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Text vs. speech
This is a speech signal:

Some differences between text and speech:
• Speech is continuous-valued, text is discrete
• Speech is also continuous in time: Words and sounds are not

separated
Speech and NLP research have a lot in common...
• Similar problems
• Many of the same algorithms
• Many researchers work on both
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Text vs. speech
Text can be more or less formal. Informal text has many variants.
• haha
• hahahahahahahaha
• haaaahaaaa
• lol
• rotflmao
• lol!!!!!!!!!!!!!!
• wow that is big
• that is biiiiiig
• that. is. big.
• waaaaaaay big
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Text vs. speech
Spoken words have even more variants: pronunciation, speaker,
acoustic environment, mood, state of inebriation...
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A “simple” speech task: Single-digit classification
This is a 1-second speech waveform. Which digit (0-9) was spoken?

What are we looking at?
• Recording from a microphone: instantaneous air pressure vs. time
• Discretized in time (in this case, to 16,000 samples, i.e. sampling rate

of 16kHz)
• Discretized in magnitude (in this case, to 16 bits per sample)
• Result: 16,000-dimensional vector,

e.g. a(t) = [3, 16,−1, 0, 427, 29, . . .]
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This is hard!

Which two are the same digit?
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Idea: Use a frequency-domain representation

Spectrogram: Fourier transform over short windows (e.g. 20ms) −→ plot
of energy at each frequency over time f1(ω), f2(ω), . . .
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This is still hard!

Several examples of the digit “eight”

7 / 37



Architecture of a “traditional” speech recognizer
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Architecture of an “end-to-end” speech recognizer
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Acoustic features (representations)
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Representations for text

Are these reviews positive or negative?
• This is the best mattress I have ever had. It is a perfect combination

of firmness and support. I have never slept better. ...
• I hate this mattress. I can’t believe I bought it. It seemed good in the

store but when it was delivered I noticed it had a strange smell and
was already lumpy. This is not what a new mattress should feel like. I
want to tear it up and dump it on the ...
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Representations for text

A possible feature vector (representation) for the review sentiment
classification task:
• # words from the set { good, great, best, lovely, perfect, ... }
• # words from the set { bad, horrible, worst, irritating, ... }
• total # words (?)
• ...

Some features that we would probably not use:
• # words that start with “t”
• # capital letters
• ...
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Representation learning

Maybe we can design an algorithm to automatically learn what are
good features?
• Start with a very long vector of possibly useful features,

x = [x1 x2 . . .]
• Learn a function f(x) = [f1(x) f2(x) . . .]
• f(x) should map x to a more useful (typically, smaller) representation
• f(x) should discard the noise (nuisance variables)

Some representation learning algorithms:
• Principal components analysis (PCA)
• Linear discriminant analysis (LDA)
• Deep autoencoders
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Multi-view representation learning
Training data: samples of a d-dimensional random vector that has some
natural split into two sub-vectors[

x
y

]
, x ∈ Rdx , y ∈ Rdy , dx + dy = d

• Multi-view representation learning: Find representations of each view
that are predictive of the other, or that are common to both

• Intuition: If the noise/nuisance parameters in the two views are
independent, then the shared information must be signal!

• At test time, all views or only a subset may be available
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Multiple views of speech

Figure credits: [Schultz & Wand Sp. Comm. 2009, Zhu+ Interspeech 2007, Lingala+
Mag. Res. Med. 2016, Saenko+ PAMI 2009, Paula West]
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Multiple views of text

+ 

+ 
Family with 2 kids and a dog 

Several kinds of winter squash 

The Earth as seen from space 

Figure credits: [http://www.fmsasg.com, http://www.bibleexpo.com]
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Method 1: Canonical correlation analysis (CCA)
[Hotelling 1936]

One of the oldest and most popular multi-view techniques
• Given: data set of n paired vectors {(x1, y1), . . . , (xn, yn)}, which

are samples of random vectors X ∈ Rdx , Y ∈ Rdy

• Find: direction vectors vj , wj , j ∈ {1, . . . , k} that maximize the
correlation between the projections vT

j X and wT
j Y while being

minimally redundant

vj , wj = arg maxv,w corr(vTX,wTY )
such that corr(vT

j X, v
T
k X) = 0, k < j

corr(wT
j Y,w

T
k Y ) = 0, k < j
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CCA: Toy examples

• Theoretical results (e.g., [Chaudhuri+ 2009]) show discriminative
properties of CCA projections, assuming the views are uncorrelated
given a class label
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Method 2: Deep CCA [Andrew+ 2013]

• Nonlinear extension of CCA
• Each view’s representation is the output of a neural network
• All parameters learned jointly via backpropagation

𝑥 

𝑓 𝑥 = 𝑠(𝑉𝑑ℎ𝑑−1 + 𝑎𝑑) 

ℎ1 = 𝑠(𝑉1𝑥 + 𝑎1) 

ℎ2 = 𝑠(𝑉2ℎ1 + 𝑎2) 

. 

. 

. 

𝑦 

g 𝑦 = 𝑠(𝑊𝑑𝑙𝑑−1 + 𝑏𝑑) 

𝑙1 = 𝑠(𝑊1𝑦 + 𝑏1) 

𝑙2 = 𝑠(𝑊2𝑙1 + 𝑏2) 

. 

. 

. 

max tr(𝑈𝑇  𝑉12 )     
 

s.t.   𝑈𝑇  𝑉 = 𝐼 , 𝑉𝑇  𝑉22 = 𝐼11  
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Method 3: Deep variational CCA [Wang+ 2016, Tang+ 2017]

Inspired by generative interpretation of CCA [Bach & Jordan 2005]
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Method 4: Multi-view contrastive loss
[Hermann & Blunsom 2014]

Competitive alternative to CCA
• Try to bring paired examples closer together
• While keeping random unpaired examples farther apart by some

margin

min
f,g

1
N

N∑
i=1

max
(
0,m+ dist(f(x+

i ), g(y+
i ))− dist(f(x+

i ), g(y−
i ))

)
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Other methods

• Kernel CCA [Lai & Fyfe 2000, Akaho+ 2001, Melzer+ 2001]

• Multi-view autoencoders [Ngiam+ 2011]

• Multimodal deep Boltzmann machines [Srivastava & Salakhutdinov 2014,
Sohn+ 2014]

• ...
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Toy example: Noisy MNIST digits
A synthetic dataset that perfectly satisfies the uncorrelated noise
multi-view assumption
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Noisy MNIST visualization [Wang+ 2015, Wang+ 2016]

Visualization via t-SNE [van der Maaten & Hinton 2008]

CCA

VCCA

24 / 37



VCCA: Shared vs. private dimensions

25 / 37



Speech recognition experiments
U. Wisconsin X-ray Microbeam Database (XRMB) [Westbury+ 1994]
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Phonetic recognition results
[Wang+ 2015, Wang+ 2016, Tang+ 2017]
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Cross-domain phonetic recognition [Tang+ 2018]

• Would like to use the learned features on typical acoustic-only data
sets
• Approach: Multi-task learning combining the multi-view loss with

recognizer loss on target domain
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Multi-lingual word embedding learning
[Lu+ 2015, Wang+ 2015]
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CCA on translation pairs [Faruqui & Dyer 2014]

• Different languages provide different views of a single “concept”
• Consider pairs of translationally equivalent words (e.g., Mr.↔Herr)
• Can we improve monolingual word embeddings using both views?
• Monolingual embeddings often conflate antonyms; translational

context should help!
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Procedure [Faruqui & Dyer 2014]

• Start with off-the-shelf word embeddings, learned independently for
each language (via LSA [Deerwester et al. 1990], word2vec, etc.)
• Do unsupervised word alignment on parallel sentences
• Extract aligned word pairs:

• i ich
• and und
• the die
• mr herr
• correlation zusammenhang
• ...

• CCA on set of paired word vectors to map them to a shared space
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Word embedding results
[Lu+ 2015, Wang+ 2015]

Table: Spearman’s correlation (ρ) for bigram similarities.

Method AN VN Avg.
Baseline 45.0 39.1 42.1
CCA 46.6 37.7 42.2
1→2AE 47.0 45.0 46.0
CorrAE 43.0 42.0 42.5
DistAE 43.6 39.4 41.5
FKCCA 46.4 42.9 44.7
NKCCA 44.3 39.5 41.9
DCCA 48.5 42.5 45.5
DCCAE 49.1 43.2 46.2
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Other applications [Wang+ 2016]
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Even more applications

CCA and related methods have been used for...
• Learning word embeddings, where the views are past + present word

context [Dhillon+ 2011] or word + context [Stratos+ 2015]

• Learning probabilistic context-free grammars, using inside + outside
trees [Cohen+ 2012]

• Learning hidden Markov models [Hsu+ 2012]

• Localizing a sound source in video [Kidron+ 2005]

• Decoding brain signals, using stimulus + response pairs [de Cheveign’e+
2018]
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Summary

It is often possible to learn better representations using multi-view
learning
• CCA is often a good baseline method
• Nonlinear (deep neural) extensions can be a lot better
• Contrastive learning often a good (sometimes better) alternative
• A key step is defining the views
• Applications in speech, NLP, computer vision, neuroscience, ...

Try it at home!
• http://ttic.edu/livescu/software/dcca.tgz

• https://bitbucket.org/qingming tang/interspeech2017 vccap
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