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Parallel Decoding of a Sequence

Non-autoregressive neural sequence modehng

Jason Lee, Elman Mansimov and Kyunghyun Cho. Deterministic Non-Autoregressive
Neural Sequence Modeling by Iterative Refinement. 2018 (under review)



Neural sequence modeling

* An arbitrary input X: e.g., another sequence, image, video, ...

* A sequence output Y = (yh Y2, .- 7yT)

* e.g., natural language sentence

* Discrete Yt € V

* Use a neural network to estimate a distribution over sequences
log pa (Y| X)

* Machine translation, automatic speech recognition, ...



Neural autoregressive sequence modeling

* Unlike classification, complex, strong dependencies among Y#s
* More than half of residents in Korea speak

* Among millions of possible tokens, only one word (Korean) 1s likely above.

* Neural autoregressive sequence modelling

T
logp(Y|X) = logp(yely<s, X)

t=1

explicitly dependenci

—
—



Neural autoregressive sequence modeling

* Decoding is problematic T

1. Exact decoding is intractable arg max Z log p(ye|y<e, X) =7
t—=1

2. Decoding is inherently sequential O(kT)




Neural non-autoregressive sequence modeling
* Conditional independence among Yt ’s
T
logp(Y|X) => logp(yely<s, X) ‘ logp(Y|X) = Zlogp ye| X)
t=1

* Exact decoding 1s tractable Yy = argmax log P(yt |X )

Yt

* Decoding is highly parallelizable
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Neural non-autoregressive sequence modeling

* [0 good to be true: dependencies must be modelled somehow
* Introduce a set of latent variables [Gu et al., 2018 ICLR]

log p(Y|X) ZlogZp vl Z, X)p(Z|X)

099




Neural non-autoregressive sequence modeling

* Repetition as a latent variable [Gu et al., 2018 ICLR]
* Bach latent variable <t: # of repetitions of the input symbol &t
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Neural non-autoregressive sequence modeling

* Repetition as a latent variable [Gu et al., 2018 ICLR]
* Bach latent variable <¢: # of repetitions of the input symbol Ly

* Monte Carlo approximation with rescoring
1. Znp~Z|X, Y, = argmaxlogp(Y|Zm,X)
2. Pick Ym with the high score by another model.

P P ®9




Neural non-autoregressive sequence modeling

* Repetition as a latent variable [Gu et al., 2018 ICLR]
* Each latent variable £¢ : # of repetitions of the input symbol Lt

* For training: use an auxiliary task to train p(Z|1X)
1. Word alignment models: use fast_align [Dyer et al., 2013]

P P ®9




Neural non-autoregressive sequence modeling

* First convincing result!! [Gu et al.; 2018 ICLR]

* IWSL'T’16 En—De
Non-Autoregres Decoding BLEU  Sentence
sive? Latency (ms)
No Greedy 28.89 408ms
Beam search (4) 29.70 607ms
Yes argmax 25.20 39ms

MC+Rescoring (10)  27.44 79ms
MC+Rescoring (100) 28.16 257ms




Non-autoregressive modeling
by 1terative refinement [Lee, Mansimov & Cho, 2018]

e What are these latent variables?

log p(Y|X) ZlogZp vl Z, X)p(Z|X)

* We impose that latent variables share the output semantics
* They share the same vocabulary <¢ - V, Yt € V

* Multiple layers of the latent Varia*:)les
\ T
p(Y|X)= ) (Hp ye| 25, X / Hp HZE LX) | ] e X)
zZt,...,zL t=1

e Shared conditional distributions




Non-autoregressive modeling
by iterative refinement

* Generative story: Iterative refinement

: : : [
1. Refine*: Generate an mtermedllat? translation Y
oiven a previous translation Y~ and the source sentence X

2. Repeat 1 for I iterations (or until convergence)

* As the latent variables share the semantics with the output, we can use Z and Y exchangingly.



Non-autoregressive modeling
by iterative refinement

* Training 1: end-to-end training

* The output of each iteration is encouraged to be the correct answer

A4
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[Alain & Bengio, 2013]

. ¥ = DAE(Y, X)

A

* logp(Y|X) > logp(Y|X)

A

* Training 2: Conditional denoising

autoencoder
* A denoising autoencoder learns

to hill climb

U S N W ST W S S
0.0 0.1 0.2

-0.1

-0.2

(b) r(x) — x vector field, close-up



Non-autoregressive modeling
by iterative refinement

* Training 2: Conditional denoising autoencoder

* A denoising autoencoder learns to hill climb [Alain & Bengio, 2013]
. Y =DAE(Y, X)
* logp(Y[X) > logp(Y|X)

Corruption Function




Non-autoregressive modeling
by iterative refinement

* Lower-bound maximization & Conditional Denoising

L+1

T
JLVM Z (Z lngg = Y; |Yl 1 X)) JDAE(H) — = ZlogPO(yt — y:lan)

t=1

* Mixed Training Objective ai
_ I—1
e Consider [.+1 iterations. o Z = Z log po(y: |Y , X)

* At each iteration,
stochastically choose

one of the two objectives. H(dl =) Z log po(y; 1Y, X))

. . i=1
* Joint training from scratch



Experiments — Machine Translation

* En<>Ro (WMT’16): low-resource machine translation

Non-Autoregres Decoding En—Ro Ro—En Speed (toks/sec)
sive? (BLEU) (BLEU) CPU GPU
No Greedy 31.93 31.55 15.7 55.6
Beam (4) 32.40 32.06 7.3 43.3
Yes Iter 1 24.45 25.73 98.6 694.2
Iter 2 27.10 28.15 62.8 332.7
Iter 5 28.86 29.72 29.0 194.4
Iter 10 29.32 30.19 14.8 93.1
adaptive 29.66 30.30 16.5 118.3

*91.5% translation quality with up to 4x decoding speed-up (on GPU)



Experiments — Machine Translation

* En>De (WMT’14): moderate-scale machine translation

Non-Autoregres Decoding En—De De—En Speed (toks/sec)

sive? (BLEU) (BLEU) CPU GPU

No Greedy 23.77 28.15 15.8 54.0
Beam (4) 24.57 28.47 7.0 44.9

Yes Iter 1 13.91 16.77 83.3 511.4
Iter 2 16.95 20.39 49.6 393.6
Iter 5 20.26 23.86 23.1 139.7
Iter 10 21.61 25.48 12.3 90.4
adaptive 21.54 25.43 20.3 107.2

* 80% translation quality with up to 2x decoding speed-up (on GPU)



Experiments — Machine Translation

‘/’,’——_‘-~~-‘
,"— DE-EN (stochastic)
// = == DE-EN (deterministic)
- EN-DE (stochastic)
- ==  EN-DE (deterministic)
0.0 0.5 1.0 1.5 2.0

log(number of refinement steps)

e [terative refinement improves translation
quality (almost) monotonically

* intermediate latent variables (translations) are
successfully capturing dependencies.

* Quality degradation with large data
* Significant speed-up in decoding on GPU

* Perhaps more suitable for brains? ©



Experiments — Machine Translation

Src: seitdem habe ich sieben Ha User in der Nachbarschaft mit den Lichtern versorgt und sie funktionierenen
wirklich gut .

Iter 1: and | 've been seven homes since in neighborhood with the lights and they ’re really functional .

Iter 4: and | 've been seven homes in neighborhood with the lights , and they ’re a really functional .

Iter 8: and | 've been providing seven homes in the neighborhood with the lights and they ’re a really functional .

Ref: since now , | 've set up seven homes around my community , and they ’re really working .

Src: er sah sehr glu ¢tklich aus , was damals ziemlich ungewo hnlich war , da ihn die Nachrichten meistens
deprimierten .

Iter 1: he looked very happy , which was pretty unusual the , because the news was were usually depressing .

Iter 4: he looked very happy , which was pretty unusual at the , because news was mostly depressing .

Iter 8: he looked very happy , which was pretty unusual at the time because the news was mostly depressing .

Ref: there was a big smile on his face which was unusual then , because the news mostly depressed him .



Experiments — Image Caption Generation

* MS COCO: image caption generation

Non-Autoregres Decoding Speed (toks/sec)

sive? GPU

No Greedy 23.47 4.3 2.1
Beam (4) 24.78 3.6 1.0

Yes Iter 1 20.12 171 8.9
Iter 2 20.88 12.0 5.7
Iter 5 21.12 6.2 2.8
Iter 10 21.24 2.0 1.2
adaptive 21.12 10.8 4.8

* 85% caption quality with up to 5x decoding speed-up (on GPU)



Non-autoregressive modeling
by iterative refinement

1 2 woman standing on playing tennis on a tennis racquet .

Y

y/2 & woman standing on a tennis court a tennis racquet .

y73 2 woman standing on a tennis court a a racquet .

y 4 2 woman standing on a tennis court holding a racquet .




Non-autoregressive modeling
by iterative refinement

y1a vellow bus parked on parked in of parking road .

22 yellow and black on parked in a parking lot.

y-3 a yellow and black bus parked in a parking lot .

vy 4 a yellow and black bus parked in a parking lot.




Part 1: Conclusion

* Latent variables capture output dependencies more efficiently.

* Different interpretation — Different learning/decoding algorithms
* Gu et al. [2018]: fertility — auxiliary supervision + noisy parallel decoding
* Lee+Mansimov+Cho [2018]: iterative refinement — conditional denoising

* Kaiser et al. [2018]: latent sequence — hidden autoregressive inference

* What else?
* Generation quality closely tracks the autoregressive models’.

* Decoding 1s significantly faster especially with GPU.

* Potentially even faster decoding with a specialized hardware.



Part 1: Conclusion — Future Directions

* Mix of non-autoregressive and autoregressive paradigms

* Autoregressive modeling followed by iterative refinement?

[Xia et al., 2017; Grangier & Auli, 2017]

* Autoregressive generation of segments and non-autoregressive generation within
each segment [Kaiser et al., 2018; Huang et al., 2018], or

* Non-autoregressive generation of segments and autoregressive generation within
each segment?

* Beyond sentence-level generation

* Efficiency of the non-autoregressive model may enable document-level
generation.

* Many exciting future directions!



Meta-Learning ot LLow-Resource
Neural Machine Translation

Model—agnostic Meta-learning for neural machine translation

Jiatao Gu, Yong Wang, Yun Chen, Victor O. K. Li and Kyunghyun Cho.
Meta-Learning for Low-Resource Neural Machine Translation. 2018 (under review)



Multilingual Translation — (1)

* Traditionally,

* If a parallel corpus exists, one system for each language pair.
* Parallel corpus: D0 = {( f’, Ylb), Ceey (X]C(h Y]e)}
* Translation system: log p(Yb |X a)

* If no direct parallel corpus exists, a pivot-based translation.
* No direct parallel corpus: Db =
. But, |Da—>C| > O, |Dc—>b| > ()
e Then, log p(Y?|X¢), where X¢ = arg maxlog p(X¢| X%
* ¢1s a pivot language (often, English.) .

* No knowledge transfer between different language pairs.



Multilingual Translation as Multitask Learning — (2)

¢ NOW, [Firat et al., 2016a; Firat et al., 2016b; Johnson et al., 2016; Ha et al., 2016; Lee et al., 2017]

H!-I—[li

Dec (Cs) Dec (De) Dec (Fx) Dec (Fr) Dec (Ru) Dec (En)
Enc (En) Enc (Cs) Enc (De) Enc (Fi) Enc (Fr) Enc (Ru)

H !-I—[li




Multilingual Translation as Multitask Learning — (3)

* Separate encoder/decoders
* [Firat et al., 20106a; Firat et al., 20106b]

* One encoder per source /
L Vix o x V5 REx - x R

* One decoder per target /’
logp" (Y''|H)

* For each pair (1, I’),
logp" (V! |H = fL,.(X"))

/

* Train using all available language pairs

e Universal encoder/decoders

* [Johnson et al., 2016; Ha et al., 2016; Lee et al,,
2017; Gu et al., 201§]

e Shared lexicons J ]lex V=V

* A shared vocabulary of language-agnostic
tokens [J, 2016; H, 2016; L, 2017]

* Universal lexical representation [G, 2018]

* One encoder-decoder for all pairs
fiex (arg maxlogp(V| fiex (X)),



Multilingual Translation as Multitask Learning — (4)

26 mSingle
* Does it work? 24 ls\hi 85)
* Single-pair Systems % 20
De—En, Cs—En, Fi—>En, Ru—En #
* Multilingual System iézl J

' De-En  Cs-E FiEn  Ru-E:
{De, Cs, Fi, Ru}—En e-En  Cs-En i-En u-En

* The latter has 1/4x parameters

* Better translation quality on
low-resource languages (Fi & Ru)

De-En Cs-En Fi-En Ru-En

Lee, Cho and Hoffman (2017)



Multilingual Translation as Multitask Learning — (5)

* Does 1t work? — Yes!*

* Single-pair Systems vs. Multilingual System

* Works with intra-sentence code-switching

(e) Multilingual

Multi src

Bei der fiir das Gebiet der San Francisco Bay erkldarten Beamte , der Kon-
gress konne das Problem 6ankpoTcTBO noBeputeabHOro @oHga CTPOUTEIHCTBA MIOCCEMHBIX Jopor einfach
durch Erh6hung der Kraftstoffsteuer 16sen .

EN ref At the Metropolitan Transportation Commission in the San Francisco Bay Area , officials say Congress could
very simply deal with the bankrupt Highway Trust Fund by raising gas taxes .

bpe2char During the Metropolitan Committee on Transport for San Francisco Bay , officials declared that Congress could
solve the problem of bankruptcy by increasing the fuel tax bankrupt .

char2char At the Metropolitan Committee on Transport for the territory of San Francisco Bay , officials explained that the

Congress could simply solve the problem of the bankruptcy of the Road Construction Fund by increasing the fuel
tax .

* It often fails to translate between a pair of langnages not seen during training Lee, Cho and Hoffman (2017)



Limitations ot Multitask Learning — (1)

* Tricky when the availability of data drastically ditfers across languages.
* overfitting on low regource pairs, while underfitting on high-resource pairs.

LO) = 3" 7 D logps(V1XL)

[ n=1
* Extremely 10W resource pairs can easily be zgnored.

= i log po (V| X1)
I n=1

* See [Firat et al., 2016a] and [Lee et al., 2017] for more discussion.
* [ is really horrible to figure out how to tackle this in practice. ..




Limitations ot Multitask Learning — (2)

* Assumes the availability of all language pairs 1n advance.

* The entire model must be re-trained each time a new language 1s introduced.

* Transter Learning [Zoph et al.; 2016; Nguyen & Chiang, 2017]

* Only re-train a subset of parameters on a new language pair.

* Many possible strategies, but no clear winning strategy.

Zoph etal.,, 2016

Setting Dev | Dev

BLEU | PPL
No retraining 0.0 | 112.6
Retrain source embeddings 7.7 | 24.7
+ source RNN 11.8 | 17.0
+ target RNN 14.2 | 14.5
+ target attention 15.0 | 139
+ target input embeddings 14.7 | 13.8
+ target output embeddings 13.7 | 144




Limitation of Multitask Learning — (3)

* Inconvenient truths about multitask+transfer learning

* Relies on our intuition that all languages/tasks share common undetlying
structures: #ue?

* Assumes multitask learning can capture those underlying structures and share
across multiple languages/tasks: #rue?

* Assumes multitask-learned parameters are a good initialization for further
training: frue?

* Is there a more satistying approach?



Meta-Learning: MAML [Finn etal, 2018) — (1)

* Model-agnostic meta-learning [Finn et al., 2018]

* Two-stage learning

1. Simulated learning

Learn(D7;60°) = arg max LP7 ()

=argmax ) logp(Y|X,0) — 5|0 —60°||*
2. Meta-learning

L(0) = EkEDTk”Df/Tk Z logp(Y|X; Learn(Dy+; 6))
(X,Y)eD!,




Meta-Learning: MAML [Finn et al, 2018) — (2)

1. Simulated learning

e Given a small subset 17 of the training set of task 7:
update the model parameters /N = kimes.

Learn(D1;60°) = arg max LPT(9)

_ o 09112

= argmax Y logp(Y|X,0) - Bll6 - 6°|*.
(Xay)EDT

= 0y + nVeLPT (6))

D
* Clip the update so that NVeL“7"(0y) does not deviate too much from 6.

* [t simulates finetuning on a target task with a limited resource.



Meta-Learning: MAML. [Finn et al, 2018) — (3)

2.

Meta-Learning

* Randomly select a task  kand select a training subset D = Dy
* Randomly select a validation subset ' = '/7'k for evaluation.

* Update the meta-parameter 0 (by gradient descent:

Oo < 0o + 10V, L7 (60).
where
VoLP (0') = Vo LP ()Y (0 — nVoLP(6))
= Vo LD (0) — Ve L7 (0)Hy (L (6))
o Update the meta-parameter so that — -step GYD on the — -th task #orks well



Meta-Learning: MAML. [Finn et al, 2018) — (4)

3. Fast adaptation to a new task

* Given a small training set /J of the new target task,
SGD starting from the meta-parameter 0

* Early stopping based on ||9 — 6y ||2 :



Multitask learning vs. Meta-learning

Ro Fr
w_ 4
Es D CEEEEe » ES
- \\
Lv Pt
(a) Transfer Learning (b) Multilingual Transfer Learning (c) Meta Learning

a) Transter learning does not take into account subsequent learning.
b) Multilingual learning does not take into account new, future tasks.

c) Meta-learning considers subsequent learning on new, future tasks.



Extension to Neural Machine Translation

* [ /O mismatch between different tasks

* Vocabulary mismatch among different languages

* Multﬂingual word €IIlb€ddiﬁg [Artetxe et al., 2017; Conneau et al., 2018; and more]
: : . [ [ d
* Project each token into a continuous vector space V=R

* Ensure that they are compatible: /
I (oY) = Y (0")]|? < €, iff o' and v* have the same meaning,

* Universal lexical representation [Gu et al., 2018]

* Meta-NMT!



Experiments

* Source tasks: all the languages from Europarl + Russian

* Bo—En, Cs—En, Da—En, De—En, El->En, Es—En, Et—En, Fr—En,
Hu—En, It—En, Lt—En, NI—En, PI-En, Pt—En, Sk—En, SI-En, Sv—En
and Ru—En.

* Reasonable high-resource language pairs.

* Target tasks: (simulated) low-resource language pairs
* Ro—En, Lv—En, Fi—En, Tr—En and Ko—En
* Approximately 16k target tokens (English side): roughly 800 sentence pairs.

* Universal lexical representation: obtained from Wikipedia.

* Early stopping of meta-learning: either Ro-En or Lv-En



BLEU

BLEU

20.0019 84 MultiNMT (Ro-En valid)

20 0 MultiNMT (Lv-En valid)

. MetaNMT (Ro-En valid)

[ MetaNMT (Lv-En valid

i 18.7055 &3 eta (Lv-En valid)

18.34
17.96
18
16.7416.74
17
16
15
all emb + enc emb
(a) Ro-En

MultiNMT (Ro-En valid)

9.5 88 MultiNMT (Lv-En valid)

9.14 . MetaNMT (Ro-En valid)

[ MetaNMT (Lv-En valid)
9.0

8.60

all emb + enc emb

(c¢) Fi-En

BLEU

BLEU

8.5

8.0

6.5

all

MultiNMT (Ro-En valid)

. MultiNMT (Lv-En valid)

8.04 . MetaNMT (Ro-En valid)

7.88 [ MetaNMT (Lv-En valid)

7.66

emb + enc emb

(b) Lv-En

all

MultiNMT (Ro-En valid)
. MultiNMT (Lv-En valid)
. MetaNMT (Ro-En valid)
[ MetaNMT (Lv-En valid)

emb + enc emb

(d) Tr-En



Experiments — (1)

* Meta-learning outperforms
multitask learning across all the
target languages and across
different finetuning strategies.

* Using only 800 examples, reaches
up to 65% of fully-supervised
models in terms of BLEU.

20

19

18

BLEU

17

16

15

9.5

9.0

BLEU

16.7416.74

MultiNMT (Ro-En valid)
e MultiNMT (Lv-En valid)
. MetaNMT (Ro-En valid)
[ MetaNMT (Lv-En valid)

18.34

18.701g 5g
17.96

emb + enc

(a) Ro-En

MultiNMT (Ro-En valid)

0 MultiNMT (Lv-En valid)

9.14 - MetaNMT (Ro-En valid)
[ MetaNMT (Lv-En valid)

8.60

(c¢) Fi-En



Experiments — (2)

* More source tasks lead to greater
improvements.

15 -~

* The similarity between source and
target asks matters.

20 A

+
—
+
—i—

Ro-En
Lv-En
Fi-En

Tr-En

\

()

(£

I?x‘\

source pairs




Experiments — (3)

* Multi-task learning over-adapts to the source tasks.

* Performance on the target task degrades with longer multi-task learning.

* Meta-learning does not over-adapt.

* The meta-learning objective explicitly takes into account finetuning on a target

task.

* It requires less target examples.

11.78

—4— Fi-En MetaNMT

—4— Fi-En MultiNMT |

0 4K 16K
# of target examples

40K 160K

151

N AR IN A ASIINN A 2TV
ARAANS =T Y T Y Tyt VA

a s /\‘f-"\ \";\\‘/\"‘A ~*
1V S RV ST Ve AN TN IS L, -
1 vy v ¢ \\/ "\l /\"/\4
v — MetaNMT Fine-tune
- == MetaNMT Zero-shot

4 —— MultiNMT Fine-tune

I \‘,\"\,' —== MultiNMT Zero-shot

60K 80K 100K 120K

Meta-learning steps

40K




Experiments — (4) Sample Translations

Source (Tr) google miilteciler i¢cin 11 milyon dolar toplamak tlizere bagis eslestirme kampan 11 baglatt1 .

Target google launches donation-matching campaign to raise $ 11 million for refugees .

Meta-0 google refugee fund for usd 11 million has launched a campaign for donation .

Meta- 16k google has launched a campaign to collect $ 11 million for refugees .

Source (Ko) | oHof A L= o] 7| AH AHEE Tolle B ge « elate], A=A, AL, BAI ol 2ot

Target among the suspects are retired military officials , journalists , politicians , businessmen and others .

Meta-0 last year , convicted people , among other people , of a high-ranking army of journalists in economic
and economic policies , were included .

Meta- 16k the arrested persons were included in the charge , including the military officials , journalists , politicians

and economists .




Part 2: Conclusion

* Meta-learning allows us to exploit many high-resource tasks for exzremely
low-resource target tasks.

* Gradual shift toward higher-order learning
* Learning to optimize [Andrychowicz et al., 2017; and others]
* Multi-agent modelling (theory of mind) [Foerster et al., 2018 LOLA; and others]
* Neural architecture search [Zoph & Le, 2016; and others]
* Hyperparameter search [Luketina et al., 2016; and others]
* And more on the horizon...



L.essons learned

*Lesson 1
* | thought sequential decoding of a sequence was #he answer.
* I thought multitask, transfer learning was #je answer.

* In both cases, I have been so wrong and will probably be wrong again.

*esson 2
* Denoising (iterative refinement) for structured output prediction
* Second-order learning for meta-learning

* So many (yet unknown) learning algorithms/regimes are out there.
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