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What you will learn today

1. What adapters (in transformers) are.

2. If adapters really are more efficient than normal fine-tuning.

3. How to non-destructively compose tasks for transfer learning
(AdapterFusion).

4. How to stack modular adapters for zero-shot transfer to unseen and
low-resource languages (MAD-X).

5. How to train adapters with the AdapterHub.ml framework
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e We only look at deep neural networks, specifically the
Transformer architecture.
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e These have been trained on massive amount of text data
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Some Basics...

Everything | am about to cover involves:

Transfer Learning in Natural Language Processing (NLP)
We only look at deep neural networks, specifically the
Transformer architecture.

We leverage pre-trained transformer-based models such
as BERT/RoBERTa/XLM-R/mBERT.

These have been trained on massive amount of text data
using Masked Language Modelling.

Transfer learning with these pre-trained models usually
involves stacking a prediction head on top of the model.
Usually all parameters are fine-tuned on the downstream
task (e.g. using cross-entropy loss).
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Parameter Efficiency of Adapters in Transformers

Performance on GLUE tasks
Full Pfeif. Houl.

Training adapters instead of full RTE (Wang et al., 2018) 662 708 698

. . . MRPC (Dolan and Brockett, 2005) 90.5 89.7 91.5

model fine-tu ning achieves STS-B (Cer et al., 2017) 88.8 89.0 892

CoLA (Warstadt et al., 2019) 59.5 589 59.1

imi SST-2 (Socher et al., 2013) 926 922 92.8

similar results. QNLI (Rajpurkar et al., 2016) 91.3 913 912
MNLI (Williams et al., 2018) 84.1 841 841 Houlsby et al., 2019

QQP (Iyer et al., 2017) 91.4 905 90.8

Adapters are smaller in size

than training the full model. Number of newly introduced

Ease Large

CRate #Params Size #Params Size C
64 0.2M 0.9Mb 0.8M 3.2Mb
16 0.9M 3.5Mb 3.1M 13Mb
2 7.1M 28Mb 25.2M 97Mb

Pfeiffer et al., 2020a

Houlsby, Neil, et al. "Parameter-Efficient Transfer Learning for NLP." International Conference on Machine Learning. 2019.
Pfeiffer, Jonas, et al. "AdapterFusion: Non-destructive task composition for transfer learning." arXiv preprint (2020a).
Pfeiffer, Jonas, et al. "Adapterhub: A framework for adapting transformers." Proceedings of EMNLP: Systems Demonstrations (2020b)
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AdapterFusion:
Non-Destructive Task Composition
for Transfer Learning

Proceedings of EACL 2021

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé, Kyunghyun Cho, Iryna
Gurevych


https://adapterhub.ml/
https://github.com/Adapter-Hub/adapter-transformers
https://arxiv.org/pdf/2005.00247.pdf
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Problems of Multi-Task and Transfer Learning

Multi-Task Learning:

P Task 1 Catastrophic Interference: Sharing
-, Task 2 all parameters © between tasks results
in deterioration of performance for a
I Task 2
subset of tasks.

Sequential Fine-Tuning:

Catastrophic Forgetting: Sequential
fine-tuning on tasks results in

forgetting information learned in earlier
stages of transfer learning.

Task 1 Task 2
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Problems of Multi-Task and Transfer Learning

How to mitigate?
1. Train task-specific weights (adapters) for each task.

=> No information can be “forgotten” as pre-trained weights are not
overwritten.

=> Tasks do not “interfere”, as they have designated parameters.

1. Combine the representations subsequently.
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Sharing Information across multiple tasks

Given a pool of adapters, we want to leverage the stored information to solve a
new task:

N pre-trained adapters

Pfeiffer, Jonas, et al. "AdapterFusion: Non-destructive task composition for transfer learning." EACL (2021).
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“Solving” Catastrophic interference and forgetting

Because of task specific weights and residual

rr_, N connections the model can opt-in and opt-out of
leveraging information stored within adapters.
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Performance of AdapterFusion

Pfeiffer, Jonas, et al. "AdapterFusion: Non-destructive task composition for transfer learning." EACL (2021).



Performance of AdapterFusion

Performance of Full finetuning vs. Dataset  Full ST-A F. w/ ST-A
Single Task Adapters vs. Fusion high MNLI 83.17 - 84.32 84.28
with Single Task Adapters. QQP 90.87 . 90.59 90.71

2 P resource | sst 9239 +022 | 91.85 041 9220 0.8

WGrande | 60.01 +0.08 | 61.09 +o0.11 60.23 +031

IMDB 94.05 +021 { 93.85 +0.07 93.82 +039

RTE 65.41 +090 : 71.04 +162 76.82 +1.68
low CB 82.49 +233 : 86.07 4387 92.14 +097
resource Mean 75.46 76.05 77.33
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MAD-X:
An Adapter-based Framework for
Multi-task Cross-lingual Transfer

Proceedings of EMNLP 2020

Jonas Pfeiffer, lvan Vuli¢, Iryna Gurevych, Sebastian Ruder
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https://adapterhub.ml/
https://github.com/Adapter-Hub/adapter-transformers
https://arxiv.org/abs/2005.00052
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Task: Zero-shot transfer to low-resource languages

Step 1:

Train a multilingual model.

MODEL

Step 2:
Fine-tune model on a task in a high resource source language.
Step 3:

Transfer and evaluate the model on a low resource target language.

Why?

Training data is expensive and not available for many languages, especially ones
that are considered “low-resource”.
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Related Work & Baselines

Deep massively multilingual models such as multilingual-BERT (mBERT; Deviin et al.
2019) or XLM-RoBERTa (XLM-R; Conneau et al. 2020)
achieve

+ SotA results on cross-lingual transfer

BUT

7 15 30 60 100
Number of languages

B Low res. B High res. uAll

- Suffer from “the curse of multilinguality” (Conneau et al. 2020)
- and cannot represent all (7000+) languages in a single model.
- performance especially deteriorates for low resource languages not

covered in the training data. (Ponti et al. 2020)
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Datasets

NER: WikiAnn Dataset (Pan et al.
2017, Rahimi et al. 2019). We chose a
diverse set of languages from different
language families.

XQuAD (Cross-lingual Question
Answering Dataset) (Artetxe et al. 2020)

XCOPA (Ponti et al. 2020b)

Language ISO Language #of Wiki Covered
code family articles by SOTA?
English en Indo-European 6.0M v
Japanese ja Japonic 1.2M v
Chinese zh Sino-Tibetan 1.IM v
Arabic ar Afro-Asiatic 1.0M v
Javanese =~ jv  Austronesian . 57« vV
Swabhili sw  Niger-Congo 56k v
Icelandic is Indo-European 49k v
Burmese my  Sino-Tibetan 45k v
"Quechua ~ qu  Quechua 22k
Min Dong cdo  Sino-Tibetan 15k
Ilokano ilo Austronesian 14k
Mingrelian xmf Kartvelian 13k
“Meadow Mari mhr Uralic 10k
Maori mi Austronesian 7k
Turkmen tk Turkic 6k
Guarani gn Tupian 4k
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Results NER

Source Language

Languages are more low-resource or unseen during pre-training
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zh - 4.7
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jv--8.4
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Relative F1 improvement of
MAD-XLarge over XLM-RLarge in
cross-lingual NER transfer.

Top right corner represent the
realistic scenario of
transfering from high
resource to low resource
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AdapterDrop:
On the Efficiency of Adapters in
Transformers

arxiv 2020

Andreas Rucklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas
Pfeiffer, Nils Reimers, Iryna Gurevych


https://adapterhub.ml/
https://github.com/Adapter-Hub/adapter-transformers
https://arxiv.org/pdf/2010.11918.pdf

AdapterDrop: Training/Inference Efficiency of Adapters

Rucklé, Andreas, et al. "AdapterDrop:
On the Efficiency of Adapters in
Transformers." arXiv preprint. 2020.
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Setting Adapter Relative speed (for Seq.Len./Batch)
128/16 128/32 512/16  512/32

Training  Houlsby 1.48 1.53 1.36 1.33
Pfeiffer 1.57 1.60 1.41 1.37
Inference Houlsby 0.94 0.94 0.96 0.96
Pfeiffer 0.95 0.95 0.96 0.96

Table 1: Relative speed of adapters compared to fully

fine-tuned models. For example, 1.6 for training with

the Pfeiffer adapter means that we can perform 1.6
Rucklé, Andreas, et al. "AdapterDrop: training steps with this adapter in the time of one up-
On the Efficiency of Adapters in date step with full model fine-tuning.
Transformers." arXiv preprint. 2020.
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Training: Adapters are
faster to train because we
do not backpropagate
through the entire
network.

Inference: Adapters are
slightly slower because of
added components.

AdapterDrop: We can
drop adapters at earlier
layers. This increases
inference speed when
predicting multiple tasks
simultaneously.

Rucklé, Andreas, et al. "AdapterDrop:

On the Efficiency of Adapters in
Transformers." arXiv preprint. 2020.
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Setting Adapter Relative speed (for Seq.Len./Batch)
128/16 128/32 512/16  512/32

Houlsby 1.48 1.53 1.36 1.33
Pfeiffer 1.57 1.60 1.41 1.37
Inference Houlsby 0.94 0.94 0.96 0.96
Pfeiffer 0.95 0.95 0.96 0.96

Training

Table 1: Relative speed of adapters compared to fully
fine-tuned models. For example, 1.6 for training with
the Pfeiffer adapter means that we can perform 1.6
training steps with this adapter in the time of one up-
date step with full model fine-tuning.

Simultaneous Tasks 2 4 8 16
Speedup (each layer) 4.3% 6.6% 78% 8.4%

Table 2: Speedup for each shared transformer layer
when performing inference for multiple tasks simulta-
neously (details are given in Appendix G.2)



AdapterDrop: Training/Inference Efficiency of Adapters

Training: Adapters are
faster to train because we
do not backpropagate
through the entire
network.

Inference: Adapters are
slightly slower because of
added components.

AdapterDrop: We can
drop adapters at earlier
layers. This increases
inference speed when
predicting multiple tasks
simultaneously.

Rucklé, Andreas, et al. "AdapterDrop:

On the Efficiency of Adapters in
Transformers." arXiv preprint. 2020.
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Pfeiffer 1.57 1.60 1.41 1.37
Inference Houlsby 0.94 0.94 0.96 0.96
Pfeiffer 0.95 0.95 0.96 0.96

Table 1: Relative speed of adapters compared to fully
fine-tuned models. For example, 1.6 for training with
the Pfeiffer adapter means that we can perform 1.6
training steps with this adapter in the time of one up-
date step with full model fine-tuning.

Simultaneous Tasks
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Table 2: Speedup for each shared transformer layer
when performing inference for multiple tasks simulta-
neously (details are given in Appendix G.2)
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Agenda

1. Adapters in Transformers
2. AdapterFusion

3. MAD-X

4. Efficiency of Adapters



Stk AdapterHub:
A Framework for Adapting
Transformers

Proceedings of EMNLP 2020: Systems Demonstrations

Jonas Pfeiffer*, Andreas Rucklé*, Clifton Poth*, Aishwarya
Kamath, lvan Vuli¢, Sebastian Ruder, Kyunghyun Cho, Iryna
Gurevych

e )


https://adapterhub.ml/
https://github.com/Adapter-Hub/adapter-transformers
https://arxiv.org/abs/2005.00052

i AdapterHub

A central repository for pre-trained adapter modules

| pip install adapter-transformers

in "

[ -]
Explore

Adapters are Lightweight &

"Adapter" refers to a set of newly
introduced weights, typically within the
layers of a transformer model. Adapters
provide an alternative to fully fine-tuning
the model for each downstream task,
while maintaining performance. They also
have the added benefit of requiring as
little as 1MB of storage space per task!

(9)

GitHub

Modular, Composable, and
Extensible %\

Adapters, being self-contained moduar
units, allow for easy extension and
composition. This opens up opportunities
to compose adapters to solve new tasks.

i\ Explore & Upload & Docs O v

Built on HuggingFace &
Transformers %/

AdapterHub builds on the HuggingFace
transformers framework requiring as little
as two additional lines of code to train
adapters for a downstream task.


https://adapterhub.ml

Outlook

e Many alternative Adapter Approaches

o Diff-Pruning (Guo et al. 2020)
o BitFit (Ben-Zaken et al. 2020)
o Prefix-Tuning (Li et al. 2021)

How to best compose Adapters?

Domain Adapters?

Hypernetworks/CPGs for Adapters (i.e. UDapter (Uestuen et al. 2020))
Increase the modularity of Adapters?



https://arxiv.org/abs/2012.07463
https://nlp.biu.ac.il/~yogo/bitfit.pdf
https://arxiv.org/pdf/2101.00190.pdf
https://arxiv.org/abs/2004.14327
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Key Takeaways

Adapters train faster than normal fine-tuning, while
maintaining the performance of full fine-tuning
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Key Takeaways

e Adapters train faster than normal fine-tuning, while
maintaining the performance of full fine-tuning

e Adapters are modular units which can be stacked and
fine-tuned sequentially.
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e Adapters train faster than normal fine-tuning, while
maintaining the performance of full fine-tuning
e Adapters are modular units which can be stacked and
fine-tuned sequentially.
e This is especially helpful for zero-shot transfer to
unseen languages. Feod
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Key Takeaways

e Adapters train faster than normal fine-tuning, while
maintaining the performance of full fine-tuning

e Adapters are modular units which can be stacked and
fine-tuned sequentially.

e This is especially helpful for zero-shot transfer to
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e Specializing the vocabulary to the target language, and - \ A
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unseen languages. Feod
e Specializing the vocabulary to the target language, and k _—
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performance. iy
e Adapters can also be composed to combine information - . J

from multiple tasks for non-destructive transfer learning.
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Key Takeaways

4
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e Adapters train faster than normal fine-tuning, while o
maintaining the performance of full fine-tuning
e Adapters are modular units which can be stacked and ———
fine-tuned sequentially.
e This is especially helpful for zero-shot transfer to ﬁﬁ ]
unseen languages. Feod
e Specializing the vocabulary to the target language, and NG ¢ —
leveraging pre-trained knowledge generally improves f"@
performance. e
e Adapters can also be composed to combine information o A Y,

from multiple tasks for non-destructive transfer learning.
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