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Building a benchmark suite for a new language
A growing discrepancy between language users and content availability

• https://en.wikipedia.org/wiki/Languages_used_on_the_Internet 


• Not too different when we look at the resource availability for NLP
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https://en.wikipedia.org/wiki/Languages_used_on_the_Internet


Building a benchmark suite for a new language
Translating existing corpora into a new language

• Machine translation has advanced greatly


• Automatically translate training instances


• Professional translation is pretty much perfect


• Manually translate validation/test instances


• XNLI [Conneau et al., 2018] is a representative example


• extends MNLI [Williams et al., 2017] into 15 languages by professional translation
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Building a benchmark suite for a new language
Translation may be enough

• Translating an original corpus into a new languages


• Advantages 

• Minimal discrepancy between the original and new corpora


• Instance-level comparison between two languages is possible


• The strength of the original corpus transfers to the new corpus
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Building a benchmark suite for a new language
Translation is not enough

• Translating an original corpus into a new languages


• Disadvantages 

• Cultural/social discrepancy between the original and target languages


• Translationese vs. natural language


• Wintner’s tutorial at COLING’16  
<Translationese: between human and machine translation>


• The weakness of the original corpus transfers to the new corpus
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https://coling2016.anlp.jp/doc/tutorial/slides/T5/Coling2016.pdf


Building a benchmark suite for a new language
Building it from scratch

• We can build a benchmark suite for a new language from scratch.


• Advantages 

• (Fairly) accurately reflects social/cultural norms of target-language speakers.


• Can use the best practices of data construction known so far.
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Building a benchmark suite for a new language
Building it from scratch

• We can build a benchmark suite for a new language from scratch.


• Advantages 

• (Fairly) accurately reflects social/cultural norms of target-language speakers.


• Can use the best practices of data construction known so far.


• Disadvantages 

• Capital intensive: purchasing source corpora, manual annotation, etc.


• Labor intensive: Manual annotation, manual quality control, etc.
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Building a benchmark suite for Korean
from scratch

• Korean 

• More than 75M (native) speakers


• Mostly in South Korea, North Korea and a part of China.


• Language isolate


• Koreanic - Korean


• Writing system


• Hangul 한글 
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Building a benchmark suite for Korean
from scratch

• Korean 

• More than 75M (native) speakers


• Language isolate


• Writing system: 한글


• No benchmark suite for evaluating Korean language understanding systems


• A few benchmark datasets scattered here and there.
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Building a benchmark suite for Korean
Korean Language Understanding Evaluation (KLUE)

• 30+ researchers from 12 organizations in Korea


• 11 sponsors 

• Financial sponsors


• Compute sponsors


• Data sponsors


• Led by Sungjoon Park and Jihyung Moon (both Upstage.AI)
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https://sungjoonpark.github.io/
https://inmoonlight.github.io/about/
https://www.upstage.ai/


Four principles
KLUE

• Accessibility


• KLUE must be openly usable by all, including academia and industry


• KLUE must facilitate future advances: must allow derivatives.


• Diversity 

• Accurate annotation 

• Safety
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Four principles
KLUE

• Accessibility


• Diversity 

• KLUE must cover diverse aspects of language understanding


• KLUE must cover diverse topics and styles


• Accurate annotation 

• Safety
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Four principles
KLUE

• Accessibility


• Diversity 

• Accurate annotation 

• KLUE must provide annotations that are accurate and unambiguous


• Safety
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Four principles
KLUE

• Accessibility


• Diversity 

• Accurate annotation 

• Safety 

• KLUE must proactively deal with social biases and toxic contents
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Let’s build KLUE
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Task selection
Classification

• Topic classification


• Semantic textual similarity


• Natural language inference


• Named entity recognition


• Relation extraction


• Dependency parsing


• Machine reading comprehension


• Dialogue state tracking

Single-sentence classification  
checks the ability of capturing the semantics of text
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Task selection
Classification

• Topic classification


• Semantic textual similarity


• Natural language inference


• Named entity recognition


• Relation extraction


• Dependency parsing


• Machine reading comprehension


• Dialogue state tracking

Multi-sentence classification 
checks the ability of capturing relationship among multiple sentences
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Task selection
Structured prediction

• Topic classification


• Semantic textual similarity


• Natural language inference


• Named entity recognition


• Relation extraction


• Dependency parsing


• Machine reading comprehension


• Dialogue state tracking

Tagging 
checks the ability of identifying important portions of text 
in the context of a target task or a given context
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Task selection
Structured prediction

• Topic classification


• Semantic textual similarity


• Natural language inference


• Named entity recognition


• Relation extraction


• Dependency parsing


• Machine reading comprehension


• Dialogue state tracking

Graph induction (advanced tagging) 
checks the ability of capturing the relationship among the words within text
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Task selection
Structured prediction

• Topic classification


• Semantic textual similarity


• Natural language inference


• Named entity recognition


• Relation extraction


• Dependency parsing


• Machine reading comprehension


• Dialogue state tracking

Slot filling (advanced tagging)  
checks the ability of capturing the relationship across multiple utterances 
in the context of information collection
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Task selection
Generation is left for the future

• Although generation is a key aspect of 
language understanding, there are a 
number of challenges:


• Evaluation: how do we properly 
evaluate the quality of generated text?


• Annotation: how do we collect a 
diverse set of text per instance to 
properly?


• We thus leave out generation for now.

• Topic classification


• Semantic textual similarity


• Natural language inference


• Named entity recognition


• Relation extraction


• Dependency parsing


• Machine reading comprehension


• Dialogue state tracking
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Task selection
Review: criteria

• Diversity 

• Diverse aspects of language understanding


• Diverse task formats


• Evaluation 

• (Somewhat) objective evaluation metrics exist


• Annotation 

• Unambiguous targets (often) exist

• Topic classification


• Semantic textual similarity


• Natural language inference


• Named entity recognition


• Relation extraction


• Dependency parsing


• Machine reading comprehension


• Dialogue state tracking
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Curating source corpora
Considerations

• For each potential source corpus, we consider


• License 

• Domain 

• Style: formal vs. colloquial, modern vs. not


• Ethical risks 

• Volume/Size

Let’s look at a few examples!
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Curating source corpora
News Headlines

• License: N/A, because these are only headlines 

• Domain: News 

• Style: formal, modern


• Ethical risks: low 

• Volume/Size: large


• INCLUDED!
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Curating source corpora
National Assembly Minutes

• License: public domain 

• Domain: politics 

• Style: colloquial, modern


• Ethical risks: medium 

• Volume/Size: large


• EXCLUDED!
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Curating source corpora
Wikipedia

• License: CC BY-SA 3.0 

• Domain: Wikipedia 

• Style: formal, modern


• Ethical risks: low 

• Volume/Size: large


• INCLUDED!
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Curating source corpora
Airbnb Reviews

• License: CC0 1.0 

• Domain: Review 

• Style: colloquial, modern


• Ethical risks: medium 

• Volume/Size: large


• INCLUDED!
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Curating source corpora
Naver Entertainment News Reviews

• License: CC BY-SA 4.0 

• Domain: Review 

• Style: colloquial, modern


• Ethical risks: High 

• Volume/Size: large


• EXCLUDED!
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Curating source corpora
The Korean Economic Daily News

• License: CC BY-SA 4.0 for KLUE based on a contract  

• Domain: News 

• Style: Formal, modern


• Ethical risks: Low 

• Volume/Size: large


• INCLUDED!
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• 10 source corpora 

• News Headlines


• Wikipedia


• Wikinews


• Wikitree


• Policy News


• ParaKQC


• Airbnb Reviews


• NSMC


• Acrofan News


• The Korea Economics  
Daily News
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All openly usable, available and modifiable!!



Cleaning the source corpora

• Noisy text 

• Remove hash tags, html tags, incorrect unicode characters, empty 
parentheses and consecutive blanks.


• Remove any sentences with more than 10 Chinese/Japanese characters.


• Templated parts from news articles are removed: copyright marks, etc.


• Toxic content


• Person identifying information (PII)
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Cleaning the source corpora

• Noisy text


• Toxic content 

• Automatic detection/removal of hate speech and gender bias


• Not perfect, and manual detection/removal in the annotation time


• Person identifying information (PII)
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Cleaning the source corpora

• Noisy text


• Toxic content


• Person identifying information (PII) 

• Regular expression based matching


• email addresses, URL and @-references


• Others are detected and removed manually in the annotation time.
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Task-specific considerations
Every task is unique

• Task format


• Annotation


• Cleaning


• Evaluation metrics


• Artifacts (spurious correlation)


• and, more task-specific considerations

34 Let’s look at a few sample tasks!



Topic classification
Source corpus: News headlines

• Task format 

• Input: a sequence of tokens (words, subwords, characters, etc.)


• Output: a single category to which the input belongs


• Annotation


• Cleaning


• Evaluation metrics


• Annotation artifacts
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Topic classification
Source corpus: News headlines

• Task format


• Annotation 

• We can’t rely on existing category tags


• clickbait categories, undeniable categories


• Three annotations per headline from 13 select crowdworkers based on pilot runs


• Keep only headlines that have a majority category (final: 63,892 headlines)


• Cleaning


• Evaluation metrics


• Annotation artifacts
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Topic classification
Source corpus: News headlines

• Task format


• Annotation


• Cleaning 

• Crowdworkers are asked to report problematic headlines


• 650 headlines with PII’s, 194 with toxic content


• 2,515 with no suitable categories


• Total 2,953 headlines are excluded


• Evaluation metrics


• Annotation artifacts
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Topic classification
Source corpus: News headlines

• Task format


• Annotation


• Cleaning


• Evaluation metrics 

• Macro F1 score: the average of the category-wise F1 scores.


• Annotation artifacts
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Semantic textual similarity
Source corpora: AIRBNB, POLICY, PARAKQC

• Task format 

• Input: a sentence pair


• Output: either [0, 5] or {0 (dissimilar), 1 (similar)}


• Instance sampling


• Annotation


• Cleaning & Annotation Artifact


• Evaluation metrics
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Semantic textual similarity
Source corpora: AIRBNB, POLICY, PARAKQC

• Task format


• Instance sampling 

• Random sampling of a pair of sentences: almost always relevant sentences


• PARAKQC: we use metadata (intent and topic) to sample sentence pairs


• AIRBNB & POLICY: round-trip translation, ROUGE-based greedy matching, etc.


• Annotation


• Cleaning & Annotation Artifact


• Evaluation metrics
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Semantic textual similarity
Source corpora: AIRBNB, POLICY, PARAKQC

• Task format


• Instance sampling


• Annotation 

• Started from SemEval-2015 but had to modify to fit Korean: [0, 5]


• 19 select crowd workers for 14,869 sentence pairs


• 2 annotators were excluded based on their score correlation against the other annotators.


• at least 5 workers for each sentence pair: averaged and rounded to the first decimal point.


• Cleaning & Annotation Artifact 


• Evaluation metrics
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Semantic textual similarity
Source corpora: AIRBNB, POLICY, PARAKQC

• Task format


• Instance sampling


• Annotation


• Cleaning & Annotation Artifact  

• Crowd workers were asked to report any incorrect RTT: 418 pairs removed


• Still skewed toward 0 and largely bimodal (peaks at 0 and 4)


• Dev & test sets were constructed to be (largely) uniform over the score


• Evaluation metrics
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Semantic textual similarity
Source corpora: AIRBNB, POLICY, PARAKQC

• Task format


• Instance sampling


• Annotation


• Cleaning & Annotation Artifact 


• Evaluation metrics 

• Pearson’s correlation coefficient with continuous score


• F1 score after binarizing the score (since the scores are largely bimodal)
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Natural language inference
Source corpora: WIKITREE, POLICY, WIKINEWS, WIKIPEDIA, NSMC, AIRBNB

• Task format 

• Input: a sentence pair (premise, hypothesis)


• Output: one of three categories {entailment, contradiction, neutral}


• Annotation


• Annotation Artifact 

44



Natural language inference
Source corpora: WIKITREE, POLICY, WIKINEWS, WIKIPEDIA, NSMC, AIRBNB

• Task format


• Annotation 

• 546 workers from 2,604 workers after the pilot phase.


• A premise is sampled from the source corpora.


• A crowd worker writes a hypothesis. 


• Multiple crowd workers validate each premise-hypothesis pair.


• Keep only pairs for which a majority consensus was made.


• 30,998 final pairs


• Annotation Artifact 
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Natural language inference
Source corpora: WIKITREE, POLICY, WIKINEWS, WIKIPEDIA, NSMC, AIRBNB

• Task format


• Annotation 

• Careful annotation leads to  
higher quality data


• Annotation Artifact 
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Natural language inference
Source corpora: WIKITREE, POLICY, WIKINEWS, WIKIPEDIA, NSMC, AIRBNB

• Task format


• Annotation


• Annotation Artifact 


• A major issue: hypothesis-label correlation


• Train a large classifier on the hypothesis-only input


• Build dev/test tests to contain examples that cannot be well-predicted by 
the hypothesis-only input.
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Relation extraction
Source corpora: WIKIPEDIA, WIKITREE, POLICY

• Task format 

• Input: a sentence with two entities marked.


• Output: one of the 30 relation classes (inc. no_relation)


• Annotation


• Evaluation metrics
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Relation extraction
Source corpora: WIKIPEDIA, WIKITREE, POLICY

• Task format


• Annotation 

• Each candidate sentence is automatically/manually inspected for hate spech


• Automatically detect named entities from each sentence


• Detect as many entities (more than 2) from each sentence


• Manually clean up incorrect boundaries and incorrect entities


• Evaluation metrics
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Relation extraction
Source corpora: WIKIPEDIA, WIKITREE, POLICY

• Task format


• Annotation 

• A major challenge: no_relation is way too dominant.


• Pick a random pair of entities from a sentence, and they are unlikely to be directly 
related to each other. 


• Over-sample entity pairs that appear in KB and Wikipedia’s infoboxes.


• For dev/test sets, we do not over-sample but use uniform-sampling


• Relation classes are annotated manually using crowdsourcing.


• Evaluation metrics
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Relation extraction
Source corpora: WIKIPEDIA, WIKITREE, POLICY

• Task format


• Annotation


• Evaluation metrics 

• no_relation is dominant


• We need to avoid incentivizing models that predict only no_relation well. 


• Micro F1 score on true relations (≠no_relation)


• AUPRC (including no_relation)
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Baselines matter
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Pretraining
Facilitates rapid research

• Since 2018, it’s become a standard approach to finetune a large-scale, 
pretrained language model for various natural language understanding tasks.


• A new benchmark suite must serve two purposes:


• Provide a set of benchmark tasks based on which we can track progress


• Provide a strong set of baselines on which progress can be made


• KLUE pretrains and releases large-scale language models. 
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Pretraining corpora
Separate from source corpora

• Pretraining corpora must be constructed differently from source corpora


• As much information about the common language use must be retained


• We do not (manually nor automatically) filter out hate speech, socially 
biased content, etc., because 


• to build a detector of these content, our model must be aware of them


• it is not trivial to detect these from a large-scale corpus
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Pretraining corpora
Separate from source corpora

• Pretraining corpora must be 
constructed differently from source 
corpora


• As much information about the 
common language use must be 
retained


• We do not filter out hate speech, 
socially biased content, etc.


• We pseudonymize PII’s.
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Pretrained models 
Separate from source corpora

• Because we cannot guarantee licenses behind various text often crawled off the 
internet, we do not release the pretraining corpora but only the pretrained models. 


• MODU: A collection of Korean corpora distributed by National Institute of 
Korean Languages 


• CC-100-Kor: the Korean portion of CC-100


• NAMUWIKI: a Korean web-based encyclopedia


• NEWSCRAWL 

• PETITION: a collection of public petitions posted to the Blue House
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Pretrained models 
Separate from source corpora

• Base architectures: BERT and RoBERTa


• Tokenization: morpheme-based byte-pair encoding


• Comparisons 

• Multilingual models: mBERT, XLM-R


• Korean-specific models: KR-BERT, KoELECTRA
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Pretrained models 
Separate from source corpora

• KLUE does not rank models by the simple average of all the scores


• KLUE-RoBERTaLARGE generally works best across all the tasks.


• Multilingual models generally underperform language-specific ones.
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Pretrained models 
Separate from source corpora

• Morpheme-based subword tokenization generally works better than BPE


• This suggests the importance of customizing toward each target language
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Pretrained models 
Separate from source corpora

• Pseudonymization does not hurt the downstream accuracies


• This suggests we should put more effort in protecting privacy already at the 
pretraining stage without worrying about the downstream accuracies. 
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Summary
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Considerations
Open access

• Benchmark corpora were carefully sourced to be released with CC BY SA.


• Publicly accessible and distributable


• Freely modifiable 


• These properties maximize the accessibility and make KLUE future-proof
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Considerations
Cleaning

• Benchmark corpora are carefully annotated and constructed to be free of


• Hate speech


• Various undesirable social biases


• Personally identifiable information


• Pretraining corpora (not released) are filtered to be free of


• Personally identifiable information, via pseudonymization
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Considerations
Baselines

• Strong baselines are released publicly together with KLUE in order to


• avoid meaningless effort in reproducing various not-so-strong baselines


• facilitate further advances beyond the existing state of the art
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Considerations
Leaderboard

• Leaderboard serves as an important way to broadcast the progress
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What it took to make KLUE
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A collective effort

• 30+ researchers


• NLP researchers


• Crowdsourcing experts


• ML researchers
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A collective effort

• From various organizations


• Academic labs


• Corporate labs


• Crowdsourcing 
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Requires strong support
Industry and academia

• Researchers support


• Data support


• Compute support


• Annotation support


• Engineering support
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We did it for Korean.  
 
Let’s build one for your language!
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