002)

- Set \(w = 0, \ w^a = 0 \)
- For \(t = 1 \ldots T \)
 - For each training example \((x, y)\)
 1. Compute \(z = \text{argmax}_z w \cdot f(x, z) \)
 2. If \(z \neq y \)
 \[w \leftarrow w + f(x, y) - f(x, z) \]
 3. \(w^a = w^a + w \)
- Return \(w^a \)
Perceptron Updates: Example

Let y be the correct output for x.

Say we predict z instead, under our current w.

The update is:

$$g = f(x, y) - f(x, z)$$

$$= \sum_i f(x, i, y_{i-1}, y_i) - \sum_i f(x, i, z_{i-1}, z_i)$$

$$= f(x, 2, \text{PER, PER}) - f(x, 2, \text{PER, LOC})$$

$$+ f(x, 3, \text{PER, -}) - f(x, 3, \text{LOC, -})$$

Perceptron updates are typically very sparse.
Properties of the Perceptron

- Online algorithm. Often much more efficient than “batch” algorithms.
- If the data is separable, it will converge to parameter values with 0 errors.
- Number of errors before convergence is related to a definition of margin. Can also relate margin to generalization properties.
- In practice:
 1. Averaging improves performance a lot.
 2. Typically reaches a good solution after only a few (say 5) iterations over the training set.
 3. Often performs nearly as well as CRFs, or SVMs.
- Structured Perceptron and Beam Search:
 - Transition systems cannot recover the argmax solution.
 - Structured Perceptron can use beam search instead (i.e., an approximation to argmax).
 - See Collins and Roark (2004); Zhang and Clark (2011); Huang et al. (2012).
Averaged Perceptron Convergence

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90.79</td>
</tr>
<tr>
<td>2</td>
<td>91.20</td>
</tr>
<tr>
<td>3</td>
<td>91.32</td>
</tr>
<tr>
<td>4</td>
<td>91.47</td>
</tr>
<tr>
<td>5</td>
<td>91.58</td>
</tr>
<tr>
<td>6</td>
<td>91.78</td>
</tr>
<tr>
<td>7</td>
<td>91.76</td>
</tr>
<tr>
<td>8</td>
<td>91.82</td>
</tr>
<tr>
<td>9</td>
<td>91.88</td>
</tr>
<tr>
<td>10</td>
<td>91.91</td>
</tr>
<tr>
<td>11</td>
<td>91.92</td>
</tr>
<tr>
<td>12</td>
<td>91.96</td>
</tr>
</tbody>
</table>

...

Results on validation set for a parsing task with perceptron with beam search (Zhang and Clark, 2011)
Outline

Part I
 Introduction
 Four Approaches to Sequence Prediction
 Greedy Sequence Prediction

Part II
 Factored Sequence Prediction
 Algorithms for Factored Models
 Log-linear Factored Models

Part III
 Structured Perceptron
 Log-linear Models and CRFs
 Dependency Parsing
 Summary and Conclusion
Log-linear Models for Sequence Prediction

- Model the conditional distribution:

\[
Pr(y \mid x; w) = \frac{\exp \{ w \cdot f(x, y) \}}{Z(x; w)}
\]

where

- \(f(x, y) \) represents \(x \) and \(y \) with \(d \) features
- \(w \in \mathbb{R}^d \) are the parameters of the model
- \(Z(x; w) \) is a normalizer called the *partition function*

\[
Z(x; w) = \sum_{z \in \mathcal{Y}^*} \exp \{ w \cdot f(x, z) \}
\]

- To predict the best sequence

\[
\arg\max_{y \in \mathcal{Y}^n} Pr(y \mid x)
\]
Parameter Estimation in Log-Linear Models

\[
Pr(y \mid x; w) = \frac{\exp\{w \cdot f(x, y)\}}{Z(x; w)}
\]

- Given training data

\[
\left\{ (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(m)}, y^{(m)}) \right\},
\]

- How to estimate \(w \)?
 - Define the conditional log-likelihood (or cross-entropy) of the data:
 \[
 L(w) = \sum_{k=1}^{m} \log Pr(y^{(k)} \mid x^{(k)}; w)
 \]

- \(L(w) \) measures how well \(w \) explains the data. A good value for \(w \) will give a high value for \(Pr(y^{(k)} \mid x^{(k)}; w) \) for all \(k = 1 \ldots m \).
 - We want \(w \) that maximizes \(L(w) \).
Parameter Estimation in Log-Linear Models

\[Pr(y \mid x; w) = \frac{\exp\{w \cdot f(x, y)\}}{Z(x; w)} \]

- Given training data
 \[\left\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(m)}, y^{(m)})\right\}, \]

- How to estimate \(w \)?
 - Define the conditional log-likelihood (or cross-entropy) of the data:
 \[L(w) = \sum_{k=1}^{m} \log Pr(y^{(k)} \mid x^{(k)}; w) \]

- \(L(w) \) measures how well \(w \) explains the data. A good value for \(w \) will give a high value for \(Pr(y^{(k)} \mid x^{(k)}; w) \) for all \(k = 1 \ldots m \).
 - We want \(w \) that maximizes \(L(w) \)
Learning Log-Linear Models: Loss + Regularization

Solve:

\[w^* = \arg\min_{w \in \mathbb{R}^d} -L(w) + \frac{\lambda}{2} ||w||^2 \]

where

- The first term is the negative conditional log-likelihood
- The second term is a regularization term, it penalizes solutions with large norm
- \(\lambda \in \mathbb{R} \) controls the trade-off between loss and regularization

Convex optimization problem \(\rightarrow \) gradient descent

Two common losses based on log-likelihood that make learning tractable:

- Local Loss (MEMM): assume that \(\Pr(y | x; w) \) decomposes
- Global Loss (CRF): assume that \(f(x, y) \) decomposes
Learning Log-Linear Models: Loss + Regularization

- Solve:

\[
\mathbf{w}^* = \arg\min_{\mathbf{w} \in \mathbb{R}^d} -L(\mathbf{w}) + \frac{\lambda}{2} \|\mathbf{w}\|^2
\]

where

- The first term is the negative conditional log-likelihood
- The second term is a regularization term, it penalizes solutions with large norm
- \(\lambda \in \mathbb{R} \) controls the trade-off between loss and regularization

- Convex optimization problem \(\rightarrow \) gradient descent

- Two common losses based on log-likelihood that make learning tractable:
 - Local Loss (MEMM): assume that \(\Pr(y \mid x; \mathbf{w}) \) decomposes
 - Global Loss (CRF): assume that \(f(x, y) \) decomposes
Local Log-linear Loss (a.k.a. Maximum Entropy Markov Models)
McCallum, Freitag, and Pereira (2000)

If we apply the chain rule:

\[
\text{Pr}(y_{1:n} \mid x_{1:n}) = \text{Pr}(y_1 \mid x_{1:n}) \times \text{Pr}(y_{2:n} \mid x_{1:n}, y_1)
\]

\[
= \text{Pr}(y_1 \mid x_{1:n}) \times \prod_{i=2}^{n} \text{Pr}(y_i \mid x_{1:n}, y_{1:i-1})
\]

Markov assumption (the model becomes factored):

\[
\text{Pr}(y_i \mid x_{1:n}, y_{1:i-1}) = \text{Pr}(y_i \mid x_{1:n}, y_{i-1})
\]

Now we can write

\[
\text{Pr}(y_{1:n} \mid x_{1:n}) = \text{Pr}(y_1 \mid x_{1:n}) \times \prod_{i=2}^{n} \text{Pr}(y_i \mid x_{1:n}, y_{i-1})
\]
Parameter Estimation with Local Log-Linear Markov Models

\[
\Pr(y_{1:n} \mid x_{1:n}) = \Pr(y_1 \mid x_{1:n}) \times \prod_{i=2}^{n} \Pr(y_i \mid x_{1:n}, i, y_{i-1})
\]

- The log-linear model is normalized \textit{locally} (i.e. at each position):

\[
\Pr(y \mid x, i, y') = \frac{\exp \{ w \cdot f(x, i, y', y) \}}{Z(x, i, y')}
\]

- The log-likelihood is also \textit{local}:

\[
L(w) = \sum_{k=1}^{m} \sum_{i=1}^{n^{(k)}} \log \Pr(y_i^{(k)} \mid x_i^{(k)}, i, y_i^{(k)} - 1)
\]

\[
\frac{\partial L(w)}{\partial w_j} = \frac{1}{m} \sum_{k=1}^{m} \sum_{i=1}^{n^{(k)}} \left[\text{observed} \begin{array}{c}
\mathbf{f}_j(x_i^{(k)}, i, y_i^{(k)}, y_i^{(k)})
\end{array} - \text{expected} \begin{array}{c}
\sum_{y \in Y} \Pr(y \mid x_i^{(k)}, i, y_i^{(k)} - 1, y) \mathbf{f}_j(x_i^{(k)}, i, y_i^{(k)}, y)
\end{array} \right]
\]
Conditional Random Fields
Lafferty, McCallum, and Pereira (2001)

- Log-linear model of the conditional distribution:

\[
Pr(y|x; w) = \frac{\exp\{w \cdot f(x, y)\}}{Z(x)}
\]

where

- \(x\) and \(y\) are input and output sequences
- \(f(x, y)\) is a feature vector of \(x\) and \(y\) that decomposes into factors
- \(w\) are model parameters

- To predict the best sequence

\[
\hat{y} = \arg\max_{y \in Y^*} Pr(y|x)
\]

- Log-Likelihood at the global (sequence) level:

\[
L(w) = \sum_{k=1}^{m} \log Pr(y^{(k)}|x^{(k)}; w)
\]
Computing the Gradient in CRFs

Consider a parameter w_j and its associated feature f_j:

$$\frac{\partial L(w)}{\partial w_j} = \frac{1}{m} \sum_{k=1}^{m} \left[\begin{array}{c} \text{observed} \\ f_j(x^{(k)}, y^{(k)}) \\ \text{expected} \\ \sum_{y \in \mathcal{Y}^*} \Pr(y|x^{(k)}; w) f_j(x^{(k)}, y) \end{array} \right]$$

where

$$f_j(x, y) = \sum_{i=1}^{n} f_j(x, i, y_{i-1}, y_i)$$

- First term: observed value of f_j in training examples
- Second term: expected value of f_j under current w
 they require summing over all sequences $y \in \mathcal{Y}^n$
Computing the Gradient in CRFs

For an example \((x^{(k)}, y^{(k)})\):

\[
\sum_{y \in \mathcal{Y}^n} \Pr(y|x^{(k)}; w) \sum_{i=1}^{n} f_j(x^{(k)}, i, y_{i-1}, y_i) = \sum_{i=1}^{n} \sum_{a,b \in \mathcal{Y}} \mu^k_i(a,b) f_j(x^{(k)}, i, a, b)
\]

\(\mu^k_i(a,b)\) is the marginal probability of having labels \((a,b)\) at position \(i\):

\[
\mu^k_i(a,b) = \Pr(\langle i, a, b \rangle | x^{(k)}; w) = \sum_{y \in \mathcal{Y}^n : y_{i-1}=a, y_i=b} \Pr(y|x^{(k)}; w)
\]

The quantities \(\mu^k_i\) can be computed efficiently in \(O(nL^2)\) using the forward-backward algorithm.
CRFs: summary so far

- Log-linear models for sequence prediction, $\Pr(y|x; w)$
- Computations factorize on label bigrams
- Model form:

$$\arg\max_{y \in \mathcal{Y}} \sum_i w \cdot f(x, i, y_{i-1}, y_i)$$

- Prediction: uses Viterbi
- Parameter estimation:
 - Gradient-based methods, in practice L-BFGS or SGD
 - Computation of gradient uses forward-backward
CRFs: summary so far

- Log-linear models for sequence prediction, $\Pr(y|x; w)$
- Computations factorize on label bigrams
- Model form:
 $$\arg\max_{y \in Y^*} \sum_i w \cdot f(x, i, y_{i-1}, y_i)$$
- Prediction: uses Viterbi
- Parameter estimation:
 - Gradient-based methods, in practice L-BFGS or SGD
 - Computation of gradient uses forward-backward
- Next Question: Local or Global loss?
Local vs. Global Log-linear Losses

Local Loss: \(\text{Pr}(y \mid x) = \prod_{i=1}^{n} \frac{\exp \{ w \cdot f(x, i, y_{i-1}, y_i) \}}{Z(x, i, y_{i-1}; w)} \)

CRFs: \(\text{Pr}(y \mid x) = \frac{\exp \{ \sum_{i=1}^{n} w \cdot f(x, i, y_{i-1}, y_i) \}}{Z(x)} \)

- Both exploit the same factorization, i.e. same features
- Same computations to compute \(\text{argmax}_y \text{Pr}(y \mid x) \)
- Local loss is locally normalized; CRFs globally normalized
 - Local loss assumes that \(\text{Pr}(y_i \mid x_{1:n}, y_{1:i-1}) = \text{Pr}(y_i \mid x_{1:n}, y_{i-1}) \)
 - Leads to “Label Bias Problem” (Lafferty et al., 2001; Andor et al., 2016)
- Local loss is cheaper to train (reduces to multiclass MaxEnt learning)
- CRFs are easier to extend to other structures
Learning Structure Predictors: summary so far

▶ Linear models for sequence prediction

\[
\arg\max_{y \in Y^*} \sum_i w \cdot f(x, i, y_{i-1}, y_i)
\]

▶ Computations factorize on label bigrams
 ▶ Decoding: using Viterbi
 ▶ Marginals: using forward-backward

▶ Parameter estimation:
 ▶ Perceptron, Log-likelihood, SVMs
 ▶ Extensions from classification to the structured case
 ▶ Optimization methods:
 ▶ Stochastic (sub)gradient methods (LeCun et al., 1998; Shalev-Shwartz et al., 2011)
 ▶ Exponentiated Gradient (Collins et al., 2008)
 ▶ SVM Struct (Tsochantaridis et al., 2005)
 ▶ Structured MIRA (Crammer et al., 2005)
Outline

Part I
 Introduction
 Four Approaches to Sequence Prediction
 Greedy Sequence Prediction

Part II
 Factored Sequence Prediction
 Algorithms for Factored Models
 Log-linear Factored Models

Part III
 Structured Perceptron
 Log-linear Models and CRFs
 Dependency Parsing
 Summary and Conclusion
They solved the problem with statistics.
They solved the problem with statistics.
Theories of Syntactic Structure

Dependency Trees

- Main element: dependency
- Focus on relations between words

Constituent Trees

- Main element: constituents (or phrases, or bracketings)
- Constituents = abstract linguistic units
- Results in nested trees
Dependency Parsing: Arc-factored models

McDonald, Pereira, Ribarov, and Hajič (2005)

- Parse trees decompose into single dependencies $\langle h, m \rangle$

$$\text{argmax}_{y \in \mathcal{Y}(x)} \sum_{\langle h, m \rangle \in y} w \cdot f(x, h, m)$$

- Each arc or dependency (h, m) is scored independently of each other

- Some features:
 - $f_1(x, h, m) = ["saw" \rightarrow "movie"]$
 - $f_2(x, h, m) = [\text{distance} = +2]$

- Tractable inference algorithms exist
MST Parsing for Arc-factored models
McDonald, Pereira, Ribarov, and Hajič (2005)

- Parsing problem, given a sentence x:

$$\arg\max_{y \in Y(x)} \sum_{\langle h,m \rangle \in y} \text{score}(x, h, m)$$

- Can be formulated as a directed Maximum Spanning Tree (MST) problem:

- The Chu-Liu-Edmonds algorithm finds the optimal tree in $O(n^2)$
The Eisner (1996) algorithm is a variant of CKY specific to non-crossing dep trees

- Finds optimal tree in $O(n^3)$

Extension to higher-order parsing:

- First-order $O(n^3)$
- Second-order:
 - Horizontal $O(n^3)$ (McDonald and Pereira, 2006)
 - Vertical $O(n^4)$ (Carreras, 2007)
- Third-order $O(n^4)$ (Koo and Collins, 2010)
Transition-based Parsing: Nivre’s Arc-Standard System
Nivre (2008)

- **State:**
 - Buffer: list of upcoming words to be parsed
 - Stack: stack of subtrees that are already parsed

- **Parsing actions:**
 - Shift: shift next word in the buffer to the task
 - Left-arc (l): add a left arc between the two top subtrees of the stack, with label l
 - Right-arc (l): add a right arc between the two top subtrees of the stack, with label l

- Parsing is linear in the sentence length, very fast! But prone to greedy mistakes!
- Parsing model: score a candidate action in the context of a state
 - Has access to the full sentence and the full history of actions
Arc-Standard Parsing: Example

(illustration by Miguel Ballesteros)

Mark Watney visited Mars

<table>
<thead>
<tr>
<th>transition</th>
<th>Stack</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[]</td>
<td>[Mark, Watney, visited, Mars]</td>
</tr>
</tbody>
</table>

Mark Watney visited Mars
Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

```
transition | Stack   | Buffer                      
------------|---------|----------------------------
             | [ ]     | [Mark, Watney, visited, Mars]
SHIFT       | [Mark]  | [Watney, visited, Mars]
```

Mark Watney visited Mars
Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

Mark Watney visited Mars

<table>
<thead>
<tr>
<th>transition</th>
<th>Stack</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[]</td>
<td>[Mark, Watney, visited, Mars]</td>
</tr>
<tr>
<td>SHIFT</td>
<td>[Mark]</td>
<td>[Watney, visited, Mars]</td>
</tr>
<tr>
<td>SHIFT</td>
<td>[Mark, Watney]</td>
<td>[visited, Mars]</td>
</tr>
</tbody>
</table>

Mark Watney visited Mars
Arc-Standard Parsing: Example

(illustration by Miguel Ballesteros)

Transition	Stack	Buffer

SHIFT	[Mark]	[Mark, Watney, visited, Mars]
SHIFT	[Mark, Watney]	[Watney, visited, Mars]
LA(NAME)	[Watney]	[visited, Mars]

NAME
Mark Watney visited Mars
Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

Mark Watney visited Mars

<table>
<thead>
<tr>
<th>transition</th>
<th>Stack</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[]</td>
<td>[Mark, Watney, visited, Mars]</td>
</tr>
<tr>
<td>SHIFT</td>
<td>[Mark]</td>
<td>[Watney, visited, Mars]</td>
</tr>
<tr>
<td>SHIFT</td>
<td>[Mark, Watney]</td>
<td>[visited, Mars]</td>
</tr>
<tr>
<td>LA(NAME)</td>
<td>[Watney]</td>
<td>[visited, Mars]</td>
</tr>
<tr>
<td>SHIFT</td>
<td>[Watney, visited]</td>
<td>[Mars]</td>
</tr>
</tbody>
</table>

NAME
Mark Watney visited Mars
Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

transition	Stack	Buffer
SHIFT | [Mark] | [Mark, Watney, visited, Mars] |
SHIFT | [Mark, Watney] | [Watney, visited, Mars] |
LA(NAME) | [Watney] | [visited, Mars] |
SHIFT | [Watney, visited] | [Mars] |
LA(SUBJ) | [visited] | [Mars] |

Mark Watney visited Mars
Arc-Standard Parsing: Example
(illustration by Miguel Ballesteros)

Mark Watney visited Mars

<table>
<thead>
<tr>
<th>transition</th>
<th>Stack</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[]</td>
<td>[Mark, Watney, visited, Mars]</td>
</tr>
<tr>
<td>SHIFT</td>
<td>[Mark]</td>
<td>[Watney, visited, Mars]</td>
</tr>
<tr>
<td>SHIFT</td>
<td>[Mark, Watney]</td>
<td>[visited, Mars]</td>
</tr>
<tr>
<td>LA(NAME)</td>
<td>[Watney]</td>
<td>[visited, Mars]</td>
</tr>
<tr>
<td>SHIFT</td>
<td>[Watney, visited]</td>
<td>[Mars]</td>
</tr>
<tr>
<td>LA(SUBJ)</td>
<td>[visited]</td>
<td>[Mars]</td>
</tr>
<tr>
<td>SHIFT</td>
<td>[visited, Mars]</td>
<td>[]</td>
</tr>
</tbody>
</table>
Arc-Standard Parsing: Example

(illustration by Miguel Ballesteros)

<table>
<thead>
<tr>
<th>transition</th>
<th>Stack</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIFT</td>
<td>[Mark]</td>
<td>[Watney, visited, Mars]</td>
</tr>
<tr>
<td>SHIFT</td>
<td>[Mark, Watney]</td>
<td>[Watney, visited, Mars]</td>
</tr>
<tr>
<td>LA(NAME)</td>
<td>[Watney]</td>
<td>[visited, Mars]</td>
</tr>
<tr>
<td>SHIFT</td>
<td>[Watney, visited]</td>
<td>[visited, Mars]</td>
</tr>
<tr>
<td>LA(SUBJ)</td>
<td>[visited]</td>
<td>[Mars]</td>
</tr>
<tr>
<td>SHIFT</td>
<td>[visited, Mars]</td>
<td>[]</td>
</tr>
<tr>
<td>RA(OBJ)</td>
<td>[visited]</td>
<td>[]</td>
</tr>
</tbody>
</table>

Mark Watney visited Mars

[Diagram showing the parsing process with arrows labeled NAME, SBJ, and OBJ, and the sentence Mark Watney visited Mars highlighted.]
Outline

Part I
 Introduction
 Four Approaches to Sequence Prediction
 Greedy Sequence Prediction

Part II
 Factored Sequence Prediction
 Algorithms for Factored Models
 Log-linear Factored Models

Part III
 Structured Perceptron
 Log-linear Models and CRFs
 Dependency Parsing
 Summary and Conclusion
Linear (Structured) Prediction

▶ Multiclass classification

\[
\arg\max_{y \in \{1, \ldots, L\}} w \cdot f(x, y)
\]

▶ Sequence prediction (bigram factorization)

\[
\arg\max_{y \in \mathcal{Y}(x)} w \cdot f(x, y) = \arg\max_{y \in \mathcal{Y}(x)} \sum_i w \cdot f(x, i, y_{i-1}, y_i)
\]

▶ Dependency parsing (arc-factored)

\[
\arg\max_{y \in \mathcal{Y}(x)} w \cdot f(x, y) = \arg\max_{y \in \mathcal{Y}(x)} \sum_{\langle h, m, l \rangle \in y} w \cdot f(x, h, m, l)
\]

▶ Factored models: Applicable to other tasks and factorizations

▶ Alternative: transition systems (very fast and expressive, but prone to search errors)
Factored Sequence Prediction: from Linear to Non-linear

\[
\text{score}(x, y) = \sum_i s(x, i, y_{i-1}, y_i)
\]

- **Linear:**
 \[
s(x, i, y_{i-1}, y_i) = w \cdot f(x, i, y_{i-1}, y_i)
\]

- **Non-linear, using a feed-forward neural network:**
 \[
s(x, i, y_{i-1}, y_i) = w \cdot [e_{y_{i-1}, y_i} \otimes h(f(x, i))]\]
 where:
 \[
h(f(x, i)) = \sigma(W^2 \sigma(W^1 \sigma(W^0 f(x, i))))
\]

- **Remarks:**
 - The non-linear model computes a hidden representation of the input
 - Still factored: Viterbi and Forward-Backward work
 - Parameter estimation becomes non-convex, use backpropagation
Induction of hidden vectors (i.e. embeddings) that keep track of previous observations and predictions

Making predictions is not tractable
 ▶ In practice: greedy predictions or beam search
 ▶ Making predictions was not tractable for transition systems either!

Learning is non-convex, so what?

Popular methods: RNN, LSTM, Spectral Models, ...
Neural Architectures for Named Entity Recognition

Guillaume Lample* Miguel Ballesteros**
Sandeep Subramanian* Kazuya Kawakami* Chris Dyer*

<table>
<thead>
<tr>
<th>Model</th>
<th>F_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collobert et al. (2011)*</td>
<td>89.59</td>
</tr>
<tr>
<td>Lin and Wu (2009)</td>
<td>83.78</td>
</tr>
<tr>
<td>Lin and Wu (2009)*</td>
<td>90.90</td>
</tr>
<tr>
<td>Huang et al. (2015)*</td>
<td>90.10</td>
</tr>
<tr>
<td>Passos et al. (2014)</td>
<td>90.05</td>
</tr>
<tr>
<td>Passos et al. (2014)*</td>
<td>90.90</td>
</tr>
<tr>
<td>Luo et al. (2015)* + gaz</td>
<td>89.9</td>
</tr>
<tr>
<td>Luo et al. (2015)* + gaz + linking</td>
<td>91.2</td>
</tr>
<tr>
<td>Chiu and Nichols (2015)</td>
<td>90.69</td>
</tr>
<tr>
<td>Chiu and Nichols (2015)*</td>
<td>90.77</td>
</tr>
<tr>
<td>LSTM-CRF (no char)</td>
<td>90.20</td>
</tr>
<tr>
<td>LSTM-CRF</td>
<td>90.94</td>
</tr>
<tr>
<td>S-LSTM (no char)</td>
<td>87.96</td>
</tr>
<tr>
<td>S-LSTM</td>
<td>90.33</td>
</tr>
</tbody>
</table>

Table 1: English NER results (CoNLL-2003 test set).
End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF

Xuezhe Ma and Eduard Hovy

<table>
<thead>
<tr>
<th>Model</th>
<th>POS</th>
<th>NER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dev</td>
<td>Test</td>
</tr>
<tr>
<td></td>
<td>Acc</td>
<td>Recall</td>
</tr>
<tr>
<td></td>
<td>Prec</td>
<td></td>
</tr>
<tr>
<td>BRNN</td>
<td>96.56</td>
<td>92.04</td>
</tr>
<tr>
<td>BLSTM</td>
<td>96.88</td>
<td>92.31</td>
</tr>
<tr>
<td>BLSTM-CNN</td>
<td>97.34</td>
<td>92.52</td>
</tr>
<tr>
<td>BRNN-CNN-CRF</td>
<td>97.46</td>
<td>94.85</td>
</tr>
</tbody>
</table>

Table 3: Performance of our model on both the development and test sets of the two tasks, together with three baseline systems.

<table>
<thead>
<tr>
<th>Model</th>
<th>Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giménez and Márquez (2004)</td>
<td>97.16</td>
</tr>
<tr>
<td>Toutanova et al. (2003)</td>
<td>97.27</td>
</tr>
<tr>
<td>Manning (2011)</td>
<td>97.28</td>
</tr>
<tr>
<td>Collobert et al. (2011)†</td>
<td>97.29</td>
</tr>
<tr>
<td>Santos and Zadrozny (2014)†</td>
<td>97.32</td>
</tr>
<tr>
<td>Shen et al. (2007)</td>
<td>97.33</td>
</tr>
<tr>
<td>Sun (2014)</td>
<td>97.36</td>
</tr>
<tr>
<td>Søgaard (2011)</td>
<td>97.50</td>
</tr>
<tr>
<td>This paper</td>
<td>97.55</td>
</tr>
</tbody>
</table>

Table 4: POS tagging accuracy of our model on test data from WSJ proportion of PTB, together with prior work.

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chieu and Ng (2002)</td>
<td>88.31</td>
</tr>
<tr>
<td>Florian et al. (2003)</td>
<td>88.76</td>
</tr>
<tr>
<td>Ando and Zhang (2005)</td>
<td>89.31</td>
</tr>
<tr>
<td>Collobert et al. (2011)†</td>
<td>89.59</td>
</tr>
<tr>
<td>Huang et al. (2015)†</td>
<td>90.10</td>
</tr>
<tr>
<td>Chiu and Nichols (2015)†</td>
<td>90.77</td>
</tr>
<tr>
<td>Ratinov and Roth (2009)</td>
<td>90.80</td>
</tr>
<tr>
<td>Lin and Wu (2009)</td>
<td>90.90</td>
</tr>
<tr>
<td>Passos et al. (2014)</td>
<td>90.90</td>
</tr>
<tr>
<td>Lample et al. (2016)†</td>
<td>90.94</td>
</tr>
<tr>
<td>Luo et al. (2015)</td>
<td>91.20</td>
</tr>
<tr>
<td>This paper</td>
<td>91.21</td>
</tr>
</tbody>
</table>

Table 5: NER F1 score of our model on test data set from CoNLL-2003. For the purpose of com-
Thanks!
References

