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Overview

Overview

I Formalizing the reinforcement learning problem: Markov
Decision Processes (MDPs)

I Dynamic programming techniques for policy evaluation and
policy optimization

I Sampling-based techniques: Monte-Carlo methods,
Temporal-Difference learning, Q-learning

I Policy-gradient methods: Score function gradient
estimators, actor-critic methods

I Seq2seq reinforcement learning: Bandit structured
prediction, actor-critic neural seq2seq learning

I Off-policy/counterfactual seq2seq reinforcement learning

I Seq2seq reinforcement learning from human feedback
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Overview

Textbooks

I Richard S. Sutton and Andrew G. Barto (2018, 2nd edition):
Reinforcement Learning: An Introduction. MIT Press.
I http://incompleteideas.net/sutton/book/

the-book-2nd.html

I Csaba Szepesvári (2010). Algorithms for Reinforcement
Learning. Morgan & Claypool.
I https://sites.ualberta.ca/~szepesva/RLBook.html

I Dimitri Bertsekas and John Tsitsiklis (1996). Neuro-Dynamic
Programming. Athena Scientific.
I = another name for deep reinforcement learning, contains a lot

of proofs, analog version can be ordered at
http://www.athenasc.com/ndpbook.html

http://incompleteideas.net/sutton/book/the-book-2nd.html
http://incompleteideas.net/sutton/book/the-book-2nd.html
https://sites.ualberta.ca/~szepesva/RLBook.html
http://www.athenasc.com/ndpbook.html


Introduction

Reinforcement Learning (RL) Philosopy

I Hedoninistic learning system that wants something, and
adapts its behavior in order to maximize a special signal or
reward from its environment.

I Interactive learning by trial and error, using consequences of
own actions in uncharted territory to learn to maximize
expected reward.

I Weak supervision signal since no gold standard examples from
expert are available.



Introduction

Reinforcement Learning Schema

I RL as Google DeepMind would like to see it (image from
David Silver):



Introduction

Reinforcement Learning Schema

I A real-world example: Interactive Machine Translation

I action = predicting a target word
I reward = per-sentence translation quality
I state = source sentence and target history



Introduction

Reinforcement Learning Schema

Agent/system and environment/user interact

I at each of a sequence of time steps t = 0, 1, 2, . . .,

I where agent receives a state representation St ,

I on which basis it selects an action At ,

I and as a consequence, it receives a reward Rt+1,

I and finds itself in a new state St+1.

Goal of RL: Maximize the total amount of reward an agent
receives in such interactions in the long run.
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Markov Decision Processes

Formalizing User/Environment: Markov
Decision Processes (MDPs)

A Markov decision process is a tuple 〈S,A,P,R〉 where

I S is a set of states,

I A is a finite set of actions,

I P is a state transition probability matrix s.t.
Pa

ss′ = P[St+1 = s ′|St = s,At = a],

I R is a reward function s.t. Ra
s = E[Rt+1|St = s,At = a].



Markov Decision Processes

Dynamics of MDPs

One-step dynamics of the environment under the Markov property
is completely specified by probability distribution over pairs of next
state and reward s ′, r , given state and action s, a:

I p(s ′, r |s, a) = P[St+1 = s ′,Rt+1 = r |St = s,At = a].

Exercise: Specify Pa
ss′ and Ra

s in terms of p(s ′, r |s, a).
Pa

ss′ = p(s ′|s, a) =
∑

r∈R p(s ′, r |s, a),
Ra

s =
∑

r∈R r
∑

s′∈S p(s ′, r |s, a).
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Markov Decision Processes

Formalizing Agent/System: Policies

A stochastic policy is a distribution over actions given states s.t.

I π(a|s) = P[At = a|St = s].

I A policy completely specifies the behavior of an agent/system.

I Policies are parameterized πθ, e.g. by a linear model or a
neural nework - we use π to denote πθ if unambiguous.

I Deterministic policies a = π(s) also possible.



Dynamic Programming

Policy Evaluation and Policy Optimization

Two central tasks in RL:

I Policy evaluation (a.k.a. prediction): Evaluate the
expected reward for a given policy.

I Policy optimization (a.k.a. learning/control): Find the
optimal policy / optimize a parametric policy under the
expected reward criterion.



Dynamic Programming

Return and Value Functions

I The total discounted return from time-step t for discount
γ ∈ [0, 1] is
I Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =

∑∞
k=0 γ

k Rt+k+1.

I The action-value function qπ(s, a) of an MDP is the
expected return starting from state s, taking action a, and
following policy π s.t.
I qπ(s, a) = Eπ[Gt |St = s,At = a].

I The state-value function vπ(s) of an MDP is the expected
return starting from state s and following policy π s.t.
I vπ(s) = Eπ[Gt |St = s] = Ea∼π[qπ(s, a)].
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Dynamic Programming

Bellman Expectation Equation

The state-value function can be decomposed into immediate
reward plus discounted value of successor state s.t.

vπ(s) = Eπ[Rt+1 + γvπ(St+1)|St = s]

=
∑
a∈A

π(a|s)

(
Ra

s + γ
∑
s′∈S
Pa

ss′vπ(s ′)

)
.

In matrix notation:

vπ = Rπ + γPπvπ where Rπ =
∑
a∈A

π(a|s)Ra
s ,Pπ =

∑
a∈A

π(a|s)Pa
ss′ .

v(1)
...

v(n)

 =

R1
...
Rn

+ γ

P11 . . . P1n
...
Pn1 . . . Pnn


v(1)

...
v(n)


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Dynamic Programming

Policy Evaluation by Linear Programming

The value of vπ can be found directly by solving the linear
equations of the Bellman Expectation Equation:

I Solving linear equations:

vπ = (I− γPπ)−1Rπ

I Only applicable to small MDPs.

Exercise: Derive solution vπ from Bellman Expectation Equation.

vπ = Rπ + γPπvπ

(I− γPπ)vπ = Rπ

vπ = (I− γPπ)−1Rπ
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Dynamic Programming

Policy Evaluation by Dynamic Programming
(DP)

Value of vπ can also be found by iterative application of Bellman
Expectation Equation:

I Iterative policy evaluation:

vk+1 = Rπ + γPπvk .

I Performs dynamic programming by recursive decomposition
of Bellman equation.

I Can be parallelized (or backed up asynchronously), thus
applicable to large MDPs.

I Converges to vπ.
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Dynamic Programming

Policy Optimization using Bellman Optimality
Equation

An optimal policy π∗ can be found by maximizing over the optimal
action-value function q∗(s, a) = maxπ qπ(s, a) s.t.

π∗(s) = argmax
a

q∗(s, a).

The optimal action-value function can be recursively decomposed
by the Bellman Optimality Equation:

q∗(s, a) = Eπ∗ [Rt+1 + γmax
a′

q∗(St+1, a
′)|St = s,At = a]

= Ra
s + γ

∑
s′∈S
Pa

ss′ max
a′

q∗(s ′, a′).
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Dynamic Programming

Policy Optimization by Value Iteration

The Bellman Optimality Equation is non-linear and requires
iterative solutions such as value iteration by dynamic programming:

I Value iteration for q-function:

qk+1(s, a) = Ra
s + γ

∑
s′∈S
Pa

ss′ max
a′

qk(s ′, a′).

I Converges to q∗(s, a).



Dynamic Programming

Summary: Dynamic Programming

I Earliest RL algorithms with well-defined convergence
properties.

I Bellman equation gives recursive decomposition for iterative
solution to various problems in policy evaluation and policy
optimization.

I Can be trivially parallelized or even run asynchronously.

I We need to know a full MDP model with all transitions
and rewards, and touch all of them in learning!
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Monte-Carlo Methods

Policy Evaluation by Monte-Carlo (MC)
Sampling

I Monte-Carlo Policy Evaluation
I Sample episodes S0,A0,R1, . . . ,RT ∼ π.
I For each sampled episode:

I Increment state counter N(s)← N(s) + 1.
I Increment total return S(s)← S(s) + Gt .

I Estimate mean return V (s) = S(s)/N(s).

I Learns vπ from episodes sampled under policy π, thus
model-free.

I Updates can be done at first step or at every time step t
where state s is visited in episode.

I Converges to vπ for large number of samples.
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Monte-Carlo Methods

Incremental Mean

Use definition of incremental mean µk s.t.

µk =
1

k

k∑
j=1

xj

=
1

k

xk +
k−1∑
j=1

xj


=

1

k
(xk + (k − 1)µk−1)

= µk−1 +
1

k
(xk − µk−1) .



Monte-Carlo Methods

Incremental Monte-Carlo Updates

I Incremental Monte-Carlo Policy Evaluation
I For each sampled episode, for each step t:

I N(St)← N(St) + 1,
I V (St)← V (St) + α (Gt − V (St)) .

I Can be seen as incremental update towards actual return.

I α can be 1
N(St ) or more general term α > 0.
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Monte-Carlo Methods

Policy Evaluation by Temporal Difference
(TD) Learning

I TD(0):
I For each sampled episode, for each step t:

I V (St)← V (St) + α (Rt+1 + γV (St+1)− V (St)) .

I Combines sampling and recursive computation by
updating toward estimated return Rt+1 + γV (St+1).

I Recall Rt+1 + γV (St+1) from Bellman Expectation Equation,
here called TD target.

I δt = (Rt+1 + γV (St+1)− V (St)) is called TD error.
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Monte-Carlo Methods

TD Learning with n-Step Returns

n-Step Returns:

I G
(1)
t = Rt+1 + γV (St+1).

I G
(2)
t = Rt+1 + γRt+2 + γ2V (St+2).

I
...

I G
(n)
t = Rt+1 + γRt+2 + . . .+ γn−1Rt+n + γnV (St+n).

n-Step TD Learning:

I V (St)← V (St) + α
(

G
(n)
t − V (St)

)
.

Exercise: How can Incremental Monte Carlo be recovered by

TD(n)? Monte Carlo: G
(∞)
t = Rt+1 + γRt+2 + . . .+ γT−1RT .
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Monte-Carlo Methods

TD Learning with λ-Weighted Returns

λ-Returns:

I Average n-Step Returns using

Gλ
t = (1− λ)

∞∑
n=1

λn−1G
(n)
t ,

where λ ∈ [0, 1].

TD(λ) Learning:

I V (St)← V (St) + α
(
Gλ

t − V (St)
)
.

Exercise: How can TD(0) be recovered from TD(λ)?

λ = 0 ⇒ Gλ
t = G

(1)
t = TD(0).
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where λ ∈ [0, 1].

TD(λ) Learning:

I V (St)← V (St) + α
(
Gλ

t − V (St)
)
.

Exercise: How can TD(0) be recovered from TD(λ)?

λ = 0 ⇒ Gλ
t = G

(1)
t = TD(0).



Monte-Carlo Methods

Policy Optimization by Q-Learning

I Q-Learning [Watkins and Dayan, 1992]:
I For each sampled episode:

I Initialize St .
I For each step t:

I Sample At , observe Rt+1, St+1.
I Q(St ,At)← Q(St ,At)

+α(Rt+1 + γmaxa′ Q(St+1, a
′)− Q(St ,At)).

I St ← St+1.

I Q-Learning combines sampling and TD(0)-style recursive
computation for policy optimization.

I Recall Rt+1 + γmaxa′ Q(St+1,a′) from Bellman Optimality
Equation.
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Monte-Carlo Methods

Summary: Monte-Carlo and
Temporal-Difference Learning

I MC has zero bias, but high variance that grows with
number of random actions, transitions, rewards in
computation of return.

I TD techniques
I reduce variance since TD target depends on a single random

action, transition, reward,
I can learn from incomplete episodes and can use online

updates,
I introduce bias and use approximations which are exact only in

special cases.



Monte-Carlo Methods

Summary: Monte-Carlo and
Temporal-Difference Learning

I MC has zero bias, but high variance that grows with
number of random actions, transitions, rewards in
computation of return.

I TD techniques
I reduce variance since TD target depends on a single random

action, transition, reward,
I can learn from incomplete episodes and can use online

updates,
I introduce bias and use approximations which are exact only in

special cases.



Monte-Carlo Methods

Summary: Value-Based/Critic-Only Methods

I All techniques discussed so far, DP, MC, and TD, focus on
value-functions, not policies.

I Value-function is also called critic, thus critic-only methods.

I Value-based techniques are inherently indirect in learning
approximate value-function and extracting near-optimal policy.

I Overview over DP, MC, and TD in [Sutton and Barto, 1998]

I Problems:
I Closeness to optimal policy cannot be quantified.
I Focus is on deterministic instead of on stochastic policies.

I Up next: Policy Gradient Methods
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Policy Gradient Methods

Policy-Gradient Methods

I Policy-Gradient techniques attempt at direct optimization of
expected return

Eπθ [Gt ]

for parameterized stochastic policy

πθ(a|s) = P[At = a|St = s, θ].

I Policy-function is also called actor.

I We will discuss actor-only (optimize parametric policy) and
actor-critic (learn both policy and critic parameters in
tandem) methods.
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Policy Gradient Methods

One-Step MDPs/Gradient Bandits

Let pθ(y) denote probability of an action/output, ∆(y) be the
reward/quality of an output.

Objective: Epθ [∆(y)]

Gradient: ∇θEpθ [∆(y)] = ∇θ
∑

y

pθ(y)∆(y)

=
∑

y

∇θpθ(y)∆(y)

=
∑

y

pθ(y)

pθ(y)
∇θpθ(y)∆(y)

=
∑

y

pθ(y)∇θ log pθ(y)∆(y)

= Epθ [∆(y)∇θ log pθ(y)].



Policy Gradient Methods

Score Function Gradient Estimator for Bandit

I Bandit Gradient Ascent:
I Sample yi ∼ pθ,
I Update θ ← θ + α(∆(yi )∇θ log pθ(yi )).

I Update by stochastic gradient gi = ∆(yi )∇θ log pθ(yi ) yields
unbiased estimator of Epθ [∆(y)]

I Intuition: ∇θ log pθ(y) is called the score function.
I Moving in the direction of gi pushes up the score of the sample

yi in proportion to its reward ∆(yi ).
I In RL terms: High reward samples are weighted higher -

reinforced!
I Estimator is valid even if ∆(y) is non-differentiable.



Policy Gradient Methods

Score Function Gradient Estimator for Bandit

I Bandit Gradient Ascent:
I Sample yi ∼ pθ,
I Update θ ← θ + α(∆(yi )∇θ log pθ(yi )).

I Update by stochastic gradient gi = ∆(yi )∇θ log pθ(yi ) yields
unbiased estimator of Epθ [∆(y)]

I Intuition: ∇θ log pθ(y) is called the score function.
I Moving in the direction of gi pushes up the score of the sample

yi in proportion to its reward ∆(yi ).
I In RL terms: High reward samples are weighted higher -

reinforced!
I Estimator is valid even if ∆(y) is non-differentiable.



Policy Gradient Methods

Score Function Gradient Estimator for Bandit

I Bandit Gradient Ascent:
I Sample yi ∼ pθ,
I Update θ ← θ + α(∆(yi )∇θ log pθ(yi )).

I Update by stochastic gradient gi = ∆(yi )∇θ log pθ(yi ) yields
unbiased estimator of Epθ [∆(y)]

I Intuition: ∇θ log pθ(y) is called the score function.
I Moving in the direction of gi pushes up the score of the sample

yi in proportion to its reward ∆(yi ).
I In RL terms: High reward samples are weighted higher -

reinforced!
I Estimator is valid even if ∆(y) is non-differentiable.



Policy Gradient Methods

Score Function Gradient Estimator for MDPs

Let y = S0,A0,R1, . . . ,RT ∼ πθ be an episode, and
R(y) = R1 + γR2 + . . .+ γT−1RT =

∑T
t=1 γ

t−1Rt be its total
discounted reward.

I Objective: Eπθ [R(y)].

I Gradient: Eπθ [R(y)
∑T−1

t=0 ∇θ log πθ(At |St)].

I Reinforcement Gradient Ascent:
I Sample episode y = S0,A0,R1, . . . ,RT ∼ πθ,
I Obtain reward R(y) =

∑T
t=1 γ

t−1Rt ,
I Update θ ← θ + α(R(y)

∑T−1
t=0 ∇θ log πθ(At |St)).
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Policy Gradient Methods

General Form of Policy Gradient Algorithms

Formalized for expected per time-step reward with respect to
action-value qπθ(St ,At).

I Objective: Eπθ [qπθ(St ,At)].

I Gradient: Eπθ [qπθ(St ,At)∇θ log πθ(At |St)].

I Policy Gradient Ascent:
I Sample episode y = S0,A0,R1, . . . ,RT ∼ πθ.
I For each time step t:

I Obtain reward qπθ (St ,At),
I Update θ ← θ + α(qπθ (St ,At)∇θ log πθ(At |St)).
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Policy Gradient Methods

Policy Gradient Algorithms

I General form for expected per time-step return qπθ(St ,At) is
known as Policy Gradient Theorem [Sutton et al., 2000].

I Since qπθ(s, a) is normally not known, one can use the actual
discounted return Gt at time step t, calculated from sampled
episode. This leads to the REINFORCE algorithm
[Williams, 1992].

I Problems of Policy Gradient Algorithms, esp. REINFORCE:
I Large variance in discounted returns calculated from sampled

episodes.
I Each gradient update is done independently of past gradient

estimates.
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Policy Gradient Methods

Variance Reduction by Baselines

I Variance of REINFORCE can be reduced by comparison of
actual return Gt to a baseline b(s) for state s that is constant
with respect to actions a. Example: average return so far.

I Update :

θ ← θ + α((Gt − b(St))∇θ log πθ(At |St)).

I Can be interpreted as Control Variate [Ross, 2013]:
I Goal is to augment random variable X (= stochastic gradient)

with highly correlated variable Y such that
Var(X − Y ) = Var(X ) + Var(Y )− 2Cov(X ,Y ) is reduced.

I Gradient remains unbiased since E[X − Y + E[Y ]] = E[X ].
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Policy Gradient Methods

Variance Reduction by Baselines

Exercise: Show that E[Y ] = 0 for constant baselines.

Proof:

Eπθ [∇θ log πθ(a|s)b(s)] =
∑

a

πθ(a|s)
∇θπθ(a|s)

πθ(a|s)
b(s)

= b(s)∇θ
∑

a

πθ(a|s)

= b(s)∇θ1

= 0.
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Policy Gradient Methods

Actor-Critic Methods

I Learning a critic in order to get an improved estimate of the
expected return will also reduce variance.
I Critic: TD(0) update for linear approximation

qπθ
(s, a) ≈ qw (s, a) = φ(s, a)>w .

I Actor: Policy gradient update reinforced by qw (s, a).

I Simple Actor-Critic [Konda and Tsitsiklis, 2000]:
I Sample a ∼ πθ.
I For each step t:

I Sample reward r ∼ Ra
s , transition s ′ ∼ Pa

s,·, action
a′ ∼ πθ(s ′, ·),

I δ ← r + γqw (s ′, a′)− qw (s, a),
I θ ← θ + α∇θ log πθ(a|s)qw (s, a),
I w ← w + βδφ(s, a),
I a← a′, s ← s ′.

I True online updates of policy πθ in each step!
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Policy Gradient Methods

Advantage Actor-Critic

I Combine idea of baseline with actor-critic by using advantage
function that compares action-value function qπθ(s, a) to
state-value function vπθ(s) = Ea∼π[qπθ(s, a)].

I Use approximate TD error

δw = r + γvw (s ′)− vw (s),

where state-value is approximated by vw (s), and action-value
is approximated by sample qw (s ′) = r + γvw (s ′).

I Update Actor: θ ← θ + α∇θ log πθ(a|s)(qw (s ′)− vw (s)).

I Update Critic: w = arg minw (qw (s ′)− vw (s))2.
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Policy Gradient Methods

Summary: Policy-Gradient Methods

I Build upon huge knowledge in stochastic optimization which
provides excellent theoretical understanding of
convergence properties.

I Gradient-based techniques are model-free since MDP
transation matrix is not dependent on θ.

I Problem of high variance in actor-only methods can be
mitigated by the critic’s low-variance estimate of expected
return.



Policy Gradient Methods

Quick Summary and Outlook

What have we covered:

I Policy evaluation (a.k.a. prediction) using DP

I Policy optimization (a.k.a. control) using Value-based
techniques of DP, MC, or both: TD.

I Policy-gradient techniques for direct stochastic optimization
of parametric policies.

Where from here on:
I Sequence-to-Sequence Reinforcement Learning

I Algorithms for seq2seq RL from simulated feedback
I Algorithms for offline learning from logged feedback
I Seq2seq RL from human bandit feedback
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Sequence-to-Sequence Reinforcement Learning

Sequence-to-Sequence RL

Sequence-to-sequence (seq2seq) learning:

I x = x1 . . . xS represents an input sequence, indexed over a
source vocabulary VSrc.

I y = y1 . . . yT represents an output sequence, indexed over a
target vocabulary VTrg.

I Goal of seq2seq learning is to estimate a function for mapping
an input sequence x into an output sequences y, defined as
product of conditional token probabilities:

pθ(y | x) =
T∏

t=1

pθ(yt | x; y<t).



Sequence-to-Sequence Reinforcement Learning

Seq2seq RL: Neural Machine Translation

Neural machine translation (NMT):

I x are source sentences, y are human reference translations,

I Maximize likelihood of parallel data D = {(x(i), y(i))}n
i=1:

L(θ) =
n∑

i=1

log pθ(y(i) | x(i))

I pθ(yt | x; y<t) is defined by the neural model’s
softmax-normalized output vector of size R|VTrg|:

pθ(yt | x; y<t) = softmax(NNθ(x; y<t)).

I Various options for NNθ, such as recurrent
[Sutskever et al., 2014, Bahdanau et al., 2015], convolutional
[Gehring et al., 2017] or attentional [Vaswani et al., 2017]
encoder-decoder architectures (or mix [Chen et al., 2018]).
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Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT

Why deviate from supervised learning using parallel data?

I What if no human references are available, e.g., in
under-resourced language pairs?

I Maybe weak human feedback signals are easier to obtain
than full translations, e.g., from logged user interactions in
commercial NMT services?

I [Sutton and Barto, 2018] on the “Future of Artificial
Intelligence”:

The full potential of reinforcement learning requires rein-
forcement learning agents to be embedded into the flow of
real-world experience, where they act, explore, and learn
in our world, not just in their worlds.
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Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT

I Learning from weak user feedback in form of user clicks is
state-of-the-art in computational advertising
[Bottou et al., 2013, Chapelle et al., 2014].

I Let’s dig the gold mine of user feedback to improve NMT!
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Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT: Simulations

I NMT in standard RL framework:
I In timestep t, a state is defined by the input x and the

currently produced tokens ỹ<t .
I A reward is obtained by evaluating quality of the fully

generated sequence ỹ.
I An action corresponds to generating the next token ỹt .

I Exercise: How would this translate into an MDP’s state
transitions and an agent’s policy?
I pθ(ỹt | x; ỹ<t) corresponds to a stochastic policy, while the

state transition is deterministic given an action.

I Interactive NMT:
I The NMT system is the agent that performs actions, while

the human user provides rewards.
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Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT: Simulations

I Expected loss/reward objective:

L(θ) =Ep(x) pθ(ỹ|x;θ) [∆(ỹ)]

where ∆(ỹ) is task loss, e.g., −BLEU(ỹ)

I Sampling an input x and an output ỹ, and performing a
stochastic gradient descent update corresponds to a policy
gradient algorithm.



Sequence-to-Sequence Reinforcement Learning

(Neural) Bandit Structured Prediction

Algorithm 1 (Neural) Bandit Structured Prediction

1: for k = 0, . . . ,K do
2: Observe input xk

3: Sample output ỹk ∼ pθ(y|xk)
4: Obtain feedback ∆(ỹk)
5: Update parameters θk+1 = θk − γk sk

6: where stochastic gradient sk = ∆(ỹ)∂ log pθ(ỹ|xk )
∂θi

.

I [Sokolov et al., 2015, Sokolov et al., 2016,
Kreutzer et al., 2017]



Sequence-to-Sequence Reinforcement Learning

(Neural) Bandit Structured Prediction

I Why (Neural) Bandit Structured Prediction?
I An action is defined as generating a full output sequence, thus

corresponding to a one-state MDP.
I Term bandit feedback is inherited from the problem of

maximizing the reward for a sequence of pulls of arms of
so-called “one-armed bandit” slot machines
[Bubeck and Cesa-Bianchi, 2012]:

I In contrast to fully supervised learning, the learner receives
feedback to a single prediction. It does not know what the
correct output looks like, nor what would have happened if it
had predicted differently.

I Related to gradient bandit algorithms [Sutton and Barto, 2018]
and contextual bandits [Li et al., 2010].



Sequence-to-Sequence Reinforcement Learning

(Neural) Bandit Structured Prediction

I Important measure for variance reduction: Control variates
I Random variable X is stochastic gradient sk in case of

algorithm 1.
I Two choices in [Kreutzer et al., 2017]:

1. Baseline [Williams, 1992]:

Yk = ∇ log pθ(ỹ|xk )
1

k

k∑
j=1

∆(ỹj ).

2. Score Function [Ranganath et al., 2014]:

Y k = ∇ log pθ(ỹ|xk ).



Sequence-to-Sequence Reinforcement Learning

Advantage Actor-Critic for Bandit NMT

I Neural encoder-decoder A2C [Nguyen et al., 2017]:
I Gradient approximation

∇L(θ) ≈
T∑

t=1

R̄t(ỹ)∇θ log pθ(ỹt | x; ỹ<t)

I Uses per-action advantage function

R̄t(ỹ) := ∆(ỹ)− V (ỹ<t)

I State-value function V (ỹ<t) centers the reward and uses
separate neural encoder-decoder network that is trained to
minimize the squared error [Vw (ỹ<t)−∆(ỹ)]2



Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT: Simulation Results

I EuroParl→NewsComm NMT conservative domain adaptation

I ∆(ỹ) simulated by per-sentence BLEU against reference
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Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT: Simulation Results

I EuroParl→TED NMT conservative domain adaptation task
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Sequence-to-Sequence Reinforcement Learning

Seq2seq RL for NMT: To Simulate or Not

I Domain adaptation experiments show impressive gains for
learning from simulated bandit feedback only

I Most work on Seq2seq RL for NMT is confined to
simulations, aiming to improve “exposure bias” and
“loss-evaluation mismatch” [Ranzato et al., 2016]

I Recall [Sutton and Barto, 2018] on the “Future of Artificial
Intelligence”:

A major reason for wanting a reinforcement learning agent
to act and learn in the real world is that it is often difficult,
sometimes impossible, to simulate real-world experience
with enough fidelity to make the resulting policies [...] work
well—and safely—when directing real actions.

I Up next: From Simulations to Human RL
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From Simulations to Human RL

Seq2seq RL for NMT: From Simulations to
Human RL

I Where do simulations fall short?
I Real-world RL only has access to human bandit feedback to

a single prediction—no summation over all actions that
amounts to full supervision
[Shen et al., 2016, Bahdanau et al., 2017].

I Online/on-policy learning might be undesirable given concerns
about safety and stability of commercial systems.

I Reward function for human translation quality is not well
defined, reward signals are noisy and skewed.

I (Super)human performance (similar to playing Atari or Go) of
real-world RL is not to be expected soon!
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From Simulations to Human RL

Seq2seq RL for NMT: From Simulations to
Human RL

I Where do simulations fall short?
I Real-wold RL only has access to human bandit feedback
⇒ control variates

I Online/on-policy learning raises safety and stability concerns
⇒ offline learning

I Human rewards are not well defined, noisy, and skewed
⇒ reward estimation



From Simulations to Human RL

Offline Learning from Logged Feedback

Standard: Online/On-Policy RL

I Undesirable if stability or real-world system has priority over
frequent updates after each interaction

Offline/Off-Policy RL from Logged Bandit Feedback

I Attempts to learn from logged feedback that has been given to
the predictions of a historic system following a different policy

I Allows control over system updates

I Prior work in counterfactual bandit learning
[Dudik et al., 2011, Bottou et al., 2013] and off-policy RL
[Precup et al., 2000, Jiang and Li, 2016]
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From Simulations to Human RL

Offline Learning = Counterfactual Learning

I Counterfactual question: Estimate how the new system would
have performed if it had been in control of choosing the
logged predictions.



From Simulations to Human RL

Offline Learning from Logged Feedback

I Logged data D = {(x(h), y(h), r(y(h)))}H
h=1 where y(h) is

sampled from a logging system µ(y(h)|x(h)), and the
reward/loss r(y(h)) ∈ [0, 1] is obtained from human user.

I Inverse propensity scoring (IPS) to learn target policy pθ(y|x):

L(θ) =
1

H

H∑
h=1

r(y(h)) ρθ(y(h)|x(h)).

I IPS uses importance sampling to correct for sampling bias

of logging system s.t. ρθ(y(h)|x(h)) = pθ(y(h)|x(h))

µ(y(h)|x(h))

I Exercise: Show unbiasedness of IPS estimator.

1

H

H∑
h=1

r(y(h))
pθ(y(h)|x(h))

µ(y(h)|x(h))
= Ep(x)Eµ(y|x)[r(y)

pθ(y|x)

µ(y|x)
]

= Ep(x)Epθ(y|x)[r(y)].
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From Simulations to Human RL

Offline Learning under Deterministic Logging:
Problems

I Commercial NMT systems try to avoid risk by showing only
most probable translation to users = exploration-free,
deterministic logging

I Problems with deterministic logging [Lawrence et al., 2017a]
I No correction of sampling bias like in IPS since µ(y|x) = 1
I Degenerate behavior: Empirical reward over log is

maximized by setting probability of all logged data to 1
→ Undesirable to increase probability of low reward examples

I Unbiased learning is thought to be impossible for
exploration-free off-policy learning
[Langford et al., 2008, Strehl et al., 2010].
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From Simulations to Human RL

Offline Learning under Deterministic Logging:
Solutions

I Implicit exploration via inputs [Bastani et al., 2017]

I Deterministic Propensity Matching (DPM)
[Lawrence et al., 2017b, Lawrence and Riezler, 2018]

L(θ) =
1

H

H∑
h=1

r(y(h)) p̄θ(y(h)|x(h)),

I Reweighting by multiplicative control variate, evaluated
one-step-late at θ′ from some previous iteration:

p̄θ,θ′(y(h)|x(h)) = pθ(y(h)|x(h))∑B
b=1 pθ′ (y(b)|x(b))

.

I Effect of self-normalization: Introduces bias that decreases
as B increases [Kong, 1992], but prevents increasing
probability for low reward data by taking away probability mass
from higher reward outputs.
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From Simulations to Human RL

Offline Learning under Deterministic Logging:
Gradients

I Optimization by Stochastic Gradient Descent
I IPS:

∇L(θ) =
1

H

H∑
h=1

r(y(h)) ρθ(y(h)|x(h))∇ log pθ(y(h)|x(h))

I OSL self-normalized deterministic propensity matching:

∇L(θ) =
1

H

H∑
h=1

r(y(h)) p̄θ,θ(y(h)|x(h))∇ log pθ(y(h)|x(h))



From Simulations to Human RL

Offline Learning from Human Feedback:
e-commerce

I [Kreutzer et al., 2018]: 69k translated item titles (en-es) with
148k individual ratings

I No agreement of paid raters with e-commerce users, low
inter-rater agreement, learning impossible



From Simulations to Human RL

Offline Learning from Human Feedback:
e-commerce

I Lessons from e-commerce experiments:
I Offline learning from direct user feedback to e-commerce titles

is equivalent to learning from noise
I Conjecture: Missing reliability and validity of human feedback

in e-commerce experiment
I Need experiment on controlled feedback collection!



From Simulations to Human RL

Offline Learning from Controlled Human
Feedback

vs

I Ratings on five-point Likert scale (left) and pairwise
preferences (right), ∼15 bilinguals for each task

I 800 de-en translations and 400 pairs1, filtered for length 20-40
and paired by difference in chrF score [Popović, 2015]

1Data: https://www.cl.uni-heidelberg.de/statnlpgroup/humanmt/

 https://www.cl.uni-heidelberg.de/statnlpgroup/humanmt/


From Simulations to Human RL

Reliability and Learnability of Human
Feedback

I Controlled study on main factors in human RL:

1. Reliability: Collect five-point and pairwise feedback on same
data, evaluate intra- and inter-rater agreement.

2. Learnability: Train reward estimators on human feedback,
evaluate correlation to TER on held-out data.

3. RL: Use rewards directly or estimated rewards to improve an
NMT system.

What are your guesses on reliability and learnability—five-point or
pairwise?
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From Simulations to Human RL

Reliability: α-agreement

Inter-rater Intra-rater
Rating Type α Mean α Stdev α

5-point 0.2308
0.4014 0.1907

+ normalization 0.2820
+ filtering 0.5059 0.5527 0.0470

Pairwise 0.2385 0.5085 0.2096
+ filtering 0.3912 0.7264 0.0533

I Inter- and intra-reliability measured by Krippendorff’s α for
5-point and pairwise ratings of 1,000 translations of which 200
translations are repeated twice.

I Filtered variants are restricted to either a subset of
participants (5-point) or a subset of translations (pairwise).



From Simulations to Human RL

Reliability: Qualitative Analysis

Rating Type Avg. subjective difficulty [1-10]

5-point 4.8
Pairwise 5.69

I Difficulties with 5-point ratings:
I Weighing of error types; long sentences with few essential

errors

I Difficulties with Pairwise ratings:
I Distinction between similar translations
I Ties: no absolute anchoring of the quality of the pair
I Final score: No normalization for individual biases possible



From Simulations to Human RL

Learnability: 5-point Feedback

I Inputs are sources x and their translations y

I Given cardinal ratings r , train a regression model with
parameters ψ to minimize the mean squared error (MSE) for
predicted rewards r̂ :

L(ψ) =
1

n

n∑
i=1

(r(yi )− r̂ψ(yi ))2.



From Simulations to Human RL

Learnability: Pairwise Feedback

I Given human preference Q[y1 � y2] for translation y1 over
translation y2

I Train estimator P̂ψ[y1 � y2] by minimizing cross-entropy
between predictions and human preferences:

L(ψ) = −1

n

n∑
i=1

(
Q[y1

i � y2
i ] log P̂ψ[y1

i � y2
i ]

+Q[y2
i � y1

i ] log P̂ψ[y2
i � y1

i ]
)
,

with the Bradley-Terry model for preferences

P̂ψ[y1 � y2] =
exp r̂ψ(y1)

exp r̂ψ(y1) + exp r̂ψ(y2)
.

I Use Bradley-Terry model’s r̂ as reward estimator
[Christiano et al., 2017]



From Simulations to Human RL

Reward Estimator Architecture
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I biLSTM-enhanced bilingual extension of convolutional model
for sentence classification [Kim, 2014]



From Simulations to Human RL

Learnability: Results

Model Feedback Spearman’s ρ with -TER

MSE 5-point norm. 0.2193
+ filtering 0.2341

PW Pairwise 0.1310
+ filtering 0.1255

I Comparatively better results for reward estimation from
cardinal human judgements.

I Overall relatively low correlation, presumably due to
overfitting on small training data set.



From Simulations to Human RL

End-to-end Seq2seq RL

1. Tackle the arguably simpler problem of learning a reward
estimator from human feedback first.

2. Then provide unlimited learned feedback to generalize to
unseen outputs in off-policy RL.



From Simulations to Human RL

End-to-End RL from Estimated Rewards

Expected Risk Minimiziation from Estimated Rewards
Estimated rewards allow to use minimum risk training
[Shen et al., 2016] s.t. feedback can be collected for k samples:

L(θ) =Ep(x)pθ(y|x) [r̂ψ(y)]

≈
S∑

s=1

k∑
i=1

pτθ (ỹ
(s)
i |x

(s)) r̂ψ(ỹi)

I Softmax temperature τ to control the amount of exploration
by sharpening the sampling distribution
pτθ (y|x) = softmax(o/τ) at lower temperatures.

I Subtract the running average of rewards from r̂ψ to reduce
gradient variance and estimation bias.



From Simulations to Human RL

Results on TED Talk Translations

I Significant improvements over the baseline (27.0 BLEU / 30.7
METEOR / 59.48 BEER):
I Gains of 1.1 BLEU for expected risk (ER) minimization for

estimated rewards.
I Deterministic propensity matching (DPM) on directly logged

human feedback yields up to 0.5 BLEU points.



From Simulations to Human RL

Recent Developments in Seq2seq RL

RL from simulated feedback:

I Use of task-specific evaluation metrics (e.g. ROUGE, BLEU,
F-score, etc.) as reward signals has become popular in various
NLP tasks [Keneshloo et al., 2019].

Connections of RL from human feedback to imitation learning:

I Token-wise error markings on sequence outputs
[Kreutzer et al., 2020, Reddy et al., 2020]

I Better trade-off between signal strength (precise credit
assignment) and annotation cost (reduced human effort).

Connections of RL from human feedback to active learning:

I Learn a policy to decide when to ask for which kind of
feedback from a teacher [Kreutzer and Riezler, 2019], or to
decide for which data to get annotations [Fang et al., 2017].



From Simulations to Human RL

Recent Developments in Seq2seq RL

RL from simulated feedback:

I Use of task-specific evaluation metrics (e.g. ROUGE, BLEU,
F-score, etc.) as reward signals has become popular in various
NLP tasks [Keneshloo et al., 2019].

Connections of RL from human feedback to imitation learning:

I Token-wise error markings on sequence outputs
[Kreutzer et al., 2020, Reddy et al., 2020]

I Better trade-off between signal strength (precise credit
assignment) and annotation cost (reduced human effort).

Connections of RL from human feedback to active learning:

I Learn a policy to decide when to ask for which kind of
feedback from a teacher [Kreutzer and Riezler, 2019], or to
decide for which data to get annotations [Fang et al., 2017].



From Simulations to Human RL

Recent Developments in Seq2seq RL

RL from simulated feedback:

I Use of task-specific evaluation metrics (e.g. ROUGE, BLEU,
F-score, etc.) as reward signals has become popular in various
NLP tasks [Keneshloo et al., 2019].

Connections of RL from human feedback to imitation learning:

I Token-wise error markings on sequence outputs
[Kreutzer et al., 2020, Reddy et al., 2020]

I Better trade-off between signal strength (precise credit
assignment) and annotation cost (reduced human effort).

Connections of RL from human feedback to active learning:

I Learn a policy to decide when to ask for which kind of
feedback from a teacher [Kreutzer and Riezler, 2019], or to
decide for which data to get annotations [Fang et al., 2017].



Summary

Summary

Basic RL:

I Policy evaluation using Dynamic Programming

I Policy optimization using Dynamic Programming, Monte
Carlo, or both: Temporal Difference learning.

I Policy-gradient techniques for direct policy optimization.

Seq2seq RL:

I Seq2seq RL simulations: Bandit Neural Machine Translation.

I Offline learning from deterministically logged feedback:
Deterministic Propensity Matching.

I Seq2seq RL from human feedback: Collecting reliable
feedback, learning reward estimators, end-to-end RL from
estimated rewards.
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Thank you!
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