### Mathematical Tools: Probability Theory, Algebra, ...

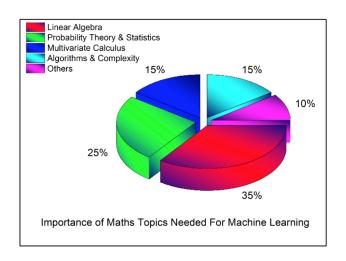
Mário A. T. Figueiredo

Instituto Superior Técnico & Instituto de Telecomunicações

Lisboa, Portugal

LxMLS 2020: Lisbon Machine Learning School

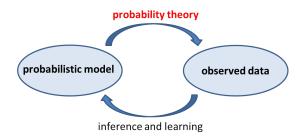
July 21, 2020



(by Wale Akinfaderin, https://tinyurl.com/y6hc9sh8)

# Part I: Probability Theory

### Probability theory



Probability theory has its roots in games of chance



- Great names of science: Bayes, Bernoulli(s), Boltzman, Cardano,
  Cauchy, Fermat, Huygens, Kolmogorov, Laplace, Pascal, Poisson, ...
- Tool to handle uncertainty, information, knowledge, observations, ...
- ...thus also learning, decision making, inference, science,...

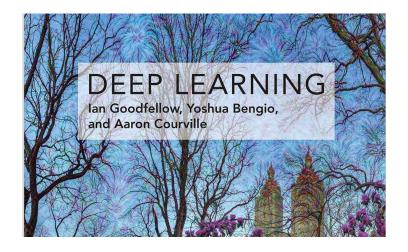
### Still important today?

#### CONTENTS

| 3 | Prob | Probability and Information Theory          |    |  |  |
|---|------|---------------------------------------------|----|--|--|
|   | 3.1  | Why Probability?                            | 52 |  |  |
|   | 3.2  | Random Variables                            | 54 |  |  |
|   | 3.3  | Probability Distributions                   | 54 |  |  |
|   | 3.4  | Marginal Probability                        | 56 |  |  |
|   | 3.5  | Conditional Probability                     | 57 |  |  |
|   | 3.6  | The Chain Rule of Conditional Probabilities | 57 |  |  |
|   | 3.7  | Independence and Conditional Independence   | 58 |  |  |
|   | 3.8  | Expectation, Variance and Covariance        | 58 |  |  |
|   | 3.9  | Common Probability Distributions            | 60 |  |  |
|   | 3.10 | Useful Properties of Common Functions       | 65 |  |  |
|   | 3.11 | Bayes' Rule                                 | 68 |  |  |
|   | 3.12 | Technical Details of Continuous Variables   | 68 |  |  |
|   | 3.13 | Information Theory                          | 70 |  |  |
|   | 3.14 | Structured Probabilistic Models             | 74 |  |  |

What book is this from?

#### Do we still need this?



### What is probability?

Example:  $\mathbb{P}(\text{randomly drawn card is } \clubsuit) = 13/52.$ 

Example:  $\mathbb{P}(\text{getting 1 in throwing a fair die}) = 1/6.$ 

- Classical definition:  $\mathbb{P}(A) = \frac{N_A}{N}$ 
  - ...with N mutually exclusive equally likely outcomes,  $N_A$  of which result in the occurrence of A.

Laplace, 1814

• Frequentist definition:  $\mathbb{P}(A) = \lim_{N \to \infty} \frac{N_A}{N}$ 

 $\dots$ relative frequency of occurrence of A in infinite number of trials.

- ullet Subjective probability:  $\mathbb{P}(A)$  is a degree of belief. de Finetti, 1930s .
  - ...gives meaning to  $\mathbb{P}($  "it will rain today" ), or  $\mathbb{P}($  "Patient A has disease x" )

### Key concepts: Sample space and events

• Sample space  $\mathcal{X}=$  set of possible outcomes of a random experiment. Examples:

- ▶ Tossing two coins:  $\mathcal{X} = \{HH, TH, HT, TT\}$
- Roulette:  $\mathcal{X} = \{1, 2, ..., 36\}$
- ▶ Draw a card from a shuffled deck:  $\mathcal{X} = \{A\clubsuit, 2\clubsuit, ..., Q\diamondsuit, K\diamondsuit\}$ .
- An event A is a subset of  $\mathcal{X}$ :  $A \subseteq \mathcal{X}$  (also written  $A \in 2^{\mathcal{X}}$ ).

#### Examples:

- "exactly one H in 2-coin toss":  $A = \{TH, HT\}$ .
- "odd number in the roulette":  $B = \{1, 3, ..., 35\}$ .
- "drawn a  $\heartsuit$  card":  $C = \{A\heartsuit, 2\heartsuit, ..., K\heartsuit\}$

### Key concepts: Sample space and events

• Sample space  $\mathcal{X}=$  set of possible outcomes of a random experiment. (More delicate) examples:

- ▶ Distance travelled by tossed die:  $\mathcal{X} = \mathbb{R}_+$
- lacktriangle Location of the next rain drop on a given square tile:  $\mathcal{X}=\mathbb{R}^2$
- Properly handling the continuous case requires deeper concepts:
  - Sigma algebras
  - Measurable functions



...heavier stuff, not covered here

### Kolmogorov's Axioms for Probability

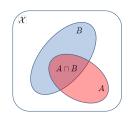
ullet Probability is a function that maps events A into the interval [0,1].

### Kolmogorov's axioms (1933) for probability

- ▶ For any A,  $\mathbb{P}(A) \ge 0$
- $\mathbb{P}(\mathcal{X}) = 1$
- ▶ If  $A_1, A_2 ... \subseteq \mathcal{X}$  are disjoint events, then  $\mathbb{P}\Big(\bigcup_i A_i\Big) = \sum_i \mathbb{P}(A_i)$
- From these axioms, many results can be derived.

#### Examples:

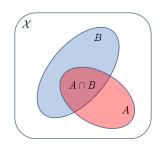
- $ightharpoonup \mathbb{P}(\emptyset) = 0$
- $ightharpoonup C \subset D \Rightarrow \mathbb{P}(C) \leq \mathbb{P}(D)$
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- ▶  $\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$  (union bound)



### Conditional Probability and Independence

- If  $\mathbb{P}(B)>0$ ,  $\mathbb{P}(A|B)=\frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}$  (conditional prob. of A, given B)
- ...satisfies all of Kolmogorov's axioms:
- For any  $A \subseteq \mathcal{X}$ ,  $\mathbb{P}(A|B) \geq 0$
- $\mathbb{P}(\mathcal{X}|B) = 1$
- ▶ If  $A_1, A_2, ... \subseteq \mathcal{X}$  are disjoint,

$$\mathbb{P}\Big(\bigcup_{i} A_i \Big| B\Big) = \sum_{i} \mathbb{P}(A_i | B)$$



• Independence: A, B are independent  $(A \perp \!\!\!\perp B)$ :

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\,\mathbb{P}(B).$$

## Conditional Probability and Independence

- If  $\mathbb{P}(B) > 0$ ,  $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Events A, B are independent  $(A \perp\!\!\!\perp B) \Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B)$ .
- Relationship with conditional probabilities:

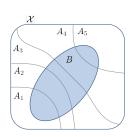
$$A \perp \!\!\!\perp B \Leftrightarrow \mathbb{P}(A|B) = \mathbb{P}(A)$$

$$\begin{array}{lll} \bullet & \mathsf{Example:} \ \mathcal{X} = \text{``52 cards''}, \ A = \{4\heartsuit, 4\clubsuit, 4\diamondsuit, 4\clubsuit\}, \ \mathsf{and} \\ B = \{A\heartsuit, 2\heartsuit, ..., K\heartsuit\}; \ \mathsf{then}, \ \mathbb{P}(A) = 1/13, \ \mathbb{P}(B) = 1/4 \\ \\ \mathbb{P}(A \cap B) & = \ \mathbb{P}(\{4\heartsuit\}) = \frac{1}{52} \\ \\ \mathbb{P}(A) \, \mathbb{P}(B) & = \ \frac{1}{13} \, \frac{1}{4} = \frac{1}{52} \\ \\ \mathbb{P}(A|B) & = \ \mathbb{P}(\text{``4"}|\text{``\heartsuit"}) = \frac{1}{13} = \mathbb{P}(A) \end{array}$$

### **Bayes Theorem**

• Law of total probability: if  $A_1,...,A_n$  are a partition of  $\mathcal{X}$ 

$$\mathbb{P}(B) = \sum_{i} \mathbb{P}(B|A_{i})\mathbb{P}(A_{i})$$
$$= \sum_{i} \mathbb{P}(B \cap A_{i})$$

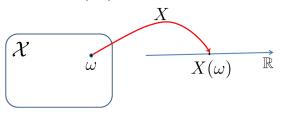


ullet Bayes' theorem: if  $\{A_1,...,A_n\}$  is a partition of  ${\mathcal X}$ 

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(B \cap A_i)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|A_i) \ \mathbb{P}(A_i)}{\mathbb{P}(B)}$$

#### Random Variables

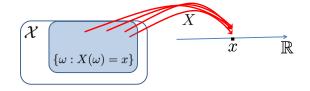
• A (real) random variable (RV) is a function:  $X: \mathcal{X} \to \mathbb{R}$ 



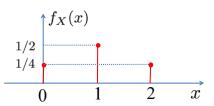
- ▶ Discrete RV: range of X is countable  $(e.g., \mathbb{N} \text{ or } \{0,1\})$
- ▶ Continuous RV: range of X is uncountable  $(e.g., \mathbb{R} \text{ or } [0, 1])$
- ▶ Example: number of heads in tossing two coins,  $\mathcal{X} = \{HH, HT, TH, TT\}$ , X(HH) = 2, X(HT) = X(TH) = 1, X(TT) = 0. Range of  $X = \{0, 1, 2\}$ .
- **Example**: distance traveled by a tossed coin; range of  $X = \mathbb{R}_+$ .

#### Discrete Random Variables

• Probability mass function:  $f_X(x) = \mathbb{P}(\{\omega \in \mathcal{X} : X(\omega) = x\})$ 



• Example: number of heads in tossing 2 coins;  $range(X) = \{0, 1, 2\}.$ 



### Important Discrete Random Variables

• Uniform:  $X \in \{x_1, ..., x_K\}$ , pmf  $f_X(x_i) = 1/K$ .

Example: a fair roulette  $X \in \{1, ..., 36\}$ , with  $f_X(x) = 1/36$ 

Example: a fair die  $X \in \{1,...,6\}$ , with  $f_X(x) = 1/6$ 

 $\bullet \ \, \mathsf{Bernoulli} \ \, \mathsf{RV} \colon X \in \{0,1\}, \ \mathsf{pmf} \ f_X(x) = \left\{ \begin{array}{ccc} p & \Leftarrow & x=1 \\ 1-p & \Leftarrow & x=0 \end{array} \right.$ 

Compact form:  $f_X(x) = p^x(1-p)^{1-x}$ .

Example: a coin toss; heads = 0, tails = 1

fair, if p = 1/2; unfair, if  $p \neq 1/2$ 

### Important Discrete Random Variables

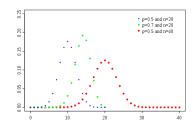
• Binomial RV:  $X \in \{0, 1, ..., n\}$  (sum of n Bernoulli RVs)

$$f_X(x) = \mathsf{Binomial}(x;n,p) = \binom{n}{x} p^x \; (1-p)^{(n-x)}$$

#### Binomial coefficients

("n choose x"):

$$\binom{n}{x} = \frac{n!}{(n-x)! \, x!}$$



Example: number of heads in n coin tosses.

### Other Important Discrete Random Variables

• Geometric(p):  $X \in \mathbb{N}$ , pmf  $f_X(x) = p(1-p)^{x-1}$ .

Example: number of coin tosses until first heads.

• Poisson( $\lambda$ ):

$$X\in\mathbb{N}\cup\{0\},$$
 
$$\operatorname{pmf}\, f_X(x)=\frac{e^{-\lambda}\lambda^x}{x!}$$



"...probability of the number of independent occurrences in a fixed (time/space) interval, if these occurrences have known average rate"

Examples: number of rain drops per second on a given area, number of calls per hour in a call center, number of tweets per day by DT, ...

#### Continuous Random Variables

• Probability density function (pdf, continuous RV):  $f_X(x)$ 

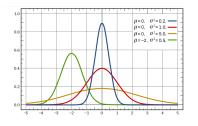
$$\int_{-\infty}^{\infty} f_X(x) = 1 \qquad \mathbb{P}(X \in [a, b]) = \int_a^b f_X(x) \, dx$$

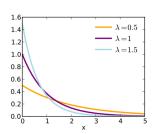
• Notice:  $\mathbb{P}(X=c)=0$ 

### Important Continuous Random Variables

• Uniform: 
$$f_X(x) = \text{Uniform}(x; a, b) = \begin{cases} \frac{1}{b-a} & \Leftarrow & x \in [a, b] \\ 0 & \Leftarrow & x \notin [a, b] \end{cases}$$

• Gaussian: 
$$f_X(x) = \mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$





• Exponential:  $f_X(x) = \operatorname{Exp}(x; \lambda) = \left\{ \begin{array}{ccc} \lambda e^{-\lambda \, x} & \Leftarrow & x \geq 0 \\ 0 & \Leftarrow & x < 0 \end{array} \right.$ 

### Expectation of (Real) Random Variables

• Expectation: 
$$\mathbb{E}(X) = \left\{ \begin{array}{ll} \sum_i x_i \, f_X(x_i) & X \in \{x_1,...x_K\} \subset \mathbb{R} \\ \int_{-\infty}^\infty x \, f_X(x) \, dx & X \text{ continuous} \end{array} \right.$$

- Example: Bernoulli,  $f_X(x) = p^x (1-p)^{1-x}$ , for  $x \in \{0, 1\}$ .  $\mathbb{E}(X) = 0 (1-p) + 1 p = p.$
- Example: Binomial,  $f_X(x) = \binom{n}{x} p^x \, (1-p)^{n-x}$ , for  $x \in \{0,...,n\}$ .  $\mathbb{E}(X) = n \, p.$
- Example: Gaussian,  $f_X(x) = \mathcal{N}(x; \mu, \sigma^2)$ .  $\mathbb{E}(X) = \mu$ .
- Linearity of expectation:

$$\mathbb{E}(\alpha X + \beta Y) = \alpha \mathbb{E}(X) + \beta \mathbb{E}(Y), \quad \alpha, \beta \in \mathbb{R}$$

### Expectation of Functions of RVs

$$\bullet \ \mathbb{E}(g(X)) = \left\{ \begin{array}{ll} \displaystyle \sum_i g(x_i) f_X(x_i) & X \text{ discrete, } g(x_i) \in \mathbb{R} \\ \displaystyle \int_{-\infty}^\infty g(x) \, f_X(x) \, dx & X \text{ continuous} \end{array} \right.$$

- Example: variance,  $\operatorname{var}(X) = \mathbb{E}\Big(\big(X \mathbb{E}(X)\big)^2\Big) = \mathbb{E}(X^2) \mathbb{E}(X)^2$
- Example: Bernoulli variance,  $\mathbb{E}(X^2) = \mathbb{E}(X) = p$ , thus  $\mathrm{var}(X) = p(1-p)$ .
- Example: Gaussian variance,  $\mathbb{E}((X \mu)^2) = \sigma^2$ .
- Probability as expectation of indicator,  $\mathbf{1}_A(x) = \left\{ \begin{array}{ll} 1 & \Leftarrow & x \in A \\ 0 & \Leftarrow & x \not\in A \end{array} \right.$

$$\mathbb{P}(X \in A) = \int_A f_X(x) \, dx = \int \mathbf{1}_A(x) \, f_X(x) \, dx = \mathbb{E}(\mathbf{1}_A(X))$$

### The importance of the Gaussian



### The importance of the Gaussian

Take n independent RVs  $X_1,...,X_n$ , with  $\mathbb{E}[X_i]=\mu_i$  and  $\text{var}(X_i)=\sigma_i^2$ 

• Their sum,  $Y_n = \sum_{i=1}^n X_i$  satisfies:

$$\mathbb{E}[Y_n] = \sum_{i=1}^n \mu_i \equiv \mu$$
  $\operatorname{var}(Y_n) = \sum_i \sigma_i^2 \equiv \sigma^2$ 

- ullet Let  $Z_n=rac{Y_n-\mu}{\sigma}$ , thus  $\mathbb{E}[Z_n]=0$  and  $\mathrm{var}(Z_n)=1$
- Central limit theorem: under mild conditions,

$$\lim_{n\to\infty} Z_n \sim \mathcal{N}(0,1)$$

### Two (or More) Random Variables

• Joint pmf of two discrete RVs:  $f_{X,Y}(x,y)=\mathbb{P}(X=x \wedge Y=y).$  Extends trivially to more than two RVs.

• Joint pdf of two continuous RVs:  $f_{X,Y}(x,y)$ , such that

$$\mathbb{P}((X,Y) \in A) = \iint_A f_{X,Y}(x,y) \, dx \, dy, \qquad A \in \sigma(\mathbb{R}^2)$$

Extends trivially to more than two RVs.

$$\bullet \ \, \text{Marginalization:} \ \, f_Y(y) = \left\{ \begin{array}{ll} \displaystyle \sum_x f_{X,Y}(x,y), & \text{if $X$ is discrete} \\ \displaystyle \int_{-\infty}^\infty f_{X,Y}(x,y) \, dx, & \text{if $X$ continuous} \end{array} \right.$$

• Independence:

$$X \perp \!\!\!\perp Y \Leftrightarrow f_{X,Y}(x,y) = f_X(x) f_Y(y) \stackrel{\Rightarrow}{\not=} \mathbb{E}(X Y) = \mathbb{E}(X) \mathbb{E}(Y).$$

### Conditionals and Bayes' Theorem

Conditional pmf (discrete RVs):

$$f_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

- Conditional pdf (continuous RVs):  $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$  ...the meaning is technically delicate.
- Bayes' theorem:  $f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x) f_X(x)}{f_Y(y)}$  (pdf or pmf).
- Also valid in the mixed case (e.g., X continuous, Y discrete).

## Joint, Marginal, and Conditional Probabilities: An Example

• A pair of binary variables  $X,Y \in \{0,1\}$ , with joint pmf:

| $f_{X,Y}(x,y)$ | Y = 0 | Y = 1 |
|----------------|-------|-------|
| X = 0          | 1/5   | 2/5   |
| X = 1          | 1/10  | 3/10  |

$$\begin{array}{ll} \bullet \ \ {\rm Marginals:} \ f_X(0) = \frac{1}{5} + \frac{2}{5} = \frac{3}{5}, & f_X(1) = \frac{1}{10} + \frac{3}{10} = \frac{4}{10}, \\ f_Y(0) = \frac{1}{5} + \frac{1}{10} = \frac{3}{10}, & f_Y(1) = \frac{2}{5} + \frac{3}{10} = \frac{7}{10}. \end{array}$$

Conditional probabilities:

| $f_{X Y}(x y)$ | Y = 0 | Y = I |
|----------------|-------|-------|
| X = 0          | 2/3   | 4/7   |
| X = I          | 1/3   | 3/7   |

| $f_{Y X}(y x)$ | Y = 0 | Y = 1 |
|----------------|-------|-------|
| X = 0          | 1/3   | 2/3   |
| X = 1          | 1/4   | 3/4   |

### An Important Multivariate RV: Multinomial

ullet Multinomial:  $X=(X_1,...,X_K)$ ,  $X_i\in\{0,...,n\}$ , s.t.  $\sum_i X_i=n$ ,

$$f_X(x_1, ..., x_K) = \begin{cases} \binom{n}{x_1 x_2 ... x_K} p_1^{x_1} p_2^{x_2} ... p_K^{x_K} & \Leftarrow \sum_i x_i = n \\ 0 & \Leftarrow \sum_i x_i \neq n \end{cases}$$
$$\binom{n}{x_1 x_2 ... x_K} = \frac{n!}{x_1! x_2! ... x_K!}$$

Parameters:  $p_1,...,p_K \ge 0$ , such that  $\sum_i p_i = 1$ .

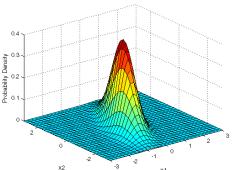
- ullet Generalizes the binomial from binary to K-classes.
- Example: tossing n independent fair dice,  $p_1 = \cdots = p_6 = 1/6$ .  $x_i = \text{number of outcomes with } i \text{ dots (of course, } \sum_i x_i = n)$
- $\bullet$  Example: bag of words (BoW) multinomial model with vocabulary of K words

### An Important Multivariate RV: Gaussian

• Multivariate Gaussian:  $X \in \mathbb{R}^n$ ,

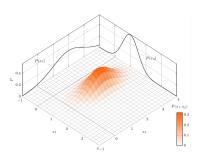
$$f_X(x) = \mathcal{N}(x; \mu, C) = \frac{1}{\sqrt{\det(2\pi C)}} \exp\left(-\frac{1}{2}(x-\mu)^T C^{-1}(x-\mu)\right)$$

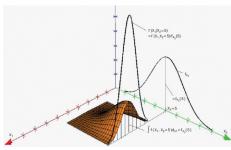
• Parameters: vector  $\mu \in \mathbb{R}^n$  and matrix  $C \in \mathbb{R}^{n \times n}$ . Expected value:  $\mathbb{E}(X) = \mu$ . Meaning of C: later.



### Key Properties of Multivariate Gaussian

- Marginals are Gaussian.
- Conditionals are Gaussian.





#### **Transformations**

$$X \sim f_X \text{ and } Y = g(X) \Rightarrow f_Y = ?$$

Discrete case:

$$f_Y(y) = \mathbb{P}(g(X) = y) = \mathbb{P}\big(\{x: g(x) = y\}\big) = \mathbb{P}\big(g^{-1}(y)\big)$$

Continuous case (for g strictly monotonic, thus invertible):

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d g^{-1}(y)}{d y} \right|$$

• Continuous multivariate case (invertible):

$$f_Y(y) = f_X(g^{-1}(y)) | \det J_{g^{-1}}(y) |$$

where  $\det J_{g^{-1}}(y)$  is the determinant of the Jacobian of  $g^{-1}$  at y.

#### Central Limit Theorem

Take n independent r.v.  $X_1,...,X_n$  such that  $\mathbb{E}[X_i]=\mu_i$  and  $\mathrm{var}(X_i)=\sigma_i^2$ 

• Their sum,  $Y_n = \sum_{i=1}^n X_i$  satisfies:

$$\mathbb{E}[Y_n] = \sum_{i=1}^n \mu_i \equiv \mu_{(n)} \qquad \text{var}(Y_n) = \sum_i \sigma_i^2 \equiv \sigma_{(n)}^2$$

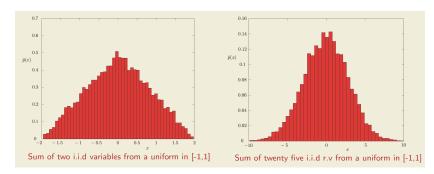
ullet ...thus, if  $Z_n=rac{Y_n-\mu_{(n)}}{\sigma_{(n)}}$   $\mathbb{E}[Z_n]=0 \qquad \qquad \mathrm{var}(Z_n)=1$ 

• Central limit theorem (CLT): under some mild conditions on  $X_1, \dots, X_n$ 

$$\lim_{n\to\infty} Z_n \sim \mathcal{N}(0,1)$$

### Central Limit Theorem

#### Illustration



### Covariance, Correlation, and all that...

Covariance between two RVs:

$$\operatorname{cov}(X,Y) = \mathbb{E}\Big[ \big( X - \mathbb{E}(X) \big) \, \big( Y - \mathbb{E}(Y) \big) \Big] \; = \; \mathbb{E}(X \, Y) - \mathbb{E}(X) \, \mathbb{E}(Y)$$

- Relationship with variance: var(X) = cov(X, X).
- $\bullet \ \ \mathsf{Correlation} \colon \operatorname{corr}(X,Y) = \rho(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sqrt{\operatorname{var}(X)}\sqrt{\operatorname{var}(Y)}} \in [-1,\,1]$
- $X \perp \!\!\!\perp Y \Leftrightarrow f_{X,Y}(x,y) = f_X(x) f_Y(y) \stackrel{\Rightarrow}{\not=} \operatorname{cov}(X,Y) = 0.$
- Covariance matrix of multivariate RV,  $X \in \mathbb{R}^n$ :

$$\operatorname{cov}(X) = \mathbb{E}\Big[\big(X - \mathbb{E}(X)\big)\big(X - \mathbb{E}(X)\big)^T\Big] = \mathbb{E}(X\,X^T) - \mathbb{E}(X)\mathbb{E}(X)^T$$

ullet Covariance of Gaussian RV,  $f_X(x) = \mathcal{N}(x; \mu, C) \ \Rightarrow \ \operatorname{cov}(X) = C$ 

### More on Expectations and Covariances

Let  $A \in \mathbb{R}^{n \times n}$  be a matrix and  $a \in \mathbb{R}^n$  a vector.

- If  $\mathbb{E}(X) = \mu$  and Y = AX, then  $\mathbb{E}(Y) = A\mu$ ;
- If  $\mathbb{E}(X) = \mu$  and  $Y = X + \gamma$ , then  $\mathbb{E}(Y) = \mu + \gamma$ ;
- If cov(X) = C and Y = AX, then  $cov(Y) = ACA^T$ ;
- If  $\operatorname{cov}(X) = C$  and  $Y = a^T X \in \mathbb{R}$ , then  $\operatorname{var}(Y) = a^T C a \ge 0$ ;
- If cov(X) = C and  $Y = C^{-1/2}X$ , then cov(Y) = I;

Combining the 2-nd and the 5-th facts: standardization:

$$\mathbb{E}(X) = \mu, \quad \operatorname{cov}(X) = C, \quad Y = C^{-\frac{1}{2}}(X - \mu) \quad \Rightarrow \quad \mathbb{E}(Y) = 0, \quad \operatorname{cov}(Y) = I$$

Combining the 2-nd and the 3-rd facts: reparametrization trick:

$$\mathbb{E}(X) = 0, \ \operatorname{cov}(X) = I, \ Y = AX + \mu \quad \Rightarrow \quad \mathbb{E}(Y) = \mu, \ \operatorname{cov}(Y) = AA^T$$

### **Exponential Families**

A pdf or pmf  $f_X(x|\eta)$ , with parameter(s)  $\eta$ , for  $X \in \mathcal{X}$ , is in an exponential family if

$$f_X(x|\eta) = \frac{1}{Z(\eta)} h(x) \exp(\eta^T \phi(x))$$

where  $\eta^T\phi(x)=\sum_j\eta_j\phi_j(x)$  and

$$Z(\theta) = \int_{\mathcal{X}} h(x) \exp(\eta^T \phi(x)) dx.$$

- Canonical parameter(s):  $\eta$
- Sufficient statistics:  $\phi(x)$
- Partition function:  $Z(\eta)$

Examples: Bernoulli, Poisson, binomial, multinomial, Gaussian, exponential, beta, Dirichlet, Laplacian, log-normal, Wishart, ...

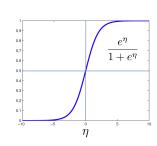
## **Exponential Families**

$$f_X(x|\eta) = \frac{1}{Z(\eta)} h(x) \exp(\eta^T \phi(x))$$

• Example: Bernoulli pmf  $f_X(x) = p^x(1-p)^{1-x}$ ,

$$f_X(x) = \exp\left(x \log p + (1-x) \log(1-p)\right) = (1-p) \exp\left(x \log \frac{p}{1-p}\right),$$
 thus  $\eta = \log \frac{p}{1-p}$ ,  $\phi(x) = x$ ,  $Z(\eta) = 1 + e^{\eta}$ , and  $h(x) = 1$ .

Notice that 
$$p=\frac{e^{\eta}}{1+e^{\eta}}$$
 (logistic transformation)



# More on Exponential Families

Independent identically distributed (i.i.d.) observations:

$$X_1, ..., X_m \sim f_X(x|\eta) = \frac{1}{Z(\eta)} h(x) \exp(\eta^T \phi(x))$$

then

$$f_{X_1,...,X_m}(x_1,...,x_m|\eta) = \frac{1}{Z(\eta)^m} \left( \prod_{j=1}^m h(x_i) \right) \exp\left(\eta^T \sum_{j=1}^m \phi(x_j) \right)$$

Expected sufficient statistics:

$$\frac{d \log Z(\eta)}{d\eta} = \frac{\frac{dZ(\eta)}{d\eta}}{Z(\eta)} = \frac{1}{Z(\eta)} \int \phi(x)h(x) \exp(\eta^T \phi(x)) dx = \mathbb{E}(\phi(X))$$

## Important Inequalities

• Markov's inequality: if  $X \geq 0$  is an RV with expectation  $\mathbb{E}(X)$ , then

$$\mathbb{P}(X > t) \le \frac{\mathbb{E}(X)}{t}$$

Simple proof:

Simple proof: 
$$t \, \mathbb{P}(X > t) = \int_t^\infty t \, f_X(x) \, dx \leq \int_t^\infty x \, f_X(x) \, dx = \mathbb{E}(X) - \underbrace{\int_0^t x \, f_X(x) \, dx}_{\geq 0} \leq \mathbb{E}(X)$$

• Chebyshev's inequality:  $\mu = \mathbb{E}(Y)$  and  $\sigma^2 = \text{var}(Y)$ , then

$$\mathbb{P}(|Y - \mu| \ge s) \le \frac{\sigma^2}{s^2}$$

...simple corollary of Markov's inequality, with  $X=|Y-\mu|^2$ ,  $\ t=s^2$ 

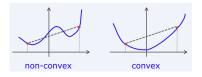
## Important Inequalities

Cauchy-Schwartz's inequality for RVs:

$$\mathbb{E}(|XY|) \le \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}$$

 $\bullet$  Recall that a real function g is convex if, for any x,y, and  $\alpha \in [0,1]$ 

$$g(\alpha x + (1 - \alpha)y) \le \alpha g(x) + (1 - \alpha)g(y)$$



Jensen's inequality: if g is a real convex function, then

$$g(\mathbb{E}(X)) \le \mathbb{E}(g(X))$$

Examples:  $\mathbb{E}(X)^2 \leq \mathbb{E}(X^2) \Rightarrow \text{var}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 \geq 0$ .  $\mathbb{E}(\log X) \leq \log \mathbb{E}(X)$ , for X a positive RV.

## Information, entropy, and all that...

Entropy of a discrete RV 
$$X \in \{1,...,K\}$$
: 
$$H(X) = -\sum_{x=1}^{K} f_X(x) \log f_X(x)$$

- Positivity:  $H(X) \ge 0$ ;  $H(X) = 0 \Leftrightarrow f_X(i) = 1$ , for exactly one  $i \in \{1, ..., K\}$ .
- Upper bound:  $H(X) \leq \log K$ ;  $H(X) = \log K \Leftrightarrow f_X(x) = 1/K$ , for all  $x \in \{1,...,K\}$
- Measure of uncertainty/randomness of X
- With  $log_2$ , units are bits/symbol
- ullet Central role in information/coding theory: lower bound on expected number of bits to code X
- Widely used: physics, biological sciences (computational biology, neurosciences, ecology, ...), economics, finances, social sciences, ...

# Entropy and all that...

Continuous RV 
$$X$$
, differential entropy:  $h(X) = -\int f_X(x) \log f_X(x) \, dx$ 

• h(X) can be positive or negative (unlike in the discrete case) Example: for  $f_X(x) = \text{Uniform}(x; a, b)$ ,

$$h(X) = \log(b - a).$$

• Gaussian upper bound:  $f_X(x) = \mathcal{N}(x; \mu, \sigma^2)$ , then

$$h(X) = \frac{1}{2}\log(2\pi e\sigma^2).$$

For any RV Y with  $var(Y) = \sigma^2$ , then  $h(Y) \leq \frac{1}{2} \log(2\pi e \sigma^2)$ .

...yet another reason for why the Gaussian is important.

# Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

$$D(f_X || g_X) = \sum_{x=1}^{K} f_X(x) \log \frac{f_X(x)}{g_X(x)}$$

Positivity: 
$$D(f_X\|g_X) \ge 0$$
  $D(f_X\|g_X) = 0 \Leftrightarrow f_X(x) = g_X(x), \text{ for } x \in \{1,...,K\}$ 

KLD between two pdf:

$$D(f_X||g_X) = \int f_X(x) \log \frac{f_X(x)}{g_X(x)} dx$$

Positivity:  $D(f_X || g_X) \ge 0$   $D(f_X || g_X) = 0 \Leftrightarrow f_X(x) = g_X(x)$ , almost everywhere

Issues: not symmetric;  $D(f_X || g_X) = +\infty$  if  $g_X(x) = 0$  and  $f_X(x) \neq 0$ 

#### Mutual information

Mutual information (MI) between two random variables:

$$I(X;Y) = D(f_{X,Y}||f_X f_Y)$$

Positivity:  $I(X;Y) \ge 0$   $I(X;Y) = 0 \Leftrightarrow X,Y$  are independent.

MI = measure of dependency between two random variables

MI = number of bits of information that X has about Y

Bound:  $I(X;Y) \leq \min\{H(X), H(Y)\}$ 

Deterministic function: if  $Y = \phi(X)$ , then  $I(X;Y) = H(Y) \le H(X)$ 

# Recommended Reading (Probability and Statistics)

- A. Maleki and T. Do, "Review of Probability Theory", Stanford University, 2017 (https://tinyurl.com/pz7p9g5)
- K. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012 (Chapter 2).
- L. Wasserman, "All of Statistics: A Concise Course in Statistical Inference", Springer, 2004.

Part II: Algebra and a Few Other Things

# Linear Algebra (Informally)

- Linear algebra provides (among many other things) a compact way of representing, studying, and solving linear systems of equations
- Example: the system

$$4x_1 - 5x_2 = -13$$
$$-2x_1 + 3x_2 = 9$$

can be written compactly as Ax = b, where

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, b = \begin{bmatrix} -13 \\ 9 \end{bmatrix},$$

and can be solved as

$$x = A^{-1}b = \begin{bmatrix} 1.5 & 2.5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -13 \\ 9 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}.$$

#### Notation: Matrices and Vectors

•  $A \in \mathbb{R}^{m \times n}$  is a matrix with m rows and n columns.

$$A = \left[ \begin{array}{ccc} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{array} \right].$$

•  $x \in \mathbb{R}^n$  is a vector with n components,

$$x = \left[ \begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right].$$

- $\bullet$  A (column) vector is a matrix with n rows and 1 column.
- ullet A matrix with 1 row and n columns is called a row vector.

# Matrix Transpose and Products

- Given matrix  $A \in \mathbb{R}^{m \times n}$ , its transpose  $A^T$  is such that  $(A^T)_{i,j} = A_{j,i}$ .
- A matrix A is symmetric if  $A^T = A$ .
- Given matrices  $A \in \mathbb{R}^{m \times n}$  and  $B \in \mathbb{R}^{n \times p}$ , their product is

$$C = AB \in \mathbb{R}^{m \times p}$$
 where  $C_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$ 

• Inner product between vectors  $x, y \in \mathbb{R}^n$ :

$$\langle x, y \rangle = x^T y = y^T x = \sum_{i=1}^n x_i y_i \in \mathbb{R}.$$

• Outer product:  $x \in \mathbb{R}^n$  and  $y \in \mathbb{R}^m$ :  $x y^T \in \mathbb{R}^{n \times m}$ , where

$$(x y^T)_{i,j} = x_i y_j$$

# Properties of Matrix Products and Transposes

• Given matrices  $A \in \mathbb{R}^{m \times n}$  and  $B \in \mathbb{R}^{n \times p}$ , their product is

$$C = AB \in \mathbb{R}^{m \times p}$$
 where  $C_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$ 

- Matrix product is associative: (AB)C = A(BC).
- In general, matrix product is not commutative:  $AB \neq BA$ .
- Transpose of product:  $(AB)^T = B^TA^T$ .
- Transpose of sum:  $(A+B)^T = A^T + B^T$ .

# Special Matrices

• The identity matrix  $I \in \mathbb{R}^{n \times n}$  is a square matrix such that

$$I_{ij} = \left\{ \begin{array}{ll} 1, & i = j \\ 0, & i \neq j \end{array} \right. \quad I = \left[ \begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right]$$

- Neutral element of matrix product: AI = IA = A.
- Diagonal matrix:  $(i \neq j) \Rightarrow A_{i,j} = 0$ .
- Upper triangular matrix:  $(j < i) \Rightarrow A_{i,j} = 0$ .
- Lower triangular matrix:  $(j > i) \Rightarrow A_{i,j} = 0$ .

### Eigenvalues, eigenvectors, determinant, trace

• A vector  $x \in \mathbb{R}^n$  is an eigenvector of matrix  $A \in \mathbb{R}^{n \times n}$  if

$$A x = \lambda x$$

where  $\lambda \in \mathbb{R}$  is the corresponding eigenvalue.

- The eigenvalues of a diagonal matrix are the elements in the diagonal.
  (quiz: what are the eigenvectors?)
- Matrix trace: trace $(A) = \sum_i A_{i,i} = \sum_i \lambda_i$
- Matrix determinant:  $|A| = \det(A) = \prod_i \lambda_i$
- Properties of determinant:  $|AB| = |A||B|, \ |A^T| = |A|, \ |\alpha A| = \alpha^n |A|$
- Properties of the trace:  $\operatorname{trace}(A+B) = \operatorname{trace}(A) + \operatorname{trace}(B),$   $\operatorname{trace}(ABC) = \operatorname{trace}(CAB) = \operatorname{trace}(BCA)$  (cyclic permutations)

#### Matrix Inverse

- Matrix  $A \in \mathbb{R}^{n \times n}$  in invertible if there is  $B \in \mathbb{R}^{n \times n}$  s.t. AB = BA = I.
- ...matrix B, such that AB = BA = I, denoted  $B = A^{-1}$ .
- Matrix  $A \in \mathbb{R}^{n \times n}$  is invertible  $\Leftrightarrow \det(A) \neq 0$ .
- Determinant of inverse:  $det(A^{-1}) = \frac{1}{det(A)}$ .
- Solving system Ax = b, if A is invertible:  $x = A^{-1}b$ .
- $\bullet \ \, \mathsf{Properties:} \ \, (A^{-1})^{-1} = A, \quad (A^{-1})^T = (A^T)^{-1}, \quad (A\,B)^{-1} = B^{-1}A^{-1}$
- There are many algorithms to compute  $A^{-1}$ ; general case, computational cost  $O(n^3)$ .

# Quadratic Forms and Positive (Semi-)Definite Matrices

• Given matrix  $A \in \mathbb{R}^{n \times n}$  and vector  $x \in \mathbb{R}^n$ ,

$$x^{T} A x = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} x_{i} x_{j} \in \mathbb{R}$$

is called a quadratic form.

- A symmetric matrix  $A \in \mathbb{R}^{n \times n}$  is positive semi-definite (PSD) if, for any  $x \in \mathbb{R}^n$ ,  $x^T A x \ge 0$ .
- A symmetric matrix  $A \in \mathbb{R}^{n \times n}$  is positive definite (PD) if, for any  $x \in \mathbb{R}^n$ ,  $(x \neq 0) \Rightarrow x^T A x > 0$ .
- Matrix  $A \in \mathbb{R}^{n \times n}$  is PSD  $\Leftrightarrow$  all  $\lambda_i(A) \geq 0$ .
- Matrix  $A \in \mathbb{R}^{n \times n}$  is PD  $\Leftrightarrow$  all  $\lambda_i(A) > 0$ .

## A Bit More Formal: Vector Spaces

- A vector space over a field  $\mathbb{F}$  (e.g.,  $\mathbb{R}$ ) is a set  $\mathbb{V}$  and a pair of operations,  $+: \mathbb{V} \times \mathbb{V} \to \mathbb{V}$  and  $\cdot: \mathbb{F} \times \mathbb{V} \to \mathbb{V}$ , that satisfy the following axioms,  $\forall x, y, z \in \mathbb{V}$  and  $\forall \alpha, \beta \in \mathbb{F}$ :
  - $\checkmark$  + is associative and commutative;
  - ✓  $\exists 0 \in \mathbb{V}$ , such that 0 + x = x;
  - $\checkmark \ \exists -x \in \mathbb{V}$ , such that -x + x = 0;
  - $\checkmark \quad \alpha \cdot (\beta \cdot x) = (\alpha \cdot \beta) \cdot x;$
  - ✓  $1 \cdot x = x$ , where  $1 \in \mathbb{F}$  is such that  $1 \cdot \alpha = \alpha$ ;
  - $\checkmark \quad \alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y;$
  - $\checkmark (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x.$
- Elements of  $\mathbb V$  are called vectors; elements of  $\mathbb F$  are scalars.
- Standard compact notation:  $\alpha x \equiv \alpha \cdot x$ .

### Vector Space: Examples

- "Usual vectors"  $(\mathbb{R}^n,+,\cdot)$  over field  $\mathbb{R}$ 
  - $\checkmark x = (x_1, ..., x_n), y = (y_1, ..., y_n), x + y = (x_1 + y_1, ..., x_n + y_n);$
  - $\checkmark x = (x_1, ..., x_n), \ \alpha x = (\alpha x_1, ..., \alpha x_n)$
- Real matrices  $(\mathbb{R}^{m \times n}, +, \cdot)$  over field  $\mathbb{R}$ 
  - √ usual matrix addition and multiplication by scalar;
- Complex matrices  $(\mathbb{C}^{m \times n}, +, \cdot)$  over field  $\mathbb{C}$  (complex numbers).
- Binary vectors  $(\{0,1\}^n,+,\cdot)$  over  $GF(2)=\{0,1\}$  (Galois field),
  - $\checkmark$  + is addition *modulo 2*: 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0.
  - $\checkmark$  is standard multiplication:  $0 \cdot 0 = 0 \cdot 1 = 1 \cdot 0 = 0, 1 \cdot 1 = 1.$
- Set of all functions  $f: \Omega \to \mathbb{R}$ , with point-wise addition and multiplication, is a vector space over  $\mathbb{R}$ .

# Norm on Vector Space $\mathbb V$

- ullet A norm is a function  $\|\cdot\|:\mathbb{V} o\mathbb{R}_+$  satisfying,
  - $\forall x, y \in \mathbb{V} \text{ and } \forall \alpha \in \mathbb{R},$ 
    - $\checkmark$  homogeneity,  $\|\alpha x\| = |\alpha| \|x\|$ ;
    - ✓ triangle inequality,  $||x + y|| \le ||x|| + ||y||$ ;
    - $\checkmark$  definiteness,  $||x|| = 0 \Leftrightarrow x = 0$ .
- A seminorm may not satisfy definiteness.
- Classical example in  $\mathbb{R}^n$ : Euclidean norm:  $||x|| = \sqrt{\sum_{i=1}^n x_i^2}$ .
- Two norms  $\|\cdot\|$  and  $\|\cdot\|'$  are equivalent if  $\exists \alpha, \beta > 0$  such that

$$\forall x \in \mathbb{V}, \quad \alpha ||x|| \le ||x||' \le \beta ||x||;$$

if  $\mathbb V$  is finite-dimensional, all norms in  $\mathbb V$  are equivalent.

#### Other Norms

• The  $\ell_p$  norm of a vector  $x \in \mathbb{R}^n$ , where  $p \ge 1$ ,

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

#### Notable cases:

- $\ell_2$  (Euclidean) norm.
- $\ell_1$  norm,  $||x||_1 = \sum_i |x_i|$ .
- $\ell_{\infty}$  norm,  $\lim_{p\to\infty} ||x||_p = \max\{|x_1|, ..., |x_n|\} \equiv ||x||_{\infty}$
- ▶  $\ell_0$  "norm" (not a norm),  $\lim_{p\to 0} \|x\|_p = \#\{i: x_i \neq 0\} \equiv \|x\|_0$
- Some equivalences:  $\|x\|_2 \le \|x\|_1 \le \sqrt{n} \|x\|_2$   $\|x\|_{\infty} \le \|x\|_2 \le \sqrt{n} \|x\|_{\infty}$   $\|x\|_{\infty} \le \|x\|_1 \le n \|x\|_{\infty}$

# Inner Product on Vector Space $\mathbb V$ Over $\mathbb R$

- $\bullet$  An inner product is a function  $\langle\cdot,\cdot\rangle:\mathbb{V}\times\mathbb{V}\to\mathbb{R},$  satisfying,
  - $\forall x, y \in \mathbb{V} \text{ and } \forall \alpha \in \mathbb{R},$ 
    - $\checkmark$  symmetry,  $\langle x, y \rangle = \langle y, x \rangle$
    - $\checkmark$  (bi)linearity,  $\langle \alpha x + \beta z, y \rangle = \alpha \langle x, y \rangle + \beta \langle z, y \rangle$ ;
    - $\checkmark$  definiteness,  $\langle x, x \rangle \ge 0$  and  $\langle x, x \rangle = 0 \Leftrightarrow x = 0$ .
- Standard inner product in  $\mathbb{R}^n$ :  $\langle x,y \rangle = \sum_{i=1}^n x_i y_i = x^T y$
- Also an inner product in  $\mathbb{R}^n$ :  $\langle x,y\rangle=x^TMy$ , where M is PD
- Norm (is it?) induced by an inner product  $\|x\| = \sqrt{\langle x, x \rangle}$ 
  - $\checkmark$  for  $\langle x,y\rangle=x^Ty$ , then  $\|x\|^2=x^Tx=\sum_{i=1}^nx_i^2$  (Euclidean norm)
  - $\checkmark$  for  $\langle x, y \rangle = x^T M y$ , then  $||x||_M^2 = x^T M x$  (Mahalanobis norm)

# Key Properties of Inner Products

• If  $\|\cdot\|$  is induced by inner product  $\langle\cdot,\cdot\rangle$  (that is  $\|x\|^2=\langle x,x\rangle$ ), then

$$||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + ||y||^2 + 2\langle x, y \rangle$$

"Des démonstrations qui font boum!" ("Proofs that make boom!") [Jean-Baptiste Hiriart-Urruty]

$$0 \leq \frac{1}{2} \left\| \frac{x}{\|x\|} \pm \frac{y}{\|y\|} \right\|^2 = 1 \pm \frac{\langle x, y \rangle}{\|x\| \|y\|} \Leftrightarrow \left\{ \begin{array}{c} \langle x, y \rangle \leq \|x\| \|y\| \\ -\langle x, y \rangle \leq \|x\| \|y\| \end{array} \right.$$

 $\bullet$  Corollary:  $\|\cdot\|$  is indeed a norm, as it satisfies the triangle inequality:

$$||x + y||^2 \le ||x||^2 + ||y||^2 + 2|\langle x, y \rangle| \le ||x||^2 + ||y||^2 + 2||x|| ||y|| = (||x|| + ||y||)^2$$

• Hilbert space: complete vector space equipped with an inner product.

# Basis and Dimension of a Vector Space $\mathbb V$

- Basis: collection of vectors  $B = \{b_1, b_2, ...\} \subset \mathbb{V}$  satisfying:
  - ✓ linear independence: for any finite linear combination

$$\alpha_1 b_1 + \dots + \alpha_m b_m = 0 \implies \alpha_1 = \dots = \alpha_m = 0$$

 $\checkmark$  spanning ability: any vector  $v \in \mathbb{V}$  can be written as

$$v = \alpha_1 b_1 + \dots + \alpha_m b_n;$$

in other words,  $\mathbb{V} = \operatorname{span}(B)$ .

- Dimension of  $\mathbb{V}$ :  $\dim(\mathbb{V}) = \#B$
- Orthogonal basis:  $i \neq j \Rightarrow \langle b_i, b_j \rangle = 0$
- Orthonormal basis: orthogonal and  $||b_i|| = 1$ ,  $\forall b_i \in B$ .

# Rank, Range, and Null Space

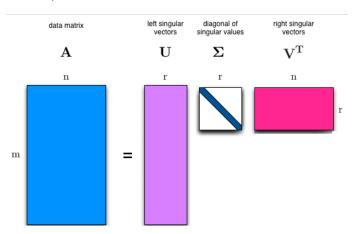
- Consider some real matrix  $A \in \mathbb{R}^{m \times n}$
- $\bullet \ \ \mathsf{Range} \ \ \mathsf{of} \ A \colon \ \mathcal{R}(A) = \left\{ y \in \mathbb{R}^m : \exists \, x \in \mathbb{R}^n \text{ such that } y = Ax \right\} \subseteq \mathbb{R}^m$
- Null space of A:  $\mathcal{N}(A) = \{x \in \mathbb{R}^n : Ax = 0\} \subseteq \mathbb{R}^n$ .
- Both  $\mathcal{R}(A)$  and  $\mathcal{N}(A)$  are vector spaces.
- Dimension theorem:  $\dim(\mathcal{R}(A)) + \dim(\mathcal{N}(A)) = n$
- Rank:  $\operatorname{rank}(A) = \dim(\mathcal{R}(A)) \leq \min\{m, n\}$
- $\operatorname{rank}(A) = n \dim(\mathcal{N}(A))$

# Singular Value Decomposition (SVD)

- Any rank-r matrix  $A \in \mathbb{R}^{m \times n}$  can be written as  $A = U\Lambda V^T$ 
  - $\checkmark$  columns of  $U \in \mathbb{R}^{m \times r}$  are an orthonormal basis of  $\mathcal{R}(A)$ ;
  - $\checkmark$  columns of  $V \in \mathbb{R}^{n \times r}$  are an orthonormal basis of  $\mathcal{R}(A^T)$ ;
  - $\checkmark \ \ \Lambda = \operatorname{diag}(\sigma_1,...,\sigma_r)$  is a  $r \times r$  diagonal matrix;
  - $\checkmark$   $\sigma_1, ..., \sigma_r$  are called singular values.
  - $\checkmark$   $\sigma_1,...,\sigma_r$  are square roots of the eigenvalues of  $A^TA$  or  $AA^T$ .
- ullet Orthonormality of U and  $V\colon U^TU=I$  and  $V^TV=I$  .
- Transposition:  $A^T = (U\Lambda V^T)^T = V\Lambda U^T$ .

# Singular Value Decomposition (SVD)

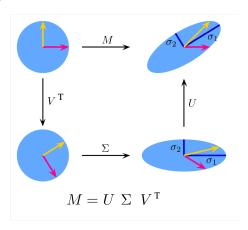
•  $A = U\Lambda V^T$ , where  $U \in \mathbb{R}^{m \times r}$  and  $V \in \mathbb{R}^{n \times r}$ .



Picture credits: Mukesh Mithrakumar

# Singular Value Decomposition (SVD)

•  $A = U\Lambda V^T$ , where  $U \in \mathbb{R}^{m \times r}$  and  $V \in \mathbb{R}^{n \times r}$ .

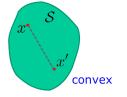


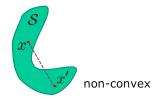
Picture credits: Wikipedia

#### Convex Sets

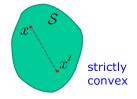
#### **Convex and strictly convex sets**

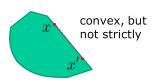
 $\mathcal{S}$  is convex if  $x, x' \in \mathcal{S} \Rightarrow \forall \lambda \in [0, 1], \ \lambda x + (1 - \lambda) x' \in \mathcal{S}$ 





 $\mathcal{S}$  is strictly convex if  $x, x' \in \mathcal{S} \Rightarrow \forall \lambda \in (0, 1), \ \lambda x + (1 - \lambda)x' \in \operatorname{int}(\mathcal{S})$ 

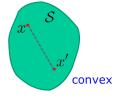


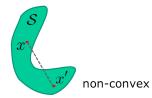


#### Convex Sets

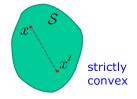
#### **Convex and strictly convex sets**

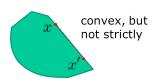
 $\mathcal{S}$  is convex if  $x, x' \in \mathcal{S} \Rightarrow \forall \lambda \in [0, 1], \ \lambda x + (1 - \lambda)x' \in \mathcal{S}$ 





 $\mathcal{S}$  is strictly convex if  $x, x' \in \mathcal{S} \Rightarrow \forall \lambda \in (0, 1), \ \lambda x + (1 - \lambda)x' \in \operatorname{int}(\mathcal{S})$ 





#### Convex Functions

#### **Convex and strictly convex functions**

Extended real valued function:  $f:\mathbb{R}^N o \bar{\mathbb{R}} = \mathbb{R} \cup \{+\infty\}$ 

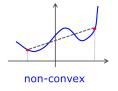
Domain of a function:  $dom(f) = \{x : f(x) \neq +\infty\}$ 

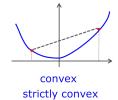
f is a convex function if

$$\forall \lambda \in [0, 1], x, x' \in \text{dom}(f) \ f(\lambda x + (1 - \lambda)x') \le \lambda f(x) + (1 - \lambda)f(x')$$

f is a strictly convex function if

$$\forall \lambda \in (0,1), x, x' \in \text{dom}(f) \ f(\lambda x + (1-\lambda)x') < \lambda f(x) + (1-\lambda)f(x')$$







# Recommended Reading

 Z. Kolter and C. Do, "Linear Algebra Review and Reference", Stanford University, 2015 (https://tinyurl.com/44x2qj4) Concluding...

# Enjoy LxMLS 2020!