Information Extraction: from opinions to arguments (to persuasion)
Plan for the talk

• Two real-world structured prediction tasks in NLP

Opinion extraction
1. Formulation as structured prediction
2. ML methods employed (covered some this morning)
3. Performance results

Argument extraction
1. Formulation as structured prediction

• Our current research on persuasion
Information extraction

• Unstructured text \(\rightarrow\) structured representation
Information extraction

• Usually domain-specific focus, usually fact- or event-oriented
Opinion extraction

• Sentence-level task (typically)

The White House press corps launched a bitter attack on Trump…

Opinion holder: “White House press corps”
Target: “Trump”
Polarity: negative
Intensity: high
Date: ...

text collection
Opinion holder: “White House press corps”
Target: “Trump”
Polarity: negative
Intensity: high
Date: ...

text collection
President Trump hopes to build a wall along the U.S.-Mexico border.
Broccoli is not one of Bush’s *favorite* foods.

Opinion holder: “Bush”
Target: “broccoli”
Polarity: negative
Intensity: medium

Opinion holder: “Trump”
Target: “build a wall along…”
Polarity: positive
Intensity: low

Opinion holder: “Trump”
Target: “Trump”
Polarity: negative
Intensity: high
Date: …
Opinion extraction (and IE generally)

- Connections to
 - Relation extraction
 - Event extraction
 - Slot-filling

ML perspective: **structured prediction**
General approach: **sequence tagging**
Plan for the talk

• Two real-world structured prediction tasks in NLP

Opinion extraction
1. Formulation as structured prediction
2. ML methods employed (covered some this morning)
3. Performance results

Argument extraction
1. Formulation as structured prediction

• Our current research on persuasion
The proposal is criticized by environmentalists as ambiguous.

Polarity: negative
Source: “environmentalists”
Target: “the proposal”

Lose the information that there were two opinion expressions.
The proposal is criticized by environmentalists as ambiguous.

OpExpr: “criticized”
Polarity: negative
Source: “environmentalists”
Target: “the proposal”

OpExpr: “ambiguous”
Polarity: negative
Source: “environmentalists”
Target: “the proposal”

Sequence tagging

The proposal is criticized by environmentalists as ambiguous.

B_T I_T O O O B_S O O
B_T I_T O B_op O B_S O B_op
The proposal is criticized by environmentalists that are Trump’s enemies.

B_S?
B_T?
Sequence tagging with complications...

- Generally viewed as **two tasks**
 - Opinion entity identification
 - Opinion expression
 - Source
 - Target
 - Relation detection among entities
 - For each opinion expression
 - `<opinion expression>` IS-FROM `<source>`
 - `<opinion expression>` IS-ABOUT `<target>`
ML Pipeline

- Extract candidate entities: **sequence tagging**

The proposal is criticized by environmentalists as ambiguous.
ML Pipeline

- Sequence tagging
 + **classification** (relation identification)

- The proposal is criticized by environmentalists as ambiguous.
The proposal is criticized by environmentalists as ambiguous.

- Sequence tagging
 + **classification** (relation identification)
The proposal is criticized by environmentalists as ambiguous.

ML Pipeline

- Sequence tagging + classification
 - e.g., CRFs [Lafferty et al., 2001]
 - e.g., SVMs, MaxEnt

Graphical representation:

- Target: The proposal
- Opinion: is criticized by
- Source: environmentalists
- Opinion: as ambiguous

Methods:

- IS-ABOUT
- IS-FROM
The proposal is criticized by environmentalists as ambiguous.

ML Pipeline

- Sequence tagging + classification

Hand-crafted features
Drawn from output of NLP components

constituent-level parser
dependency parser
semantic class tagger
POS tagger
semantic role labeler
sentiment word lexicons
opinion word lexicons

N-grams (tokens, tags...)

Target: The proposal
Opinion: is criticized by
Source: environmentalists as
Opinion: ambiguous.
Well-known problems

- Error propagation
 - Errors made in entity extraction limit performance of relation classification
- Relation extraction cannot influence entity candidate generation

Mitigated, in part, by ML methods for:

1. Joint inference (E.g. ILP-based, AD3)
2. Joint learning
 - End-to-end neural methods
Joint inference models (e.g. Roth & Yih, 2004)

- Allow modeling of global constraints on the output structure
- Simple models are learned separately
 - Top-k results are used
- Incorporation of task-specific constraints can bias (re-rank or remove) decisions made by simpler models
- Constraints employed (only) at the decision time
- Can be solved for using, e.g., Integer Linear Programming (ILP), AD³ (Martins & Smith)

For opinion extraction: See Choi & Cardie (2006); Yang & Cardie, 2013
Limitations

• Entities and relations are still learned separately
 • Relation information cannot influence the entity extraction
• Linear constraints
Joint extraction of entities and relations

- Entities and relations are learned jointly
- Disadvantage
 - Heavily feature-engineered
 - E.g. Li and Ji, 2014; Miwa and Sasaki, 2014

For opinion extraction: See Yang & Cardie, 2013
End-to-end neural network approaches

• Joint extraction of entities and relations
 • Without NLP components, without feature engineering, without manually procured lexicons
• Comparable (and sometimes better) performance than feature-based approaches

- Constituent level parser
- Dependency parser
- Semantic class tagger
- POS tagger
- Semantic role labeler
- N-grams (tokens, tags...)
- Sentiment word lexicons
- Opinion word lexicons
Opinion extraction performance

- NOT measured at the token-level !!!!!
- Measured at the entity and relation level
 - Recall, precision, F-measure
- Data set
 - MPQA
 - ~500 documents with fine-grained opinion extraction information
 - 10’s of thousands of opinions
Use a multi-layer bi-directional LSTM

[Katiyar & Cardie, ACL 2016]

- Not competitive with best CRF+ILP joint inference approach
 - Yang & Cardie (ACL 2013)
Add sentence+relation-level likelihood

[Katiyar & Cardie, ACL 2016]

- Incorporate dependencies between consecutive labels
 - Via CRF at top layer

```
softmax (y)
hidden layer (h)
word embeddings (x)
```

```
The sale infuriated Beijing which

B.T. 2  I.T. 1  B.O. 1  B.H. 0  O. 0
```
Results

- As good as CRF+ILP for IS-ABOUT
- Within 1-3% F-score for opinion entity extraction + IS-FROM
Katiyar & Cardie (ACL 2017)

- Entity extraction using sequence labeling
Katiyar & Cardie (ACL 2017)

- Entity extraction using sequence labeling
- Relation extraction using attention
Plan for the talk

- Two real-world structured prediction tasks in NLP
 - Opinion extraction
 - Argument extraction
- Our current research on persuasion
Argumentation Mining

Want to understand not only **WHAT** people are thinking (i.e., opinions), but **WHY** they are thinking it.

Ultimately
- distinguish good vs. bad arguments
- understand what makes an argument persuasive
Expose the reasoning behind an opinion

• Argument parsing

1. There should be a full ban of peanut products on all airlines,
2. because peanut allergy could have terrible effects.
3. Peanut reactions can be life threatening.
4. Restricting to certain flights is not enough,
5. as residue from previous flights can remain on the seats.
6. Recently we flew across the country
7. and I find left over peanuts in our seats!

[Joonsuk Park, Cornell PhD thesis, 2016]
[Niculae, Park & Cardie, ACL 2017]
Structured prediction ...at the *discourse* level

1. Proposition classification
2. Identification of support relations

1. There should be a full ban of peanut products on all airlines, because peanut allergy could have terrible effects.
2. Peanut reactions can be life threatening.
3. Restricting to certain flights is not enough as residue from previous flights can remain on the seats.
4. Recently we flew across the country and I find left over peanuts in our seats!
See Niculae, Park & Cardie (ACL 2017)

- Joint learning approach
- **Based on factor graph construction**
 - Heavily feature engineered OR not
 - Allows arbitrary task-specific constraints

Neural nets do *not* perform the best.
What makes a convincing argument?

- Previous work in NLP identified linguistic features important for discriminating persuasive language from non-persuasive language.

[Tan et al., 2016]
[Zhang et al., 2016]
[Potash and Rumshisky et al., 2017]
Findings using on-line debates

- Winners
 - actively pursue opponents’ points rather than promoting their own ideas
 - have longer argument – more words, more sentences, more paragraphs
 - use calmer language
 - use more 1st person singular pronouns (self affirmation)
 - use fewer person plurals (distancing from presented view)
 - ...
Our current work...

- Are logical/well-formed arguments more persuasive than less logical arguments?
 - Initial results: NO

- Are logical/well-formed arguments judged as higher quality than less logical arguments?
 - Initial results: MAYBE

- What aspects of the argument structure are most associated with persuasiveness/quality?
 - Initial results: more support links = more persuasive and higher quality
But…

What makes a persuasive argument depends on:
 * **who** is voting/reading/listening
 * their **prior beliefs** on the **topic** of the argument

More important than the language used
Affect the ranking of **linguistic features** that predictive persuasion

See work of PhD student Esin Durmus
 * NAACL 2018, PEOPLES@NAACL 2018, WWW 2019,
 * ACL 2019, ArgMining@ACL 2019
The End