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What Is structured data”

Bipartite data that consists of atomic elements and
structure that links the elements together.

The behaviour/meaning of structured object depends on
both these aspects and their interaction.

Two problems in machine learning
- How do we represent structured data”?
- How do we generate structure data”

To answer these guestions, we will focus on neural
network models of sequences.



What can neural sequence
models do”
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In a shocking finding, scientist discovered a herd of unicorns living in a

remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke
perfect English.

The scientist named the population, after their distinctive horn,
Ovid’s Unicorn. These four-horned, silver-white unicorns were
previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La
Paz, and several companions, were exploring the Andes Mountains when
they found a small valley, with no other animals or humans. Pérez
noticed that the valley had what appeared to be a natural fountain,
surrounded by two peaks of rock and silver snow.

OpenAl GPT-2 Language
Model
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In a shocking finding, scientist discovered a herd of unicorns
living in a remote, previously unexplored valley, in the Andes
Mountains. Even more surprising to the researchers was the fact
that the unicorns spoke perfect English.

https://www.gwern.net/GPT-3



In a shocking finding, scientist discovered a herd of unicorns
living in a remote, previously unexplored valley, in the Andes
Mountains. Even more surprising to the researchers was the fact
that the unicorns spoke perfect English.

“When we approached them, they said, ‘If you come any closer, we’ll
Kill you,”” recounted one of the researchers. “We asked them what their
problem was, and they said, ‘It's a long story.” They also said that we
would never understand their problem because we're too stupid.”

The unicorns spoke of a terrible blight that had been visited upon them
by the government of Ecuador, which had decided to grant the
unicorns “human rights” after receiving a $4 million donation from the
nation of Qatar.

“The money was intended to provide us with clean water, but instead
they used it to pay for legal fees to protect us,” said one of the
unicorns. “The next thing we knew, they were forcing us to get jobs, or
else they’d seize our horns.”

It’s a long story...

https://www.gwern.net/GPT-3
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The database begins knowing nothing.
The database knows everything that is added to it.
The database does not know anything else.

When asked a question, if the answer has been added to the database the database says the

answer.

When asked a question, if the answer has not been added the database says it does not know.

Q: Does the database know “What is 2+2?”
A: The database does not know.

Q: Does the database know “What is the capital of France?”
A: The database does not know.

""“Tom is 20 years old”"" is added to the database.
Nothing else about Tom is added to the database.

Q: Does the database know where Tom lives?
A: The database does not know.

Q: How does the database respond when Tom’s age?
A: The database says “Tom is 20 years old.”

Q: How does the database response when asked “What’s my age?”
A: The database says “You are not in the database.”
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* Recurrent neural networks
* Application: language models
* [earning challenges and solutions
e Vanishing gradients
* Long short-term memories
» (Gated recurrent units

e Break



Representing Sequential Data
Recurrent Neural Networks

* |n some applications, we want to condition on seqguential
data and make a prediction

 Examples: read a review and decide whether it is positive
or negative; read a blog post and predict who wrote it

* |n other applications, we want to generate sequential data

 Examples: machine translation, summarization, “natural
language generation”, image generation, text to speech,
speech to text, playing a game by making a sequence of
actions ...

e (in many of these, we need to do both!)



Example: Language Models

A language model assigns probabilities to a sequence
of words W = (w1, w2, ..., we)

t IS convenient (but not necessary) to decompose this
orobability using the chain rule, as follows:

p(w) :p(wl) X p(UJQ | wl) X p(w3 ‘ wl,wz) D %

plwe | wi, ... we 1)

/
= Hp(wt wy, ..., W)
t=1

The chain rule reduces the language modeling problem to
modeling the probability of the next word, given the history
of preceding words.



Example: Language Models

The chain rule reduces the language modeling problem to
modeling the probability of the next word, given the history
of preceding words.

Thus,

(i) For conditioning problems, we need to represent a
sequence.

(i) For generation problems, we need to represent a
seqgquence — the history at each time step.



Example: Language Models

The chain rule reduces the language modeling problem to

modeling the probability of the next word, given the history
of preceding words.

How do we represent an
arbitrarily long sequence?




Example: Language Models

The chain rule reduces the language modeling problem to

modeling the probability of the next word, given the history
of preceding words.

How do we represent an
arbitrarily long sequence?

We will train a neural network to
build a representation of sequences of
unbounded length.
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In linear regression, the goal is to learn W and b such that
Fis minimized for a dataset D consisting of M training
instances. An engineer must select/design x carefully.



Feature Induction

y=Wx+Db

1 M
— Ao — o 2
F = 7 E_l y: — yill5

In linear regression, the goal is to learn W and b such that
Fis minimized for a dataset D consisting of M training
instances. An engineer must select/design x carefully.

h =g¢(Vx+ c)
vy =Wh+b

Use "naive features” x and /earn their transformations
(conjunctions, nonlinear transformation, etc.) into h.

‘nonlinear regression”




Feature Induction

h =g¢(Vx+ c)
y=Wh+Db

What functions can this parametric form compute?

* |f his big enough (i.e., enough dimensions), it can
represent any vector-valued function to any degree of
precision

e Thisis a much more powerful regression model!



Feature Induction

h =g¢(Vx+ c)
y = Wh+b
* \What functions can this parametric form compute?

* It his big enough (i.e., enough dimensions), it can
represent any vector-valued function to any degree of
precision

e Thisis a much more powerful regression model!

e You can think of h as “induced features” in a linear classifier

» * The network did the job of a feature engineer



Recurrent Neural Networks

Feed-forward NN
h = ¢(Vx + c)
vyv=Wh+b




Recurrent Neural Networks

Feed-forward NN

h =g¢(Vx

c)

¥ = Wh+b

Recurrent NN

h: =g (VXt

Uh;_4

y: = Wh; +b

| %s
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Recurrent Neural Networks

Feed-torward NN Recurrent NN
h =¢g(Vx+ c) By g N3 Td g d)
y =Wh+Db h; = g(V|x¢; 1] + )
y: = Wh; +b
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Recurrent Neural Networks

Feed-forward NN Recurrent NN
h = g(Vx +c) hy-=-g{(Maer~+-Yhy—1r—t-€
y =Wh+Db h; = g(V|x¢;he 1] +c)
y: = Wh; + b
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Recurrent Neural Networks
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Recurrent Neural Networks

ht — g(VXt -+ Uht_l -+ C)
y: = Wh; +b

How do we train the RNN's parameters?




Recurrent Neural Networks
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Recurrent Neural Networks

ht — g(VXt -+ Uht_l -+ C)

y: = Wh; +b
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Recurrent Neural Networks
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Recurrent Neural Networks

ht — g(VXt -+ Uht_l -+ C)




Recurrent Neural Networks

* The unrolled graph is a well-formed (DAG)
computation graph—we can run backprop

e Parameters are tied across time, derivatives are
aggregated across all time steps

* [his is historically called "backpropagation
through time” (BPTT)




Parameter lying
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Parameter lying

ht — g(VXt -+ Uht_l -+ C)
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Parameter lying
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Parameter lying
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Parameter lying

[ v [y | I [ ya |
| 1 1 |
h, —»] hy ] hs ] h,
oy Spl=piegs =uba=
¥/ | X I | x I | xs | HETE
U :'_'_'_._._._
OF i oh, OF
ou OU Oh;

Parameter tying also came up when learning the transition
matrix for HMMSs!



Parameter lying

 Why do we want to tie parameters?
 Reduce the number of parameters to be learned
* Deal with arbitrarily long sequences

 What it we always have short sequences?

 Maybe you might untie parameters, then. But you
wouldn't have an RNN anymore!



What else can we do?

ht — g(VXt -+ Uht_l -+ C)
y: = Why + b




"Read and summarize”

ht — g(VXt —+ Uht_l -+ C)
y = Wh, +b

Summarize a seguence into a single vector.

(This will be useful later...)

X —>E—><<>—>H<— <

h, — h, — h; —]
_ﬁ 1 1 i
I x1 | I Xy | I x3 | I




"Read and summarize”

ht — g(VXt -+ Uht_l -+ C)
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View 2: Recursive Definition

* Recall how to construct a list recursively:
base case
[] is a list (the empty list)
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View 2: Recursive Definition

* Recall how to construct a list recursively:
base case
[] is a list (the empty list)

induction
[t | h] where tis a list and h is an atom is a list

 RNNs define functions that compute representations recursively according to
this definition of a list.

e Define (learn) a representation of the base case
* Learn a representation of the inductive step

*Any structured object that you can construct recursively, you can obtain
an “embedding” of with neural networks using this general strategy



History-pased LMs

As Noah told us, a common strategy Is in sequence modeling Is to
make a Markov assumption.
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History-based LMS

As Noah told us, a common strategy Is in sequence modeling Is to
make a Markov assumption.

p(w) =p(w1) X Markov: forget the “distant” past.
p(ws wj[\ s this valid for language” No...
s it practical”? Often!
p(ws

W1, U2 )

X
p(wy | Wi, w3 ) X

S




History-based LMVs

As Noah told us, a common strategy Is in sequence modeling Is to
make a Markov assumption.

p(w) =p(w1) X Markov: forget the “distant” past.
p(ws wj{\ s this valid for language” No...
s it practical”? Often!
p(ws | 2675 Up2) X
p(ws | Wists, w3) X

Why RNNs are great tor language:
no more Markov assumptions.




History-based LMs with RNNs

random variable

p(VVs |'wl y w2 ,Ws :u"l)
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| i f | AU
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BT e BT Ll

observed vector
context word  (word embedding)



History-based LMs with RNNs

random variable

p(VVB |'wl y w2 ,Ws :u’4)

/HNN hidden state AT

[ vector, length=|vocak
‘
_hy BT W2

observed vector
contextword  (word embedding)



Example: Language Model

the
a

and
cat
dog
n— horse
runs

u=Wh+Db

walking
pig

h—>H- exp U
Pi

_ D €Xp Uy

To enforce this stochastic constraint, we suggest a normalised ezponential output non-
. linearity,
softmax

The p/'s form a distribution, i.e.
p; >0 ¥, Zpi =1

0; = e’:‘/z ek,
"

This “softmax” function is a generalisation of the logistic to multiple inputs. It also
generalises maximum picking, or “Winner-Take-All”, in the sense that that the outputs
change smoothly, and equal inputs produce equal outputs. Although it looks rather cum-
bersome, and perhaps not really in the spirit of neural networks, those familiar with
Markov random fields or statistical mechanics will know that it has convenient math-
ematical properties.  Circuit designers will enjoy the simple transistor circuit which
implements it.

Bridle. (1990) Probabilistic interpretation of feedforward classification



Example: Language Model

/\ Each dimension corresponds to a word
In a closed vocabulary, V.

hhhhh

u=Wh+Db

walking

— - exp U;
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Example: Language Model

/\ Each dimension corresponds to a word
In a closed vocabulary, V.

dog

runs

says

walked — h
walks u —

imgc exp U;
N expu
_ ; €XP U

softmax

p(e) =p(e1)x
€9 61) X

(
p(€3 €1, 62)><
(64 61762763)><



Example: Language Model

f\ Each dimension corresponds to a word
In a closed vocabulary, V.

u=Wh+Db
- exp,
Pi =
_ D €Xp Uy

& €1 )X . .
plez [lex histories are sequences of words. ..
p(63 €1, 62) X
(

€4 61762763)><
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Example: Language Model

p(tom | (s)) xp(likes | (s), tom)

tom likes
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Example: Language Model

p(tom | (s)) xp(likes | (s), tom)
xp(beer | (s), tom, likes)

tom likes beer
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Example: Language Model

p(tom | (s)) xp(likes | (s), tom)
xp(beer | (s), tom, likes)
xp((/s) | (s), tom, likes, beer)

tom likes beer </sS>

¢ ¢ ¢ ¢
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The cross-entropy objective seeks the maximum likelihood (MLE)
parameters.

"Find the parameters that make the training data most likely.”
You will overfit:

e Stop training early, based on a validation set

« Weight decay / other weight regularizers

« Dropout variants during training

In contrast to count-based models, RNNs don't have problems with
‘zeros”.



RNN Language Models

* Unlike Markov (n-gram) models, RNNs never forget

 However we will see they might have trouble learning to
use their memories (more soon...)

e Algorithms

 Sample a sequence from the probability distribution
defined by the RNN

* Train the RNN to minimize cross entropy (aka MLE)

* \What about: what is the most probable sequence?



Questions?



Training Challenges
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hree cases: largest eigenvalue Is
exactly 1; gradient propagation is stable
<1; gradient vanishes (exponential decay)
>1:; gradient explodes (exponential growth)




Vanishing Gradients

* In practice, the spectral radius of U is small, and gradients vanish

* In practice, this means that long-range dependencies are difficult to learn
(although in theory they are learnable)

e Solutions

» Better optimizers (second order methods, approximate second order
methods)

 Normalization to keep the gradient norms stable across time

» Clever initialization so that you at least start with good spectra (e.g.,
start with random orthonormal matrices)

- Alternative parameterizations: LSTMs and GRUs



Alternative BRNNs

* Long short-term memories (LSTMs; Hochreiter and
Schmidthuber, 1997)

e (Gated recurrent units (GRUs; Cho et al., 2014)
* Intuition instead of multiplying across time (which
leads to exponential growth), we want the error to

be constant.

 What is a function whose Jacobian has a
spectral radius of exactly I: the identity function



Memory cells

C: = Ct—1 + f(x¢)
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Memory cells

c: =cCt—1 + f(|xe; 1))
h; = Q(Ct)
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Memory cells

c: =cCi—1 + f([x¢;he_q])

h; = g(c)

“Almost constant”
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| STM Variant
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Another Visualization
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Gated Recurrent Units
(GRUS)

h, =(1—2z)®h;_1+2z Oh,
zt = 0(f2([ht—1;%¢]))
re = o(fr([he—1;%¢]))
hy = f([r: © hy_1;%¢]))




summary

o Better gradient propagation is possible when you
use additive rather than multiplicative/highly non-
iInear recurrent dynamics

RNN by = f([x¢;he_q])
LSTM c¢; =f, O ci 1 +1i; © f([xe;heq])
GRU h;=(1-2z;)O0hi | +2 0 f([x¢5r: ©hyq])
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Questions?



Conditional LMs

A conditional language model assigns probabilities to a
seqguence of words W = (w1, w2, . . . awe), given some
conditioning context, .

As with unconditional models, it helptul to use the chain rule
to decompose the probabillity:

14

p(w | ZB) — Hp(wt ‘ L, Wy,W2, ... 7wt—1)
t=1

What is the probability of the next word, given the history of
previously generated words and conditioning context x.



Conditional LMs

2 “input” w “text output”
An author A document written by that author
A topic label An article about that topic

{SPAM, NOT_SPAM|

A sentence in French

A sentence in English

A sentence in English

An image

A document

A document

Meterological measurements
Acoustic signal
Conversational history + database
A question + a document

A guestion + an image

An emall

ts English translation

ts French translation

ts Chinese translation

A text description of the image
Its summary

Its translation

A weather report

Transcription of speech
Dialogue system response

ts answer
{s answer




Data for Training Conditional LMs

To train conditional language models, we need paired
samples, (4, wi)}ff\;.

Data availability varies by task. It's easy to think of tasks

that could be solved with conditional language models, but
the data just doesn't exist.

Relatively large amounts of data for:
Translation, summarization, caption generation,
speech recognition



Evaluating Conditional LMs

How good is our conditional language model?

These are language models, we can use cross-entropy
or perplexity. okay to implement, hard to interpret

Task specific evaluation. Compare the model's most likely
output to a human-generated reference output using a
task-specific evaluation metric L.

w* = argmax p(w | ) L(w™, wef)
w

Examples of L: BLEU, METEOR, ROUGE, WER

easy to implement, okay to interpret

Human evaluation.
hard to implement, easy to interpret
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Encoder-Decoder Models

Encoder-decoder models are a very simple class of
conditional LMs that are nevertheless extremely powerful.

These “encode” x Iinto a fixed-sized vector and “decode”
that into a sequence of words w.

x Kunst kann nicht gelehrt werden...

encoder \ /
1

representation [©oooo

decoder (Uﬁbfgj%fﬂ»

w Artistry can’t be taught...




Encoder-Decoder Models

Encoder-decoder models are a very simple class of
conditional LMs that are nevertheless extremely powerful.

These “encode” « into a fixed-sized vector and “decode”’
that into a sequence of words w.

encoder

representation [0ooo0o0o

socoser T

w  Adog is playing on the beach.




Encoder-Decoder Models
Two questions

« How do we encode x into a fixed-sized vector?
* Problem/modality specific
* Think about assumptions!

« How do we decode that vector into a sequence of
words w?

e [ ess problem specific (general decoders?)

* We now describe a solution using RNNSs.



Recurrent Neural Networks (RNNSs)

c = RNN(x) o

A — |[START| [X; X> X3 X4

What is a vector representation of a sequence x?
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Recurrent Neural Networks (RNNSs)
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What is a vector representation of a sequence x?



RNN Encoder-Decoders

c = RNN(x)

Aller| |Anfang| |ist| |schwer| [STOP

What is the probability of a sequence y | x?
Cho et al. (2014); Sutskever et al. (2014)



RNN Encoder-Decoders

c = RNN(x) ?
U
y

),

Aller| |Anfang| |ist| |schwer| [STOP

What is the probability of a sequence y | x?
Cho et al. (2014); Sutskever et al. (2014)



RNN Encoder-Decoders
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RNN Encoder-Decoders

W

¢ — RNN(x) *—0—9¢
), ),
), ),

W
J ), )

Aller| |Anfang| |ist| |schwer| [STOP

What is the probability of a sequence y | x?
Cho et al. (2014); Sutskever et al. (2014)



SNN

c = RNN(x)

*—

—ncoder-

Decoders

S

J

W,

W,

D, W,
Aller| |Anfang

ISt

D,

schwer
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What is the probability of a sequence y | x?

Cho et al. (2014); Sutskever et al. (2014)
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SNN

START

c = RNN(x)
y | c ~ RNNLM(c)
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c = RNN(x)
y | c ~ RNNLM(c)

RNN Encoder-Decoders
Beginnings
y
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What is the probability of a sequence y | x?

Cho et al. (2014); Sutskever et al. (2014)
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What is the probability of a sequence y | x?
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Conditional LMs
Algorithms for Decoding

In general, we want to find the most probable (MAP)
output given the input, I.e.,

w" = argmax p(w | x)
w

||

— arg max E logp(w; | T, w<y)
w
t=1

Unlike with Markov models, this is a hard problem. But we
can approximate it with a greedy search:

wi ~ argmax p(w; | x)
w1

wi ~ arg max p(wsg | @, wq)
w2

w; ~ arg II%UaXp(wt |z, wy)
t



Beam search for decoding

A slightly better approximation is to use a beam search with
beam size b. Key idea: keep track of the top-b hypotheses.

E.g., for b=2:

xr = Bier trinke ich
beer drink |

(s)
logprob=0



Beam search for decoding

A slightly better approximation is to use a beam search with
beam size b. Key idea: keep track of the top-b hypotheses.

E.g., for b=2:

xr = Bier trinke ich
beer drink |

beer

logprob=-1.82
(s) gp
logprob=0

I

logprob=-2.11



Beam search for decoding

A slightly better approximation is to use a beam search with
beam size b. Key idea: keep track of the top-b hypotheses.

E.g., for b=2:

xr = Brer trinke ich drink

beer drink I logprob=-6.93
beer I
(s) logprob=-1.82 logprob=-5.8
logprob=0
1

logprob=-2.11



Beam search for decoding

A slightly better approximation is to use a beam search with
beam size b. Key idea: keep track of the top-b hypotheses.

E.g., for b=2:

xr = Brer trinke ich drink

beer drink I logprob=-6.93
beer I
(s) logprob=-1.82 logprob=-5.8
logprob=0
1 beer
logprob=-2.11 logprob=-8.66
drink

logprob=-2.87

wo w1 w9 w3



Beam search for decoding

A slightly better approximation is to use a beam search with
beam size b. Key idea: keep track of the top-b hypotheses.

E.g., for b=2:

xr = Brer trinke ich drink

beer drink I logprob=-6.93
beer i
(s) logprob=-1.82 logprob=-5.8
logprob=0
I beer
logprob=-2.11 logprob=-8.66
drink

logprob=-2.87

wo w1 w9 w3



Beam search for decoding

A slightly better approximation is to use a beam search with
beam size b. Key idea: keep track of the top-b hypotheses.

E.g., for b=2:
x = Bier trinke ich drink drink
beer drink I logprob=-6.93 logprob=-6.28
beer 1 like
(s) logprob=-1.82 logprob=-5.8 logprob=-7.31
logprob=0
I beer beer
logprob=-2.11 logprob=-8.66 logprob=-3.04
drink wine
logprob=-2.87 logprob=-5.12

wo w1 w9 w3



Beam search for decoding

A slightly better approximation is to use a beam search with
beam size b. Key idea: keep track of the top-b hypotheses.

E.Q., for b=2:
x = Bier trinke ich drink Bl
beer drink I logprob=-6.93 logprob=-6.28
beer 1 like
(s) logprob=-1.82 logprob=-5.8 logprob=-7.31
logprob=0
1 beer beer
logprob=-2.11 logprob=-8.66 logprob=-3.04
drink wine
logprob=-2.87 logprob=-5.12

wo w1 w9 w3



Beam search for decoding

A slightly better approximation is to use a beam search with
beam size b. Key idea: keep track of the top-b hypotheses.

E.g., for b=2:
xr = Brer trinke ich
beer drink |

beer 1
logprob=-1.82 logprob=-5.8

wine

logprob=-5.12

Wy w1 w9 ws;



Questions?



Conditioning with vectors

Encoder-decoder models like this compress a ot of
information in a vector.

Gradients have a long way to travel. Even LSTMs forget.

What is to be done?



Translation with Attention

 Represent a source sentence as a matrix

* Generate a target sentence from a matrix

* [hese two steps are:
* An algorithm for neural MT

* A way of introducing attention



Sentences as Matrices

 Problem with the fixed-size vector model in translation
(maybe in images?)

e Sentences are of different sizes but vectors are of
the same size

e Solution: use matrices instead

e Fixed number of rows, but number of columns
depends on the number of words

« Usually |f| = #cols



Sentences as Matrices

Ich mochte ein Bier



Sentences as Matrices

Mach’s gut

Ich mochte ein Bier



Sentences as Matrices

Die Wahrheiten der Menschen sind die unwiderlegbaren Irrtimer

Mach’s gut

Ich mochte ein Bier



Sentences as Matrices

o

Ich mochte ein Bier Mach

S g’U/t Die Wahrheiten der Menschen sind die unwiderlegbaren Irrtimer

Question: How do we build these matrices?



With Concatenation

We can represent a sentence by stacking word
vectors into a matrix representing a sentence

This is easy and tast, but it has the following
[imitations

* There is no positional information about the
words in the representation

 \Word meanings depend on the context they are
used In
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With Bidirectional RNNs

* A widely used matrix representation, due to Bahdanau et al
(2015)

* One column per word

 Each column (word) has two halves concatenated together:

* a “forward representation”, i.e., a word and its left context
* a ‘reverse representation’, i.e., a word and its right context

Implementation: bidirectional RNNs (GRUs or LSTMs) to read f
from left to right and right to left, concatenate representations
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(Generation from Matrices

* We have a matrix F representing the input, now we need to generate from it

 Bahdanau et al. (2015) were the first to propose using attention for translating from matrix-
encoded sentences

* High-level idea
* Generate the output sentence word by word using an RNN
* At each output position t, the RNN receives two inputs (in addition to any recurrent inputs)
 a fixed-size vector embedding of the previously generated output symbol e
 a fixed-size vector encoding a “view” of the input matrix
 How do we get a fixed-size vector from a matrix that changes over time?

 Bahdanau et al: do a weighted sum of the columns of F (i.e., words) based on how
important they are at the current time step. (i.e., just a matrix-vector product Fa;)

* The weighting of the input columns at each time-step (a;) is called attention
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Attention

e How do we know what to attend to at each time-
step”?

e Thatis, how do we compute a;”



Computing Attention

« At each time step (one time step = one output word), we want to be able to
“attend” to different words in the source sentence

« We need a weight for every word: this is an |fi-length vector a;
 Here is a simplified version of Bahdanau et al.’s solution

 Use an RNN to predict model output, call the hidden states s;
(st has a fixed dimensionality, call it m)
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Computing Attention

« At each time step (one time step = one output word), we want to be able to
“attend” to different words in the source sentence

« We need a weight for every word: this is an |fi-length vector a;

 Here is a simplified version of Bahdanau et al.’s solution

Use an RNN to predict model output, call the hidden states s;
(st has a fixed dimensionality, call it m)

At time t compute the expected input embedding r; = Vs;_1

(V is a learned parameter)
Take the dot product with every column in the source matrix to compute
the attention energy. u; = FTrt (called e; in the paper)

(Since F has |fi columns, u;has |fj rows)

Exponentiate and normalize to 1: a; = softmax(uy)

Finally, the input source vector for time tis ¢; = Fa;



summary

« Attention is closely related to “pooling” operations in convnets (and other
architectures)

 Bahdanau’s attention model seems to only cares about “content”
e No obvious bias in favor of diagonals, short jumps, fertility, etc.

e Some work has begun to add other “structural” biases (Luong et al., 2015;
Cohn et al., 2016), but there are lots more opportunities

« Attention is similar to alignment, but there are important differences

 alignment makes stochastic but hard decisions. Even if the alignment
probability distribution is “flat”, the model picks one word or phrase at a time

e attention is “soft” (you add together all the words). Big difference between
“flat” and “peaked” attention weights



Questions?



Representing Words In
Context with Self-Attention

RNNs are computationally inconvenient: to compute h:, we need to
first compute h:-1, for which we need to compute h:—2. ..

LSTMs have to use their memories to remember everything in the
past

We will solve both of these problems with self-attention.

« Each h: will be computed in parallel (take advantage of GPUs
which can do a lot of things in parallel)

« Each h: will be able to create a direct “connection” to anything
else in the sequence without resorting to a single vector “memory”

This architecture is called a “transformer”
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| watched three movies yesterday.
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Chinese pronouns don’t indicate
whether they are subjects or
objects!

But in English, we need to know
this.
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Chinese nouns don’t indicate

whether they are singular or plural!

But in English, we need to know
this.
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But in English, we need to know
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Chinese verbs don’t map directly
on to English verbs! The right verb

depends on the object.
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Chinese verbs don’t map directly
on to English verbs! The right verb

depends on the object.
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Chinese verbs don’t inflect for
tense!

But in English, we need to know
this.
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Chinese verbs don’t inflect for
tense!

But in English, we need to know
this.
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o Different words need to obtain different kinds of
information from different places.

* Words need to integrate multiple kinds of information.

* Although we didn't consider an example, words may
need to pass information along multiple hops.

* Let's design a model that supports this.
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We will start with X € R™*% which is obtained to by
stacking word vectors ...
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We will start with X € R™*% which is obtained to by
stacking word vectors ...

and we will transform it into a representation that
integrates all the necessary contextual information
useful for the task.




We will start with X € R™*% which is obtained to by
stacking word vectors.

Since we need information about positions, we need to
Plot by Sasha Rush augment X with positional information.
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X € R™*% s obtained to by stacking word vectors and
concatenating positional information.
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X € R™*%js obtained to by stacking word vectors and
concatenating positional information.

Consider just one position. It must decide where else
in the sentence to attend (and we do permit it to attend to

itself, since sometimes there may be no relevant external
information.

If we compute the inner product Xx; € R” we will get a

score for every position, which we can normalize into
an attention weighting softmax(Xx;).

E/
-V



5
Tt
A

BB LS

A X KK

BB O

i
|

IQQQ‘Q”

t

I
K

o

X € R™*%js obtained to by stacking word vectors and
concatenating positional information.

Consider just one position. It must decide where else

in the sentence to attend (and we do permit it to attend to
itself, since sometimes there may be no relevant external
information.

f we compute the inner product Xx; € R” we will get a
score for every position, which we can normalize into
an attention weighting softmax(Xx;).

We can do this “in parallel” for all positions by doing the

following A = softmax(XX ") which is in [0, 1]"*" And
then the "output” is Y = AX.
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X € R™*%js obtained to by stacking word vectors and
concatenating positional information.

Consider just one position. It must decide where else

in the sentence to attend (and we do permit it to attend to
itself, since sometimes there may be no relevant external
information.

If we compute the inner product Xx; € R” we will get a
score for every position, which we can normalize into
an attention weighting softmax(Xx;)

We can do this “in parallel” for all positions by doing the

following A = softmax(XX ") which is in [0, 1]"*" And
then the "output” is Y = AX.

Unfortunately: each word will always want to attend to
itself (property of inner products), attention will be
symmetric (we don’t want this), and we can't attend to
different kinds of information.
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X € R™*%js obtained to by stacking word vectors and
concatenating positional information.

Consider just one position. It must decide where else

in the sentence to attend (and we do permit it to attend to
itself, since sometimes there may be no relevant external
information.

If we compute the inner product Xx; € R” we will get a
score for every position, which we can normalize into
an attention weighting softmax(Xx;)

We can do this “in parallel” for all positions by doing the

following A = softmax(XX ") which is in [0, ]"*". And
then the “output” iIs Y = AX.

Unfortunately: each word will always want to attend to
itself (property of inner products), attention will be
symmetric (we don’t want this), and we can't attend to
different kinds of information.

We need some parameters!
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X € R™*%js obtained to by stacking word vectors and
concatenating positional information.

Another attempt: Let’'s add a parameter W € R¥*? now
we can compute XWx; € R" This lets us control where
we look, and attention is no necessarily symmetric.

Moreover, we can still do things very efticiently with by
T
Computlng SOftmaX(XWX )

E/
-V



X € R™*%js obtained to by stacking word vectors and
concatenating positional information.

Another attempt: Let’'s add a parameter W € R¥*? now
we can compute XWx; € R" This lets us control where
we look, and attention is no necessarily symmetric.

Moreover, we can still do things very efticiently with by
T
computing softmax(XWX ")

To attend to different kinds of information, we can just
add multiple W’s, or equivalently, redefine
W ¢ R"*4 and use batched matrix multiplies.
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X € R™*%js obtained to by stacking word vectors and
concatenating positional information.

Another attempt: Let’'s add a parameter W € R¥*? now
we can compute XWx; € R" This lets us control where
we look, and attention is no necessarily symmetric.

Moreover, we can still do things very efticiently with by
T
Computlng SOftmaX(XWX )

To attend to different kinds of information, we can just
add multiple W’s, or equivalently, redefine
W ¢ R"*4 and use batched matrix multiplies.

Unfortunately: W has massive number of parameters,
just to decide where to attend to. This is slow and
makes learning hard.
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X € R™*%js obtained to by stacking word vectors and
concatenating positional information.

Another attempt: Let's use a low rank approximation of
W. We define two matrices L € R?¢ and R € R**¢ and
then do A = softmax(XLRX ")

Now we can control the number of parameters in the

model by setting ¢ to be as small as we like! In practice,
it's common to use ¢ = d/h,

So we can write Y = softmax(XLRX " )X
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X € R™*%js obtained to by stacking word vectors and
concatenating positional information.

Another attempt: Let's use a low rank approximation of
W. We define two matrices L € R?¢ and R € R**¢ and
then do A = softmax(XLRX ")

Now we can control the number of parameters in the
model by setting ¢ to be as small as we like! In practice,

it's common to use £ = d/h.
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00000 00000 56 we can write Y = softmax(XLRX ") X
head 1 head 2

s Nl

But what about multiole heads? We would like each of
these to extract different information from different places.
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Since we want to extract different information, we need to
T
transform X: Y = softmax(XLRX " )XP \where we

also want P to be low rank: P € R or rather, in the
case of multiple heads, P € R"*#*¢
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X € R™*% s obtained to by stacking word vectors and
concatenating positional information.

00000
20000 We have auxiliary parameters:
20000 I, € Rhxdxt
20000
o000 0 RERhX@Xd
20000
Pc thdxé
-
R And we compute Z = softmax(XLRX ") XP \yhich is
in Rthxé.

20000

00000 To obtain one vector per position, we rearrange this

20000 .

hoad 2 tensor so that all ¢-length representations for each

each are adjacent; i.e., the reshaped matrix is in
Rnx(@h).
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Since we would like the final output to have the same
shape as the input, we use a final linear projection,
0 € R“M>4 the conclude what the authors call
‘multiheaded attention”:

Y = reshape(Z)O
= reshape(softmax(XLRX ' )XP)O
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X € R™*% s obtained to by stacking word vectors and
concatenating positional information.

We have auxiliary parameters:
L € thdxé

R e thﬁxd

P c thdxé
O c R(E-h)xd

And we compute Y = reshape(softmaX(XLRXT)XP)O’
which is in R"*.
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Happily, these operations exploit the very efficient
batched matrix multiply operations (fast on your GPUSs).
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X € R™*%js obtained to by stacking word vectors and
concatenating positional information.

We have auxiliary parameters:
L € thdx@

R e théxd
P c thdxé

O c R(é-h)xd
And we Compute Y = reShape<SOftmaX(XLRXT)XP)O’
which is in R"*¢,

Happily, these operations exploit the very efficient
batched matrix multiply operations (fast on your GPUSs).

But we're not done yet. After multi-headed attention, Y

s further transformed by passing each position through
an MLP in parallel. Intuitively this let's the model extract
conjunctions of features that were integrated via attention.

F =relu(YW +b)V + ¢
where W € R“* and kis “large” (eg 4 x d).



X € R™*% s obtained to by stacking word vectors and
concatenating positional information.

We have auxiliary parameters:

MtP I, € Rhxdx? W < RIxF
YTrY REthExd VERkXd
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3333 0 c
8096 And we compute

Y = reshape(softmax(XLRX ' )XP)O +X
F =relu(YW +b)V +c+Y
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X € R™*%js obtained to by stacking word vectors and
concatenating positional information.

We have auxiliary parameters:

I, € Rhxdx? W e RIxF
R c Rhx{xd V € RFxd
P ¢ Rhxdxt
O c R(&h)xd

And we compute
Y = reshape(softmax(XLRX ' )XP)O +X

F=relu(YW +b)V +c+Y

Some final details:

- residual connections make deeper (+X, +Y) make
deeper networks easier to learn. That’s why its there.

- “layer normalization” is used, which rescales and
‘remeans” Y and F. This also makes training more
stable.

- 10 enable propagation of information over multiple
hops, and to learn more complex interactions, we
stack many of these layers on top of each other



Transformer encoders

 \We have now built an encoder that uses attention
to compute representations of words-in-context

 We could replace the bidirectional encoder used In
the previous section with this

 But we now turn to how to build a “decoder” out of
transformer components



Transformer decoders

* Transformers can attend forwards and backward

* This is what makes them powertful, but a language model can't
look into the future for words that haven't been generated (at
training time it could, but it wouldn’t help you at test time)

* Trick: we will manipulate the attention so that words can only
look to their left. Very simple tweak to the model:

Y = reshape(softmax(XLRX ' )XP)O + X

%

Y = ]feshape(Softnflax(XLRXT + M)XP)O + X

Here, M € {—00,0}""" such that the pre-softmax attention “logits”

are set to -infinity for all attention from position i to position | where
| > 1.



Unconditional LMs

tom likes beer </s> Q = softmax(Y R)

T

(—T <

< < .
Y = reshape(softmax(Y LRY +M)Y P)O+Y

% T

Y= reshape(SoftmaX(XLRXT + M)XP)O + X

<s> tom likes beer



Conditional LMs

tom likes beer </s> Q = softmax(Y R)

— — T —
Y = reshape(softmax(Y LRC )CP)O+Y

% T

Y= reshape(SoftmaX(XLRXT + M)XP)O + X

1. Build a representation of the target history
2. Incorporate conditioning context by “attending to”
the source context C.
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<s> tom likes beer



Transformer Summary

e Current state of the art

e Good mix of computationally efficient and a reasonably effective model
 Still many opportunities to improve things!

* [Low-rank approximations are one way to reduce parameters— there
are many others.

* Does every attention head have to sum to 17 Maybe sometimes certain
heads should be turned off

« Should attention be dense” Maybe it should be sparse. Maybe it
should correlate with linguistic structure

- Your ideas here...



Questions?



Thanks!
Obrigado!



