
Reinforcement Learning

Lisbon Machine Learning School 2020

Stefan Riezler

Computational Linguistics & IWR
Heidelberg University, Germany

riezler@cl.uni-heidelberg.de

Overview

Overview

I Formalizing the reinforcement learning problem: Markov
Decision Processes (MDPs)

I Dynamic programming techniques for policy evaluation and
policy optimization

I Sampling-based techniques: Monte-Carlo methods,
Temporal-Difference learning, Q-learning

I Policy-gradient methods: Score function gradient
estimators, actor-critic methods

I Seq2seq reinforcement learning: Bandit structured
prediction, actor-critic neural seq2seq learning

I Off-policy/counterfactual seq2seq reinforcement learning

I Seq2seq reinforcement learning from human feedback

Overview

Overview

I Formalizing the reinforcement learning problem: Markov
Decision Processes (MDPs)

I Dynamic programming techniques for policy evaluation and
policy optimization

I Sampling-based techniques: Monte-Carlo methods,
Temporal-Difference learning, Q-learning

I Policy-gradient methods: Score function gradient
estimators, actor-critic methods

I Seq2seq reinforcement learning: Bandit structured
prediction, actor-critic neural seq2seq learning

I Off-policy/counterfactual seq2seq reinforcement learning

I Seq2seq reinforcement learning from human feedback

Overview

Overview

I Formalizing the reinforcement learning problem: Markov
Decision Processes (MDPs)

I Dynamic programming techniques for policy evaluation and
policy optimization

I Sampling-based techniques: Monte-Carlo methods,
Temporal-Difference learning, Q-learning

I Policy-gradient methods: Score function gradient
estimators, actor-critic methods

I Seq2seq reinforcement learning: Bandit structured
prediction, actor-critic neural seq2seq learning

I Off-policy/counterfactual seq2seq reinforcement learning

I Seq2seq reinforcement learning from human feedback

Overview

Overview

I Formalizing the reinforcement learning problem: Markov
Decision Processes (MDPs)

I Dynamic programming techniques for policy evaluation and
policy optimization

I Sampling-based techniques: Monte-Carlo methods,
Temporal-Difference learning, Q-learning

I Policy-gradient methods: Score function gradient
estimators, actor-critic methods

I Seq2seq reinforcement learning: Bandit structured
prediction, actor-critic neural seq2seq learning

I Off-policy/counterfactual seq2seq reinforcement learning

I Seq2seq reinforcement learning from human feedback

Overview

Overview

I Formalizing the reinforcement learning problem: Markov
Decision Processes (MDPs)

I Dynamic programming techniques for policy evaluation and
policy optimization

I Sampling-based techniques: Monte-Carlo methods,
Temporal-Difference learning, Q-learning

I Policy-gradient methods: Score function gradient
estimators, actor-critic methods

I Seq2seq reinforcement learning: Bandit structured
prediction, actor-critic neural seq2seq learning

I Off-policy/counterfactual seq2seq reinforcement learning

I Seq2seq reinforcement learning from human feedback

Overview

Overview

I Formalizing the reinforcement learning problem: Markov
Decision Processes (MDPs)

I Dynamic programming techniques for policy evaluation and
policy optimization

I Sampling-based techniques: Monte-Carlo methods,
Temporal-Difference learning, Q-learning

I Policy-gradient methods: Score function gradient
estimators, actor-critic methods

I Seq2seq reinforcement learning: Bandit structured
prediction, actor-critic neural seq2seq learning

I Off-policy/counterfactual seq2seq reinforcement learning

I Seq2seq reinforcement learning from human feedback

Overview

Overview

I Formalizing the reinforcement learning problem: Markov
Decision Processes (MDPs)

I Dynamic programming techniques for policy evaluation and
policy optimization

I Sampling-based techniques: Monte-Carlo methods,
Temporal-Difference learning, Q-learning

I Policy-gradient methods: Score function gradient
estimators, actor-critic methods

I Seq2seq reinforcement learning: Bandit structured
prediction, actor-critic neural seq2seq learning

I Off-policy/counterfactual seq2seq reinforcement learning

I Seq2seq reinforcement learning from human feedback

Overview

Textbooks

I Richard S. Sutton and Andrew G. Barto (2018, 2nd edition):
Reinforcement Learning: An Introduction. MIT Press.
I http://incompleteideas.net/sutton/book/

the-book-2nd.html

I Csaba Szepesvári (2010). Algorithms for Reinforcement
Learning. Morgan & Claypool.
I https://sites.ualberta.ca/~szepesva/RLBook.html

I Dimitri Bertsekas and John Tsitsiklis (1996). Neuro-Dynamic
Programming. Athena Scientific.
I = another name for deep reinforcement learning, contains a lot

of proofs, analog version can be ordered at
http://www.athenasc.com/ndpbook.html

http://incompleteideas.net/sutton/book/the-book-2nd.html
http://incompleteideas.net/sutton/book/the-book-2nd.html
https://sites.ualberta.ca/~szepesva/RLBook.html
http://www.athenasc.com/ndpbook.html

Introduction

Reinforcement Learning (RL) Philosopy

I Hedoninistic learning system that wants something, and
adapts its behavior in order to maximize a special signal or
reward from its environment.

I Interactive learning by trial and error, using consequences of
own actions in uncharted territory to learn to maximize
expected reward.

I Weak supervision signal since no gold standard examples from
expert are available.

Introduction

Reinforcement Learning Schema

I RL as Google DeepMind would like to see it (image from
David Silver):

Introduction

Reinforcement Learning Schema

I A real-world example: Interactive Machine Translation

I action = predicting a target word
I reward = per-sentence translation quality
I state = source sentence and target history

Introduction

Reinforcement Learning Schema

Agent/system and environment/user interact

I at each of a sequence of time steps t = 0, 1, 2, . . .,

I where agent receives a state representation St ,

I on which basis it selects an action At ,

I and as a consequence, it receives a reward Rt+1,

I and finds itself in a new state St+1.

Goal of RL: Maximize the total amount of reward an agent
receives in such interactions in the long run.

Introduction

Reinforcement Learning Schema

Agent/system and environment/user interact

I at each of a sequence of time steps t = 0, 1, 2, . . .,

I where agent receives a state representation St ,

I on which basis it selects an action At ,

I and as a consequence, it receives a reward Rt+1,

I and finds itself in a new state St+1.

Goal of RL: Maximize the total amount of reward an agent
receives in such interactions in the long run.

Markov Decision Processes

Formalizing User/Environment: Markov
Decision Processes (MDPs)

A Markov decision process is a tuple 〈S,A,P,R〉 where

I S is a set of states,

I A is a finite set of actions,

I P is a state transition probability matrix s.t.
Pa

ss′ = P[St+1 = s ′|St = s,At = a],

I R is a reward function s.t. Ra
s = E[Rt+1|St = s,At = a].

Markov Decision Processes

Dynamics of MDPs

One-step dynamics of the environment under the Markov property
is completely specified by probability distribution over pairs of next
state and reward s ′, r , given state and action s, a:

I p(s ′, r |s, a) = P[St+1 = s ′,Rt+1 = r |St = s,At = a].

Exercise: Specify Pa
ss′ and Ra

s in terms of p(s ′, r |s, a).
Pa

ss′ = p(s ′|s, a) =
∑

r∈R p(s ′, r |s, a),
Ra

s =
∑

r∈R r
∑

s′∈S p(s ′, r |s, a).

Markov Decision Processes

Dynamics of MDPs

One-step dynamics of the environment under the Markov property
is completely specified by probability distribution over pairs of next
state and reward s ′, r , given state and action s, a:

I p(s ′, r |s, a) = P[St+1 = s ′,Rt+1 = r |St = s,At = a].

Exercise: Specify Pa
ss′ and Ra

s in terms of p(s ′, r |s, a).

Pa
ss′ = p(s ′|s, a) =

∑
r∈R p(s ′, r |s, a),

Ra
s =

∑
r∈R r

∑
s′∈S p(s ′, r |s, a).

Markov Decision Processes

Dynamics of MDPs

One-step dynamics of the environment under the Markov property
is completely specified by probability distribution over pairs of next
state and reward s ′, r , given state and action s, a:

I p(s ′, r |s, a) = P[St+1 = s ′,Rt+1 = r |St = s,At = a].

Exercise: Specify Pa
ss′ and Ra

s in terms of p(s ′, r |s, a).
Pa

ss′ = p(s ′|s, a) =
∑

r∈R p(s ′, r |s, a),

Ra
s =

∑
r∈R r

∑
s′∈S p(s ′, r |s, a).

Markov Decision Processes

Dynamics of MDPs

One-step dynamics of the environment under the Markov property
is completely specified by probability distribution over pairs of next
state and reward s ′, r , given state and action s, a:

I p(s ′, r |s, a) = P[St+1 = s ′,Rt+1 = r |St = s,At = a].

Exercise: Specify Pa
ss′ and Ra

s in terms of p(s ′, r |s, a).
Pa

ss′ = p(s ′|s, a) =
∑

r∈R p(s ′, r |s, a),
Ra

s =
∑

r∈R r
∑

s′∈S p(s ′, r |s, a).

Markov Decision Processes

Formalizing Agent/System: Policies

A stochastic policy is a distribution over actions given states s.t.

I π(a|s) = P[At = a|St = s].

I A policy completely specifies the behavior of an agent/system.

I Policies are parameterized πθ, e.g. by a linear model or a
neural nework - we use π to denote πθ if unambiguous.

I Deterministic policies a = π(s) also possible.

Dynamic Programming

Policy Evaluation and Policy Optimization

Two central tasks in RL:

I Policy evaluation (a.k.a. prediction): Evaluate the
expected reward for a given policy.

I Policy optimization (a.k.a. learning/control): Find the
optimal policy / optimize a parametric policy under the
expected reward criterion.

Dynamic Programming

Return and Value Functions

I The total discounted return from time-step t for discount
γ ∈ [0, 1] is
I Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =

∑∞
k=0 γ

k Rt+k+1.

I The action-value function qπ(s, a) of an MDP is the
expected return starting from state s, taking action a, and
following policy π s.t.
I qπ(s, a) = Eπ[Gt |St = s,At = a].

I The state-value function vπ(s) of an MDP is the expected
return starting from state s and following policy π s.t.
I vπ(s) = Eπ[Gt |St = s] = Ea∼π[qπ(s, a)].

Dynamic Programming

Return and Value Functions

I The total discounted return from time-step t for discount
γ ∈ [0, 1] is
I Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =

∑∞
k=0 γ

k Rt+k+1.

I The action-value function qπ(s, a) of an MDP is the
expected return starting from state s, taking action a, and
following policy π s.t.
I qπ(s, a) = Eπ[Gt |St = s,At = a].

I The state-value function vπ(s) of an MDP is the expected
return starting from state s and following policy π s.t.
I vπ(s) = Eπ[Gt |St = s] = Ea∼π[qπ(s, a)].

Dynamic Programming

Return and Value Functions

I The total discounted return from time-step t for discount
γ ∈ [0, 1] is
I Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =

∑∞
k=0 γ

k Rt+k+1.

I The action-value function qπ(s, a) of an MDP is the
expected return starting from state s, taking action a, and
following policy π s.t.
I qπ(s, a) = Eπ[Gt |St = s,At = a].

I The state-value function vπ(s) of an MDP is the expected
return starting from state s and following policy π s.t.
I vπ(s) = Eπ[Gt |St = s] = Ea∼π[qπ(s, a)].

Dynamic Programming

Bellman Expectation Equation

The state-value function can be decomposed into immediate
reward plus discounted value of successor state s.t.

vπ(s) = Eπ[Rt+1 + γvπ(St+1)|St = s]

=
∑
a∈A

π(a|s)

(
Ra

s + γ
∑
s′∈S
Pa

ss′vπ(s ′)

)
.

In matrix notation:

vπ = Rπ + γPπvπ where Rπ =
∑
a∈A

π(a|s)Ra
s ,Pπ =

∑
a∈A

π(a|s)Pa
ss′ .

v(1)
...

v(n)

 =

R1
...
Rn

+ γ

P11 . . . P1n
...
Pn1 . . . Pnn


v(1)

...
v(n)



Dynamic Programming

Bellman Expectation Equation

The state-value function can be decomposed into immediate
reward plus discounted value of successor state s.t.

vπ(s) = Eπ[Rt+1 + γvπ(St+1)|St = s]

=
∑
a∈A

π(a|s)

(
Ra

s + γ
∑
s′∈S
Pa

ss′vπ(s ′)

)
.

In matrix notation:

vπ = Rπ + γPπvπ where Rπ =
∑
a∈A

π(a|s)Ra
s ,Pπ =

∑
a∈A

π(a|s)Pa
ss′ .

v(1)
...

v(n)

 =

R1
...
Rn

+ γ

P11 . . . P1n
...
Pn1 . . . Pnn


v(1)

...
v(n)



Dynamic Programming

Policy Evaluation by Linear Programming

The value of vπ can be found directly by solving the linear
equations of the Bellman Expectation Equation:

I Solving linear equations:

vπ = (I− γPπ)−1Rπ

I Only applicable to small MDPs.

Exercise: Derive solution vπ from Bellman Expectation Equation.

vπ = Rπ + γPπvπ

(I− γPπ)vπ = Rπ

vπ = (I− γPπ)−1Rπ

Dynamic Programming

Policy Evaluation by Linear Programming

The value of vπ can be found directly by solving the linear
equations of the Bellman Expectation Equation:

I Solving linear equations:

vπ = (I− γPπ)−1Rπ

I Only applicable to small MDPs.

Exercise: Derive solution vπ from Bellman Expectation Equation.

vπ = Rπ + γPπvπ

(I− γPπ)vπ = Rπ

vπ = (I− γPπ)−1Rπ

Dynamic Programming

Policy Evaluation by Linear Programming

The value of vπ can be found directly by solving the linear
equations of the Bellman Expectation Equation:

I Solving linear equations:

vπ = (I− γPπ)−1Rπ

I Only applicable to small MDPs.

Exercise: Derive solution vπ from Bellman Expectation Equation.

vπ = Rπ + γPπvπ

(I− γPπ)vπ = Rπ

vπ = (I− γPπ)−1Rπ

Dynamic Programming

Policy Evaluation by Linear Programming

The value of vπ can be found directly by solving the linear
equations of the Bellman Expectation Equation:

I Solving linear equations:

vπ = (I− γPπ)−1Rπ

I Only applicable to small MDPs.

Exercise: Derive solution vπ from Bellman Expectation Equation.

vπ = Rπ + γPπvπ

(I− γPπ)vπ = Rπ

vπ = (I− γPπ)−1Rπ

Dynamic Programming

Policy Evaluation by Dynamic Programming
(DP)

Value of vπ can also be found by iterative application of Bellman
Expectation Equation:

I Iterative policy evaluation:

vk+1 = Rπ + γPπvk .

I Performs dynamic programming by recursive decomposition
of Bellman equation.

I Can be parallelized (or backed up asynchronously), thus
applicable to large MDPs.

I Converges to vπ.

Dynamic Programming

Policy Evaluation by Dynamic Programming
(DP)

Value of vπ can also be found by iterative application of Bellman
Expectation Equation:

I Iterative policy evaluation:

vk+1 = Rπ + γPπvk .

I Performs dynamic programming by recursive decomposition
of Bellman equation.

I Can be parallelized (or backed up asynchronously), thus
applicable to large MDPs.

I Converges to vπ.

Dynamic Programming

Policy Optimization using Bellman Optimality
Equation

An optimal policy π∗ can be found by maximizing over the optimal
action-value function q∗(s, a) = maxπ qπ(s, a) s.t.

π∗(s) = argmax
a

q∗(s, a).

The optimal action-value function can be recursively decomposed
by the Bellman Optimality Equation:

q∗(s, a) = Eπ∗ [Rt+1 + γmax
a′

q∗(St+1, a
′)|St = s,At = a]

= Ra
s + γ

∑
s′∈S
Pa

ss′ max
a′

q∗(s ′, a′).

Dynamic Programming

Policy Optimization using Bellman Optimality
Equation

An optimal policy π∗ can be found by maximizing over the optimal
action-value function q∗(s, a) = maxπ qπ(s, a) s.t.

π∗(s) = argmax
a

q∗(s, a).

The optimal action-value function can be recursively decomposed
by the Bellman Optimality Equation:

q∗(s, a) = Eπ∗ [Rt+1 + γmax
a′

q∗(St+1, a
′)|St = s,At = a]

= Ra
s + γ

∑
s′∈S
Pa

ss′ max
a′

q∗(s ′, a′).

Dynamic Programming

Policy Optimization by Value Iteration

The Bellman Optimality Equation is non-linear and requires
iterative solutions such as value iteration by dynamic programming:

I Value iteration for q-function:

qk+1(s, a) = Ra
s + γ

∑
s′∈S
Pa

ss′ max
a′

qk(s ′, a′).

I Converges to q∗(s, a).

Dynamic Programming

Summary: Dynamic Programming

I Earliest RL algorithms with well-defined convergence
properties.

I Bellman equation gives recursive decomposition for iterative
solution to various problems in policy evaluation and policy
optimization.

I Can be trivially parallelized or even run asynchronously.

I We need to know a full MDP model with all transitions
and rewards, and touch all of them in learning!

Dynamic Programming

Summary: Dynamic Programming

I Earliest RL algorithms with well-defined convergence
properties.

I Bellman equation gives recursive decomposition for iterative
solution to various problems in policy evaluation and policy
optimization.

I Can be trivially parallelized or even run asynchronously.

I We need to know a full MDP model with all transitions
and rewards, and touch all of them in learning!

Monte-Carlo Methods

Policy Evaluation by Monte-Carlo (MC)
Sampling

I Monte-Carlo Policy Evaluation
I Sample episodes S0,A0,R1, . . . ,RT ∼ π.
I For each sampled episode:

I Increment state counter N(s)← N(s) + 1.
I Increment total return S(s)← S(s) + Gt .

I Estimate mean return V (s) = S(s)/N(s).

I Learns vπ from episodes sampled under policy π, thus
model-free.

I Updates can be done at first step or at every time step t
where state s is visited in episode.

I Converges to vπ for large number of samples.

Monte-Carlo Methods

Policy Evaluation by Monte-Carlo (MC)
Sampling

I Monte-Carlo Policy Evaluation
I Sample episodes S0,A0,R1, . . . ,RT ∼ π.
I For each sampled episode:

I Increment state counter N(s)← N(s) + 1.
I Increment total return S(s)← S(s) + Gt .

I Estimate mean return V (s) = S(s)/N(s).

I Learns vπ from episodes sampled under policy π, thus
model-free.

I Updates can be done at first step or at every time step t
where state s is visited in episode.

I Converges to vπ for large number of samples.

Monte-Carlo Methods

Incremental Mean

Use definition of incremental mean µk s.t.

µk =
1

k

k∑
j=1

xj

=
1

k

xk +
k−1∑
j=1

xj


=

1

k
(xk + (k − 1)µk−1)

= µk−1 +
1

k
(xk − µk−1) .

Monte-Carlo Methods

Incremental Monte-Carlo Updates

I Incremental Monte-Carlo Policy Evaluation
I For each sampled episode, for each step t:

I N(St)← N(St) + 1,
I V (St)← V (St) + α (Gt − V (St)) .

I Can be seen as incremental update towards actual return.

I α can be 1
N(St) or more general term α > 0.

Monte-Carlo Methods

Incremental Monte-Carlo Updates

I Incremental Monte-Carlo Policy Evaluation
I For each sampled episode, for each step t:

I N(St)← N(St) + 1,
I V (St)← V (St) + α (Gt − V (St)) .

I Can be seen as incremental update towards actual return.

I α can be 1
N(St) or more general term α > 0.

Monte-Carlo Methods

Policy Evaluation by Temporal Difference
(TD) Learning

I TD(0):
I For each sampled episode, for each step t:

I V (St)← V (St) + α (Rt+1 + γV (St+1)− V (St)) .

I Combines sampling and recursive computation by
updating toward estimated return Rt+1 + γV (St+1).

I Recall Rt+1 + γV (St+1) from Bellman Expectation Equation,
here called TD target.

I δt = (Rt+1 + γV (St+1)− V (St)) is called TD error.

Monte-Carlo Methods

Policy Evaluation by Temporal Difference
(TD) Learning

I TD(0):
I For each sampled episode, for each step t:

I V (St)← V (St) + α (Rt+1 + γV (St+1)− V (St)) .

I Combines sampling and recursive computation by
updating toward estimated return Rt+1 + γV (St+1).

I Recall Rt+1 + γV (St+1) from Bellman Expectation Equation,
here called TD target.

I δt = (Rt+1 + γV (St+1)− V (St)) is called TD error.

Monte-Carlo Methods

TD Learning with n-Step Returns

n-Step Returns:

I G
(1)
t = Rt+1 + γV (St+1).

I G
(2)
t = Rt+1 + γRt+2 + γ2V (St+2).

I
...

I G
(n)
t = Rt+1 + γRt+2 + . . .+ γn−1Rt+n + γnV (St+n).

n-Step TD Learning:

I V (St)← V (St) + α
(

G
(n)
t − V (St)

)
.

Exercise: How can Incremental Monte Carlo be recovered by

TD(n)? Monte Carlo: G
(∞)
t = Rt+1 + γRt+2 + . . .+ γT−1RT .

Monte-Carlo Methods

TD Learning with n-Step Returns

n-Step Returns:

I G
(1)
t = Rt+1 + γV (St+1).

I G
(2)
t = Rt+1 + γRt+2 + γ2V (St+2).

I
...

I G
(n)
t = Rt+1 + γRt+2 + . . .+ γn−1Rt+n + γnV (St+n).

n-Step TD Learning:

I V (St)← V (St) + α
(

G
(n)
t − V (St)

)
.

Exercise: How can Incremental Monte Carlo be recovered by

TD(n)? Monte Carlo: G
(∞)
t = Rt+1 + γRt+2 + . . .+ γT−1RT .

Monte-Carlo Methods

TD Learning with n-Step Returns

n-Step Returns:

I G
(1)
t = Rt+1 + γV (St+1).

I G
(2)
t = Rt+1 + γRt+2 + γ2V (St+2).

I
...

I G
(n)
t = Rt+1 + γRt+2 + . . .+ γn−1Rt+n + γnV (St+n).

n-Step TD Learning:

I V (St)← V (St) + α
(

G
(n)
t − V (St)

)
.

Exercise: How can Incremental Monte Carlo be recovered by

TD(n)?

Monte Carlo: G
(∞)
t = Rt+1 + γRt+2 + . . .+ γT−1RT .

Monte-Carlo Methods

TD Learning with n-Step Returns

n-Step Returns:

I G
(1)
t = Rt+1 + γV (St+1).

I G
(2)
t = Rt+1 + γRt+2 + γ2V (St+2).

I
...

I G
(n)
t = Rt+1 + γRt+2 + . . .+ γn−1Rt+n + γnV (St+n).

n-Step TD Learning:

I V (St)← V (St) + α
(

G
(n)
t − V (St)

)
.

Exercise: How can Incremental Monte Carlo be recovered by

TD(n)? Monte Carlo: G
(∞)
t = Rt+1 + γRt+2 + . . .+ γT−1RT .

Monte-Carlo Methods

TD Learning with λ-Weighted Returns

λ-Returns:

I Average n-Step Returns using

Gλ
t = (1− λ)

∞∑
n=1

λn−1G
(n)
t ,

where λ ∈ [0, 1].

TD(λ) Learning:

I V (St)← V (St) + α
(
Gλ

t − V (St)
)
.

Exercise: How can TD(0) be recovered from TD(λ)?

λ = 0 ⇒ Gλ
t = G

(1)
t = TD(0).

Monte-Carlo Methods

TD Learning with λ-Weighted Returns

λ-Returns:

I Average n-Step Returns using

Gλ
t = (1− λ)

∞∑
n=1

λn−1G
(n)
t ,

where λ ∈ [0, 1].

TD(λ) Learning:

I V (St)← V (St) + α
(
Gλ

t − V (St)
)
.

Exercise: How can TD(0) be recovered from TD(λ)?

λ = 0 ⇒ Gλ
t = G

(1)
t = TD(0).

Monte-Carlo Methods

TD Learning with λ-Weighted Returns

λ-Returns:

I Average n-Step Returns using

Gλ
t = (1− λ)

∞∑
n=1

λn−1G
(n)
t ,

where λ ∈ [0, 1].

TD(λ) Learning:

I V (St)← V (St) + α
(
Gλ

t − V (St)
)
.

Exercise: How can TD(0) be recovered from TD(λ)?

λ = 0 ⇒ Gλ
t = G

(1)
t = TD(0).

Monte-Carlo Methods

TD Learning with λ-Weighted Returns

λ-Returns:

I Average n-Step Returns using

Gλ
t = (1− λ)

∞∑
n=1

λn−1G
(n)
t ,

where λ ∈ [0, 1].

TD(λ) Learning:

I V (St)← V (St) + α
(
Gλ

t − V (St)
)
.

Exercise: How can TD(0) be recovered from TD(λ)?

λ = 0 ⇒ Gλ
t = G

(1)
t = TD(0).

Monte-Carlo Methods

Policy Optimization by Q-Learning

I Q-Learning [Watkins and Dayan, 1992]:
I For each sampled episode:

I Initialize St .
I For each step t:

I Sample At , observe Rt+1, St+1.
I Q(St ,At)← Q(St ,At)

+α(Rt+1 + γmaxa′ Q(St+1, a
′)− Q(St ,At)).

I St ← St+1.

I Q-Learning combines sampling and TD(0)-style recursive
computation for policy optimization.

I Recall Rt+1 + γmaxa′ Q(St+1,a′) from Bellman Optimality
Equation.

Monte-Carlo Methods

Policy Optimization by Q-Learning

I Q-Learning [Watkins and Dayan, 1992]:
I For each sampled episode:

I Initialize St .
I For each step t:

I Sample At , observe Rt+1, St+1.
I Q(St ,At)← Q(St ,At)

+α(Rt+1 + γmaxa′ Q(St+1, a
′)− Q(St ,At)).

I St ← St+1.

I Q-Learning combines sampling and TD(0)-style recursive
computation for policy optimization.

I Recall Rt+1 + γmaxa′ Q(St+1,a′) from Bellman Optimality
Equation.

Monte-Carlo Methods

Summary: Monte-Carlo and
Temporal-Difference Learning

I MC has zero bias, but high variance that grows with
number of random actions, transitions, rewards in
computation of return.

I TD techniques
I reduce variance since TD target depends on a single random

action, transition, reward,
I can learn from incomplete episodes and can use online

updates,
I introduce bias and use approximations which are exact only in

special cases.

Monte-Carlo Methods

Summary: Monte-Carlo and
Temporal-Difference Learning

I MC has zero bias, but high variance that grows with
number of random actions, transitions, rewards in
computation of return.

I TD techniques
I reduce variance since TD target depends on a single random

action, transition, reward,
I can learn from incomplete episodes and can use online

updates,
I introduce bias and use approximations which are exact only in

special cases.

Monte-Carlo Methods

Summary: Value-Based/Critic-Only Methods

I All techniques discussed so far, DP, MC, and TD, focus on
value-functions, not policies.

I Value-function is also called critic, thus critic-only methods.

I Value-based techniques are inherently indirect in learning
approximate value-function and extracting near-optimal policy.

I Overview over DP, MC, and TD in [Sutton and Barto, 1998]

I Problems:
I Closeness to optimal policy cannot be quantified.
I Focus is on deterministic instead of on stochastic policies.

I Up next: Policy Gradient Methods

Monte-Carlo Methods

Summary: Value-Based/Critic-Only Methods

I All techniques discussed so far, DP, MC, and TD, focus on
value-functions, not policies.

I Value-function is also called critic, thus critic-only methods.

I Value-based techniques are inherently indirect in learning
approximate value-function and extracting near-optimal policy.

I Overview over DP, MC, and TD in [Sutton and Barto, 1998]
I Problems:

I Closeness to optimal policy cannot be quantified.
I Focus is on deterministic instead of on stochastic policies.

I Up next: Policy Gradient Methods

Monte-Carlo Methods

Summary: Value-Based/Critic-Only Methods

I All techniques discussed so far, DP, MC, and TD, focus on
value-functions, not policies.

I Value-function is also called critic, thus critic-only methods.

I Value-based techniques are inherently indirect in learning
approximate value-function and extracting near-optimal policy.

I Overview over DP, MC, and TD in [Sutton and Barto, 1998]
I Problems:

I Closeness to optimal policy cannot be quantified.
I Focus is on deterministic instead of on stochastic policies.

I Up next: Policy Gradient Methods

Q & A

Q & A

Policy Gradient Methods

Policy-Gradient Methods

I Policy-Gradient techniques attempt at direct optimization of
expected return

Eπθ [Gt]

for parameterized stochastic policy

πθ(a|s) = P[At = a|St = s, θ].

I Policy-function is also called actor.

I We will discuss actor-only (optimize parametric policy) and
actor-critic (learn both policy and critic parameters in
tandem) methods.

Policy Gradient Methods

Policy-Gradient Methods

I Policy-Gradient techniques attempt at direct optimization of
expected return

Eπθ [Gt]

for parameterized stochastic policy

πθ(a|s) = P[At = a|St = s, θ].

I Policy-function is also called actor.

I We will discuss actor-only (optimize parametric policy) and
actor-critic (learn both policy and critic parameters in
tandem) methods.

Policy Gradient Methods

One-Step MDPs/Gradient Bandits

Let pθ(y) denote probability of an action/output, ∆(y) be the
reward/quality of an output.

Objective: Epθ [∆(y)]

Gradient: ∇θEpθ [∆(y)] = ∇θ
∑

y

pθ(y)∆(y)

=
∑

y

∇θpθ(y)∆(y)

=
∑

y

pθ(y)

pθ(y)
∇θpθ(y)∆(y)

=
∑

y

pθ(y)∇θ log pθ(y)∆(y)

= Epθ [∆(y)∇θ log pθ(y)].

Policy Gradient Methods

Score Function Gradient Estimator for Bandit

I Bandit Gradient Ascent:
I Sample yi ∼ pθ,
I Update θ ← θ + α(∆(yi)∇θ log pθ(yi)).

I Update by stochastic gradient gi = ∆(yi)∇θ log pθ(yi) yields
unbiased estimator of Epθ [∆(y)]

I Intuition: ∇θ log pθ(y) is called the score function.
I Moving in the direction of gi pushes up the score of the sample

yi in proportion to its reward ∆(yi).
I In RL terms: High reward samples are weighted higher -

reinforced!
I Estimator is valid even if ∆(y) is non-differentiable.

Policy Gradient Methods

Score Function Gradient Estimator for Bandit

I Bandit Gradient Ascent:
I Sample yi ∼ pθ,
I Update θ ← θ + α(∆(yi)∇θ log pθ(yi)).

I Update by stochastic gradient gi = ∆(yi)∇θ log pθ(yi) yields
unbiased estimator of Epθ [∆(y)]

I Intuition: ∇θ log pθ(y) is called the score function.
I Moving in the direction of gi pushes up the score of the sample

yi in proportion to its reward ∆(yi).
I In RL terms: High reward samples are weighted higher -

reinforced!
I Estimator is valid even if ∆(y) is non-differentiable.

Policy Gradient Methods

Score Function Gradient Estimator for Bandit

I Bandit Gradient Ascent:
I Sample yi ∼ pθ,
I Update θ ← θ + α(∆(yi)∇θ log pθ(yi)).

I Update by stochastic gradient gi = ∆(yi)∇θ log pθ(yi) yields
unbiased estimator of Epθ [∆(y)]

I Intuition: ∇θ log pθ(y) is called the score function.
I Moving in the direction of gi pushes up the score of the sample

yi in proportion to its reward ∆(yi).
I In RL terms: High reward samples are weighted higher -

reinforced!
I Estimator is valid even if ∆(y) is non-differentiable.

Policy Gradient Methods

Score Function Gradient Estimator for MDPs

Let y = S0,A0,R1, . . . ,RT ∼ πθ be an episode, and
R(y) = R1 + γR2 + . . .+ γT−1RT =

∑T
t=1 γ

t−1Rt be its total
discounted reward.

I Objective: Eπθ [R(y)].

I Gradient: Eπθ [R(y)
∑T−1

t=0 ∇θ log πθ(At |St)].

I Reinforcement Gradient Ascent:
I Sample episode y = S0,A0,R1, . . . ,RT ∼ πθ,
I Obtain reward R(y) =

∑T
t=1 γ

t−1Rt ,
I Update θ ← θ + α(R(y)

∑T−1
t=0 ∇θ log πθ(At |St)).

Policy Gradient Methods

Score Function Gradient Estimator for MDPs

Let y = S0,A0,R1, . . . ,RT ∼ πθ be an episode, and
R(y) = R1 + γR2 + . . .+ γT−1RT =

∑T
t=1 γ

t−1Rt be its total
discounted reward.

I Objective: Eπθ [R(y)].

I Gradient: Eπθ [R(y)
∑T−1

t=0 ∇θ log πθ(At |St)].

I Reinforcement Gradient Ascent:
I Sample episode y = S0,A0,R1, . . . ,RT ∼ πθ,
I Obtain reward R(y) =

∑T
t=1 γ

t−1Rt ,
I Update θ ← θ + α(R(y)

∑T−1
t=0 ∇θ log πθ(At |St)).

Policy Gradient Methods

General Form of Policy Gradient Algorithms

Formalized for expected per time-step reward with respect to
action-value qπθ(St ,At).

I Objective: Eπθ [qπθ(St ,At)].

I Gradient: Eπθ [qπθ(St ,At)∇θ log πθ(At |St)].

I Policy Gradient Ascent:
I Sample episode y = S0,A0,R1, . . . ,RT ∼ πθ.
I For each time step t:

I Obtain reward qπθ (St ,At),
I Update θ ← θ + α(qπθ (St ,At)∇θ log πθ(At |St)).

Policy Gradient Methods

General Form of Policy Gradient Algorithms

Formalized for expected per time-step reward with respect to
action-value qπθ(St ,At).

I Objective: Eπθ [qπθ(St ,At)].

I Gradient: Eπθ [qπθ(St ,At)∇θ log πθ(At |St)].

I Policy Gradient Ascent:
I Sample episode y = S0,A0,R1, . . . ,RT ∼ πθ.
I For each time step t:

I Obtain reward qπθ (St ,At),
I Update θ ← θ + α(qπθ (St ,At)∇θ log πθ(At |St)).

Policy Gradient Methods

Policy Gradient Algorithms

I General form for expected per time-step return qπθ(St ,At) is
known as Policy Gradient Theorem [Sutton et al., 2000].

I Since qπθ(s, a) is normally not known, one can use the actual
discounted return Gt at time step t, calculated from sampled
episode. This leads to the REINFORCE algorithm
[Williams, 1992].

I Problems of Policy Gradient Algorithms, esp. REINFORCE:
I Large variance in discounted returns calculated from sampled

episodes.
I Each gradient update is done independently of past gradient

estimates.

Policy Gradient Methods

Policy Gradient Algorithms

I General form for expected per time-step return qπθ(St ,At) is
known as Policy Gradient Theorem [Sutton et al., 2000].

I Since qπθ(s, a) is normally not known, one can use the actual
discounted return Gt at time step t, calculated from sampled
episode. This leads to the REINFORCE algorithm
[Williams, 1992].

I Problems of Policy Gradient Algorithms, esp. REINFORCE:
I Large variance in discounted returns calculated from sampled

episodes.
I Each gradient update is done independently of past gradient

estimates.

Policy Gradient Methods

Variance Reduction by Baselines

I Variance of REINFORCE can be reduced by comparison of
actual return Gt to a baseline b(s) for state s that is constant
with respect to actions a. Example: average return so far.

I Update :

θ ← θ + α((Gt − b(St))∇θ log πθ(At |St)).

I Can be interpreted as Control Variate [Ross, 2013]:
I Goal is to augment random variable X (= stochastic gradient)

with highly correlated variable Y such that
Var(X − Y) = Var(X) + Var(Y)− 2Cov(X ,Y) is reduced.

I Gradient remains unbiased since E[X − Y + E[Y]] = E[X].

Policy Gradient Methods

Variance Reduction by Baselines

I Variance of REINFORCE can be reduced by comparison of
actual return Gt to a baseline b(s) for state s that is constant
with respect to actions a. Example: average return so far.

I Update :

θ ← θ + α((Gt − b(St))∇θ log πθ(At |St)).

I Can be interpreted as Control Variate [Ross, 2013]:
I Goal is to augment random variable X (= stochastic gradient)

with highly correlated variable Y such that
Var(X − Y) = Var(X) + Var(Y)− 2Cov(X ,Y) is reduced.

I Gradient remains unbiased since E[X − Y + E[Y]] = E[X].

Policy Gradient Methods

Variance Reduction by Baselines

Exercise: Show that E[Y] = 0 for constant baselines.

Proof:

Eπθ [∇θ log πθ(a|s)b(s)] =
∑

a

πθ(a|s)
∇θπθ(a|s)

πθ(a|s)
b(s)

= b(s)∇θ
∑

a

πθ(a|s)

= b(s)∇θ1

= 0.

Policy Gradient Methods

Variance Reduction by Baselines

Exercise: Show that E[Y] = 0 for constant baselines.
Proof:

Eπθ [∇θ log πθ(a|s)b(s)] =
∑

a

πθ(a|s)
∇θπθ(a|s)

πθ(a|s)
b(s)

= b(s)∇θ
∑

a

πθ(a|s)

= b(s)∇θ1

= 0.

Policy Gradient Methods

Actor-Critic Methods

I Learning a critic in order to get an improved estimate of the
expected return will also reduce variance.
I Critic: TD(0) update for linear approximation

qπθ
(s, a) ≈ qw (s, a) = φ(s, a)>w .

I Actor: Policy gradient update reinforced by qw (s, a).

I Simple Actor-Critic [Konda and Tsitsiklis, 2000]:
I Sample a ∼ πθ.
I For each step t:

I Sample reward r ∼ Ra
s , transition s ′ ∼ Pa

s,·, action
a′ ∼ πθ(s ′, ·),

I δ ← r + γqw (s ′, a′)− qw (s, a),
I θ ← θ + α∇θ log πθ(a|s)qw (s, a),
I w ← w + βδφ(s, a),
I a← a′, s ← s ′.

I True online updates of policy πθ in each step!

Policy Gradient Methods

Actor-Critic Methods

I Learning a critic in order to get an improved estimate of the
expected return will also reduce variance.
I Critic: TD(0) update for linear approximation

qπθ
(s, a) ≈ qw (s, a) = φ(s, a)>w .

I Actor: Policy gradient update reinforced by qw (s, a).

I Simple Actor-Critic [Konda and Tsitsiklis, 2000]:
I Sample a ∼ πθ.
I For each step t:

I Sample reward r ∼ Ra
s , transition s ′ ∼ Pa

s,·, action
a′ ∼ πθ(s ′, ·),

I δ ← r + γqw (s ′, a′)− qw (s, a),
I θ ← θ + α∇θ log πθ(a|s)qw (s, a),
I w ← w + βδφ(s, a),
I a← a′, s ← s ′.

I True online updates of policy πθ in each step!

Policy Gradient Methods

Advantage Actor-Critic

I Combine idea of baseline with actor-critic by using advantage
function that compares action-value function qπθ(s, a) to
state-value function vπθ(s) = Ea∼π[qπθ(s, a)].

I Use approximate TD error

δw = r + γvw (s ′)− vw (s),

where state-value is approximated by vw (s), and action-value
is approximated by sample qw (s ′) = r + γvw (s ′).

I Update Actor: θ ← θ + α∇θ log πθ(a|s)(qw (s ′)− vw (s)).

I Update Critic: w = arg minw (qw (s ′)− vw (s))2.

Policy Gradient Methods

Advantage Actor-Critic

I Combine idea of baseline with actor-critic by using advantage
function that compares action-value function qπθ(s, a) to
state-value function vπθ(s) = Ea∼π[qπθ(s, a)].

I Use approximate TD error

δw = r + γvw (s ′)− vw (s),

where state-value is approximated by vw (s), and action-value
is approximated by sample qw (s ′) = r + γvw (s ′).

I Update Actor: θ ← θ + α∇θ log πθ(a|s)(qw (s ′)− vw (s)).

I Update Critic: w = arg minw (qw (s ′)− vw (s))2.

Policy Gradient Methods

Advantage Actor-Critic

I Combine idea of baseline with actor-critic by using advantage
function that compares action-value function qπθ(s, a) to
state-value function vπθ(s) = Ea∼π[qπθ(s, a)].

I Use approximate TD error

δw = r + γvw (s ′)− vw (s),

where state-value is approximated by vw (s), and action-value
is approximated by sample qw (s ′) = r + γvw (s ′).

I Update Actor: θ ← θ + α∇θ log πθ(a|s)(qw (s ′)− vw (s)).

I Update Critic: w = arg minw (qw (s ′)− vw (s))2.

Policy Gradient Methods

Summary: Policy-Gradient Methods

I Build upon huge knowledge in stochastic optimization which
provides excellent theoretical understanding of
convergence properties.

I Gradient-based techniques are model-free since MDP
transation matrix is not dependent on θ.

I Problem of high variance in actor-only methods can be
mitigated by the critic’s low-variance estimate of expected
return.

Policy Gradient Methods

Quick Summary and Outlook

What have we covered:

I Policy evaluation (a.k.a. prediction) using DP

I Policy optimization (a.k.a. control) using Value-based
techniques of DP, MC, or both: TD.

I Policy-gradient techniques for direct stochastic optimization
of parametric policies.

Where from here on:
I Sequence-to-Sequence Reinforcement Learning

I Algorithms for seq2seq RL from simulated feedback
I Algorithms for offline learning from logged feedback
I Seq2seq RL from human bandit feedback

Policy Gradient Methods

Quick Summary and Outlook

What have we covered:

I Policy evaluation (a.k.a. prediction) using DP

I Policy optimization (a.k.a. control) using Value-based
techniques of DP, MC, or both: TD.

I Policy-gradient techniques for direct stochastic optimization
of parametric policies.

Where from here on:
I Sequence-to-Sequence Reinforcement Learning

I Algorithms for seq2seq RL from simulated feedback
I Algorithms for offline learning from logged feedback
I Seq2seq RL from human bandit feedback

Sequence-to-Sequence Reinforcement Learning

Sequence-to-Sequence RL

Sequence-to-sequence (seq2seq) learning:

I x = x1 . . . xS represents an input sequence, indexed over a
source vocabulary VSrc.

I y = y1 . . . yT represents an output sequence, indexed over a
target vocabulary VTrg.

I Goal of seq2seq learning is to estimate a function for mapping
an input sequence x into an output sequences y, defined as
product of conditional token probabilities:

pθ(y | x) =
T∏

t=1

pθ(yt | x; y<t).

Sequence-to-Sequence Reinforcement Learning

Seq2seq RL: Neural Machine Translation

Neural machine translation (NMT):

I x are source sentences, y are human reference translations,

I Maximize likelihood of parallel data D = {(x(i), y(i))}n
i=1:

L(θ) =
n∑

i=1

log pθ(y(i) | x(i))

I pθ(yt | x; y<t) is defined by the neural model’s
softmax-normalized output vector of size R|VTrg|:

pθ(yt | x; y<t) = softmax(NNθ(x; y<t)).

I Various options for NNθ, such as recurrent
[Sutskever et al., 2014, Bahdanau et al., 2015], convolutional
[Gehring et al., 2017] or attentional [Vaswani et al., 2017]
encoder-decoder architectures (or mix [Chen et al., 2018]).

Sequence-to-Sequence Reinforcement Learning

Seq2seq RL: Neural Machine Translation

Neural machine translation (NMT):

I x are source sentences, y are human reference translations,

I Maximize likelihood of parallel data D = {(x(i), y(i))}n
i=1:

L(θ) =
n∑

i=1

log pθ(y(i) | x(i))

I pθ(yt | x; y<t) is defined by the neural model’s
softmax-normalized output vector of size R|VTrg|:

pθ(yt | x; y<t) = softmax(NNθ(x; y<t)).

I Various options for NNθ, such as recurrent
[Sutskever et al., 2014, Bahdanau et al., 2015], convolutional
[Gehring et al., 2017] or attentional [Vaswani et al., 2017]
encoder-decoder architectures (or mix [Chen et al., 2018]).

Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT

Why deviate from supervised learning using parallel data?

I What if no human references are available, e.g., in
under-resourced language pairs?

I Maybe weak human feedback signals are easier to obtain
than full translations, e.g., from logged user interactions in
commercial NMT services?

I [Sutton and Barto, 2018] on the “Future of Artificial
Intelligence”:

The full potential of reinforcement learning requires rein-
forcement learning agents to be embedded into the flow of
real-world experience, where they act, explore, and learn
in our world, not just in their worlds.

Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT

Why deviate from supervised learning using parallel data?

I What if no human references are available, e.g., in
under-resourced language pairs?

I Maybe weak human feedback signals are easier to obtain
than full translations, e.g., from logged user interactions in
commercial NMT services?

I [Sutton and Barto, 2018] on the “Future of Artificial
Intelligence”:

The full potential of reinforcement learning requires rein-
forcement learning agents to be embedded into the flow of
real-world experience, where they act, explore, and learn
in our world, not just in their worlds.

Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT

I Learning from weak user feedback in form of user clicks is
state-of-the-art in computational advertising
[Bottou et al., 2013, Chapelle et al., 2014].

I Let’s dig the gold mine of user feedback to improve NMT!

Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT

I Learning from weak user feedback in form of user clicks is
state-of-the-art in computational advertising
[Bottou et al., 2013, Chapelle et al., 2014].

I Let’s dig the gold mine of user feedback to improve NMT!

Sequence-to-Sequence Reinforcement Learning

Collecting Feedback: Facebook

Sequence-to-Sequence Reinforcement Learning

Collecting Feedback: Facebook

Sequence-to-Sequence Reinforcement Learning

Collecting Feedback: Facebook

Sequence-to-Sequence Reinforcement Learning

Collecting Feedback: Facebook

Sequence-to-Sequence Reinforcement Learning

Collecting Feedback: Facebook

Sequence-to-Sequence Reinforcement Learning

Collecting Feedback: Facebook

Sequence-to-Sequence Reinforcement Learning

Collecting Feedback: Facebook

Sequence-to-Sequence Reinforcement Learning

Collecting Feedback: Microsoft

Sequence-to-Sequence Reinforcement Learning

Collecting Feedback: Microsoft (community)

Sequence-to-Sequence Reinforcement Learning

Collecting Feedback: Google (community)

Sequence-to-Sequence Reinforcement Learning

Collecting Feedback: Google

Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT: Simulations

I NMT in standard RL framework:
I In timestep t, a state is defined by the input x and the

currently produced tokens ỹ<t .
I A reward is obtained by evaluating quality of the fully

generated sequence ỹ.
I An action corresponds to generating the next token ỹt .

I Exercise: How would this translate into an MDP’s state
transitions and an agent’s policy?
I pθ(ỹt | x; ỹ<t) corresponds to a stochastic policy, while the

state transition is deterministic given an action.

I Interactive NMT:
I The NMT system is the agent that performs actions, while

the human user provides rewards.

Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT: Simulations

I NMT in standard RL framework:
I In timestep t, a state is defined by the input x and the

currently produced tokens ỹ<t .
I A reward is obtained by evaluating quality of the fully

generated sequence ỹ.
I An action corresponds to generating the next token ỹt .

I Exercise: How would this translate into an MDP’s state
transitions and an agent’s policy?

I pθ(ỹt | x; ỹ<t) corresponds to a stochastic policy, while the
state transition is deterministic given an action.

I Interactive NMT:
I The NMT system is the agent that performs actions, while

the human user provides rewards.

Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT: Simulations

I NMT in standard RL framework:
I In timestep t, a state is defined by the input x and the

currently produced tokens ỹ<t .
I A reward is obtained by evaluating quality of the fully

generated sequence ỹ.
I An action corresponds to generating the next token ỹt .

I Exercise: How would this translate into an MDP’s state
transitions and an agent’s policy?
I pθ(ỹt | x; ỹ<t) corresponds to a stochastic policy, while the

state transition is deterministic given an action.

I Interactive NMT:
I The NMT system is the agent that performs actions, while

the human user provides rewards.

Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT: Simulations

I NMT in standard RL framework:
I In timestep t, a state is defined by the input x and the

currently produced tokens ỹ<t .
I A reward is obtained by evaluating quality of the fully

generated sequence ỹ.
I An action corresponds to generating the next token ỹt .

I Exercise: How would this translate into an MDP’s state
transitions and an agent’s policy?
I pθ(ỹt | x; ỹ<t) corresponds to a stochastic policy, while the

state transition is deterministic given an action.

I Interactive NMT:
I The NMT system is the agent that performs actions, while

the human user provides rewards.

Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT: Simulations

I Expected loss/reward objective:

L(θ) =Ep(x) pθ(ỹ|x;θ) [∆(ỹ)]

where ∆(ỹ) is task loss, e.g., −BLEU(ỹ)

I Sampling an input x and an output ỹ, and performing a
stochastic gradient descent update corresponds to a policy
gradient algorithm.

Sequence-to-Sequence Reinforcement Learning

(Neural) Bandit Structured Prediction

Algorithm 1 (Neural) Bandit Structured Prediction

1: for k = 0, . . . ,K do
2: Observe input xk

3: Sample output ỹk ∼ pθ(y|xk)
4: Obtain feedback ∆(ỹk)
5: Update parameters θk+1 = θk − γk sk

6: where stochastic gradient sk = ∆(ỹ)∂ log pθ(ỹ|xk)
∂θi

.

I [Sokolov et al., 2015, Sokolov et al., 2016,
Kreutzer et al., 2017]

Sequence-to-Sequence Reinforcement Learning

(Neural) Bandit Structured Prediction

I Why (Neural) Bandit Structured Prediction?
I An action is defined as generating a full output sequence, thus

corresponding to a one-state MDP.
I Term bandit feedback is inherited from the problem of

maximizing the reward for a sequence of pulls of arms of
so-called “one-armed bandit” slot machines
[Bubeck and Cesa-Bianchi, 2012]:

I In contrast to fully supervised learning, the learner receives
feedback to a single prediction. It does not know what the
correct output looks like, nor what would have happened if it
had predicted differently.

I Related to gradient bandit algorithms [Sutton and Barto, 2018]
and contextual bandits [Li et al., 2010].

Sequence-to-Sequence Reinforcement Learning

(Neural) Bandit Structured Prediction

I Important measure for variance reduction: Control variates
I Random variable X is stochastic gradient sk in case of

algorithm 1.
I Two choices in [Kreutzer et al., 2017]:

1. Baseline [Williams, 1992]:

Yk = ∇ log pθ(ỹ|xk)
1

k

k∑
j=1

∆(ỹj).

2. Score Function [Ranganath et al., 2014]:

Y k = ∇ log pθ(ỹ|xk).

Sequence-to-Sequence Reinforcement Learning

Advantage Actor-Critic for Bandit NMT

I Neural encoder-decoder A2C [Nguyen et al., 2017]:
I Gradient approximation

∇L(θ) ≈
T∑

t=1

R̄t(ỹ)∇θ log pθ(ỹt | x; ỹ<t)

I Uses per-action advantage function

R̄t(ỹ) := ∆(ỹ)− V (ỹ<t)

I State-value function V (ỹ<t) centers the reward and uses
separate neural encoder-decoder network that is trained to
minimize the squared error [Vw (ỹ<t)−∆(ỹ)]2

Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT: Simulation Results

I EuroParl→NewsComm NMT conservative domain adaptation

I ∆(ỹ) simulated by per-sentence BLEU against reference

full-info EL PR SF-EL BL-EL
Model (BPE)

6

4

2

0

2

4

6
Di

ffe
re

nc
e

in
 B

LE
U

+6.11

+2.89
+1.79

+3.00
+4.08

-4.67

-1.72
-0.90 -1.35

-1.93

Domain Adaptation with Weak Feedback: EP to NC
EP
NC

Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT: Simulation Results

I EuroParl→TED NMT conservative domain adaptation task

full-info EL PR SF-EL BL-EL
Model (BPE)

10

5

0

5

10
Di

ffe
re

nc
e

in
 B

LE
U

+11.88

+4.18

+0.24

+4.16
+5.89

-8.42

-1.78
-0.02

-1.49 -1.97

Domain Adaptation with Weak Feedback: EP to TED
EP
TED

Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT: To Simulate or Not

I Domain adaptation experiments show impressive gains for
learning from simulated bandit feedback only

I Most work on Seq2seq RL for NMT is confined to
simulations, aiming to improve “exposure bias” and
“loss-evaluation mismatch” [Ranzato et al., 2016]

I Recall [Sutton and Barto, 2018] on the “Future of Artificial
Intelligence”:

A major reason for wanting a reinforcement learning agent
to act and learn in the real world is that it is often difficult,
sometimes impossible, to simulate real-world experience
with enough fidelity to make the resulting policies [...] work
well—and safely—when directing real actions.

I Up next: From Simulations to Human RL

Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT: To Simulate or Not

I Domain adaptation experiments show impressive gains for
learning from simulated bandit feedback only

I Most work on Seq2seq RL for NMT is confined to
simulations, aiming to improve “exposure bias” and
“loss-evaluation mismatch” [Ranzato et al., 2016]

I Recall [Sutton and Barto, 2018] on the “Future of Artificial
Intelligence”:

A major reason for wanting a reinforcement learning agent
to act and learn in the real world is that it is often difficult,
sometimes impossible, to simulate real-world experience
with enough fidelity to make the resulting policies [...] work
well—and safely—when directing real actions.

I Up next: From Simulations to Human RL

Q & A

Q & A

From Simulations to Human RL

Seq2seq RL for NMT: From Simulations to
Human RL

I Where do simulations fall short?
I Real-world RL only has access to human bandit feedback to

a single prediction—no summation over all actions that
amounts to full supervision
[Shen et al., 2016, Bahdanau et al., 2017].

I Online/on-policy learning might be undesirable given concerns
about safety and stability of commercial systems.

I Reward function for human translation quality is not well
defined, reward signals are noisy and skewed.

I (Super)human performance (similar to playing Atari or Go) of
real-world RL is not to be expected soon!

From Simulations to Human RL

Seq2seq RL for NMT: From Simulations to
Human RL

I Where do simulations fall short?
I Real-world RL only has access to human bandit feedback to

a single prediction—no summation over all actions that
amounts to full supervision
[Shen et al., 2016, Bahdanau et al., 2017].

I Online/on-policy learning might be undesirable given concerns
about safety and stability of commercial systems.

I Reward function for human translation quality is not well
defined, reward signals are noisy and skewed.

I (Super)human performance (similar to playing Atari or Go) of
real-world RL is not to be expected soon!

From Simulations to Human RL

Seq2seq RL for NMT: From Simulations to
Human RL

I Where do simulations fall short?
I Real-wold RL only has access to human bandit feedback
I Online/on-policy learning raises safety and stability concerns
I Human rewards are not well defined, noisy, and skewed

From Simulations to Human RL

Seq2seq RL for NMT: From Simulations to
Human RL

I Where do simulations fall short?
I Real-wold RL only has access to human bandit feedback
⇒ control variates

I Online/on-policy learning raises safety and stability concerns
I Human rewards are not well defined, noisy, and skewed

From Simulations to Human RL

Seq2seq RL for NMT: From Simulations to
Human RL

I Where do simulations fall short?
I Real-wold RL only has access to human bandit feedback
⇒ control variates

I Online/on-policy learning raises safety and stability concerns
⇒ offline learning

I Human rewards are not well defined, noisy, and skewed

From Simulations to Human RL

Seq2seq RL for NMT: From Simulations to
Human RL

I Where do simulations fall short?
I Real-wold RL only has access to human bandit feedback
⇒ control variates

I Online/on-policy learning raises safety and stability concerns
⇒ offline learning

I Human rewards are not well defined, noisy, and skewed
⇒ reward estimation

From Simulations to Human RL

Offline Learning from Logged Feedback

Standard: Online/On-Policy RL

I Undesirable if stability or real-world system has priority over
frequent updates after each interaction

Offline/Off-Policy RL from Logged Bandit Feedback

I Attempts to learn from logged feedback that has been given to
the predictions of a historic system following a different policy

I Allows control over system updates

I Prior work in counterfactual bandit learning
[Dudik et al., 2011, Bottou et al., 2013] and off-policy RL
[Precup et al., 2000, Jiang and Li, 2016]

From Simulations to Human RL

Offline Learning from Logged Feedback

Standard: Online/On-Policy RL

I Undesirable if stability or real-world system has priority over
frequent updates after each interaction

Offline/Off-Policy RL from Logged Bandit Feedback

I Attempts to learn from logged feedback that has been given to
the predictions of a historic system following a different policy

I Allows control over system updates

I Prior work in counterfactual bandit learning
[Dudik et al., 2011, Bottou et al., 2013] and off-policy RL
[Precup et al., 2000, Jiang and Li, 2016]

From Simulations to Human RL

Offline Learning = Counterfactual Learning

I Counterfactual question: Estimate how the new system would
have performed if it had been in control of choosing the
logged predictions.

From Simulations to Human RL

Offline Learning from Logged Feedback

I Logged data D = {(x(h), y(h), r(y(h)))}H
h=1 where y(h) is

sampled from a logging system µ(y(h)|x(h)), and the
reward/loss r(y(h)) ∈ [0, 1] is obtained from human user.

I Inverse propensity scoring (IPS) to learn target policy pθ(y|x):

L(θ) =
1

H

H∑
h=1

r(y(h)) ρθ(y(h)|x(h)).

I IPS uses importance sampling to correct for sampling bias

of logging system s.t. ρθ(y(h)|x(h)) = pθ(y(h)|x(h))

µ(y(h)|x(h))

I Exercise: Show unbiasedness of IPS estimator.

1

H

H∑
h=1

r(y(h))
pθ(y(h)|x(h))

µ(y(h)|x(h))
= Ep(x)Eµ(y|x)[r(y)

pθ(y|x)

µ(y|x)
]

= Ep(x)Epθ(y|x)[r(y)].

From Simulations to Human RL

Offline Learning from Logged Feedback

I Logged data D = {(x(h), y(h), r(y(h)))}H
h=1 where y(h) is

sampled from a logging system µ(y(h)|x(h)), and the
reward/loss r(y(h)) ∈ [0, 1] is obtained from human user.

I Inverse propensity scoring (IPS) to learn target policy pθ(y|x):

L(θ) =
1

H

H∑
h=1

r(y(h)) ρθ(y(h)|x(h)).

I IPS uses importance sampling to correct for sampling bias

of logging system s.t. ρθ(y(h)|x(h)) = pθ(y(h)|x(h))

µ(y(h)|x(h))

I Exercise: Show unbiasedness of IPS estimator.

1

H

H∑
h=1

r(y(h))
pθ(y(h)|x(h))

µ(y(h)|x(h))
= Ep(x)Eµ(y|x)[r(y)

pθ(y|x)

µ(y|x)
]

= Ep(x)Epθ(y|x)[r(y)].

From Simulations to Human RL

Offline Learning from Logged Feedback

I Logged data D = {(x(h), y(h), r(y(h)))}H
h=1 where y(h) is

sampled from a logging system µ(y(h)|x(h)), and the
reward/loss r(y(h)) ∈ [0, 1] is obtained from human user.

I Inverse propensity scoring (IPS) to learn target policy pθ(y|x):

L(θ) =
1

H

H∑
h=1

r(y(h)) ρθ(y(h)|x(h)).

I IPS uses importance sampling to correct for sampling bias

of logging system s.t. ρθ(y(h)|x(h)) = pθ(y(h)|x(h))

µ(y(h)|x(h))

I Exercise: Show unbiasedness of IPS estimator.

1

H

H∑
h=1

r(y(h))
pθ(y(h)|x(h))

µ(y(h)|x(h))
= Ep(x)Eµ(y|x)[r(y)

pθ(y|x)

µ(y|x)
]

= Ep(x)Epθ(y|x)[r(y)].

From Simulations to Human RL

Offline Learning under Deterministic Logging:
Problems

I Commercial NMT systems try to avoid risk by showing only
most probable translation to users = exploration-free,
deterministic logging

I Problems with deterministic logging [Lawrence et al., 2017a]
I No correction of sampling bias like in IPS since µ(y|x) = 1
I Degenerate behavior: Empirical reward over log is

maximized by setting probability of all logged data to 1
→ Undesirable to increase probability of low reward examples

I Unbiased learning is thought to be impossible for
exploration-free off-policy learning
[Langford et al., 2008, Strehl et al., 2010].

From Simulations to Human RL

Offline Learning under Deterministic Logging:
Problems

I Commercial NMT systems try to avoid risk by showing only
most probable translation to users = exploration-free,
deterministic logging

I Problems with deterministic logging [Lawrence et al., 2017a]
I No correction of sampling bias like in IPS since µ(y|x) = 1
I Degenerate behavior: Empirical reward over log is

maximized by setting probability of all logged data to 1
→ Undesirable to increase probability of low reward examples

I Unbiased learning is thought to be impossible for
exploration-free off-policy learning
[Langford et al., 2008, Strehl et al., 2010].

From Simulations to Human RL

Offline Learning under Deterministic Logging:
Solutions

I Implicit exploration via inputs [Bastani et al., 2017]

I Deterministic Propensity Matching (DPM)
[Lawrence et al., 2017b, Lawrence and Riezler, 2018]

L(θ) =
1

H

H∑
h=1

r(y(h)) p̄θ(y(h)|x(h)),

I Reweighting by multiplicative control variate, evaluated
one-step-late at θ′ from some previous iteration:

p̄θ,θ′(y(h)|x(h)) = pθ(y(h)|x(h))∑B
b=1 pθ′ (y(b)|x(b))

.

I Effect of self-normalization: Introduces bias that decreases
as B increases [Kong, 1992], but prevents increasing
probability for low reward data by taking away probability mass
from higher reward outputs.

From Simulations to Human RL

Offline Learning under Deterministic Logging:
Solutions

I Implicit exploration via inputs [Bastani et al., 2017]

I Deterministic Propensity Matching (DPM)
[Lawrence et al., 2017b, Lawrence and Riezler, 2018]

L(θ) =
1

H

H∑
h=1

r(y(h)) p̄θ(y(h)|x(h)),

I Reweighting by multiplicative control variate, evaluated
one-step-late at θ′ from some previous iteration:

p̄θ,θ′(y(h)|x(h)) = pθ(y(h)|x(h))∑B
b=1 pθ′ (y(b)|x(b))

.

I Effect of self-normalization: Introduces bias that decreases
as B increases [Kong, 1992], but prevents increasing
probability for low reward data by taking away probability mass
from higher reward outputs.

From Simulations to Human RL

Offline Learning under Deterministic Logging:
Gradients

I Optimization by Stochastic Gradient Descent
I IPS:

∇L(θ) =
1

H

H∑
h=1

r(y(h)) ρθ(y(h)|x(h))∇ log pθ(y(h)|x(h))

I OSL self-normalized deterministic propensity matching:

∇L(θ) =
1

H

H∑
h=1

r(y(h)) p̄θ,θ(y(h)|x(h))∇ log pθ(y(h)|x(h))

From Simulations to Human RL

Offline Learning from Human Feedback:
e-commerce

I [Kreutzer et al., 2018]: 69k translated item titles (en-es) with
148k individual ratings

I No agreement of paid raters with e-commerce users, low
inter-rater agreement, learning impossible

From Simulations to Human RL

Offline Learning from Human Feedback:
e-commerce

I Lessons from e-commerce experiments:
I Offline learning from direct user feedback to e-commerce titles

is equivalent to learning from noise
I Conjecture: Missing reliability and validity of human feedback

in e-commerce experiment
I Need experiment on controlled feedback collection!

From Simulations to Human RL

Offline Learning from Controlled Human
Feedback

vs

I Ratings on five-point Likert scale (left) and pairwise
preferences (right), ∼15 bilinguals for each task

I 800 de-en translations and 400 pairs1, filtered for length 20-40
and paired by difference in chrF score [Popović, 2015]

1Data: https://www.cl.uni-heidelberg.de/statnlpgroup/humanmt/

 https://www.cl.uni-heidelberg.de/statnlpgroup/humanmt/

From Simulations to Human RL

Reliability and Learnability of Human
Feedback

I Controlled study on main factors in human RL:

1. Reliability: Collect five-point and pairwise feedback on same
data, evaluate intra- and inter-rater agreement.

2. Learnability: Train reward estimators on human feedback,
evaluate correlation to TER on held-out data.

3. RL: Use rewards directly or estimated rewards to improve an
NMT system.

What are your guesses on reliability and learnability—five-point or
pairwise?

From Simulations to Human RL

Reliability and Learnability of Human
Feedback

I Controlled study on main factors in human RL:

1. Reliability: Collect five-point and pairwise feedback on same
data, evaluate intra- and inter-rater agreement.

2. Learnability: Train reward estimators on human feedback,
evaluate correlation to TER on held-out data.

3. RL: Use rewards directly or estimated rewards to improve an
NMT system.

What are your guesses on reliability and learnability—five-point or
pairwise?

From Simulations to Human RL

Reliability: α-agreement

Inter-rater Intra-rater
Rating Type α Mean α Stdev α

5-point 0.2308
0.4014 0.1907

+ normalization 0.2820
+ filtering 0.5059 0.5527 0.0470

Pairwise 0.2385 0.5085 0.2096
+ filtering 0.3912 0.7264 0.0533

I Inter- and intra-reliability measured by Krippendorff’s α for
5-point and pairwise ratings of 1,000 translations of which 200
translations are repeated twice.

I Filtered variants are restricted to either a subset of
participants (5-point) or a subset of translations (pairwise).

From Simulations to Human RL

Reliability: Qualitative Analysis

Rating Type Avg. subjective difficulty [1-10]

5-point 4.8
Pairwise 5.69

I Difficulties with 5-point ratings:
I Weighing of error types; long sentences with few essential

errors

I Difficulties with Pairwise ratings:
I Distinction between similar translations
I Ties: no absolute anchoring of the quality of the pair
I Final score: No normalization for individual biases possible

From Simulations to Human RL

Learnability: 5-point Feedback

I Inputs are sources x and their translations y

I Given cardinal ratings r , train a regression model with
parameters ψ to minimize the mean squared error (MSE) for
predicted rewards r̂ :

L(ψ) =
1

n

n∑
i=1

(r(yi)− r̂ψ(yi))2.

From Simulations to Human RL

Learnability: Pairwise Feedback

I Given human preference Q[y1 � y2] for translation y1 over
translation y2

I Train estimator P̂ψ[y1 � y2] by minimizing cross-entropy
between predictions and human preferences:

L(ψ) = −1

n

n∑
i=1

(
Q[y1

i � y2
i] log P̂ψ[y1

i � y2
i]

+Q[y2
i � y1

i] log P̂ψ[y2
i � y1

i]
)
,

with the Bradley-Terry model for preferences

P̂ψ[y1 � y2] =
exp r̂ψ(y1)

exp r̂ψ(y1) + exp r̂ψ(y2)
.

I Use Bradley-Terry model’s r̂ as reward estimator
[Christiano et al., 2017]

From Simulations to Human RL

Reward Estimator Architecture

Source
BiLSTM

Target
BiLSTM

s0
s1
s2
s3
s4
s5
s6
PAD

t0
t1
t2
t3
t4
t5
PAD
PAD

1D Convolution Max over time Fully connected
output layer

I biLSTM-enhanced bilingual extension of convolutional model
for sentence classification [Kim, 2014]

From Simulations to Human RL

Learnability: Results

Model Feedback Spearman’s ρ with -TER

MSE 5-point norm. 0.2193
+ filtering 0.2341

PW Pairwise 0.1310
+ filtering 0.1255

I Comparatively better results for reward estimation from
cardinal human judgements.

I Overall relatively low correlation, presumably due to
overfitting on small training data set.

From Simulations to Human RL

End-to-end Seq2seq RL

1. Tackle the arguably simpler problem of learning a reward
estimator from human feedback first.

2. Then provide unlimited learned feedback to generalize to
unseen outputs in off-policy RL.

From Simulations to Human RL

End-to-End RL from Estimated Rewards

Expected Risk Minimiziation from Estimated Rewards
Estimated rewards allow to use minimum risk training
[Shen et al., 2016] s.t. feedback can be collected for k samples:

L(θ) =Ep(x)pθ(y|x) [r̂ψ(y)]

≈
S∑

s=1

k∑
i=1

pτθ (ỹ
(s)
i |x

(s)) r̂ψ(ỹi)

I Softmax temperature τ to control the amount of exploration
by sharpening the sampling distribution
pτθ (y|x) = softmax(o/τ) at lower temperatures.

I Subtract the running average of rewards from r̂ψ to reduce
gradient variance and estimation bias.

From Simulations to Human RL

Results on TED Talk Translations

I Significant improvements over the baseline (27.0 BLEU / 30.7
METEOR / 59.48 BEER):
I Gains of 1.1 BLEU for expected risk (ER) minimization for

estimated rewards.
I Deterministic propensity matching (DPM) on directly logged

human feedback yields up to 0.5 BLEU points.

From Simulations to Human RL

Recent Developments in Seq2seq RL

RL from simulated feedback:

I Use of task-specific evaluation metrics (e.g. ROUGE, BLEU,
F-score, etc.) as reward signals has become popular in various
NLP tasks [Keneshloo et al., 2019].

Connections of RL from human feedback to imitation learning:

I Token-wise error markings on sequence outputs
[Kreutzer et al., 2020, Reddy et al., 2020]

I Better trade-off between signal strength (precise credit
assignment) and annotation cost (reduced human effort).

Connections of RL from human feedback to active learning:

I Learn a policy to decide when to ask for which kind of
feedback from a teacher [Kreutzer and Riezler, 2019], or to
decide for which data to get annotations [Fang et al., 2017].

From Simulations to Human RL

Recent Developments in Seq2seq RL

RL from simulated feedback:

I Use of task-specific evaluation metrics (e.g. ROUGE, BLEU,
F-score, etc.) as reward signals has become popular in various
NLP tasks [Keneshloo et al., 2019].

Connections of RL from human feedback to imitation learning:

I Token-wise error markings on sequence outputs
[Kreutzer et al., 2020, Reddy et al., 2020]

I Better trade-off between signal strength (precise credit
assignment) and annotation cost (reduced human effort).

Connections of RL from human feedback to active learning:

I Learn a policy to decide when to ask for which kind of
feedback from a teacher [Kreutzer and Riezler, 2019], or to
decide for which data to get annotations [Fang et al., 2017].

From Simulations to Human RL

Recent Developments in Seq2seq RL

RL from simulated feedback:

I Use of task-specific evaluation metrics (e.g. ROUGE, BLEU,
F-score, etc.) as reward signals has become popular in various
NLP tasks [Keneshloo et al., 2019].

Connections of RL from human feedback to imitation learning:

I Token-wise error markings on sequence outputs
[Kreutzer et al., 2020, Reddy et al., 2020]

I Better trade-off between signal strength (precise credit
assignment) and annotation cost (reduced human effort).

Connections of RL from human feedback to active learning:

I Learn a policy to decide when to ask for which kind of
feedback from a teacher [Kreutzer and Riezler, 2019], or to
decide for which data to get annotations [Fang et al., 2017].

Summary

Summary

Basic RL:

I Policy evaluation using Dynamic Programming

I Policy optimization using Dynamic Programming, Monte
Carlo, or both: Temporal Difference learning.

I Policy-gradient techniques for direct policy optimization.

Seq2seq RL:

I Seq2seq RL simulations: Bandit Neural Machine Translation.

I Offline learning from deterministically logged feedback:
Deterministic Propensity Matching.

I Seq2seq RL from human feedback: Collecting reliable
feedback, learning reward estimators, end-to-end RL from
estimated rewards.

Q & A

Q & A

Thank you!

References

References
I Bahdanau, D., Brakel, P., Xu, K., Goyal, A., Lowe, R., Pineau, J., Courville, A.,

and Bengio, Y. (2017). An actor-critic algorithm for sequence prediction.
In Proceedings of the 5th International Conference on Learning Representations
(ICLR), Toulon, France.

I Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by
jointly learning to align and translate.
In Proceedings of the International Conference on Learning Representations
(ICLR), San Diego, CA.

I Bastani, H., Bayati, M., and Khosravi, K. (2017). Exploiting the natural
exploration in contextual bandits.
ArXiv e-prints, 1704.09011.

I Bottou, L., Peters, J., Quiñonero-Candela, J., Charles, D. X., Chickering, D. M.,
Portugaly, E., Ray, D., Simard, P., and Snelson, E. (2013). Counterfactual
reasoning and learning systems: The example of computational advertising.
Journal of Machine Learning Research, 14:3207–3260.

I Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analysis of stochastic and
nonstochastic multi-armed bandit problems.
Foundations and Trends in Machine Learning, 5(1):1–122.

I Chapelle, O., Masnavoglu, E., and Rosales, R. (2014). Simple and scalable
response prediction for display advertising.
ACM Transactions on Intelligent Systems and Technology, 5(4).

References

I Chen, M. X., Firat, O., Bapna, A., Johnson, M., Macherey, W., Foster, G., Jones,
L., Schuster, M., Shazeer, N., Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L.,
Chen, Z., Wu, Y., and Hughes, M. (2018). The best of both worlds: Combining
recent advances in neural machine translation.
In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (ACL), Melbourne, Australia.

I Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., and Amodei, D.
(2017). Deep reinforcement learning from human preferences.
In Advances in Neural Information Processing Systems (NIPS), Long Beach, CA,
USA.

I Dudik, M., Langford, J., and Li, L. (2011). Doubly robust policy evaluation and
learning.
In Proceedings of the 28th International Conference on Machine Learning (ICML),
Bellevue, WA.

I Fang, M., Li, Y., and Cohn, T. (2017). Learning how to active learn: A deep
reinforcement learning approach.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Copenhagen, Denmark.

I Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. (2017).
Convolutional sequence to sequence learning.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (ACL), Vancouver, Canada.

References

I Jiang, N. and Li, L. (2016). Doubly robust off-policy value evaluation for
reinforcement learning.
In Proceedings of the 33rd International Conference on Machine Learning (ICML),
New York, NY.

I Keneshloo, Y., Shi, T., Ramakrishnan, N., and Reddy, C. K. (2019). Deep
reinforcement learning for sequence-to-sequence models.
IEEE Transactions on Neurral Networks and Learning Systems.

I Kim, Y. (2014). Convolutional neural networks for sentence classification.
In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), Doha, Qatar.

I Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms.
In Advances in Neural Information Processing Systems (NIPS), Vancouver, Canada.

I Kong, A. (1992). A note on importance sampling using standardized weights.
Technical Report 348, Department of Statistics, University of Chicago, Illinois.

I Kreutzer, J., Berger, N., and Riezler, S. (2020). Correct me if you can: Learning
from error correctioins and marnkings.
In Proceedings of the 22nd Annual Conference of the European Association for
Machine Translatioin (EAMT), Lisbon, Portugal.

I Kreutzer, J., Khadivi, S., Matusov, E., and Riezler, S. (2018). Can neural machine
translation be improved with user feedback?

References

In Proceedings of the 16th Annual Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies -
Industry Track (NAACL-HLT), New Orleans, LA.

I Kreutzer, J. and Riezler, S. (2019). Self-regulated interactive sequence-to-sequence
learning.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics (ACL), Florence, Italy.

I Kreutzer, J., Sokolov, A., and Riezler, S. (2017). Bandit structured prediction for
neural sequence-to-sequence learning.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (ACL), Vancouver, Canada.

I Langford, J., Strehl, A., and Wortman, J. (2008). Exploration scavenging.
In Proceedings of the 25th International Conference on Machine Learning (ICML),
Helsinki, Finland.

I Lawrence, C., Gajane, P., and Riezler, S. (2017a). Counterfactual learning for
machine translation: Degeneracies and solutions.
In Proceedings of the NIPS WhatIF Workshop, Long Beach, CA.

I Lawrence, C. and Riezler, S. (2018). Improving a neural semantic parser by
counterfactual learning from human bandit feedback.
In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (ACL), Melbourne, Australia.

References

I Lawrence, C., Sokolov, A., and Riezler, S. (2017b). Counterfactual learning from
bandit feedback under deterministic logging: A case study in statistical machine
translation.
In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), Copenhagen, Denmark.

I Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit
approach to personalized news article recommendation.
In Proceedings of the 19th International Conference on World Wide Web (WWW).

I Nguyen, K., Daumé, H., and Boyd-Graber, J. (2017). Reinforcement learning for
bandit neural machine translation with simulated feedback.
In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), Copenhagen, Denmark.

I Popović, M. (2015). chrF: character n-gram f-score for automatic mt evaluation.
In Proceedings of the Tenth Workshop on Statistical Machine Translat ion
(WMT), Lisbon, Portugal.

I Precup, D., Sutton, R. S., and Singh, S. P. (2000). Eligibility traces for off-policy
policy evaluation.
In Proceedings of the Seventeenth International Conference on Machine Learning
(ICML), San Francisco, CA.

I Ranganath, R., Gerrish, S., and Blei, D. M. (2014). Black box variational inference.

References

In Proceedings of the 17th International Conference on Artificial Intelligence and
Statistics (AISTATS), Reykjavik, Iceland.

I Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. (2016). Sequence level
training with recurrent neural networks.
In Proceedings of the International Conference on Learning Representation (ICLR),
San Juan, Puerto Rico.

I Reddy, S., Dragan, A. D., and Levine, S. (2020). SQIL: imitation learning via
reinforcement learning with sparse rewards.
In Proceedings of the International Conference on Learning Representations
(ICLR), Online.

I Ross, S. M. (2013). Simulation.
Elsevier, fifth edition.

I Shen, S., Cheng, Y., He, Z., He, W., Wu, H., Sun, M., and Liu, Y. (2016).
Minimum risk training for neural machine translation.
In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (ACL), Berlin, Germany.

I Sokolov, A., Kreutzer, J., Lo, C., and Riezler, S. (2016). Stochastic structured
prediction under bandit feedback.
In Advances in Neural Information Processing Systems (NIPS), Barcelona, Spain.

I Sokolov, A., Riezler, S., and Urvoy, T. (2015). Bandit structured prediction for
learning from user feedback in statistical machine translation.
In Proceedings of MT Summit XV, Miami, FL.

References

I Strehl, A. L., Langford, J., Li, L., and Kakade, S. M. (2010). Learning from logged
implicit exploration data.
In Advances in Neural Information Processing Sytems (NIPS), Vancouver, Canada.

I Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning
with neural networks.
In Advances in Neural Information Processing Systems (NIPS), Montreal, Canada.

I Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning. An Introduction.
The MIT Press.

I Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning. An Introduction.
The MIT Press, second edition.

I Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (2000). Policy gradient
methods for reinforcement learning with function approximation.
In Advances in Neural Information Processings Systems (NIPS), Vancouver,
Canada.

I Szepesvári, C. (2009). Algorithms for Reinforcement Learning.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool.

I Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. (2017). Attention is all you need.
In Advances in Neural Information Processing Systems (NIPS), Long Beach, CA.

I Watkins, C. and Dayan, P. (1992). Q-learning.
Machine Learning, 8:279–292.

References

I Williams, R. J. (1992). Simple statistical gradient-following algorithms for
connectionist reinforcement learning.
Machine Learning, 8:229–256.

	Overview
	Introduction
	Markov Decision Processes
	Dynamic Programming
	Monte-Carlo Methods
	Policy Gradient Methods
	Q & A
	Sequence-to-Sequence Reinforcement Learning
	Q & A
	Summary
	Q & A
	
	References

