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Lecture Outline

1. Markov models
2. Hidden Markov models
3. Viterbi algorithm
4. Other inference algorithms for HMMs
5. Learning algorithms for HMMs



MARKOV MODELS



One View of Text

• Sequence of symbols (bytes, letters, characters, morphemes, 
words, …)
– Let Σ denote the set of symbols.

• Lots of possible sequences.  (Σ* is infinitely large.)
• Probability distributions over Σ*?



Pop Quiz

• Am I wearing a generative or discriminative hat right now?



Pop Quiz

• Generative models tell a mythical 
story to explain the data.

• Discriminative models focus on 
tasks (like sorting examples). 



Trivial Distributions over Σ*

• Give probability 0 to sequences with length greater than B; 
uniform over the rest.

• Use data:  with N examples, give probability 
N-1 to each observed sequence, 0 to the rest.

• What if we want every sequence to get some probability?
– Need a probabilistic model family and algorithms for constructing the 

model from data.



A History-Based Model

• Generate each word from left to right, conditioned on what 
came before it.

p(start, w1, w2, . . . , wn, stop) =
n+1�

i=1

�(wi | w1, w2, . . . , wi�1)



Die / Dice

one die two dice



start

…

one die per history:

……



start I

…

one die per history:

……

history = start



start I want

…

one die per history:

……
history = start I



start I want a

…

one die per history:

……

history = start I want



start I want a flight

…

one die per history:

……
history = start I want a



start I want a flight to

…

one die per history:

……

history = start I want a flight



start I want a flight to Lisbon

…

one die per history:

……
history = start I want a flight to



start I want a flight to Lisbon .

…

one die per history:

……
history = start I want a flight to Lisbon



start I want a flight to Lisbon . stop

…

one die per history:

……
history = start I want a flight to Lisbon .



A History-Based Model

• Generate each word from left to right, conditioned on what 
came before it.

• Very rich representational power!
• How many parameters?
• What is the probability of a sentence not seen in training data?

p(start, w1, w2, . . . , wn, stop) =
n+1�

i=1

�(wi | w1, w2, . . . , wi�1)



A Bag of Words Model

• Every word is independent of every other word.

p(start, w1, w2, . . . , wn, stop) =
n+1�

i=1

�(wi)



start

one die:



start I

one die:



start I want

one die:



start I want a

one die:



start I want a flight

one die:



start I want a flight to

one die:



start I want a flight to Lisbon

one die:



start I want a flight to Lisbon .

one die:



start I want a flight to Lisbon . stop

one die:



A Bag of Words Model

• Every word is independent of every other word.
• Strong assumptions mean this model cannot fit the data very 

closely.
• How many parameters?
• What is the probability of a sentence not seen in training data?

p(start, w1, w2, . . . , wn, stop) =
n+1�

i=1

�(wi)



First Order Markov Model

• Happy medium?

• Condition on the most recent symbol in history.

p(start, w1, w2, . . . , wn, stop) =
n+1�

i=1

�(wi | wi�1)



start

…

one die per history:

……



start I

…

one die per history:

……
history = start



start I want

…

one die per history:

……

history = I



start I want a

…

one die per history:

……
history = want



start I want a flight

…

one die per history:

……

history = a



start I want a flight to

…

one die per history:

……
history = flight



start I want a flight to Lisbon

…

one die per history:

……
history = to



start I want a flight to Lisbon .

…

one die per history:

……
history = Lisbon



start I want a flight to Lisbon . stop

…

one die per history:

……

history = .



First Order Markov Model

• Happy medium?

• Condition on the most recent symbol in history.
• Independence assumptions?
• Number of parameters?
• Sentences not seen in training?

p(start, w1, w2, . . . , wn, stop) =
n+1�

i=1

�(wi | wi�1)



mth Order Markov Models

bag of words entire historymth order Markov

0 m ∞

fewer parameters

stronger independence assumptions
richer expressive power

p(start, w1, w2, . . . , wn, stop) =
n+1�

i=1

�(wi | wi�m, . . . , wi�1)



Example

• Unigram model estimated on 2.8M words of American political 
blog text.

this trying our putting and funny
and among it herring it obama
but certainly foreign my
c on byron again but from i
i so and i chuck yeah the as but but republicans if this stay oh so 
or it mccain bush npr this with what and they right i while because 
obama



Example

• Bigram model estimated on 2.8M words of American political 
blog text.

the lack of the senator mccain hadn t keep this story backwards
while showering praise of the kind of gop weakness
it was mistaken for american economist anywhere in the white house 
press hounded the absence of those he s as a wide variety of this 
election day after the candidate b richardson was polled ri in 
hempstead moderated by the convention that he had zero wall street 
journal argues sounds like you may be the primary
but even close the bill told c e to take the obama on the public 
schools and romney
fred flinstone s see how a lick skillet road it s little sexist 
remarks



Example

• Trigram model estimated on 2.8M words of American political 
blog text.

as i can pin them all none of them want to bet that any of the 
might be
conservatism unleashed into the privacy rule book and when told 
about what paul
fans organized another massive fundraising initiative yesterday 
and i don t know what the rams supposedly want ooh
but she did but still victory dinner
alone among republicans there are probably best not all of the 
fundamentalist community
asked for an independent maverick now for crystallizing in one 
especially embarrassing



Example

• 5-gram model estimated on 2.8M words of American political 
blog text.

he realizes fully how shallow and insincere conservative behavior 
has been he realizes that there is little way to change the 
situation
this recent arianna huffington item about mccain issuing heartfelt 
denials of things that were actually true or for that matter about 
the shia sunni split and which side iran was on would get confused 
about this any more than someone with any knowledge of us politics 
would get confused about whether neo confederates were likely to be 
supporting the socialist workers party
at the end of the world and i m not especially discouraged now 
that newsweek shows obama leading by three now



Example

• 100-gram model estimated on 2.8M words of American 
political blog text.

and it would be the work of many hands to catalogue all the 
ridiculous pronouncements made by this man since his long train of 
predictions about the middle east has been gaudily disastrously 
stupefyingly misinformed just the buffoon it seems for the new york
times to award with a guest column for if you object to the nyt
rewarding failure in quite this way then you re intolerant 
according to the times editorial page editor andrew rosenthal
rosenthal doesn t seem to recognize that his choice of adjectives 
to describe kristol serious respected are in fact precisely what is 
at issue for those whom he dismisses as having a fear of opposing 
views
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(m+1)-Gram Models

Pros
• Easily understood linguistic 

formalism.
• Fully generative.
• Algorithms:
– calculate probability of a sequence
– choose a sequence from a set
– sample a sequence from the 

distribution
– training

Cons
• Obviously inaccurate linguistic 

formalism.
• As m grows, data sparseness 

becomes a problem.
– Smoothing is a black art.

• How to deal with unknown 
words?



(m+1)-Gram Models

Pros
• Easily understood linguistic 

formalism.
• Fully generative.
• Algorithms:
– calculate probability of a sequence
– choose a sequence from a set
– sample a sequence from the 

distribution
– training

Cons
• Obviously inaccurate linguistic 

formalism.
• As m grows, data sparseness 

becomes a problem.
– Smoothing is a black art.

• How to deal with unknown 
words?



Calculating the Probability of a Sequence

• Let n be the length of the sequence and m be the length of the 
history.

• For every consecutive (m+1) words wi … wi+m, look up 
p(wi+m | wi … wi+m-1).

• Look up p(stop | wn-m … wn).
• Multiply these quantities together.



Choosing a Sequence from a Set

• Calculate the probability of each sequence in the set.
• Choose the one that has the highest probability.



Sampling a Sequence from the Distribution

• Start with a start symbol.
• Repeat until you’ve generated a stop symbol:
– Select the distribution                                                given the latest 

history wi-m … wi-1.
– Sample a word from that distribution (e.g., using 
numpy.random.multinomial)  and write it down.

�(W | wi�m, . . . , wi�1)
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Training

• Maximum likelihood estimation by relative frequencies:

unigram

bigram

general

trigram

�̂(w) =
freq(w)
#words

�̂(w | w�) =
freq(w�w)
freq(w�)

�̂(w | w�w��) =
freq(w�w��w)
freq(w�w��)

�̂(w | h) =
freq(hw)
freq(h)



Scaling Up

• “Web-scale” models
–More data always seem to make language models more effective 

(Brants et al., 2007, inter alia)
• Efficient implementations
– Runtime:  MapReduce architectures (e.g., Lin & Dyer, 2010)
–Memory:  compression (e.g., Heafield, 2011)



Neural Language Models

• Convolutional:  treat words as vectors and map the history wi-m
… wi-1 (m vectors) to the vector γ, the distribution over the next 
word (Bengio et al., 2003)

• Recurrent:  condition on the whole history of n – 1 vectors 
(Mikolov et al., 2010)
– No longer “Markov”!

• Transformer:  encode position in the vectors, allowing for 
greater parallelization (Vaswani et al., 2017)



Sequence Models as Components

• Typically we care about a sequence together with something 
else.
– Analysis:  sequence in, predict “something else.”
– Generation:  “something else in,” sequence out.

• Sequence models are useful components in both scenarios.



Noisy Channel

true Y X

source

channel

decoding rule:



Sequence Model as Source
• speech recognition
• machine translation 
• optical character 

recognition
• spelling and 

punctuation 
correction

true Y X

source

channel

decoding rule:

desired output sequence observed
sequence



Sequence Model as Channel

• text categorization
• language identification
• information retrieval 

sentence compression
• question to search query

true Y X

source

channel

decoding rule:

desired output observed
sequence



Sequence Model as a Direct Model

• machine translation
• dialog
• summarization

X Y

decoding rule:

observed input
(not modeled!)

desired output

p(Y | X)



It’s Hard to Beat N-Grams!

• They are very fast to work with. They can fit data really well.
• In general, they didn’t go “out of date” until we could scale 

more complicated and expensive models up to very, very, very 
large amounts of data.

• Improvements for some specific problems follow from:
– task-specific knowledge
– domain knowledge (e.g., linguistics)



Class-Based Sequence Models

• From Brown et al. (1990):

• “cl” is a deterministic function from words to a smaller set of 
classes.
– Each word only gets one class; known in advance.
– Discovered from data using a clustering algorithm.

p(start, w1, w2, . . . , wn, stop) =
n+1Y

i=1

⌘(wi | cl(wi))⇥ �(cl(wi) | cl(wi�1))



start



start C53

…

one “next class” die per class:

……
history = start



start C53

…

one word die per class:

……

I

Each word appears on 
only one of the word dice.

class = C53
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Class-Based Sequence Models

• From Brown et al. (1990):

• Independence assumptions?
• Number of parameters?
• Generalization ability?

p(start, w1, w2, . . . , wnstop) =
n+1�

i=1

⇥(wi | cl(wi))� �(cl(wi) | cl(wi�1))



Lecture Outline

ü Markov models
2. Hidden Markov models
3. Viterbi algorithm
4. Other inference algorithms for HMMs
5. Learning algorithms for HMMs



Sequence Models (Video #3)
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Hidden Markov Model

• A model over sequences of symbols, but there is missing 
information associated with each symbol:  its “state.”
– Assume a finite set of possible states, Λ.

• A joint model over the observable symbols and their 
hidden/latent/unknown classes.

p(start, s1, w1, s2, w2, . . . , sn, wnstop) =
n+1�

i=1

⇥(wi | si)� �(si | si�1)



start C53

…

one “next class” die per class:

……
history = start



start C53

…

one word die per class:

……

I

The only change to the 
class-based model is that 
now, the different dice 
can share words!

class = C53
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Two Equivalent Stories

• First, as shown:  transition, emit, transition, emit, transition, 
emit.

• Second:
– Generate the sequence of transitions.  Essentially, a Markov model 

on classes.
– Stochastically replace each class with a word. 



mth Order Hidden Markov Models

• We can condition on a longer history of past states:

• Number of parameters? 
• Benefit:  longer “memory.”
• Today I will stick with first-order HMMs.

p(start, s1, w1, s2, w2, . . . , sn, wnstop) =
n+1�

i=1

⇥(wi | si)� �(si | si�m, . . . , si�1)





Uses of HMMs in NLP

• Part-of-speech tagging (Church, 1988; Brants, 2000)
• Named entity recognition (Bikel et al., 1999) and other information 

extraction tasks
• Text chunking and shallow parsing (Ramshaw and Marcus, 1995)
• Word alignment in parallel text (Vogel et al., 1996)

• Also popular in computational biology and central to speech recognition 
for many years.



Part of Speech Tagging

After paying the medical bills , Frances was nearly broke .
RB VBG DT JJ NNS ,     NNP VBZ RB JJ .

• Adverb (RB)
• Verb (VBG, VBZ, and others)
• Determiner (DT)
• Adjective (JJ)
• Noun (NN, NNS, NNP, and others)
• Punctuation (., ,, and others)



Named Entity Recognition

With Commander Chris Ferguson at the helm , 

Atlantis touched down at Kennedy Space Center .



Named Entity Recognition

With Commander Chris Ferguson at the helm , 

Atlantis touched down at Kennedy Space Center .

• What makes this hard?

B-person I-person I-personO O O O O

OOOOB-space-shuttle B-place I-place I-place



Word Alignment
Mr. President , Noah’s ark was filled not with production factors , but with living creatures.

NULL Noahs Arche war nicht voller Productionsfactoren , sondern Geschöpfe .
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Word Alignment
Mr. President , Noah’s ark was filled not with production factors , but with living creatures.

NULL Noahs Arche war nicht voller Productionsfactoren , sondern Geschöpfe .



Hidden Markov Model

• A model over sequences of symbols, but there is missing 
information associated with each symbol:  its “state.”
– Assume a finite set of possible states, Λ.

• A joint model over the observable symbols and their 
hidden/latent/unknown classes.

p(start, s1, w1, s2, w2, . . . , sn, wnstop) =
n+1�

i=1

⇥(wi | si)� �(si | si�1)



Lecture Outline

ü Markov models
ü Hidden Markov models
3. Viterbi algorithm
4. Other inference algorithms for HMMs
5. Learning algorithms for HMMs



How To Calculate …

Given the HMM and a sequence:
1. The most probable state sequence?
2. The probability of the word sequence?
3. The probability distribution over states, for each word?
4. Minimum risk sequence
Given states and sequences, or just sequences:
5. The parameters of the HMM (γ and η)?



Problem 1:  
Most Likely State Sequence

• Input:  HMM (γ and η) and symbol sequence w.
• Output:

• Statistics view:  maximum a posteriori inference
• Computational view:  discrete, combinatorial optimization    

arg max
s

p(s | w,�,⇥)



Example
I suspect the present forecast is pessimistic .

CD JJ DT JJ NN NNS JJ .

NN NN JJ NN VB VBZ

NNP VB NN RB VBD

PRP VBP NNP VB VBN

VBP VBP VBP

4 4 5 5 5 2 1 1

4,000 possible state sequences!



Naïve Solutions

• List all the possibilities in Λn.
– Correct.
– Inefficient.

• Work left to right and greedily pick the best si at each point, 
based on si-1 and wi.
– Not correct; solution may not be equal to:

– But fast!

arg max
s

p(s | w,�,⇥)



Interactions

• Each word’s label depends on the word, and 
nearby labels.

• But given adjacent labels, others do not matter.

I suspect the present forecast is pessimistic .

CD JJ DT JJ NN NNS JJ .

NN NN JJ NN VB VBZ

NNP VB NN RB VBD

PRP VBP NNP VB VBN

VBP VBP VBP

(arrows show most preferred label by each neighbor)



Base Case:  Last Label

start w1 w2 w3 … wn-1 wn stop

σ1

σ2

σ3 ✓
σ4

…
σ|Λ|

Of course, we do not actually know sn-1!

scoren(⇤) = �(stop | ⇤)� ⇥(wn | ⇤)� �(⇤ | sn�1)



Recurrence

• If I knew the score of every sequence s1 … sn-1, I could reason 
easily about sn.
– But my decision about sn would only depend on sn-1!

• So I really only need to know the score of the one best
sequence ending in each sn-1.

• Think of that as some “precalculation” that happens before I 
think about sn.



Recurrence

• Assume we have the scores for all prefixes of the current state.
– One score for each possible last-state of the prefix.

scoren(⇤) = �(stop | ⇤)� ⇥(wn | ⇤)�max
��

�(⇤ | ⇤⇥)� scoren�1(⇤⇥)

scoren�1(⇤) = ⇥(wn�1 | ⇤)�max
��

�(⇤ | ⇤⇥)� scoren�2(⇤⇥)

scoren�2(⇤) = ⇥(wn�2 | ⇤)�max
��

�(⇤ | ⇤⇥)� scoren�3(⇤⇥)

...
...

score1(⇤) = ⇥(w1 | ⇤)� �(⇤ | start)



Recurrence

• The recurrence “bottoms out” at start.
• This leads to a simple algorithm for calculating all the scores.

scoren(⇤) = �(stop | ⇤)� ⇥(wn | ⇤)�max
��

�(⇤ | ⇤⇥)� scoren�1(⇤⇥)

scoren�1(⇤) = ⇥(wn�1 | ⇤)�max
��

�(⇤ | ⇤⇥)� scoren�2(⇤⇥)

scoren�2(⇤) = ⇥(wn�2 | ⇤)�max
��

�(⇤ | ⇤⇥)� scoren�3(⇤⇥)

...
...

score1(⇤) = ⇥(w1 | ⇤)� �(⇤ | start)



Viterbi Algorithm (Scores Only)

• For every σ in Λ, let:

• For i = 2 to n – 1, for every σ in Λ:

• For every σ in Λ:

• Claim:

score1(⇤) = ⇥(w1 | ⇤)� �(⇤ | start)

scoren(⇤) = �(stop | ⇤)� ⇥(wn | ⇤)�max
��⇤�

�(⇤ | ⇤⇥)� scoren�1(⇤⇥)

scorei(⇤) = ⇥(wi | ⇤)�max
��⇤�

�(⇤ | ⇤⇥)� scorei�1(⇤⇥)

max
s

p(s,w | �,⇥) = max
���

scoren(�)



Exploiting Distributivity
max
�⇤�

scoren(⇤) = max
�⇤�

�(stop | ⇤)� ⇥(wn | ⇤)�max
��⇤�

�(⇤ | ⇤⇥)� scoren�1(⇤⇥)

= max
�⇤�

�(stop | ⇤)� ⇥(wn | ⇤)�max
��⇤�

�(⇤ | ⇤⇥)

�⇥(wn�1 | ⇤⇥)� max
���⇤�

�(⇤⇥ | ⇤⇥⇥)� scoren�2(⇤⇥⇥)

= max
�⇤�

�(stop | ⇤)� ⇥(wn | ⇤)�max
��⇤�

�(⇤ | ⇤⇥)

�⇥(wn�1 | ⇤⇥)� max
���⇤�

�(⇤⇥ | ⇤⇥⇥)

�⇥(wn�2 | ⇤⇥⇥)� max
����⇤�

�(⇤⇥⇥ | ⇤⇥⇥⇥)� scoren�3(⇤⇥⇥⇥)

= max
�,��,���,����

�(stop | ⇤)� ⇥(wn | ⇤)� �(⇤ | ⇤⇥)

�⇥(wn�1 | ⇤⇥)� �(⇤⇥ | ⇤⇥⇥)
�⇥(wn�2 | ⇤⇥⇥)� �(⇤⇥⇥ | ⇤⇥⇥⇥)� scoren�3(⇤⇥⇥⇥)

= max
s⇤�n

n+1�

i=1

�(si | si�1)� ⇥(wi | si)

max
s

p(s,w | �,⇥) = max
���

scoren(�)



I suspect the present forecast is pessimistic .

CD 3E-7

DT 3E-8

JJ 1E-9 1E-12 3E-12 7E-23

NN 4E-6 2E-10 1E-13 6E-13 4E-16

NNP 1E-5 4E-13

NNS 1E-21

PRP 4E-3

RB 2E-14

VB 6E-9 3E-15 2E-19

VBD 6E-18

VBN 4E-18

VBP 5E-7 4E-14 4E-15 9E-19

VBZ 6E-18

. 2E-24
1 2 3 4 5 6 7 8



Not Quite There

• As described, this algorithm only lets us calculate the 
probability of the best label sequence.

• It does not recover the best sequence!



Understanding the Scores

• scorei(σ) is the score of the best sequence labeling up through 
wi, ignoring what comes later.

• Similar trick as before:  if I know what si+1 is, then I can use the 
scores to choose si.

• Solution:  keep backpointers.

scorei(�) = max
s1,...,si�1

p(s1, w1, s2, w2, . . . , si = �, wi)
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Viterbi Algorithm:  
Scores & Backpointers

• For every σ in Λ, let:

• For i = 2 to n – 1, for every σ in Λ:

• For every σ in Λ:

score1(⇤) = ⇥(w1 | ⇤)� �(⇤ | start)

scoren(⇤) = �(stop | ⇤)� ⇥(wn | ⇤)�max
��⇤�

�(⇤ | ⇤⇥)� scoren�1(⇤⇥)

scorei(⇤) = ⇥(wi | ⇤)�max
��⇤�

�(⇤ | ⇤⇥)� scorei�1(⇤⇥)

bpi(⇥) = arg max
��⇤�

�(⇥ | ⇥⇥)� scorei�1(⇥⇥)

bpn(⇥) = arg max
��⇤�

�(⇥ | ⇥⇥)� scoren�1(⇥⇥)



Viterbi Algorithm:  Backtrace

• After calculating all score and bp values, start by choosing sn to 
maximize scoren.

• Then let sn-1 = bpn(sn).

• In general, si-1 = bpi(si).



Another Example
time flies like an arrow .

DT 10e-15 6e-21

IN 8e-13 1e-19

JJ 6e-14 2e-16

NN 2e-4 3e-16

NNP 1e-16

VB 2e-7 1e-14 1e-19

VBP 8e-16 4e-19

VBZ 2e-9 3e-18

. 1e-21 3e-17

, 4e-20 5e-22



Another Example
time flies like an arrow .

DT 10e-15 6e-21

IN 8e-13 1e-19

JJ 6e-14 2e-16

NN 2e-4 3e-16

NNP 1e-16

VB 2e-7 1e-14 1e-19

VBP 8e-16 4e-19

VBZ 2e-9 3e-18

. 1e-21 3e-17

, 4e-20 5e-22



General Idea:  Dynamic Programming

• Use a table data structure to store partial quantities that will 
be reused many times.
– Optimal substructure:  best solution to a problem relies on best 

solutions to its (similar-looking) subproblems.
– Overlapping subproblems:  reuse a small number of quantities many 

times

• Examples:  Viterbi, minimum Levenshtein distance, Dijkstra’s 
shortest path algorithm, …



A Different View:  Best Path



Asymptotic Analysis

Memory:
• The table is n ⨉ |Λ|.

Runtime:
• Each cell in the table requires O(|Λ|) operations.
• Total runtime is O(n|Λ|2).
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Lecture Outline

ü Markov models
ü Hidden Markov models
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4. Other inference algorithms for HMMs
5. Learning algorithms for HMMs



Viterbi Algorithm (Recap)

• For every σ in Λ, let:

• For i = 2 to n – 1, for every σ in Λ:

• For every σ in Λ:

score1(⇤) = ⇥(w1 | ⇤)� �(⇤ | start)

scoren(⇤) = �(stop | ⇤)� ⇥(wn | ⇤)�max
��⇤�

�(⇤ | ⇤⇥)� scoren�1(⇤⇥)

scorei(⇤) = ⇥(wi | ⇤)�max
��⇤�

�(⇤ | ⇤⇥)� scorei�1(⇤⇥)

bpi(⇥) = arg max
��⇤�

�(⇥ | ⇥⇥)� scorei�1(⇥⇥)

bpn(⇥) = arg max
��⇤�

�(⇥ | ⇥⇥)� scoren�1(⇥⇥)



Example
time flies like an arrow .

DT 10e-15 6e-21

IN 8e-13 1e-19

JJ 6e-14 2e-16

NN 2e-4 3e-16

NNP 1e-16
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VBP 8e-16 4e-19

VBZ 2e-9 3e-18

. 1e-21 3e-17

, 4e-20 5e-22
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IN 8e-13 1e-19

JJ 6e-14 2e-16

NN 2e-4 3e-16

NNP 1e-16

VB 2e-7 1e-14 1e-19

VBP 8e-16 4e-19
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. 1e-21 3e-17
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Lecture Outline

ü Markov models
ü Hidden Markov models
ü Viterbi algorithm
4. Other inference algorithms for HMMs
5. Learning algorithms for HMMs



How To Calculate …

Given the HMM and a sequence:
ü The most probable state sequence?
2. The probability of the word sequence?
3. The probability distribution over states, for each word?
4. Minimum risk sequence
Given states and sequences, or just states:
5. The parameters of the HMM (γ and η)?



Problem 2:  p(w | γ, η)  

• Why might we be interested in this quantity?
– Using an HMM as a language model, we might want to compare two 

or more sequences.
– Later, we will want to maximize this quantity with respect to the 

parameters γ and η (learning).



Maximizing and Summing

Most probable state sequence 
given words:

Combinatorial optimization 
problem, solvable in polynomial 
time.

Total probability of all state 
sequences, together with words:

max
s

p(s,w | �,⇥)
p(w | �,⇥)

=
�

s

p(s,w | �,⇥)



A Very Similar Trick

• The sum of all label-sequence probabilities breaks down into 
the sum over scores for different final symbols.

�

�⇤�

�

s1...sn�1

p(s1 . . . sn�1⇤,w | �,⇥)

⌅ ⇤⇥ ⇧
fn(�)

=
�

�⇤�

�(stop | ⇤)� ⇥(wn | ⇤)
�

�⇥⇤�

�

s1...sn�2

p(s1 . . . sn�2⇤
⇥, w1 . . . wn�1 | �,⇥)

⌅ ⇤⇥ ⇧
fn�1(�⇥)



A Very Similar Trick

• As before, there is a recurrence.
• Here, we exploit the fact that multiplication 

distributes over addition.

�

�⇤�

�

s1...sn�1

p(s1 . . . sn�1⇤,w | �,⇥)

⌅ ⇤⇥ ⇧
fn(�)

=
�

�⇤�

�(stop | ⇤)� ⇥(wn | ⇤)
�

�⇥⇤�

�

s1...sn�2

p(s1 . . . sn�2⇤
⇥, w1 . . . wn�1 | �,⇥)

⌅ ⇤⇥ ⇧
fn�1(�⇥)



Forward Algorithm

• For every σ in Λ, let:

• For i = 2 to n – 1, for every σ in Λ:

• For every σ in Λ:

fn(⇤) = �(stop | ⇤)� ⇥(wn | ⇤)�
�

��⇤�

�(⇤ | ⇤⇥)� fn�1(⇤⇥)

fi(⇤) = ⇥(wi | ⇤)�
�

��⇤�

�(⇤ | ⇤⇥)� fi�1(⇤⇥)

f1(⇤) = ⇥(w1 | ⇤)� �(⇤ | start)

p(w | �,⇥) =
�

���

fn(�)



A Different View:  Path Sum



A Different View:  Linear System

• |Λ| times n free variables, same number of equations.
• Can rewrite as a matrix inversion problem!

fn(⇤) = �(stop | ⇤)� ⇥(wn | ⇤)�
�

��⇤�

�(⇤ | ⇤⇥)� fn�1(⇤⇥)

fi(⇤) = ⇥(wi | ⇤)�
�

��⇤�

�(⇤ | ⇤⇥)� fi�1(⇤⇥)

f1(⇤) = ⇥(w1 | ⇤)� �(⇤ | start)



From Forward to Backward

• Forward algorithm:  precomputation of partial sums, from i = 
1 to n, each involving 
|Λ| quantities, each a sum over |Λ| combinations.
– Asymptotic analysis is the same as Viterbi.

• No need to start at the left and move right!
• Backward algorithm calculates partial sums from the right to 

the left.



Backward Algorithm

• For every σ in Λ, let:

• For i = n – 1 to 2, for every σ in Λ:

• For every σ in Λ:

bn(⇤) = �(stop | ⇤)� ⇥(wn | ⇤)

bi(⇤) = ⇥(wi | ⇤)�
�

��⇥�

�(⇤� | ⇤)� bi+1(⇤�)

p(w | �,⇥) =
�

���

b1(�)

b1(�) = �(� | start)⇥ ⌘(w1 | �)
X

�02⇤

�(�0 | �)⇥ b2(�
0)



Forward and Backward

• Two different ways to rearrange the sums of products of sums 
of products of sums of products.

• Different intermediate quantities.



Pop Quiz

• Might we have done the same thing with the Viterbi 
algorithm?

maximize and 
multiply 

operations

add and 
multiply 

operations
works left to right Viterbi Forward
works right to left ? Backward



Generalization:  Semirings

• Viterbi and Forward algorithms correspond to exactly the same 
calculations, except one maximizes and the other sums.

• One view:  they are the same abstract algorithm, instantiated 
in two different semirings.

• Informally, a semiring is a set of values and some operations 
that obey certain properties.



Semirings, More Formally

• A set of values, including a “zero” (additive identity and 
multiplicative annihilator) and a “one” (multiplicative identity).

• Two operations:  “plus” and “times.”
– “Plus” is associative and commutative.
– “Times” is associative.

• “Times” distributes over “plus.”
– This is what we have exploited to get efficient algorithms for 

maximizing and summing!



Semirings

Real Viterbi
set of values nonnegative reals nonnegative reals

“zero” 0 0
“one” 1 1
“plus” + max

“times” ⨉ ⨉



Some Other Semirings

• Boolean:  use to determine whether the HMM can produce the 
string at all.

• Counting:  use to determine how many valid labelings there are. 
– Could be less than |Λ|n, if some transition and/or emission probabilities 

are zero.
• Log-real:  use with log-probabilities to avoid underflow.
• K-best:  use to find the K best label sequences.
• Min-cost:  used with Levenshtein edit distance and Dijkstra’s 

algorithms.



How To Calculate …

Given the HMM and a sequence:
ü The most probable state sequence?
ü The probability of the word sequence?
3. The probability distribution over states, for each word?
4. Minimum risk sequence
Given states and sequences, or just states:
5. The parameters of the HMM (γ and η)?



Random Variables

• So far we’ve focused on reasoning about the whole sequence 
of states.

• Local reasoning was in service of:
– Finding the best s = s1 s2 … sn

– Finding the total probability of w, averaging over all possible values 
of s.

• It is helpful to use a graphical representation of all our random 
variables.



Graphical Model Representation

• Each node is a random variable taking some value.
• Incoming edges to a r.v. tell what other r.v.s it 

conditions on directly.

s1 s2 s3 sn

w1 w2 w3 wn

sn-1

wn-1

…

p(x) =
�

i

p(xi | parents(xi))



Graphical Model Representation

• Each node is a random variable taking some value.
• Incoming edges to a r.v. tell what other r.v.s it 

conditions on directly.

s1 s2 s3 sn

w1 w2 w3 wn

sn-1

wn-1

…

p(x) =
�

i

p(xi | parents(xi))

η

γ



Problem 1:  Most Likely s

• Sequence of words is observed, so we color those r.v.s 
gray.

• We want to assign values, collectively, to the states, so 
we color those red.

• Goal:  calculate the best value of p for any assignment 
to “red” r.v.s., respecting “gray” evidence r.v.s.

s1 s2 s3 sn

w1 w2 w3 wn

sn-1

wn-1

…



Problem 2:  Probability of w

• Sequence of words is observed, so we color those r.v.s gray.
• We want to sum over all settings of the state r.v.s, so we 

color them blue.
• Goal:  calculate the best value of p for any assignment to 

“red” r.v.s, respecting “gray” evidence r.v.s and summing 
over all possible assignments to “blue” r.v.s.
– There are no red r.v.s in this problem!

s1 s2 s3 sn

w1 w2 w3 wn

sn-1

wn-1

…



Problem 3:  A Single si

• Goal:  calculate the best value of p for any 
assignment to “red” r.v.s., respecting “gray” 
evidence r.v.s. and summing over all possible 
assignments to “blue” r.v.s.

s1 s2 s3 sn

w1 w2 w3 wn

sn-1

wn-1

…



Aside

• Probabilistic graphical models are an extremely useful 
framework for machine learning in NLP and other complex 
problems.

• HMMs are one kind of graphical model; there are many others 
you may have heard of.
– Bayesian networks
–Markov networks
– Factor graphs



Quantities We Need
s1 si-1 si sn

w1 wi-1 wi wn

si+1

wi+1

… …

p(w, si | �,⇥) =
�

s1...si�1

�

si+1...sn

p(s1 . . . si . . . sn,w | �,⇥)

=
�

s1...si�1

�

si+1...sn

p(s1 . . . si, w1 . . . wi | �,⇥)� p(si+1 . . . sn, wi+1 . . . wn | si,�,⇥)

=
�

s1...si�1

p(s1 . . . si, w1 . . . wi | �,⇥)
�

si+1...sn

p(si+1 . . . sn, wi+1 . . . wn | si,�,⇥)

= fi(si)� bi(si)



Quantities We Need
s1 si-1 si sn

w1 wi-1 wi wn

si+1

wi+1

… …

p(w, si | �,⇥) =
�

s1...si�1

�

si+1...sn

p(s1 . . . si . . . sn,w | �,⇥)

=
�

s1...si�1

�

si+1...sn

p(s1 . . . si, w1 . . . wi | �,⇥)� p(si+1 . . . sn, wi+1 . . . wn | si,�,⇥)

=
�

s1...si�1

p(s1 . . . si, w1 . . . wi | �,⇥)
�

si+1...sn

p(si+1 . . . sn, wi+1 . . . wn | si,�,⇥)

= fi(si)� bi(si)

fi bi



Distribution over States for wi

• Run forward and backward algorithms to produce fi and bi.
– If we only care about one state, we can stop at i.

• For each σ in Λ:

• Note that the denominator is p(w | γ, η).

p(Si = �,w | �,⇥) = fi(�)� bi(�)

p(Si = � | w,�,⇥) =
p(Si = �,w | �,⇥)�

��⇥�

p(Si = ��,w | �,⇥) “posterior”



How To Calculate …

Given the HMM and a sequence:
ü The most probable state sequence?
ü The probability of the word sequence?
ü The probability distribution over states, for each word?
4. Minimum risk sequence
Given states and sequences, or just states:
5. The parameters of the HMM (γ and η)?



Building on Per-Word Posteriors

• Total runtime for forward and backward 
algorithms is O(n|Λ|2).

• Once you have all f and b quantities, you can 
calculate the posteriors for every word’s label.

• This is sometimes called posterior decoding.

ŝi � arg max
�⇥�

p(Si = � | w,�,⇥)⇤ ⇥� ⌅
fi(�)�bi(�)



Posterior Decoding

• This approach to decoding exploits the full distribution over 
sequences to choose each word’s label.  For each i:

• Compare with MAP decoding (sometimes called “Viterbi” 
decoding after the algorithm that accomplishes it:

ŝi � arg max
�⇥�

p(Si = � | w,�,⇥)⇤ ⇥� ⌅
fi(�)�bi(�)

ŝ � arg max
s

p(s | w,�,⇥)



Which One to Use?

• They will not, in general, give the same label sequence.
• Sometimes one works better, sometimes the other.
• Posterior decoding can give a label sequence that itself gets 

zero probability!
• There is a way to unify both.



Cost

• Imagine that, once we construct our HMM, we are going to play a 
game.

• The HMM will be given a new sequence w.
• We must label w using the HMM.
• Our label sequence s will be compared to the true one, s*.
• Depending on how badly we do, we will pay a fine.
• We want to minimize the cost.
• Without seeing w, our strategy will depend on how the cost is 

defined!



All-or-Nothing Cost

• Suppose we will pay 1€ if we get the sequence wrong, i.e., 
if s ≠ s*.

• Otherwise we pay nothing.

• What should we do?
• If we trust our distribution p(w, s |γ, η), then we should use 

the most probable whole-sequence s.
– Viterbi



Hamming Cost

• Alternately, suppose we pay 0.10 € for every word that we label 
incorrectly. 

• This is more forgiving, and suggests that we focus on reasoning 
about each word without worrying about the coherence of the 
whole sequence.

• What should we do?
• If we trust our distribution p(w, s |γ, η), then we should use the 

most label for each word.
– Posterior decoding



Minimum Bayes Risk

• The assumption that we have a good estimated distribution 
p(w, s |γ, η) leads naturally to the following decoding rule:

• Pick the s that is least offensive, in expectation.
–With all-or-nothing cost, we get MAP/Viterbi decoding.
–With Hamming cost, we get posterior decoding.

ŝ � arg min
s�

Ep(s|w,�,⇥)[cost(s�, s)]



Word-Wise Costs

• If the cost function is a sum of local costs, we can exploit 
linearity of expectation:

• For the Hamming cost, we can make independent decisions 
once we know the expected local costs.

Ep(s|w,�,⇥)[cost(s�, s)] = Ep(s|w,�,⇥)

�
⇤

i

costi(s�
i, si)

⇥

=
⇤

i

Ep(s|w,�,⇥)[costi(s�
i, si)]



Manipulating the Cost Function

• Suppose we have an HMM for named entity recognition.
– Tags are B, I, and O.

• If we really care about precision (finding only correct named 
entities, at risk of missing some), what cost function makes 
sense?

• What if we really care about recall?



One More Cost Function

• BIO tagging again.
• Suppose we assign different costs to recall, 

precision, and boundary errors.

correct: B-B B-I B-O I-B I-I I-O O-B O-O

B-B split prec. split prec. prec.

B-I merge bound. merge bound. bound. bound.

B-O recall recall recall bound. recall

I-B split prec. split prec. prec.

I-I merge bound. merge bound. bound. bound.

I-O recall recall recall bound. recall

O-B prec. prec. bound. prec. prec.

O-O recall recall recall recall

hyp.:



A More Complex Posterior

• Use the same trick as before, but pair up slightly 
different forward and backward probabilities:

p(sisi+1 | w,�,⇥)

p(sisi+1,w | �,⇥) =
�

s1...si�1

�

si+2...sn

p(s1 . . . sisi+1 . . . sn,w | �,⇥)

=
�

s1...si�1

p(s1 . . . si, w1 . . . wi | �,⇥)� �(si+1 | si)� ⇥(wi+1 | si+1)

�
�

si+2...sn

p(si+2 . . . sn, wi+1 . . . wn | si+1,�,⇥)

= fi(si)� �(si+1 | si)� ⇥(wi+1 | si+1)� bi+1(si+1)



Pairwise Posterior
s1 si-1 si sn

w1 wi-1 wi wn

si+1

wi+1

… …

fi bi+1

p(sisi+1,w | �,⇥) =
�

s1...si�1

�

si+2...sn

p(s1 . . . sisi+1 . . . sn,w | �,⇥)

=
�

s1...si�1

p(s1 . . . si, w1 . . . wi | �,⇥)� �(si+1 | si)� ⇥(wi+1 | si+1)

�
�

si+2...sn

p(si+2 . . . sn, wi+1 . . . wn | si+1,�,⇥)

= fi(si)� �(si+1 | si)� ⇥(wi+1 | si+1)� bi+1(si+1)



A Problem

• We can label each adjacent pair of words, but nothing 
guarantees that our labels will be consistent with each other. 



Pairwise Minimum Bayes Risk

• First, run forward and backward.
• Use posteriors to score all possible label-pairs for all adjacent 

words with expected cost.
• Use a Viterbi-like algorithm to find the best-scoring, consistent 

labeling.
– Use min-cost semiring.
– Algorithm scores label pairs by local cost times posterior probability 

(local risk).



Pop Quiz

Can you think of a cost function such that minimum Bayes risk 
decoding can’t be done in polynomial time?



Quiz Answer

• Every word must get a different label.
– Equivalently, we can use each label at most once.

• Each label must be used exactly once.
– Hamiltonian path.
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How To Calculate …

Given the HMM and a sequence:
ü The most probable state sequence?
ü The probability of the word sequence?
ü The probability distribution over states, for each word?
ü Minimum risk sequence
Given states and sequences, or just states:
5. The parameters of the HMM (γ and η)?



Lecture Outline

ü Markov models
ü Hidden Markov models
ü Viterbi algorithm
ü Other inference algorithms for HMMs
5. Learning algorithms for HMMs



Learning HMMs

• Typical starting point:  we have some data to learn from, and 
we know how many states the HMM has.
–We may also have constraints on the states, but assume for now that 

we do not.

• Two main possibilities:
– Supervised:  we have complete data:  example pairs (w, s).
– Unsupervised:  we only have examples of w.



Supervised Learning of HMMs

• The building blocks of HMMs are multinomial distributions
– γ:  distribution over next state given current state
– η:  distribution over word given current state

• Statistics offers us the maximum likelihood principle:

⇥�̂, ⇥̂⇤ � arg max
��,⇥⇥

p(s,w | �,⇥)



Separability of Learning

• With observed data, each state’s transition and emission 
distributions can be estimated separately
– from each other
– from those of all other states

• The result is that learning is very simple and fast.



MLE by Relative Frequencies

• (I’m skipping the derivation; it involves log likelihood, a 
Lagrangian multiplier, and some differential calculus.)

�̂(w | ⇥) =
freq

�
⇥
w

⇥

freq(⇥)

�̂(� | �0) =
freq(�0�)

freq(�)



Graphical Models View

s1 s2 s3 sn

w1 w2 w3 wn

sn-1

wn-1

…

γ

η



Learning with a Prior

• The techniques described so far are examples of maximum 
likelihood estimation (MLE).

• MLE works well when there is a lot of data.
–We never have as much as we’d like.

• Learning with a prior is a way to inject some background 
knowledge and avoid overfitting to the training data. 

• MAP learning:

⇤�̂, ⇥̂⌅ ⇥ arg max
��,⇥⇥

p(s,w | �,⇥)� p(�,⇥)
this part is new



Priors for HMMs

• HMMs are built out of multinomial distributions. 
• An easy prior for the multinomial distribution is the Dirichlet 

distribution.
– Simplest version:  symmetric, non-sparse Dirichlet.

• In practice:
– Choose αt > 1 for transitions and αe > 1 for emissions.
– Before normalizing frequencies, add αt – 1 to transition counts and αe

– 1 to emission counts.
– Exactly the same as additive smoothing in language models.



Graphical Models View

s1 s2 s3 sn

w1 w2 w3 wn

sn-1

wn-1

…

γ

η αe

αt



Unsupervised Learning of HMMs

• Historically (going back to the 1960s), we do not observe the 
states, even during training time.
– Hence the name:  hidden Markov models.

• The earliest instance of a parameter estimation problem where 
the data are incomplete.

• How do we learn only from w?



We Already Have All The Tools!

• Statistics:  maximum likelihood estimation.
– Counting events and normalizing the counts.

• Computation:  inference about posteriors.
– Forward and backward algorithms.



Graphical Models View

s1 s2 s3 sn

w1 w2 w3 wn

sn-1

wn-1

…

γ

η

states are now hidden!



Mixed Inference

• Mixed inference problems – where we want to sum out some 
random variables while getting values for others – are hard in 
general.

• Indeed, finding the MLE is an NP-hard problem!
• Optimization view:  we are optimizing a non-convex function 

(of the parameters).



High-Level View of EM

• EM stands for “expectation maximization.”
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E step:  infer posterior 
distribution over missing 
data.

M step:  maximum 
likelihood estimation with 
soft values for missing 
data.



Procedural View of EM

• Begin with an initial estimate of the parameters of the HMM (γ
and η).

• Iterate:
– E step:  calculate probability of each possible transition and each 

possible emission at each position.
–M step:  re-estimate parameters to maximize likelihood of “complete” 

data.



E Step

• Calculate p(s | w, γ, η) for each s and count each s proportional 
to its probability.

or
• Calculate p(si | w, γ, η) for each i, and count each emission of 

wi from si proportional to its probability.
• Calculate p(si si+1 | w, γ, η) for each i, and count each transition 

from si to si+1 proportional to its probability.



E Step:  Per-Word and Pairwise Posteriors

• Given w and current parameters, run forward and backward 
algorithms to obtain, for each i, the posteriors:
– p(si | w, γ, η) 
– p(si si+1 | w, γ, η) 

• Think of these as soft or fractional counts of transition and 
emission events.



Soft Counts from Posteriors
⌅freq(⇤⇤�) =

⇤

i

p(Si = ⇤, Si+1 = ⇤� | w,�,⇥)

=
⇤

i

fi(⇤)� �(⇤� | ⇤)� ⇥(wi+1 | ⇤�)� bi(⇤�)

⌅freq
�

⇤
w

⇥
=

⇤

i:wi=w

p(Si = ⇤ | w,�,⇥)

=
⇤

i:wi=w

fi(⇤)� bi(⇤)

⌅freq(⇤) =
⇤

i

p(Si = ⇤ | w,�,⇥)

=
⇤

i

p(Si = ⇤ | w,�,⇥)



Procedural View of EM

• Begin with an initial estimate of the parameters of the HMM (γ
and η).

• Iterate:
– E step:  calculate probability of each possible transition and each 

possible emission at each position.
–M step:  re-estimate parameters to maximize likelihood of “complete” 

data.



M Step:  MLE by Relative Frequencies

• When we observed all the data, we used hard counts:

• Now we do the same with soft counts:

�̂(⇥ | ⇥�) =
freq(⇥⇥�)
freq(⇥�)

�̂(w | ⇥) =
freq

�
⇥
w

⇥

freq(⇥)

�̂(⇤ | ⇤�) =
⇤freq(⇤�⇤)
⇤freq(⇤�)

⇥̂(w | ⇤) =

⇤freq
�

⇤
w

⇥

⇤freq(⇤)



EM:  Assurances

• Each iteration of EM will give us an estimate with a better 
likelihood than the last.

• Eventually we will converge to a local optimum (or saddle 
point).
–We usually do not worry about saddle points.
–Where you end up depends on where you start.



The Importance of Initialization



“Hard” EM

• Instead of using forward-backward to get fractional counts, we 
can use Viterbi to get hard counts.

• This equates to:
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“Hard” EM

• Can be understood as coordinate ascent on this maximization 
problem:

• Some people prefer this.
– Faster to converge (but to a different solution).
– Viterbi algorithm instead of forward-backward.
–Maybe more brittle.

max
�,⇥,s

p(s,w | �,⇥)



Terminology

• Expectation-maximization (EM) is a very general technique, not 
just for HMMs.
– Applicable to any generative model!
– You may have seen it for mixtures of Gaussians or other kinds of 

clustering.
– K-means clustering is a kind of hard EM.

• Sometimes the HMM version is called 
Baum-Welch training or forward-backward training.



HMMS AND 
WEIGHTED FINITE-STATE MACHINES



Finite-State Machines

From formal language theory and theory of computation:
• Finite set of states.
• Set of allowed transitions between states.
• Nondeterministic walk among states.
• Each state (alternately, each transition) generates a symbol.



HMMs are Probabilistic FSAs

Go from “nondeterministic” to “probabilistic.”
• Put a probability distribution on the transitions out of each 

state.
• Put a probability distribution on the emissions from each state.



Powerful Generalization

• If the finite-state machine reads one sequence and “transcribes” it 
into another sequence, we have a finite-state transducer.
– Sometimes:  “read one tape and write one tape.”

• We can make these probabilistic as well, in a lot of different ways.
• Allows composition of stochastic relations, or chaining together of 

string-to-string transformations.
• Algorithms for inference and learning are similar to what we have 

seen.



Examples of Composed FSTs

• Speech recognition:  
Acoustic signal → pronounced phonemes → canonicalized 
words.

• Translation:  
Words in Czech → morphemes in Czech → morphemes in 
Slovak → words in Slovak



More Advanced Topics

• Feature-based parameterizations of HMMs and FSTs
– Representation learning (spectral, neural, ...)

• Discriminative versions of HMMs (e.g., CRFs and max-margin Markov networks)
• Weakening independence assumptions (e.g., semi-HMMs)
• Method of moments estimation (“spectral”)
• Generalizing HMMs and FSTs to probabilistic and weighted context-free grammars 

(and beyond) to model long-distance interactions and reordering.
• Bayesian inference and learning, including nonparametric priors (e.g., the “infinite” 

HMM)



What about Neural Networks?

• Intuitively, neural networks for sequences “can do things” (i.e., 
represent functions) that finite-state models cannot; but how 
do we characterize those differences?

• Rational recurrences:  neural networks that are also weighted 
finite state machines (Peng, Schwartz, Thomson, and Smith, 
EMNLP 2018)
– For more theoretical findings, see Merrill, Weiss, Schwartz, Goldberg, 

Smith, and Yahav, ACL 2020.



Lecture Outline

ü Markov models
ü Hidden Markov models
ü Viterbi algorithm
ü Other inference algorithms for HMMs
ü Learning algorithms for HMMs



Thanks!


