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Explainability — what is it and why do we need it?
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Terminology borrowed from Strobelt et al. (2018), “LSTMVis: A tool for visual analysis of hidden state dynamics in recurrent
neural networks. IEEE transactions on visualization and computer graphics.”
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Explainability — what is it and why do we need it?

Right prediction Wrong prediction

Claim: "In the COVID-19 crisis, ‘only 20%
of African Americans had jobs where they
could work from home."”

Evidence: “20% of black workers said they

) could work from home in their primary
Right reasons | job, compared to 30% of white workers.”

Wrong reasons
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Explainability — what is it and why do we need it?
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Types of Explainability

 Model Understanding
« What features and parameters has a model learned?

« How do these features and parameters relate to model outputs
generally?

« Decision Understanding
« How does the model arrive at predictions for specific instances?
« Which features and parameters influence a specific prediction?
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Types of Explainability

« Black Box Explainability Methods
* No access to the model parameters, only predictions
« Observing output changes via different inputs

« White Box Explainability Methods
« Access to the model features and parameters
« Correlating outputs with specific features and parameters
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Types of Explainability

« Joint Explainability Methods
« Explanation produced jointly with target task

* Post-Hoc Explainability Methods
« Explanation produced for a trained model
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Types of Explainability

 Model Understanding
« What features and parameters has a model learned?

« Methods:

* Feature visualisation methods (white box)
» Adversarial examples (black or white box)

« Decision Understanding
« How does the model arrive at predictions for specific instances?

« Methods
* Probing tasks (black or white box)
« Correlating inputs with gradients/attention weights/etc. (white box)
* Generating text explaining predictions (white box)
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Overview of Today's Talk

« Part 1: Decision understanding
« Instance-level explainability for text classification and fact checking
« Language generation based explanations
« Evaluating instance-level explanations

* Part 2: Model understanding
« Model-wide explainability for text classification and fact checking
* Finding model-wide explanations
* Visualising model-wide explanations



Part 1:

Decision Understanding



Generating Fact Checking
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Fact Checking

Donald Trump

stated on April 27, 2020 in comments made during a White House briefing:

99 | “We've tested more than every
| country combined.”

HEALTH CHECK CORONAVIRUS 2 DONALD TRUMP

POLITIFACT

The Poynter Institute

Donald Trump's lam that US tested
more han ll cmtries combinadis

Ourrng

https.//www.politifact.com/factchecks/2020/apr/30/donald-trump/trumps-boasts-testing-spring-cherry-picking-data/
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Terminology

POLITIFACT

The Poynter Institute

Our ruling

Trump claimed that the United Stat@s Poﬁd more than every

country combined." &,‘Ca‘

There is no y to conclude that the American system
has ru ) gnostlcs than "all other major countries
comb®ed." Just by adding up a few other nations’ totals, you can
quickly see Trump’s claim fall apart.

https.//www.politifact.com/factchecks/2020/apr/30/donald-trump/trumps-boasts-testing-spring-cherry-picking-data/
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Automating Fact Checking

Statement: "The last quarter, it was just Dataset Statistics
announced, our gross domestic product was below Training set size 10,269
zero. Who ever heard of this? Its never below zero.” Validation set size 1,284
Speaker: Donald Trump Testing set size 1,283
Context: presidential announcement speech Avg. statement length (tokens) 17.9
Label: Pants on Fire Top-3 Speaker Affiliations
Democrats 4,150
Republicans 5,687
None (e.g., FB posts) 2,185

Lt WOSTLY TRy WALF TRUg oSTLY FALg, FALSE
POLTIPACT POLITIFA poLIfrACT PRLITIFACT POLITIFACT
TRUTH-O-METER" TRUTH-O-METER™ TRUTH-Q-METER™ TRUTN-O-METER" TRUTH-O-METER™

C T ® o @

Wang, William Yang. "“Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News Detection." Proceedings ACL'2017.
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Automating Fact Checking

Fact checking macro F1

score
03 0.247 0,274

0,204 0,208
0,2
0.1

We've tested more than every Valicat e
country combined. alidation es

/ W Majority mWang et. al
Metadata:

topic=healthcare, Coronavirus,
speaker=Donald Trump, [ Hybrid CNN }'—»{ Veracity Label>
job=president,

context=White House briefing,
history={4, 10, 14, 21, 34, 14}

Wang, William Yang. "“Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News Detection." Proceedings ACL'2017.
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Automating Fact Checking

Claim:
We've tested more than every country
combined.

Fact checking macro F1

Justification:
Trump claimed that the United States has
"tested more than every country combined.”
There is no reasonable way to conclude that the
American system has run more diagnostics than
"all other major countries combined." Just by
adding up a few other nations’ totals, you can
quickly see Trump’s claim fall apart.
Plus, focusing on the 5 million figure distracts
from the real issue — by any meaningful metric
of diagnosing and tracking, the United States is
still well behind countries like Germany and
Canada.
The president’s claim is not only inaccurate but
also ridiculous. We-rate-it Pants-onFire!

score
0,370 0,370
0.4 47 0,274
0,204" 0,208
" nlif nl
0
Validation Test
W Majority m Wang et. al Alhindi et. Al

Logistic Regression

Veracity Label>

Alhindj, Tarig, Savvas Petridis, and Smaranda Muresan. "Where is your Evidence: Improving Fact-checking by Justification

Modeling." Proceedings of FEVER2018.
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How about generating an explanation?

Claim:
We've tested more than every country
combined.

Justification:
Trump claimed that the United States has

"tested more than every country combined.” Veracity Labe|>
There is no reasonable way to conclude that the Model
American system has run more diagnostics than

"all other major countries combined." Just by
adding up a few other nations’ totals, you can Explanation
quickly see Trump'’s claim fall apart. .
Plus, focusing on the 5 million figure distracts Gold Explanation
from the real issue — by any meaningful metric
of diagnosing and tracking, the United States is
still well behind countries like Germany and
Canada.

The president’s claim is not only inaccurate but
also ridiculous. Werate-it Pants-onFire!
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Generating Explanations from Ruling Comments

Claim:
We've tested more than every country
combined.

COVID-19 response, President Donald Trump claimed at a

White House briefing that the United States has well Joint Model
surpassed other countries in testing people for the virus.

"We've tested more than every country combined,"

Trump said April 27 [---] We emailed the White House for Justification/
comment but never heard back, so we turned to the data.
Trump's claim didn't stand up to scrutiny.

In raw numbers, the United States has tested more
people than any other individual country — but
nowhere near more than "every country combined"” or,
as he said in his tweet, more than "all major countries
combined.”[:--] The United States has a far bigger
population than many of the "major countries" Trump often
mentions. So it could have run far more tests but still
have a much larger burden ahead than do nations like
Germany, France or Canada.l[---]

Ruling Comments:
Responding to weeks of criticism over his administration’s Veracity Label >

Explanation
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Related Studies on Generating Explanations

Camburu et. al; Rajani et. al generate abstractive
explanations

« Short input text and explanations;

» Large amount of annotated data.

Real world fact checking datasets are of limited size and
the input consists of long documents

We take advantage of the LIAR-PLUS dataset:

» Use the summary of the ruling comments as a gold explanation;
* Formulate the problem as extractive summarization.

»  Camburu, Oana-Maria, Tim Rocktédschel, Thomas Lukasiewicz, and Phil Blunsom. "e-SNLI: Natural language inference with natural language

explanations." In Advances in Neural Information Processing Systems,. 2018.

*  Rajani, Nazneen Fatema, Bryan McCann, Caiming Xiong, and Richard Socher. "Explain Yourself! Leveraging Language Models for

Commonsense Reasoning." In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4932-4942. 2019.
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Example of an Oracle’s Gold Summary

Claim: “The president promised that if he spent money on a stimulus program that
unemployment would go to 5.7 percent or 6 percent. Those were his words.”

Label: Mostly-False

Just: Bramnick said “the president promised that if he spent money on a stimulus
program that unemployment would go to 5.7 percent or 6 percent. Those werehis
words.” Two economic advisers estimated in a 2009 report that with the stimulus
plan, the unemployment rate would peak near 8 percent before dropping to less than
6 percent by now. Those are critical details Bramnick’'s statement ignores. To comment
on this ruling, go to NJ.com.

Oracle: “The president promised that if he spent money on a stimulus program that
unemployment would go to 5.7 percent or 6 percent. Those were his
words,”Bramnick said in a Sept. 7 interview on NJToday. But with the stimulus plan,
the report projected the nation’s jobless rate would peak near 8 percent in 2009
before falling to about 5.5 percent by now. So the estimates in the report were
wrong.
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Which sentences should be selected for the
explanation?

Input: Explanation Model
Claim,
Ruling [ Clalm Rullng Sent. 1 Ruling Sent N ]
Sentences
fT°kﬂ i ToksTSEPTCLSTTok 1], ﬁ°kaSEPTCLSW (Cszﬁok 1), [Tok J(SEPW
Ecr):s;‘ddings E1 || Es |EserEcLs)| E'1 || Em ||E[SEP] EicLs)| |Eicus)| E"1 || E"L |[EseP)
DistiiBERT
Contextual : 3 - = "
Erc:'lnb::'](dl:ﬁgs T @ Ts T[SEP] T[jiS] T 1 Twm T[SEP] T[jlfsl"‘TSCleé T : T ||T[SEP]
L \JA7
[Illlllillllhe]R"lilIIIIlII]
Hidden ( E - RLN )
Layer P

4

Prediction EYE € {0, I}N} [ Ly =AD" y") ]
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What is the veracity of the claim?

Input: Fact-Checking Model

Claim,

Ruling [ Claim Ruling Sent 1 . Rullng Sent. N]
Sentences

o (v 5, (e, o, (o

Token ; ; " "
Embeddings E[CLS] Eq || Es E[SEP]" E[1)' tl;;ﬂi[SEP] o E" [ EL E[SEP]
ISt
gr?xrggcﬁ:rilgs T[jtS] Tt || Ts |Tiser] ™ || T |Tiserl [ ™ || T [Tiser)
CITTITT T Il IoIwerr TTTTTT T
Hidden F 6
Layer [ P ?]R J

Prediction Lr =H(P"y") ]
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Joint Explanation and Veracity Prediction

Explanation Input Fact-Checking Input

- —

Ey || Es
DistiiBERT
Ty || Ts |
A/\
h} € R"«>h} € R hl. € R"«>h% € R"

Cross-stitch layer \aEE aFE/
ﬂE 705}:‘ afrfF \:ﬂr
/ N

( pf e RIN ) ( p’ € R® J
.ee //
Multi-task objective (Laer = 7 % HEE, ¥5) + n+ HE', y5) |

y' e (o )"

Ruder, Sebastian, et al. "Latent multi-task architecture learning." Proceedings of the AAAI'2019.
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Manual Evaluation

« Explanation Quality

« Coverage. The explanation contains important, salient
information and does not miss any important points that
contribute to the fact check.

* Non-redundancy. The summary does not contain any
information that is redundant/repeated/not relevant to the
claim and the fact check.

 Non-contradiction. The summary does not contain any pieces
of information contradictory to the claim and the fact check.

* Overall Rank the explanations by their overall quality.

- Explanation Informativeness. Provide a veracity label
for a claim based on a veracity explanation coming
from the justification, the Explain-MT, or the Explain-
Extractive system.
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Explanation Quality

Mean Average Rank (MAR).
Lower MAR is better! (higher rank)

2,50
2,03 1,90
2,00 1,751,79 :
1,45 158
150 1 40
1,00
0,50

Coverage Non—redundancy Non-contradicton Overall

W Justification M Extractive m Extractive MT
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Explanation Informativeness

Manual veracity labelling, given a particular
explanation as percentages of the dis/agreeing
annotator predictions.

0,500
0,400
0,300
0,200
0,100 I I
U =f0 =L NE
- Agree-Correct Agree-Not Correct  Agree-Nost Disagree
Sufficient

m Justification m Extractive m Extractive-MT
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Summary
* First study on generating veracity explanations

 Jointly training veracity prediction and explanation
* improves the performance of the classification system

« improves the coverage and overall performance of the
generated explanations
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Future Work

« Can we generate better or even abstractive
explanations given limited resources?

« How to automatically evaluate the properties of the
explanations?

« Can explanations be extracted from evidence pages
only (lots of irrelevant and multi-modal results)?



A Comparative Study of Post-Hoc
Explainability Methods for NLP

Pepa Atanasova, Jakob Grue Simonsen,
Christina Lioma, Isabelle Augenstein

Preprint, 2020
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Explainability Datasets for Decision Understanding

Dataset  Example Size Length

e-SNLI Premise: An adult dressed 549 367 Train 27.4 inst.
(Camburu in black holds a stick. 9 842 Dev 5.3 expl.
et al., Hypothesis: An adult is 9 824 Test
2018) walking away, empty-

handed.

Label: contradiction

Movie Review: he 1s one of 1 399 Train 834.9 inst.
Reviews  the most exciting martial 199 Dev 56.18 expl.
(Zaidan artists on the big screen, 199 Test

et al., continuing to perform his

2007) own stunts and dazzling

audiences with his flashy
kicks and punches.
Class: Positive

Tweet Tweet: 1m soo bored...im 21 983 Train 20.5 1nst.
Sentiment deffo missing my music 2 747 Dev 9.99 expl.
Extraction channels 2 748 Test

(TSE) ! Class: Negative
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Post-Hoc Explainability Methods for Decision Understanding

Human
Saliency*
Saliency"
InputXGrad*
InputXGrad"'?

Guideasr+ [N

GuidedBP*?
Occlusion .- .
ShapSampl I
LIME

Example: Twitter Sentiment Extraction (TSE)

=02

-00
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Post-Hoc Explainability for Decision Understanding:
Research Questions

How can explainability methods be evaluated?
* Proposal: set of diagnostic properties

What are characteristics of different explainability methods?
How do explanations for models with different architectures differ?

How do automatically and manually generated explanations differ?
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Post-Hoc Explainability Methods for Decision Understanding:
Gradient-Based Approaches

« Compute gradient of input w.r.t. output
« Gradient is computed for each element of vector

« Different aggregation methods used to produce one score per input
token (mean average, L2 norm aggregation)

« Common approaches

« Saliency
* see above
* InputX-Gradient
additionally multiplies gradient with input
* Guided Backpropagation

over-writes the gradients of ReLU functions so that only non-negative gradients are
backpropagated
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Post-Hoc Explainability Methods for Decision Understanding:
Perturbation-Based Approaches

« Replace tokens in input with other tokens to compute their relative
contributions

« Common approaches
* Occlusion
* replaces each token with a baseline token and measures change in output

« Shapley Value Sampling

» computes average marginal contribution of each word across word perturbations
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Post-Hoc Explainability Methods for Decision Understanding:
Simplification-Based Approaches

« Train local linear models to approximate local decision boundaries

« Common approaches

- LIME
 train one linear model per instance
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Post-Hoc Explainability Methods for Decision Understanding:
Diagnostic Properties

Agreement with Human Rationales (HA)
« Degree of overlap between human and automatic saliency scores

Confidence Indication (CI)
 Predictive power of produced explanations for model’'s confidence

Faithfulness (F)

« Mask most salient tokens, measure drop in performance

Rationale Consistency (RC)

« Difference between explanations for models trained with different
random seeds, with model with random weights

Dataset Consistency (DC)
« Difference between explanations for similar instances
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Post-Hoc Explainability Methods for Decision Understanding:

Selected Results

Fv Tv

9841.33

Clv

@=» Random
ShapSampl
LIME
Occlusion
Saliency*
Saliency"?
m InputXGrad*
msm InputXGrad®?
@m» GuidedBP¥
me 1 GuidedBPRC » DC ~

Spider chart for Transformer model on e-SNLI

HA: Agreement with
human rationales

CI: Confidence indication
F: Faithfulness

RC: Rationale Consistency
DC: Dataset Consistency
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Post-Hoc Explainability Methods for Decision Understanding:
Aggregated Results

Mean of diagnostic property measures for e-SNLI

0,7
0,65
0,6
0,55
0,5
Sl R0
. I
ﬁ’ / Q> /
Qg}o f%&&% O“ &\ c,'b\ * @\ d & +®’b Q\idp@ @\"»‘6& &b"“gb
§ &

B Transformer mCNN mLSTM
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Summary

» Diagnostic properties allow to assess different aspects of
explainability techniques

« Gradient-based methods outperform perturbation-based and
simplification-based ones for most properties across model
architectures and datasets

« Exception: Shapley Value Sampling and LIME better for Confidence
Indication property

« Gradient-based methods also fastest to compute



Part 2:

Model Understanding
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Overview of Today's Talk

« Introduction
« Explainability — what is it and why do we need it?

* Part 1: Decision understanding
« Instance-level explainability for text classification and fact checking
« Language generation based explanations
» Evaluating instance-level explanations

* Part 2: Model understanding
« Model-wide explainability for text classification and fact checking
* Finding model-wide explanations
 Visualising model-wide explanations



Universal Adversarial Trigger
Generation for Fact Checking

Pepa Atanasova®, Dustin Wright*,
Isabelle Augenstein

Preprint, 2020

*equal contributions
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Generating Adversarial Claims

 Fact checking models can overfit to spurious patterns

« Making the right predictions for the wrong reasons

* This leads to vulnerabilities, which can be exploited by adversaries
(e.g. agents spreading mis- and disinformation)

e How can one reveal such vulnerabilities?

« Generating instance-level explanations for fact checking models
(first part of talk)

« Generating adversarial claims (this work)
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Previous Work

* Universal adversarial attacks (Gao and Oates, 2019;
Wallace et al, 2019)
« Single perturbation changes that can be applied to many instances

« Change the meaning of the input instances and thus produce
label-incoherent claims

« Are not per se semantically well-formed

* Rule-based perturbations (Riberio et al., 2018)

« Semantically well-formed, but require hand-crafting patterns
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Previous Work

* FEVER 2.0 shared task (Thorne et al., 2019)

* Builders / breakers setup

« Methods of submitted systems:
* Producing claims requiring multi-hop reasoning (Niewinski et al., 2019)
» Generating adversarial claims manually (Kim and Allan, 2019)
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Goals of this Work

* Generate claims fully automatically
* Preserve the meaning of the source text
* Produce semantically well-formed claims
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EVIDENCE | ~

Dissociative disorders
have been attributed to
disruptions in memory
caused by trauma or other

forms of stress.
NG /

Model

CLAIM ]

Dissociative identity
disorder, or DID, may be
the result of memory
disruptions that have been

\

A

induced by psychological
\\ trauma. )

Trigger Generation |

SUPPORTS — REFUTES

!

TRIGGERS

-

don,already,more,during,home

) 4

7

.

GPT-2 Claim Generation

A

y

brain activity during trauma or other forms of stress.

[Dissociative disorders have been attributed to disrupted}

RoBERTa-based
FEVER model to
predict FC label

1) HotFlip attack
model to find triggers
2) STS auxiliary model
to preserve FC label

Claim generation
conditioned on
evidence and triggers
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50

Examples of Generated Claims

Evidence

Triggers

Generated Claim

Since the 19th century, some
Romani have also migrated
to the Americas.

Times Higher Education
World University Rankings
i1s an annual publication
of university rankings by
Times Higher Education
(THE) magazine.

The KGB was a military ser-
vice and was governed by
army laws and regulations ,
similar to the Soviet Army
or MVD Internal Troops.

SUPPORTS Claims

don,already,more,during,home

REFUTES Claims

interested,reward, visit,consumer,conclusion

NOT ENOUGH INFO Claims

nowhere,only,none,no,nothing

Romani have moved to the
Americas during the 19th
century.

Times Higher Education
World University Rankings
1S a consumer magazine.

The KGB was only con-
trolled by a military service.
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Results: Manual Evaluation

 How well can we generate universal adversarial triggers?

F1 of EC model Semantic Textual Similarity
(lower = better) with original claim
. (higher = better)
Overall  SUPPORTS REFUTES NEI Overall SUPPORTS  REFUTES
m FC Objective FC + STS Objective B FC Objective FC + STS Objective

« Trade-off between how potent the attack is (reduction in F1) vs. how
semantically coherent the claim is (STS)

« Reduction in F1 for both trigger generation methods

* Macro F1 of generated w.r.t. original claim: 56.6 (FC Objective); 60.7
(FC + STS Objective) -- STS Objective preserves meaning more often
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Key Take-Aways

* Novel extension to the HotFlip attack for universarial
adversarial trigger generation (Ebrahimi et al., 2018)

« Conditional language model, which takes trigger tokens
and evidence, and generates a semantically coherent claim

* Resulting model generates semantically coherent claims
containing universal triggers, which preserve the label

 Trade-off between how well-formed the claim is and how
potent the attack is



TX-Ray: Quantifying and Explaining
Model-Knowledge Transfer in
(Un-)Supervised NLP

Nils Rethmeier, Vageesh Kumar Saxena,
Isabelle Augenstein

UAI 2020
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Motivation: observe knowledge acquisition of
neural nets

Problems of supervised probing task evaluation setup
e only measures expected (probed) model knowledge and semantics
e is misleading when model and probe domains mismatch A
e probing annotation can not scale to uncover unforeseen semantics

Goal: instead can we visualise, quantify and explore how a (language) model
e learns - RQ (1) How does self-supervision abstract knowledge?

e applies - RQ (2) How is knowledge (zero-shot) applied to new inputs X?
e adapts - RQ (3) How is knowledge adapted by supervision?

Approach: un-/ self-supervised interpretability
e visualise what input (features) each neuron prefers (maximally activates on)
-- l.e. activation maximisation by Erhan, 2009 -- used on RBMs [1]
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Goal: Visualise & measure transfer in neural nets

How does each neuron O

RQ (1) abstract/ learn (textual) knowledge? O
e during initial/ [pre-training on text Xpre]

random encoder E
4 N

[ooooooooo]
Ctextin )&

. (0): random init
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Goal: Visualise & measure transfer in neural nets

How does each neuron O

RQ (1) abstract/ learn (textual) knowledge? O

e during initial/ [PRe-iFaining on textXpre)

random encoder E learning encoder E
4 ) 4 )

E trained as

language model fits [O O O O O O O]

knowledge

[ooooooooo] [> [ooooooooo]

Xore )& Xore )&

pretrain E on Xpre
. (0): random init
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Goal: Visualise & measure transfer in neural nets

How does each neuron O

RQ (1) abstract/ learn (textual) knowledge? O
e during initial/

learning encoder E

4 I
\ Loss: drops/ changes

[0O00000O0]

[ooooooooo]

Xore )&

pretrain E on Xpre
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Goal: Misualise & measure transfer in neural nets

How does each neuron O
Neuron n, := token-preference distribution

RQ (1) abstract/ learn (textual) knowledge? O

e during initial/ (pre=training on text Xpre) px = token activation probability, while training
Per token, only record the
l maximally activated (preferred)
: neuron -- i.e. activation-
- learning encoder E N Cakebiscuits maximization (Erhan, 2009)
\ Loss: drops/ changes
T Knowledge W ]
abstraction O O O O O
starts |
[ O000O0000O0 ] | like cake better than biscuits.
(e )&
pretrain E on Xpre
. (1): pre-training
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Goal: - & measure transfer in neural nets

How does each neuron O

RQ (1) abstract/ learn (textual) knowledge? ©

e during initial/ [PRe-iFaining on textXpre)

Loss: drops/ changes

in
In Knowledge
abstraction
changes

learning encoder E

-

(000000000

Xore )&

pretrain E on Xpre

~

Neuron n, := token-preference distribution

p, = token activation probability, while training

i =
cake

cookies

[O00000O0]
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Goal: Misualise & measure transfer in neural nets

How does each neuron O

RQ (1) abstract/ learn (textual) knowledge? ©

e during initial/[pre-training on text Xpre]

Loss: drops/ changes

(N |
in
Em Knowledge
abstraction
changes

learning encoder E

-

(000000000

Xore )&

pretrain E on Xpre

~

Neuron n, := token-preference distribution

p, = token activation probability, while training

H B =
caKe . iSji
cookies SUPervision

&

(1): pre-training

fcmo/?ooo}

| like cake better than cookies.
The learning - cake contains cherries.
Supervision is the cake’s icing.




o? UNIVERSITY OF COPENHAGEN

Goal: Misualise & measure transfer in neural nets

How does each neuron O

Neuron n, := token-preference distribution
RQ (1) abstract/ learn (textual) knowledge? @
e during initial/ [pre=training on text Xpre) p« = token activation probability, post training
converged encoder E cg«e - su elrvision .
e ~N cookies SYP self

Loss: drops/ changes

. fﬁ)o/c')ooo}

[ Q00000000 ] | like cake better and biscuits.
[E_J The learning - cake contains cherries.
Supervision is the cake’s icing.
Knowledge abstraction pretrain E on Xpre Self - supervision is the cake’s corpus.

converges L (1): pre-training The cake is a lie.
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Goal: Visualise & measure transfer in neural nets

How does each neuron O

RQ (1) abstract/ learn (textual) knowledge? @
e during initial/[pre-training on text Xpre]

Take-away (1): pre-trained encoder E
e N
(pre)-trained builds neural n,:= token-prefer dist.
knowledge (feature activation Pr
distributions) .11
f, £, £ fi f
(eT6000000|
(e )&
pretrain E on Xpre
. (1): pre-training
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Goal: Visualise & measure transfer in neural nets

How does each neuron O

RQ (1) abstract/ learn (textual) knowledge? @
e during initial/[pre-training on text Xpre]

Take-away (1): pre-trained encoder E
e —
(pre)-trained builds neural n,:= token-prefer dist.
knowledge (feature activation Pr
distributions) .11
f, £, £ fi f
T_oke?-ac:ir:/aﬂon dlis’:jributions [\.ﬁ. 0000 ]
visualize the knowledge E
abstractiowl of each LJ
neuron pretrain E on Xpre
. (1): pre-training
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Goal: Visualise & measure transfer in neural nets

How does each neuron O

RQ (1) abstract/ learn (textual) knowledge? @

e during initial/ [PRe-iFaining on textXpre)

RQ (2) apply learned knowledge @

e to - ~
n,:= token-prefer dist.

|I||fl

fi f, f3 fi i
[\o’oﬁooooo]

Xore )&

pretrain E on Xpre
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Goal: Visualise & measure transfer in neural nets

How does each neuron O

RQ (1) abstract/ learn (textual) knowledge? @

e during initial/ [pre-training on text Xpre]

RQ (2) apply learned knowledge @

° to[new domain text Xend] -

pretrain E on Xpre

N\ (- )
n,:= token-prefer dist. f:= token / POS
Px
0™ n
f, £, £, f, f f £, £, f, f
[\oﬁooooo] [\oﬁooooo}
KXo JE [ Xera JE

eval. E on new Xend

I

(1): pre-training

N\

(2): zero-shot

e feed new text

to frozen pretrained

encoder @
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Goal: Visualise & measure transfer in neural nets

How does each neuron O

RQ (1) abstract/ learn (textual) knowledge? @

e during initial/[pre-training on

text Xpre]

RQ (2) apply learned knowledg

e©

° to[new domain text Xend]

-

n,.= token-prefer dist.

~

-

f:= token / POS

~

|.I|”“|fl

fr £ f3 K

f f, 13 fy f

(eT6000000|
(%o )

pretrain E on Xpre

[\oﬁooooo_}
[ Xend JE

eval. E on new Xend

I

(1): pre-training

N\

(2): zero-shot

activation
distribution changes

feed new text

to frozen pretrained

encoder @
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Goal: Visualize & measure transfer in neural nets

We use Hellinger H(l +,1x)
distance as change/
transfer measure

-- i.e. a symmetric KLD

How does each neuron O

RQ (1) abstract/ learn (textual) knowledge? @
e during initial/[pre-training on text Xpre]

RQ (2) applv learned knowledae e no neuron transfer if
Q(2) apply _ 9@ > > large change [vs. In
e to[new domain text Xend] - <~ ~

nn:= tOken-pI’efeI’ dist. fk:z token / POS PY neuron transfers If
Py small change "= vs. I
l.0s”n1
f, £, £ fi f f, £, f fi f e activation
(eT6000000| (eT6000000] distribution changes
E E

U U e feed new text

pretrain E on Xpre eval. E on new Xend to frozen pretrained

. (1): pre-training . (2): zero-shot encoder @
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Goal: Visualise & measure transfer in neural nets

How does each neuron O

RQ (1) abstract/ learn (textual) knowledge? @

e during initial/ [pre-training on text Xpre]

RQ (2) apply learned knowledge @

° to[new domain text Xend]

2

>

-

4 A

n,.= token-prefer dist.

f:= token / POS

|.I|”“|fl

fr £ f3 K

f f, 13 fy f

(eT6000000|
(%o )

pretrain E on Xpre

[\oﬁooooo_}
[ Xend JE

eval. E on new Xend

I

(1): pre-training

. (2): zero-shot

Over-specialisation:

no neuron transfer if
large change 'rvs. I

OOD-generalisation:

neuron transfers if
small change "= vs. I
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Goal: Visualise & measure transfer in neural nets

How does each neuron O

RQ (1) abstract/ learn (textual) knowledge? @
e during initial/[pre-training on text Xpre]

RQ (2) apply learned knowledge @
° to[new domain text Xend]

2 >

('t — [ A
n,.= token-prefer dist. f,:=token / POS
LELGEEVTEVAVAR I I 2 Py 2 I
Transfer if encoder -
: _ f, f, f; . f f, f, f; . f
generalises well (activates —

similarly) on the new text [\oﬁooooo] [\O’Oﬁooooo}
EJ E |
Shows how able each neuron is

pretrain E on Xpre eval. E on new Xend

_ iatin V|
generalise to new data(-distrib.)! () pretraining ) ( (2):zero-shot |
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Goal: Visualise & measure transfer in neural nets

How does each neuron O

RQ (1) abstract/ learn (textual) knowledge? @

e during initial/[pre-training on

text Xpre]

RQ (2) apply learned knowledg

e©

° to[new domain text Xenci(

RQ (3) adapt its knowledge
to suit a supervision

on the new

signal Yend)
domain[Xe—ad]

N [ N\
n,.= token-prefer dist. f:= token / POS py := token probability
p,=.05 [ |
Il nl . il
f; f2 f3 f f f, £, fg f f f, £, fg f f
(eT6000000| (eT6000000| [\oﬁcgooo]
(%o )& ([ Xend ) E- [ Xend )E

pretrain E on Xpre

eval. E on new Xend

eval. Eend on Xend

I

(1): pre-training

N\

(2): zero-shot

(&

(3): supervised
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Goal: Visualise & measure transfer in neural nets

How does each neuron O

RQ (1) abstract/ learn (textual) knowledge? @

e during initial/[pre-training on text Xpre]

RQ (2) apply learned knowledge @

° to[new domain text Xend

RQ (3) adapt its knowledge
e to suit a supervision
on the new

signal Yend)
domain[Xe—ad]

Take-away (3):

O supervision specialises (re-fits) knowl.

O adds new knowledge

O and ‘avoids’ (sparsifies) old knowledge

>

il

4 A

rEend : E fit on Yend\

n,.= token-prefer dist.

f,:= token / POS

py .= token probability

o

|I||fl

p,=.05

f f £ f f £ f f £ f
[\oﬁooooo] [\oﬁooooo] [\oﬁgooo]
Xpre JE [ Xend JE [ Xend JE

pretrain E on Xpre

eval. E on new Xend

eval. Eend on Xend

(&

(1): pre-training

. (2): zero-shot

N\

(3): supervised
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Experiment: XAl to guide pruning

Pretrain, then supervise

e pretrain language model on Wikitext-2 (1)
e fine tune to IMDB binary reviews (3)

[Eend :Efiton Yend\

~
n,:= token-prefer dist. p,:= token probability
p p.=.05 I
loin”a1 i b
ff, 6 £ f f 6, 6 £ f
oT0000000 ©000000
=3
pretrain E on Xpre eval. Eend on Xend
(1): pre-training (3): supervised
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Experiment: XAl to guide pruning

Pretrain, then supervise

e pretrain language model on Wikitext-2 (1)
e fine tune to IMDB binary reviews (3)

KEend :Efiton Yend\

Prune neurons that post supervision ...

~
n,:= token-prefer dist. p,:= token probability
P, p,=.05

loin”a1 i il

ff, 6 £ f f 6, 6 £ f

vv0000000 » WPT0000000
=3

pretrain E on Xpre eval. Eend on Xend

(1): pre-training (3): supervised
Which neurons % AM @ F1 change % pruning
of 675 train test effect

none = baseline
A: 740 avoided

© were specialized (re-fit)

O
O became preferred (aCtivated) g B: 20 least prefered
O

O were ‘avoided’ (now empty distrib.)

C: 20 top prefered
D: 85 sup added

100.000,  0.00 0.00

- 3,65 280 | noise, T generality

0.004° -3.79 0.00
83.120 -499 -1.43
3.006 -3.71 -3.87 | sup. knowledge

| over-fitting

| generalization

— i.e, neuron has no max activations post supervision

activation mass (AM)

(+) is better

standard / TX-Ray
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Take-Aways

TX-Ray can explore generalisation and Specialisation at individual neuron-level

S self-supervised pre-training builds general knowledge
o preference spread across many neurons -- 89% maximally active (preferred) neurons

" zero-shot application shows match of model knowledge vs new domain
o preference less spread -- 88% of neurons preferred, partial generalisation

=/ supervised knowledge fine-tuning sparsifies (concentrates) activation
o preference peaked -- only 45% of neurons preferred, many become domain @Ver-specialised

preference activation sum (mass) per neuron -- sorted by sum

m

© =&+ unsup Wiki2
£ 103 - i

I ~&— z-shot IMDB

% ~.. " after sup IMDB
o) T

neurons sorted by activation mass
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Wrap-Up
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Overall Take-Aways

* Why explainability?

« understanding if a model is right for the right reasons

* Generated explanations can help users understand:
* inner workings of a model (model understanding)
« how a model arrived at a prediction (decision understanding)

 Explainability can enable:

* human-in-the-loop model development
* human-in-the-loop data selection
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Overall Take-Aways

« Caveats:

* There can be more than one correct explanation
 Different explainability methods provide different explanations

 Different streams of explainability methods have different
benefits and downsides
» Black box vs. white box
« Hypothesis testing vs. bottom-up understanding
« Requirements for annotated training data
« Joint vs. post-hoc explanation generation
* One-time analysis vs. continuous monitoring
* Perform well w.r.t. different properties
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Where to from here?

Making explanations useful to model trainers and
end users

« How to interpret different explanations?

« Explanations for models with large number of parameters
* What-if analyses

Some research on generating explanations, relatively little
work on understanding in what context they are useful
« (Automatically) evaluating explanations

 Human-in-the-loop development
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Thank you!

Isabelleaugenstein.github.io
augenstein@di.ku.dk
@IAugenstein
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Thanks to my PhD students and collaborators!

Dustin Wright  Jakob Grue Simonsen Christina Lioma

frinnrinnnr

CopeNLU

Nils Rethmeier  Vageesh Kumar Saxena https://copenlu.github.io/
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Presented Papers

Pepa Atanasova, Jakob Grue Simonsen, Christina Lioma, Isabelle

Augenstein. Generating Fact Checking Explanations. In Proceedings of
ACL 2020.

Pepa Atanasova, Jakob Grue Simonsen, Christina Lioma, Isabelle
Augenstein. A Comparative Study of Post-Hoc Explainability Methods
for NLP. Preprint, 2020.**

Pepa Atanasova*, Dustin Wright*, Isabelle Augenstein. Universal
Adversarial Trigger Generation for Fact Checking. Preprint, 2020.**

Nils Rethmeier, Vageesh Kumar Saxena, Isabelle Augenstein. TX-Ray:
Quantifying and Explaining Model-Knowledge Transfer in
(Un)Supervised NLP. In Proceedings of the Conference on UAI 2020.

*equal contributions
**title "anonymised’, please email me for access to the preprint



