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Why Linear Classifiers?

It’s 2020 and everybody uses neural networks. Why a lecture on linear
classifiers?

• The underlying machine learning concepts are the same

• The theory (statistics and optimization) are much better understood

• Linear classifiers are still widely used (and very effective when data is
scarce)

• Linear classifiers are a component of neural networks.
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Linear Classifiers and Neural Networks
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Today’s Roadmap

• Linear regression

• Binary and multi-class classification

• Linear classifiers: perceptron, naive Bayes, logistic regression, SVMs

• Softmax and sparsemax

• Regularization and optimization, stochastic gradient descent

• Similarity-based classifiers and kernels.
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Example Tasks

Binary: given an e-mail: is it spam or not-spam?

Multi-class: given a news article, determine its topic (politics, sports, etc.)
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Outline

1 Data and Feature Representation

2 Regression

3 Classification

Perceptron

Naive Bayes

Logistic Regression

Support Vector Machines

4 Regularization

5 Non-Linear Classifiers

André Martins (IST) Linear Classifiers LxMLS 2020 6 / 157



Disclaimer

Some of the following slides are adapted from Ryan McDonald.
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Let’s Start Simple

• Example 1 – sequence: ? � ◦; label: −1

• Example 2 – sequence: ? ♥ 4; label: −1

• Example 3 – sequence: ? 4 ♠; label: +1

• Example 4 – sequence: � 4 ◦; label: +1

• New sequence: ? � ◦; label ?

• New sequence: ? � ♥; label

• New sequence: ? 4 ◦; label ?

Why can we do this?
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Let’s Start Simple: Machine Learning

• Example 1 – sequence: ? � ◦; label: −1

• Example 2 – sequence: ? ♥ 4; label: −1

• Example 3 – sequence: ? 4 ♠; label: +1

• Example 4 – sequence: � 4 ◦; label: +1

• New sequence: ? � ♥; label −1

Label −1 Label +1

P(−1|?) = count(? and −1)
count(?)

= 2
3

= 0.67 vs. P(+1|?) = count(? and +1)
count(?)

= 1
3

= 0.33

P(−1|�) = count(� and −1)
count(�)

= 1
2

= 0.5 vs. P(+1|�) = count(� and +1)
count(�)

= 1
2

= 0.5

P(−1|♥) = count(♥ and −1)
count(♥)

= 1
1

= 1.0 vs. P(+1|♥) = count(♥ and +1)
count(♥)

= 0
1

= 0.0
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Machine Learning

1 Define a model/distribution of interest

2 Make some assumptions if needed

3 Fit the model to the data

• Model: P(label|sequence) = P(label|symbol1, . . . symboln)
• Prediction for new sequence = argmaxlabel P(label|sequence)

• Assumption (naive Bayes—more later):

P(symbol1, . . . , symboln|label) =
n∏

i=1

P(symboli |label)

• Fit the model to the data: count!! (simple probabilistic modeling)
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Some Notation: Inputs and Outputs

• Input x ∈ X
• e.g., a news article, a sentence, an image, ...

• Output y ∈ Y
• e.g., spam/not spam, a topic, a parse tree, an image segmentation

• Input/Output pair: (x , y) ∈ X× Y
• e.g., a news article together with a topic
• e.g., a sentence together with a parse tree
• e.g., an image partitioned into segmentation regions
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Supervised Machine Learning

• We are given a labeled dataset of input/output pairs:

D = {(xn, yn)}Nn=1 ⊆ X× Y

• Goal: use it to learn a predictor h : X→ Y that generalizes well to
arbitrary inputs.

• At test time, given x ∈ X, we predict

ŷ = h(x).

• Hopefully, ŷ ≈ y most of the time.
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Things can go by different names depending on what Y is...
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Regression

Deals with continuous output variables:

• Regression: Y = R
• e.g., given a news article, how much time a user will spend reading it?

• Multivariate regression: Y = RK

• e.g., predict the X-Y coordinates in an image where the user will click
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Classification

Deals with discrete output variables:

• Binary classification: Y = {±1}
• e.g., spam detection

• Multi-class classification: Y = {1, 2, . . . ,K}
• e.g., topic classification

• Structured classification: Y exponentially large and structured
• e.g., machine translation, caption generation, image segmentation

• See Xavier Carreras’ lecture later at LxMLS!

Today we’ll focus mostly on multi-class classification.
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Sometimes reductions are convenient:

• logistic regression reduces classification to regression

• one-vs-all reduces multi-class to binary

• greedy search reduces structured classification to multi-class

... but other times it’s better to tackle the problem in its native form.

More later!
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Feature Representations

Feature engineering is an important step in linear classifiers:

• Bag-of-words features for text, also lemmas, parts-of-speech, ...

• SIFT features and wavelet representations in computer vision

• Other categorical, Boolean, and continuous features
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Feature Representations

We need to represent information about x

Typical approach: define a feature map φ : X→ RD

• φ(x) is a high dimensional feature vector

We can use feature vectors to encapsulate Boolean, categorical, and
continuous features

• e.g., categorical features can be reduced to a range of one-hot binary
values.
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Example: Continuous Features

Linear Classifier

Handcrafted
Features
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Feature Engineering and NLP Pipelines

Classical NLP pipelines consist of stacking together several linear classifiers

Each classifier’s predictions are used to handcraft features for other
classifiers

Examples of features:

• Word occurrences: binary feature denoting if a word occurs in not in
a document

• Word counts: real-valued feature counting how many times a word
occurs

• POS tags: adjective counts for sentiment analysis

• Spell checker: misspellings counts for spam detection
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Example: Translation Quality Estimation

Goal: estimate the quality of a translation on the fly (without a reference)!
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Example: Translation Quality Estimation

Hand-crafted features:

• no of tokens in the source/target segment

• LM probability of source/target segment and their ratio

• % of source 1–3-grams observed in 4 frequency quartiles of source corpus

• average no of translations per source word

• ratio of brackets and punctuation symbols in source & target segments

• ratio of numbers, content/non-content words in source & target segments

• ratio of nouns/verbs/etc in the source & target segments

• % of dependency relations b/w constituents in source & target segments

• diff in depth of the syntactic trees of source & target segments

• diff in no of PP/NP/VP/ADJP/ADVP/CONJP in source & target

• diff in no of person/location/organization entities in source & target

• features and global score of the SMT system

• number of distinct hypotheses in the n-best list

• 1–3-gram LM probabilities using translations in the n-best to train the LM

• average size of the target phrases

• proportion of pruned search graph nodes;

• proportion of recombined graph nodes.
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Representation Learning

Feature engineering is a black art and can be very time-consuming

But it’s a good way of encoding prior knowledge, and it is still widely used
in practice (in particular with “small data”)

One alternative to feature engineering: representation learning

Bhiksha will talk about this tomorrow!
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Regression

Output space Y is continuous

Example: given an article, how much time a user spends reading it?

• x is number of words of the article

• y is the reading time (minutes)

How to define a model that predicts ŷ from x?
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Linear Regression

• First take: assume ŷ = wx + b

• Model parameters: w and b

• Given training data
D = {(xn, yn)}Nn=1, how to
estimate w and b?

Least squares method: fit w and b on the training set by minimizing∑N
n=1(yn − (wxn + b))2
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André Martins (IST) Linear Classifiers LxMLS 2020 26 / 157



Linear Regression

Often a linear dependency of ŷ on x is a poor assumption

Second take: assume ŷ = w · φ(x), where φ(x) is a feature vector

• e.g. φ(x) = [1, x , x2, . . . , xD ] (polynomial features degree ≤ D)

• the bias term b is captured by the constant feature φ0(x) = 1

Fit w by minimizing
∑

n(yn − (w · φ(xn)))2

• Closed form solution:

w = (X>X )−1X>y , with X =


...

φ(xn)>

...

 , y =


...
yn
...

 .
Still called linear regression – linearity w.r.t. the model parameters w.
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Linear Regression (D = 1)
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Linear Regression (D = 2)
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Squared Loss Function

Linear regression with the least squares method corresponds to a loss
function

L(y , ŷ) =
1

2
(y − ŷ)2, where ŷ = w · φ(x).

The model is fit to the training data by minimizing this loss function.

This is called the squared loss.

More later.
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Least Squares – Probabilistic Interpretation

The least squares method has a probabilistic interpretation.

Assume the data is generated stochastically as

y = w∗ · φ(x) + n

where n ∼ N(0, σ2) is Gaussian noise (with σ fixed), and w∗ are the
“true” model parameters.

That is, y ∼ N(w∗ · φ(x), σ2).

Then w given by least squares is the maximum likelihood estimate under
this model.
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One-Slide Proof

Recall N(y ;µ, σ2) = 1√
2πσ

exp
(
− (y−µ)2

2σ2

)
.

ŵMLE = arg max
w

N∏
n=1

P(yn | xn;w)

= arg max
w

N∑
n=1

logP(yn | xn;w)

= arg max
w

N∑
n=1

− (yn −w · φ(xn))2

2σ2
− log(

√
2πσ)︸ ︷︷ ︸

constant

= arg min
w

N∑
n=1

(yn −w · φ(xn))2

Thus, linear regression with the squared loss = MLE under Gaussian noise.
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Other Regression Losses

Squared loss: L(y , ŷ) = 1
2 (y − ŷ)2.

Absolute error loss: L(y , ŷ) = |y − ŷ |.

Huber loss: L(y , ŷ) =

{
1
2 (y − ŷ)2 if |y − ŷ | ≤ 1
|y − ŷ | − 1

2 if |y − ŷ | ≥ 1.
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Overfitting and Underfitting

We saw earlier an example of underfitting.

However, if the model is too complex (too many parameters) and the data
is scarce, we run the risk of overfitting:

To avoid overfitting, we need regularization (more later).
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Maximum A Posteriori

Assuming we have a prior distribution on w, w ∼ N(0, σ2
wI )

A criterion to estimate w∗ is maximum a posteriori (MAP):

ŵMAP = arg max
w

P(w)
N∏

n=1

P(yn | xn;w)

= arg max
w

logP(w) +
N∑

n=1

logP(yn | xn;w)

= arg max
w
−‖w‖

2

2σ2
w

−
N∑

n=1

− (yn −w · φ(xn))2

2σ2
+ constant

= arg min
w

λ‖w‖2

2
+

N∑
n=1

(yn −w · φ(xn))2

Thus, `2-regularizarion is equivalent to MAP with a Gaussian prior.
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Binary Classification

Before covering multi-class classification, we address the simpler case of
binary classification

Output space Y = {−1,+1}
Example: Given a news article, is it true or fake?

• x is the news article, represented a feature vector φ(x)

• y can be either true (+1) or fake (−1)

How to define a model to predict ŷ from x?
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Linear Classifier

Defined by ŷ = sign(w · φ(x) + b) =

{
+1 if w · φ(x) + b ≥ 0
−1 if w · φ(x) + b < 0.

Intuitively, w · φ(x) + b is a “score” for the positive class: if positive,
predict +1; if negative, predict −1

Difference from regression: the sign function converts from continuous to
binary

The decision boundary is an hyperplane defined by the model parameters
w and b

Also called a “hyperplane classifier.”
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Linear Classifier

(w, b) is an hyperplane that splits the space into two half spaces:

1 2-2 -1

1

2

-2

-1

Points along line
have scores of 0

How to learn this hyperplane from the training data D = {(xn, yn)}Nn=1?
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Linear Separability

• A dataset D is linearly separable if there exists (w, b) such that
classification is perfect

Separable Not Separable

We next present an algorithm that finds such an hyperplane if it exists!
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Linear Classifier: No Bias Term

It is common to present linear classifiers without the bias term b:
ŷ = sign(w · φ(x)+b)

In this case, the decision boundary is a hyperplane that passes through the
origin

We can always do this without loss of generality:

• Add a constant feature to φ(x): φ0(x) = 1

• Then the corresponding weight w0 replaces the bias term b

André Martins (IST) Linear Classifiers LxMLS 2020 40 / 157



Outline

1 Data and Feature Representation

2 Regression

3 Classification

Perceptron

Naive Bayes

Logistic Regression

Support Vector Machines

4 Regularization

5 Non-Linear Classifiers
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Perceptron (Rosenblatt, 1958)

(Extracted from Wikipedia)

• Invented in 1957 at the
Cornell Aeronautical
Laboratory by Frank
Rosenblatt

• Implemented in custom-built
hardware as the “Mark 1
perceptron,” designed for
image recognition

• 400 photocells, randomly
connected to the “neurons.”
Weights were encoded in
potentiometers

• Weight updates during
learning were performed by
electric motors.
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Perceptron in the News...
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Perceptron Algorithm

Online algorithm: process one data point at each round

1 Take xi ; apply the current model to make a prediction for it

2 If prediction is correct, do nothing

3 Else, correct model w by adding/subtracting feature vector φ(xi )

For simplicity, omit the bias b: assume a constant feature φ0(x) = 1 as
explained earlier.
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Perceptron Algorithm

input: labeled data D

initialize w(0) = 0
initialize k = 0 (number of mistakes)
repeat

get new training example (xi , yi )
predict ŷi = sign(w(k) · φ(xi ))
if ŷi 6= yi then

update w(k+1) = w(k) + yiφ(xi )
increment k

end if
until maximum number of epochs
output: model weights w(k)
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Perceptron’s Mistake Bound

A couple definitions:

• the training data is linearly separable with margin γ > 0 iff there is a
weight vector u with ‖u‖ = 1 such that

yi u · φ(xi ) ≥ γ, ∀i .

• radius of the data: R = maxi ‖φ(xi )‖.

Then we have the following bound of the number of mistakes:

Theorem (Novikoff (1962))

The perceptron algorithm is guaranteed to find a separating hyperplane
after at most R2

γ2 mistakes.
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One-Slide Proof

Recall that w(k+1) = w(k) + yiφ(xi ).

• Lower bound on ‖w(k+1)‖:

u ·w(k+1) = u ·w(k) + yiu · φ(xi )

≥ u ·w(k) + γ

≥ kγ.

Hence ‖w(k+1)‖ = ‖u‖ · ‖w(k+1)‖ ≥ u ·w(k+1) ≥ kγ (from CSI).

• Upper bound on ‖w(k+1)‖:

‖w(k+1)‖2 = ‖w(k)‖2 + ‖φ(xi )‖2 + 2yiw
(k) · φ(xi )

≤ ‖w(k)‖2 + R2

≤ kR2.

Equating both sides, we get (kγ)2 ≤ kR2 ⇒ k ≤ R2/γ2 (QED).
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What a Simple Perceptron Can and Can’t Do

• Remember: the decision boundary is linear (linear classifier)

• It can solve linearly separable problems (OR, AND)

André Martins (IST) Linear Classifiers LxMLS 2020 48 / 157



What a Simple Perceptron Can and Can’t Do

• ... but it can’t solve non-linearly separable problems such as simple
XOR (unless input is transformed into a better representation):

• This result is often attributed to Minsky and Papert (1969) but was
known well before.
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Limitations of the Perceptron

Minsky and Papert (1969):

• Shows limitations of multi-layer
perceptrons and fostered an “AI
winter” period.

More tomorrow at Bhiksha’s lecture!
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Multi-Class Classification

Let’s now assume a multi-class classification problem, with |Y| ≥ 2 labels
(classes).
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Reduction to Binary Classification

One strategy for multi-class classification is to train one binary classifier
per label (using all the other classes as negative examples) and pick the
class with the highest score (one-vs-all)

Another strategy is to train pairwise classifiers and to use majority voting
(one-vs-one)

Here, we’ll consider classifiers that tackle the multiple classes directly.
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Multi-Class Linear Classifiers

• Parametrized by a weight matrix W ∈ R|Y|×D (one weight per
feature/label pair) and a bias vector b ∈ R|Y|:

W =


...
w>y

...

 , b =


...
by
...

 .
• Equivalently, |Y| weight vectors wy ∈ RD and scalars by ∈ R
• The score (or probability) of a particular label is based on a linear

combination of features and their weights

• Predict the ŷ which maximizes this score:

ŷ = arg max
y∈Y

wy · φ(x) + by .
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Multi-Class Linear Classifier

Geometrically, (W , b) split the feature space into regions delimited by
hyperplanes.
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Commonly Used Notation in Neural Networks

Linear Classifier

Handcrafted
Features

ŷ = argmax (Wφ(x) + b) , W =


...
w>y

...

 , b =


...
by
...

 .
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Multi-Class Recovers Binary

With two classes (Y = {±1}), this formulation recovers the binary
classifier presented earlier:

ŷ = arg max
y∈{±1}

wy · φ(x) + by

=

{
+1 if w+1 · φ(x) + b+1 > w−1 · φ(x) + b−1

−1 otherwise

= sign((w+1 −w−1)︸ ︷︷ ︸
w

· φ(x) + (b+1 − b−1)︸ ︷︷ ︸
b

).

That is: only half of the parameters are needed.
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Linear Classifiers (Binary vs Multi-Class)

• Prediction rule:

ŷ = h(x) = arg max
y∈Y

linear in wy︷ ︸︸ ︷
wy · φ(x)

• The decision boundary is defined by the intersection of half spaces

• In the binary case (|Y| = 2) this corresponds to a hyperplane classifier
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Linear Classifier – No Bias Term

Again, it is common to omit the bias vector b:

ŷ = arg max
y∈Y

wy · φ(x)+by

Like before, this can be done without loss of generality, by assuming a
constant feature φ0(x) = 1

The first column of W replaces the bias vector.

We assume this for simplicity.
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Example: Perceptron

The perceptron algorithm also works for the multi-class case!

It has a similar mistake bound: if the data is separable, it’s guaranteed to
find separating hyperplanes!

André Martins (IST) Linear Classifiers LxMLS 2020 59 / 157



Perceptron Algorithm: Multi-Class

input: labeled data D

initialize W (0) = 0
initialize k = 0 (number of mistakes)
repeat

get new training example (xi , yi )

predict ŷi = arg maxy∈Yw
(k)
y · φ(xi )

if ŷi 6= yi then

update w
(k+1)
yi = w

(k)
yi + φ(xi ) {increase weight of gold class}

updatew
(k+1)
ŷi

= w
(k)
ŷi
−φ(xi ) {decrease weight of incorrect class}

increment k
end if

until maximum number of epochs
output: model weights w(k)
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Outline

1 Data and Feature Representation

2 Regression

3 Classification

Perceptron

Naive Bayes

Logistic Regression

Support Vector Machines

4 Regularization

5 Non-Linear Classifiers
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Probabilistic Models

• For a moment, forget linear classifiers and parameter vectors w

• Let’s assume our goal is to model the conditional probability of
output labels y given inputs x , i.e. P(y |x)

• If we can define this distribution, then classification becomes:

ŷ = arg max
y∈Y

P(y |x)
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Bayes Rule

• One way to model P(y |x) is through Bayes Rule:

P(y |x) =
P(y)P(x |y)

P(x)

arg max
y

P(y |x) = arg max
y

P(y)P(x |y)

(since x is fixed!)

• P(y)P(x |y) = P(x , y): a joint probability

• Above is a “generative story”: ‘pick y ; then pick x given y .”

• Models that consider the joint P(x , y) are called generative models,
because they come with a generative story.
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Naive Bayes

Assume that an input x is partitioned as v1, . . . , vL, where vk ∈ Vk

Example:

• x is a document of length L

• vk is the kth token (a word)

• The set Vk = V is a fixed vocabulary (all tokens drawn from V)

Naive Bayes Assumption
(conditional independence)

P(v1, . . . , vL︸ ︷︷ ︸
x

|y) =
∏L

k=1 P(vk |y)
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Multinomial Naive Bayes

P(x , y) = P(y)P(v1, . . . , vL︸ ︷︷ ︸
x

|y) = P(y)
L∏

k=1

P(vk |y)

• All tokens are conditionally independently, given the topic

• The word order doesn’t change P(x , y) (bag-of-words assumption)

Small caveat: we assumed that the document has a fixed length L.

This is not realistic.

How to deal with variable length?
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Multinomial Naive Bayes – Arbitrary Length

Solution: introduce a distribution over document length P(|x |)

• e.g. a Poisson distribution.

We get:

P(x , y) = P(y)P(|x |)
|x |∏
k=1

P(vk |y)︸ ︷︷ ︸
P(x |y)

P(|x |) is constant (independent of y), so nothing really changes

• the posterior P(y |x) is the same as before.
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What Does This Buy Us?

P(v1, . . . , vL︸ ︷︷ ︸
x

|y) =
L∏

k=1

P(vk |y)

What do we gain with the Naive Bayes assumption?

• A huge reduction in the number of parameters!

• If we haven’t done any factorization assumption, how many
parameters would be required for expressing P(v1, . . . , vL|y)?

O(|V|L)

• And how many parameters with Naive Bayes?

O(|V|)

Less parameters =⇒ Less computation; less risk of overfitting

(Though we may underfit if our independence assumptions are too strong.)
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Naive Bayes – Learning

P(y)P(v1, . . . , vL︸ ︷︷ ︸
x

|y) = P(y)
L∏

k=1

P(vk |y)

• Input: dataset D = {(xt , yt)}Nt=1 (examples assumed i.i.d.)

• Parameters Θ = {P(y),P(v |y)}

• Objective: Maximum Likelihood Estimation (MLE): choose
parameters that maximize the likelihood of observed data

L(Θ;D) =
N∏
t=1

P(xt , yt) =
N∏
t=1

(
P(yt)

L∏
k=1

P(vk(xt)|yt)

)

Θ̂ = arg max
Θ

N∏
t=1

(
P(yt)

L∏
k=1

P(vk(xt)|yt)

)
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Naive Bayes – Learning via MLE

For the multinomial Naive Bayes model, MLE has a closed form solution!!

It all boils down to counting and normalizing!!

(The proof is left as an exercise...)
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Naive Bayes – Learning via MLE

Θ̂ = arg max
Θ

N∏
t=1

(
P(yt)

L∏
k=1

P(vk(xt)|yt)

)

P̂(y) =

∑N
t=1[[yt = y ]]

N

P̂(v |y) =

∑N
t=1

∑L
k=1[[vk(xt) = v and yt = y ]]

L
∑N

t=1[[yt = y ]]

[[X ]] is 1 if property X holds, 0 otherwise (Iverson notation)
Fraction of times a feature appears in training cases of a given label
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Naive Bayes Example

• Corpus of movie reviews: 7 examples for training

Doc Words Class

1 Great movie, excellent plot, renown actors Positive

2 I had not seen a fantastic plot like this in good 5
years. Amazing!!!

Positive

3 Lovely plot, amazing cast, somehow I am in love
with the bad guy

Positive

4 Bad movie with great cast, but very poor plot and
unimaginative ending

Negative

5 I hate this film, it has nothing original Negative

6 Great movie, but not... Negative

7 Very bad movie, I have no words to express how I
dislike it

Negative

André Martins (IST) Linear Classifiers LxMLS 2020 71 / 157



Naive Bayes Example

• Features: adjectives (bag-of-words)

Doc Words Class

1 Great movie, excellent plot, renowned actors Positive

2 I had not seen a fantastic plot like this in good 5
years. amazing !!!

Positive

3 Lovely plot, amazing cast, somehow I am in love
with the bad guy

Positive

4 Bad movie with great cast, but very poor plot and
unimaginative ending

Negative

5 I hate this film, it has nothing original. Really bad Negative

6 Great movie, but not... Negative

7 Very bad movie, I have no words to express how I
dislike it

Negative
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Naive Bayes Example

Relative frequency:

Priors:

P(positive) =

∑N
t=1[[yt = positive]]

N
= 3/7 = 0.43

P(negative) =

∑N
t=1[[yt = negative]]

N
= 4/7 = 0.57

Assume standard pre-processing: tokenization, lowercasing, punctuation
removal (except special punctuation like !!!)
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Naive Bayes Example

Likelihoods: Count adjective v in class y / adjectives in y

P̂(v |y) =

∑N
t=1

∑L
k=1[[vk(xt) = v and yt = y ]]

L
∑N

t=1[[yt = y ]]

P(amazing |positive) = 2/10 P(amazing |negative) = 0/8
P(bad |positive) = 1/10 P(bad |negative) = 3/8
P(excellent|positive) = 1/10 P(excellent|negative) = 0/8
P(fantastic |positive) = 1/10 P(fantastic|negative) = 0/8
P(good |positive) = 1/10 P(good |negative) = 0/8
P(great|positive) = 1/10 P(great|negative) = 2/8
P(lovely |positive) = 1/10 P(lovely |negative) = 0/8
P(original |positive) = 0/10 P(original |negative) = 1/8
P(poor |positive) = 0/10 P(poor |negative) = 1/8
P(renowned |positive) = 1/10 P(renowned |negative) = 0/8
P(unimaginative|positive) = 0/10 P(unimaginative|negative)= 1/8
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Naive Bayes Example

Given a new segment to classify (test time):

Doc Words Class

8 This was a fantastic story, good, lovely ???

Final decision

ŷ = arg max
y

(
P(y)

L∏
k=1

P(vk |y)

)

P(positive) ∗ P(fantastic|positive) ∗ P(good |positive) ∗ P(lovely |positive)

3/7 ∗ 1/10 ∗ 1/10 ∗ 1/10 = 0.00043

P(negative) ∗ P(fantastic|negative) ∗ P(good |negative) ∗ P(lovely |negative)

4/7 ∗ 0/8 ∗ 0/8 ∗ 0/8 = 0

So: sentiment = positive
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Naive Bayes Example

Given a new segment to classify (test time):

Doc Words Class

9 Great plot, great cast, great everything ???

Final decision

P(positive) ∗ P(great|positive) ∗ P(great|positive) ∗ P(great|positive)

3/7 ∗ 1/10 ∗ 1/10 ∗ 1/10 = 0.00043

P(negative) ∗ P(great|negative) ∗ P(great|negative) ∗ P(great|negative)

4/7 ∗ 2/8 ∗ 2/8 ∗ 2/8 = 0.00893

So: sentiment = negative
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Naive Bayes Example

But if the new segment to classify (test time) is:

Doc Words Class

10 Boring movie, annoying plot, unimaginative ending ???

Final decision

P(positive) ∗ P(boring |positive) ∗ P(annoying |positive) ∗ P(unimaginative|positive)

3/7 ∗ 0/10 ∗ 0/10 ∗ 0/10 = 0

P(negative) ∗ P(boring |negative) ∗ P(annoying |negative) ∗ P(unimaginative|negative)

4/7 ∗ 0/8 ∗ 0/8 ∗ 1/8 = 0

So: sentiment = ???
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Laplace Smoothing

Add smoothing to feature counts (add 1 to every count):

P̂(v |y) =

∑N
t=1

∑L
k=1[[vk(xt) = v and yt = y ]] + 1

L
∑N

t=1[[yt = y ]] + |V|
where |V| = number of distinct adjectives in training (all classes) = 12

Doc Words Class

11 Boring movie, annoying plot, unimaginative ending ???

Final decision

P(positive) ∗ P(boring |positive) ∗ P(annoying |positive) ∗ P(unimaginative|positive)

3/7 ∗ ((0 + 1)/(10 + 12)) ∗ ((0 + 1)/(10 + 12)) ∗ ((0 + 1)/(10 + 12)) = 0.000040

P(negative) ∗ P(boring |negative) ∗ P(annoying |negative) ∗ P(unimaginative|negative)

4/7 ∗ ((0 + 1)/(8 + 12)) ∗ ((0 + 1)/(8 + 12)) ∗ ((1 + 1)/(8 + 12)) = 0.000143

So: sentiment = negative
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Finally...

Multinomial Naive Bayes is a Linear Classifier!
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One Slide Proof

• Let by = logP(y), ∀y ∈ Y

• Let [wy ]v = logP(v |y), ∀y ∈ Y, v ∈ V

• Let [φ(x)]v =
∑L

k=1[[vk(x) = v ]], ∀v ∈ V (# times v occurs in x)

arg max
y

P(y |x) ∝ arg max
y

(
P(y)

L∏
k=1

P(vk(x)|y)

)

= arg max
y

(
logP(y) +

L∑
k=1

logP(vk(x)|y)

)

= arg max
y

logP(y)︸ ︷︷ ︸
by

+
∑
v∈V

[φ(x)]v logP(v |y)︸ ︷︷ ︸
[wy ]v


= arg max

y
(wy · φ(x) + by ) .
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Discriminative versus Generative

• Generative models attempt to model inputs and outputs
• e.g., Naive Bayes = MLE of joint distribution P(x , y)
• Statistical model must explain generation of input
• Can we sample a document from the multinomial Naive Bayes model?

How?

• Occam’s Razor: why model input?
• Discriminative models

• Use loss function that directly optimizes P(y |x) (or something related)
• Logistic Regression – MLE of P(y |x)
• Perceptron and SVMs – minimize classification error

• Generative and discriminative models use P(y |x) for prediction

• They differ only on what distribution they use to set w
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Coffee-break!
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So far

We have covered:

• The perceptron algorithm

• (Multinomial) Naive Bayes.

We saw that both are instances of linear classifiers.

Perceptron finds a separating hyperplane (if it exists), Naive Bayes is a
generative probabilistic model

Next: a discriminative probabilistic model.
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Reminder

Linear Classifier

Handcrafted
Features

ŷ = argmax (Wφ(x) + b) , W =


...
w>y

...

 , b =


...
by
...

 .
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Key Problem

How to map from a set of label scores R|Y| to a probability distribution
over Y?

z p

We’ll see two mappings: softmax (next) and sparsemax (later).
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Outline
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2 Regression

3 Classification
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5 Non-Linear Classifiers
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Logistic Regression

Recall: a linear model gives the score for each class, wy · φ(x).

Define a conditional probability:

P(y |x) =
exp(wy · φ(x))

Zx
, where Zx =

∑
y ′∈Y

exp(wy ′ · φ(x))

This operation (exponentiating and normalizing) is called the softmax
transformation (more later!)

Note: still a linear classifier

arg max
y

P(y |x) = arg max
y

exp(wy · φ(x))

Zx

= arg max
y

exp(wy · φ(x))

= arg max
y

wy · φ(x)
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Binary Logistic Regression

Binary labels (Y = {±1})
Scores: 0 for negative class, w · φ(x) for positive class

P(y = +1 | x) =
exp(w · φ(x))

1 + exp(w · φ(x))

=
1

1 + exp(−w · φ(x))

= σ(w · φ(x)).

This is called a sigmoid transformation (more later!)
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Sigmoid Transformation

σ(z) =
1

1 + e−z

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

• Widely used in neural networks (wait for tomorrow!)

• Can be regarded as a 2D softmax

• “Squashes” a real number between 0 and 1

• The output can be interpreted as a probability

• Positive, bounded, strictly increasing
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Multinomial Logistic Regression

PW (y | x) =
exp(wy · φ(x))

Zx

• How do we learn weights W ?
• Set W to maximize the conditional log-likelihood of training data:

Ŵ = arg max
W

log

(
N∏
t=1

PW (yt |xt)

)
= arg min

W
−

N∑
t=1

logPW (yt |xt) =

= arg min
W

N∑
t=1

log
∑
y ′
t

exp(wy ′
t
· φ(xt))−wyt · φ(xt)

 ,

i.e., set W to assign as much probability mass as possible to the
correct labels!
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Logistic Regression

• This objective function is convex

• Therefore any local minimum is a global minimum
• No closed form solution, but lots of numerical techniques

• Gradient methods (gradient descent, conjugate gradient)
• Quasi-Newton methods (L-BFGS, ...)

• Logistic Regression = Maximum Entropy: maximize entropy subject
to constraints on features

• Proof left as an exercise!
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Recap: Convex functions

Pro: Guarantee of a global minima X

Figure: Illustration of a convex function. The line segment between any two
points on the graph lies entirely above the curve.
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Recap: Iterative Descent Methods

Goal: find the minimum/minimizer of f : Rd → R

• Proceed in small steps in the optimal direction till a stopping
criterion is met.
• Gradient descent: updates of the form: x (k+1) ← x (k) − ηk∇f (x (k))

Figure: Illustration of gradient descent. The red lines correspond to steps taken
in the negative gradient direction.
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Gradient Descent

• Our loss function in logistic regression is

L(W ; (x , y)) = log
∑
y ′

exp(wy ′ · φ(x)) − wy · φ(x).

• We want to find arg minW
∑N

t=1 L(W ; (xt , yt))
• Set W 0 = 0
• Iterate until convergence (for suitable stepsize ηk):

W k+1 = W k − ηk∇W

(∑N
t=1 L(W ; (xt , yt))

)
= W k − ηk

∑N
t=1∇W L(W k ; (xt , yt))

• ∇W L(W ) is gradient of L w.r.t. W

• L(W ) convex ⇒ gradient descent will reach the global optimum W .

André Martins (IST) Linear Classifiers LxMLS 2020 94 / 157



Stochastic Gradient Descent

It turns out this works with a Monte Carlo approximation of the gradient
(more frequent updates, convenient with large datasets):

• Set W 0 = 0
• Iterate until convergence

• Pick (xt , yt) randomly

• Update W k+1 = W k − ηk∇W L(W k ; (xt , yt))

• i.e. we approximate the true gradient with a noisy, unbiased, gradient,
based on a single sample

• Variants exist in-between (mini-batches)

• All guaranteed to find the optimal W (for suitable step sizes)
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Computing the Gradient

• For this to work, we need to compute ∇W L(W ; (xt , yt)), where

L(W ; (x , y)) = log
∑
y ′

exp(wy ′ · φ(x)) − wy · φ(x)

• Some reminders:

1 ∇W log F (W ) = 1
F (W )∇W F (W )

2 ∇W expF (W ) = exp(F (W ))∇W F (W )

• We denote by
ey = [0, . . . , 0, 1︸︷︷︸

y

, 0, . . . , 0]>

the one-hot vector representation of class y .
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Computing the Gradient

∇W L(W ; (x , y)) = ∇W

log
∑
y′

exp(wy′ · φ(x))−wy · φ(x)


= ∇W log

∑
y′

exp(wy′ · φ(x))−∇Wwy · φ(x)

=
1∑

y′ exp(wy′ · φ(x))

∑
y′
∇W exp(wy′ · φ(x))−eyφ(x)>

=
1

Zx

∑
y′

exp(wy′ · φ(x))∇Wwy′ · φ(x)−eyφ(x)>

=
∑
y′

exp(wy′ · φ(x))

Zx
ey′φ(x)>−eyφ(x)>

=
∑
y′

PW (y ′|x)ey′φ(x)>−eyφ(x)>

=




...
PW (y ′|x)

...

− ey
φ(x)>.
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Logistic Regression Summary

• Define conditional probability

PW (y |x) =
exp(wy · φ(x))

Zx

• Set weights to maximize conditional log-likelihood of training data:

W = arg max
W

∑
t

logPW (yt |xt) = arg minW
∑
t

L(W ; (xt , yt))

• Can find the gradient and run gradient descent (or any gradient-based
optimization algorithm)

∇W L(W ; (x , y)) =
∑
y ′

PW (y ′|x)ey ′φ(x)>−eyφ(x)>
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The Story So Far

• Naive Bayes is generative: maximizes joint likelihood
• closed form solution (boils down to counting and normalizing)

• Logistic regression is discriminative: maximizes conditional likelihood
• also called log-linear model and max-entropy classifier
• no closed form solution
• stochastic gradient updates look like

W k+1 = W k + η

eyφ(x)> −
∑
y ′

Pw(y ′|x)ey ′φ(x)>


• Perceptron is a discriminative, non-probabilistic classifier

• perceptron’s updates look like

W k+1 = W k + eyφ(x)> − eŷφ(x)>

SGD updates for logistic regression and perceptron’s updates look similar!
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Maximizing Margin

• For a training set D

• Margin of a weight matrix W is smallest γ such that

wyt · φ(xt)−wy ′ · φ(xt) ≥ γ

• for every training instance (xt , yt) ∈ D, y ′ ∈ Y
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Margin

Training Testing

Denote the
value of the
margin by γ
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Maximizing Margin

• Intuitively maximizing margin makes sense

• More importantly, generalization error to unseen test data is
proportional to the inverse of the margin

ε ∝ R2

γ2 × N

• Perceptron:
• If a training set is separable by some margin, the perceptron will find a
W that separates the data

• However, the perceptron does not pick W to maximize the margin!
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Outline

1 Data and Feature Representation

2 Regression

3 Classification

Perceptron

Naive Bayes

Logistic Regression

Support Vector Machines

4 Regularization

5 Non-Linear Classifiers
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Maximizing Margin

Let γ > 0
max
||U ||=1

γ

such that:
uyt · φ(xt)− uy ′ · φ(xt) ≥ γ

∀(xt , yt) ∈ D

and y ′ ∈ Y

• Note: the solution still ensures a separating hyperplane if there is one
(zero training error) – due to the hard constraint

• We fix ||U || = 1 since scaling U to increase ‖U‖ trivially produces
larger margin
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Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||U ||=1

γ

such that:

uyt ·φ(xt)−uy ′ ·φ(xt) ≥ γ

∀(xt , yt) ∈ D

and y ′ ∈ Y

=

Min Norm:

min
W

1

2
||W ||2

such that:

wyt ·φ(xt)−wy ′ ·φ(xt) ≥ 1

∀(xt , yt) ∈ D

and y ′ ∈ Y

• Instead of fixing ||U || we fix the margin to 1

• Make substitution W = U
γ ; then we have ‖W ‖ = ‖U‖

γ = 1
γ .
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Support Vector Machines

W = arg minW
1

2
||W ||2

such that:
wyt · φ(xt)−wy ′ · φ(xt) ≥ 1

∀(xt , yt) ∈ D and y ′ ∈ Y

• Quadratic programming problem – a well known convex optimization
problem

• Can be solved with many techniques.
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Support Vector Machines

What if data is not separable?

W = arg minW ,ξ

1

2
||W ||2 + C

N∑
t=1

ξt

such that:

wyt · φ(xt)−wy ′ · φ(xt) ≥ 1− ξt and ξt ≥ 0

∀(xt , yt) ∈ D and y ′ ∈ Y

ξt : trade-off between margin violations per example and ‖W ‖
Larger C = more examples correctly classified, but smaller margin.
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Kernels

Historically, SVMs with kernels co-ocurred together and were extremely
popular

Can “kernelize” algorithms to make them non-linear (not only SVMs, but
also logistic regression, perceptron, ...)

More later.
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Support Vector Machines

W = arg minW ,ξ

1

2
||W ||2 + C

N∑
t=1

ξt

such that:
wyt · φ(xt)−wy ′ · φ(xt) ≥ 1− ξt ∀y ′ 6= yt

If W classifies (xt , yt) with margin 1, penalty ξt = 0
Otherwise penalty ξt = 1 + maxy ′ 6=yt wy ′ · φ(xt)−wyt · φ(xt)

Hinge loss:

L((xt , yt);W ) = max (0, 1 + maxy ′ 6=yt wy ′ · φ(xt)−wyt · φ(xt))

André Martins (IST) Linear Classifiers LxMLS 2020 109 / 157



Support Vector Machines

W = arg minW ,ξ

1

2
||W ||2 + C

N∑
t=1

ξt

such that:
wyt · φ(xt)− max

y ′ 6=yt
wy ′ · φ(xt) ≥ 1− ξt

If W classifies (xt , yt) with margin 1, penalty ξt = 0
Otherwise penalty ξt = 1 + maxy ′ 6=yt wy ′ · φ(xt)−wyt · φ(xt)

Hinge loss:

L((xt , yt);W ) = max (0, 1 + maxy ′ 6=yt wy ′ · φ(xt)−wyt · φ(xt))
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Support Vector Machines

W = arg minW ,ξ

λ

2
||W ||2 +

N∑
t=1

ξt

such that:
ξt ≥ 1 + max

y ′ 6=yt
wy ′ · φ(xt)−wyt · φ(xt)

Hinge loss equivalent:

W = arg minW


N∑
t=1

max (0, 1 + max
y ′ 6=yt

wy ′ · φ(xt)−wyt · φ(xt))︸ ︷︷ ︸
L(W ;(xt ,yt))

 +
λ

2
||W ||2
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From Gradient to Subgradient

The hinge loss is a piecewise linear function—not differentiable everywhere

Cannot use gradient descent

But... can use subgradient descent (almost the same)!
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Recap: Subgradient

• Defined for convex functions f : RD → R
• Generalizes the notion of gradient—in points where f is differentiable,

there is a single subgradient which equals the gradient

• Other points may have multiple subgradients
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Subgradient Descent

L(W ; (x , y)) = max (0, 1 + max
y ′ 6=y

wy ′ · φ(x)−wy · φ(x))

=

(
max
y ′∈Y

wy ′ · φ(x) + [[y ′ 6= y ]]

)
−wy · φ(x)

A subgradient of the hinge is

∇̃W L(W ; (x , y)) 3 eŷφ(x)> − eyφ(x)>

where
ŷ = arg max

y ′∈Y
wy ′ · φ(x) + [[y ′ 6= y ]]

Can also train SVMs with (stochastic) sub-gradient descent!

André Martins (IST) Linear Classifiers LxMLS 2020 113 / 157



Perceptron and Hinge-Loss

SVM subgradient update looks like perceptron update

W k+1 = W k−η
{

0, if wyt · φ(xt)−maxy 6=yt wy · φ(xt) ≥ 1

eyφ(xt)> − eytφ(xt)>, otherwise, where y = arg maxy wy · φ(xt) + [[y 6= yt ]]

Perceptron

W k+1 = W k − η
{

0, if wyt · φ(xt)−maxy wy · φ(xt) ≥ 0

eyφ(xt)> − eytφ(xt)>, otherwise, where y = arg maxy wy · φ(xt)

where η = 1

Perceptron = SGD with no-margin hinge-loss

max (0, 1+ max
y 6=yt

wy · φ(xt)−wyt · φ(xt))
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Summary

What we have covered

• Linear Classifiers
• Naive Bayes
• Logistic Regression
• Perceptron
• Support Vector Machines

What is next

• Regularization

• Softmax and sparsemax

• Non-linear classifiers
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Regularization
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Overfitting

If the model is too complex (too many parameters) and the data is scarce,
we run the risk of overfitting:

• We saw one example already when talking about add-one smoothing
in Naive Bayes!
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Regularization

In practice, we regularize models to prevent overfitting

arg minW

N∑
t=1

L(W ; (xt , yt)) + λΩ(W ),

where Ω(W ) is the regularization function, and λ controls how much to
regularize.

• Gaussian prior (`2), promotes smaller weights:

Ω(W ) = ‖W ‖2
2 =

∑
y

‖wy‖2
2 =

∑
y

∑
j

w2
y ,j .

• Laplacian prior (`1), promotes sparse weights!

Ω(W ) = ‖W ‖1 =
∑
y

‖wy‖1 =
∑
y

∑
j

|wy ,j |
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Empirical Risk Minimization
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Logistic Regression with `2 Regularization

N∑
t=1

L(W ; (xt , yt)) + λΩ(W ) = −
N∑
t=1

log (exp(wyt · φ(xt))/Zx) +
λ

2
‖W ‖2

• What is the new gradient?

N∑
t=1

∇W L(W ; (xt , yt)) +∇WλΩ(W )

• We know ∇W L(W ; (xt , yt))

• Just need ∇W
λ
2 ‖W ‖

2 = λW
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Support Vector Machines

Hinge-loss formulation: `2 regularization already happening!

W = arg minW

N∑
t=1

L(W ; (xt , yt)) + λΩ(W )

= arg minW

N∑
t=1

max (0, 1 + max
y 6=yt

wy · φ(xt)−wyt · φ(xt)) + λΩ(W )

= arg minW

N∑
t=1

max (0, 1 + max
y 6=yt

wy · φ(xt)−wyt · φ(xt)) +
λ

2
‖W ‖2

↑ SVM optimization ↑
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SVMs vs. Logistic Regression

W = arg minW

N∑
t=1

L(W ; (xt , yt)) + λΩ(W )

• SVMs/hinge-loss:

L(W ; (xt , yt)) = max (0, 1 + max
y 6=yt

(wy · φ(xt)−wyt · φ(xt))), Ω(W ) =
1

2
‖W ‖2

• Logistic Regression/log-loss:

L(W ; (xt , yt)) = − log (exp(w ·ψ(xt , yt))/Zx ) , Ω(W ) =
1

2
‖W ‖2.
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Loss Function

Should match as much as possible the metric we want to optimize at test
time

Should be well-behaved (continuous, maybe smooth) to be amenable to
optimization (this rules out the 0/1 loss)

Some examples:

• Squared loss for regression

• Negative log-likelihood (cross-entropy): multinomial logistic regression

• Hinge loss: support vector machines

• Sparsemax loss for multi-class and multi-label classification (next)
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Recap

How to map from a set of label scores R|Y| to a probability distribution
over Y?

z p

We already saw one example: softmax.

Next: sparsemax.
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Recap: Softmax Transformation

The typical transformation for multi-class classification is
softmax : R|Y| → ∆|Y|−1:

softmax(z) =

[
exp(z1)∑
c exp(zc)

, . . . ,
exp(z|Y|)∑
c exp(zc)

]

• Underlies multinomial logistic regression!

• Strictly positive, sums to 1

• Resulting distribution has full support: softmax(z) > 0,∀z
• A disadvantage if a sparse probability distribution is desired

• Common workaround: threshold and truncate
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Sparsemax (Martins and Astudillo, 2016)

A sparse-friendly alternative is sparsemax : R|Y| → ∆|Y|−1, defined as:

sparsemax(z) := arg minp∈∆|Y|−1 ‖p − z‖2.

• In words: Euclidean projection of z onto the probability simplex

• Likely to hit the boundary of the simplex, in which case
sparsemax(z) becomes sparse (hence the name)

• Retains many of the properties of softmax (e.g. differentiability),
having in addition the ability of producing sparse distributions

• Projecting onto the simplex amounts to a soft-thresholding operation

• Efficient linear time forward/backward propagation (see paper)
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Sparsemax in Closed Form

• Projecting onto the simplex amounts to a soft-thresholding operation:

sparsemaxi (z) = max{0, zi − τ}

where τ is a normalizing constant such that
∑

j max{0, zj − τ} = 1

• To evaluate the sparsemax, all we need is to compute τ

• Coordinates above the threshold will be shifted by this amount; the
others will be truncated to zero
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Two Dimensions

• Parametrize z = (t, 0)
• The 2D softmax is the logistic (sigmoid) function:

softmax1(z) = (1 + exp(−t))−1

• The 2D sparsemax is the “hard” version of the sigmoid:

− 3 − 2 − 1 0 1 2 3
t

0.0

0.2

0.4

0.6

0.8

1.0 softmax1([t,0])

sparsemax1([t,0])
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Three Dimensions

• Parameterize z = (t1, t2, 0) and plot softmax1(z) and
sparsemax1(z) as a function of t1 and t2

• sparsemax is piecewise linear, but asymptotically similar to softmax
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Loss Function

How to use sparsemax as a loss function?

Caveat: sparsemax is sparse and we don’t want to take the log of zero...
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Recap: Multinomial Logistic Regression

• The common choice for a softmax output layer

• The classifier estimates P(y = c | x ;W )

• We minimize the negative log-likelihood:

L(W ; (x , y)) = − logP(y | x ;W )

= − log [softmax(z(x))]y ,

where zc(x) = wc · φ(x) is the score of class c .

• Loss gradient:

∇W L((x , y);W ) = −
(
eyφ(x)> − softmax(z(x))φ(x)>

)
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Sparsemax Loss (Martins and Astudillo, 2016)

• The natural choice for a sparsemax output layer

• The neural network estimates P(y | x ;W ) as a sparse distribution
• The sparsemax loss is

L((x , y);W ) = −zy (x) +
1

2
−

1

2
‖ sparsemax(z(x))‖2 + z(x)> sparsemax(z(x)),

where zy (x) = wy · φ(x).

• Loss gradient:

∇W L((x , y);W ) = −
(
eyφ(x)> − sparsemax(z(x))φ(x)>

)
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Classification Losses (Binary Case)

• Let the correct label be y = +1 and define s = z2 − z1.
• Sparsemax loss in 2D becomes a “classification Huber loss”:
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Recap: What a Linear Classifier Can Do

• It can solve linearly separable problems (OR, AND)
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Recap: What a Linear Classifier Can’t Do

• ... but it can’t solve non-linearly separable problems such as simple
XOR (unless input is transformed into a better representation):

• This was observed by Minsky and Papert (1969) (for the perceptron)
and motivated strong criticisms
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Summary: Linear Classifiers

We’ve seen

• Perceptron

• Naive Bayes

• Logistic regression

• Support vector machines

All lead to convex optimization problems ⇒ no issues with local
minima/initialization

All assume the features are well-engineered such that the data is nearly
linearly separable

André Martins (IST) Linear Classifiers LxMLS 2020 138 / 157



What If Data Are Not Linearly Separable?

Engineer better features (often works!)

Kernel methods:

• works implicitly in a high-dimensional feature space

• ... but still need to choose/design a good kernel

• model capacity confined to positive-definite kernels

Neural networks (next class!)

• embrace non-convexity and local minima

• instead of engineering features/kernels, engineer the model
architecture
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Two Views of Machine Learning

There’s two big ways of building machine learning systems:

1 Feature-based: describe objects’ properties (features) and build
models that manipulate them
• everything that we have seen so far.

2 Similarity-based: don’t describe objects by their properties; rather,
build systems based on comparing objects to each other
• k-th nearest neighbors; kernel methods; Gaussian processes.

Sometimes the two are equivalent!
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Nearest Neighbor Classifier

• Not a linear classifier!

• In its simplest version, doesn’t require any parameters

• Instead of “training”, memorize all the data D = {(xi , yi )Ni=1}
• Given a new input x , find its most similar data point xi and predict

ŷ = yi

• Many variants (e.g. k-th nearest neighbor)

• Disadvantage: requires searching over the entire training data

• Specialized data structures can be used to speed up search.
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Kernels

• A kernel is a similarity function between two points that is symmetric
and positive semi-definite, which we denote by:

κ(xi , xj) ∈ R

• Given dataset D = {(xi , yi )Ni=1}, the Gram matrix K is the N × N
matrix defined as:

Ki ,j = κ(xi , xj)

• Symmetric:
κ(xi , xj) = κ(xj , xi )

• Positive definite: for all non-zero v

vKvT ≥ 0
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Kernels

• Mercer’s Theorem: for any kernel κ : X× X→ R, there exists some
feature mapping φ : X→ RX, s.t.:

κ(xi , xj) = φ(xi ) · φ(xj)

• That is: a kernel corresponds to some a mapping in some implicit
feature space!

• Kernel trick: take a feature-based algorithm (SVMs, perceptron,
logistic regression) and replace all explicit feature computations by
kernel evaluations!

wy · φ(x) =
N∑
i=1

∑
y∈Y

αi ,yκ(x , xi ) for some αi ,y ∈ R

• Extremely popular idea in the 1990-2000s!
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Kernels = Tractable Non-Linearity

• A linear classifier in a higher dimensional feature space is a non-linear
classifier in the original space

• Computing a non-linear kernel is sometimes better computationally
than calculating the corresponding dot product in the high dimension
feature space

• Many models can be “kernelized” – learning algorithms generally
solve the dual optimization problem (also convex)

• Drawback: quadratic dependency on dataset size
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Linear Classifiers in High Dimension
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Popular Kernels

• Polynomial kernel

κ(xi , xj) = (φ(xi ) · φ(xj) + 1)d

• Gaussian radial basis kernel

κ(xi , xj) = exp(
−||φ(xi )− φ(xj)||2

2σ
)

• String kernels (Lodhi et al., 2002; Collins and Duffy, 2002)

• Tree kernels (Collins and Duffy, 2002)
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Joint Feature Mappings (useful for the labs)
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Feature Representations: Joint Feature Mappings

For multi-class/structured classification, a joint feature map
ψ : X× Y→ RD is sometimes more convenient

• ψ(x , y) instead of φ(x)

Each feature now represents a joint property of the input x and the
candidate output y .

We’ll use this notation in the labs this afternoon!
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Examples

• x is a document and y is a label

ψj(x , y) =


1 if x contains the word “interest”

and y = “financial”
0 otherwise

ψj(x , y) = % of words in x with punctuation and y = “scientific”

• x is a word and y is a part-of-speech tag

ψj(x , y) =

{
1 if x = “bank” and y = Verb
0 otherwise
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More Examples

• x is a name, y is a label classifying the type of entity

ψ0(x, y) =

 1 if x contains “George”
and y = “Person”

0 otherwise

ψ1(x, y) =

 1 if x contains “Washington”
and y = “Person”

0 otherwise

ψ2(x, y) =

 1 if x contains “Bridge”
and y = “Person”

0 otherwise

ψ3(x, y) =

 1 if x contains “General”
and y = “Person”

0 otherwise

ψ4(x, y) =

 1 if x contains “George”
and y = “Location”

0 otherwise

ψ5(x, y) =

 1 if x contains “Washington”
and y = “Location”

0 otherwise

ψ6(x, y) =

 1 if x contains “Bridge”
and y = “Location”

0 otherwise

ψ7(x, y) =

 1 if x contains “General”
and y = “Location”

0 otherwise

• x=General George Washington, y=Person → ψ(x , y) = [1 1 0 1 0 0 0 0]

• x=George Washington Bridge, y=Location → ψ(x , y) = [0 0 0 0 1 1 1 0]

• x=George Washington George, y=Location → ψ(x , y) = [0 0 0 0 1 1 0 0]
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Block Feature Vectors

• x=General George Washington, y=Person → ψ(x , y) = [1 1 0 1 0 0 0 0]

• x=General George Washington, y=Location → ψ(x , y) = [0 0 0 0 1 1 0 1]

• x=George Washington Bridge, y=Location → ψ(x , y) = [0 0 0 0 1 1 1 0]

• x=George Washington George, y=Location → ψ(x , y) = [0 0 0 0 1 1 0 0]

• Each equal size block of the feature vector corresponds to one label

• Non-zero values allowed only in one block
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Feature Representations – φ(x) vs. ψ(x , y)

Equivalent if ψ(x , y) conjoins input features φ(x) with one-hot label
representations ey := [0, . . . , 0, 1, 0, . . . , 0]

ψ(x , y) = φ(x)⊗ ey
= [0, . . . , 0, φ(x)︸︷︷︸

y th block

, 0, . . . , 0]

• φ(x)
• x=General George Washington → φ(x) = [1 1 0 1]

• ψ(x , y)
• x=General George Washington, y=Person → ψ(x , y) = [1 1 0 1 0 0 0 0]
• x=General George Washington, y=Object → ψ(x , y) = [0 0 0 0 1 1 0 1]

φ(x) is sometimes simpler and more convenient in binary classification

... but ψ(x , y) is more expressive (allows more complex features over
properties of labels)
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Linear Classifiers – ψ(x , y)

• Parametrized by a weight vector w ∈ RD (one weight per feature)

• The score (or probability) of a particular label is based on a linear
combination of features and their weights

• At test time (known w), predict the class ŷ which maximizes this
score:

ŷ = h(x) = arg max
y∈Y

w ·ψ(x , y)

• At training time, different strategies to learn w yield different linear
classifiers: perceptron, näıve Bayes, logistic regression, SVMs, ...
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Linear Classifiers – φ(x)

• Define |Y| weight vectors wy ∈ RD

• i.e., one weight vector per output label y

• Classification
ŷ = arg max

y∈Y
wy · φ(x)

• ψ(x , y)
• x=General George Washington, y=Person → ψ(x , y) = [1 1 0 1 0 0 0 0]
• x=General George Washington, y=Object → ψ(x , y) = [0 0 0 0 1 1 0 1]
• Single w ∈ R8

• φ(x)
• x=General George Washington → φ(x) = [1 1 0 1]
• Two parameter vectors w0 ∈ R4, w1 ∈ R4
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ŷ = arg max

y∈Y
wy · φ(x)

• ψ(x , y)
• x=General George Washington, y=Person → ψ(x , y) = [1 1 0 1 0 0 0 0]
• x=General George Washington, y=Object → ψ(x , y) = [0 0 0 0 1 1 0 1]
• Single w ∈ R8

• φ(x)
• x=General George Washington → φ(x) = [1 1 0 1]
• Two parameter vectors w0 ∈ R4, w1 ∈ R4
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Conclusions

• Linear classifiers are a broad class including well-known ML methods
such as perceptron, Naive Bayes, logistic regression, support vector
machines

• They all involve manipulating weights and features

• They either lead to closed-form solutions or convex optimization
problems (no local minima)

• Stochastic gradient descent algorithms are useful if training datasets
are large

• However, they require manual specification of feature representations

• Tomorrow: methods that are able to learn internal representations
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Thank You!

Post-Doc Openings for the ERC project DeepSPIN (Deep Structured
Prediction in NLP)

• 1 post-doc position available

• Topics: deep learning, structured prediction, NLP, machine translation

• Involving University of Lisbon and Unbabel

• More details: https://deep-spin.github.io
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