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Text vs. speech

This is a speech signal:

\|HHHHHHIH \IMHHHMIH.

e

Some differences between text and speech:
e Speech is continuous-valued, text is discrete

e Speech is also continuous in time: Words and sounds are not
separated

Speech and NLP research have a lot in common...
e Similar problems
e Many of the same algorithms

e Many researchers work on both
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Text vs. speech

Text can be more or less formal. Informal text has many variants.
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Text vs. speech

Spoken words have even more variants: pronunciation, speaker,
acoustic environment, mood, state of inebriation...
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A “simple” speech task: Single-digit classification
This is a 1-second speech waveform. Which digit (0-9) was spoken?

\|HHHHHHIH “\HIHH‘\HH

I 1

What are we looking at?
e Recording from a microphone: instantaneous air pressure vs. time
e Discretized in time (in this case, to 16,000 samples, i.e. sampling rate
of 16kHz)
e Discretized in magnitude (in this case, to 16 bits per sample)

e Result: 16,000-dimensional vector,
e.g. a(t) =[3,16,—1,0,427,29, .. ]



This is hard!

Which two are the same digit?
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|dea: Use a frequency-domain representation

Spectrogram: Fourier transform over short windows (e.g. 20ms) — plot
of energy at each frequency over time f;(w), fa(w), ..
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This is still hard!

Several examples of the digit “eight”
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Architecture of a “traditional” speech recognizer
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Architecture of an “end-to-end” speech recognizer
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Acoustic features (representations)

waveform

spectrogram

MFCCs
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Representations for text

Are these reviews positive or negative?
e This is the best mattress | have ever had. It is a perfect combination
of firmness and support. | have never slept better. ...

e | hate this mattress. | can't believe | bought it. It seemed good in the
store but when it was delivered | noticed it had a strange smell and
was already lumpy. This is not what a new mattress should feel like. |
want to tear it up and dump it on the ...
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Representations for text

A possible feature vector (representation) for the review sentiment
classification task:

e # words from the set { good, great, best, lovely, perfect, ... }
e # words from the set { bad, horrible, worst, irritating, ... }
e total # words (?)

e ...

Some features that we would probably not use:
e # words that start with “t”
e # capital letters
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Representation learning

Maybe we can design an algorithm to automatically learn what are
good features?

e Start with a very long vector of possibly useful features,
X = [1’1 T2 .. ]

e Learn a function f(x) = [f1(x) fa(x) ...]
e f(x) should map x to a more useful (typically, smaller) representation
e f(x) should discard the noise (nuisance variables)
Some representation learning algorithms:
e Principal components analysis (PCA)
e Linear discriminant analysis (LDA)

e Deep autoencoders
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Multi-view representation learning

Training data: samples of a d-dimensional random vector that has some
natural split into two sub-vectors

X

7X€Rdz7yE]Rdy7 dCC+dy:d

e Multi-view representation learning: Find representations of each view
that are predictive of the other, or that are common to both

e Intuition: If the noise/nuisance parameters in the two views are
independent, then the shared information must be signal!

o At test time, all views or only a subset may be available
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Multiple views of speech

Figure credits: [Schultz & Wand Sp. Comm. 2009, Zhu+ Interspeech 2007, Lingala+
Mag. Res. Med. 2016, Saenko+ PAMI 2009, Paula West]
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Multiple views of text

Family with 2 kids and a dog
+ Several kinds of winter squash

The Earth as seen from space
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Method 1: Canonical correlation analysis (CCA)

[Hotelling 1936]

One of the oldest and most popular multi-view techniques

e Given: data set of n paired vectors {(z1,41),. .., (n,yn)}, which
are samples of random vectors X € R% Y € R%

e Find: direction vectors v;,w;,j € {1,...,k} that maximize the
correlation between the projections vaX and wJTY while being
minimally redundant

vj,w; = argmax,,, corr(v’ X,w’Y)
such that corr(vaX, viX)=0,k<j

corr(ijY, wlY)=0,k<j
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CCA: Toy examples

PCA CCA

Data o

Top Top Top viewl Top V1ew2
o]ectlon‘ pr0|ec tion proje Ctloii pr01 ]ctlon
e Theoretical results ( [Chaudhuri+ 2009]) show discriminative

properties of CCA prOJectlons, assuming the views are uncorrelated
given a class label
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Method 2: Deep CCA [andrew+ 2013]

e Nonlinear extension of CCA
e Each view's representation is the output of a neural network
e All parameters learned jointly via backpropagation

max tr(UT ¥;, V)
st UTY V=1, VTY,V=I

{(‘anonical Correlation Anal}'sis]
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Method 3: Deep variational CCA wang+ 2016, Tang+ 2017]

Inspired by generative interpretation of CCA [Bach & Jordan 2005]

619006
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Method 4: Multi-view contrastive loss

[Hermann & Blunsom 2014]

Competitive alternative to CCA
e Try to bring paired examples closer together

e While keeping random unpaired examples farther apart by some

margin
N
min ;max (0 + dist( £ ), 9(u)) — dist(faF), 907 )
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Other methods

e Kernel CCA [Lai & Fyfe 2000, Akaho+ 2001, Melzer+ 2001]
e Multi-view autoencoders [Ngiam+ 2011]

e Multimodal deep Boltzmann machines [Srivastava & Salakhutdinov 2014,
Sohn-+ 2014]
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Toy example: Noisy MNIST digits

A synthetic dataset that perfectly satisfies the uncorrelated noise
multi-view assumption
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Noisy MNIST visualization (wang: 2015, Wang+ 2016)

Visualization via t-SNE [van der Maaten & Hinton 2008]
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Imensions

Shared vs. private d

VCCA
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Speech recognition experiments

U. Wisconsin X-ray Microbeam Database (XRMB) [Westbury+ 1994]
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Phonetic recognition results
[Wang+ 2015, Wang+ 2016, Tang+ 2017]
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Cross-domain phonetic recognition [rang: 2018

e Would like to use the learned features on typical acoustic-only data
sets

e Approach: Multi-task learning combining the multi-view loss with
recognizer loss on target domain

M Baseline HVCCA+VAE M VCCA+VAE+Rec M Joint rec (VCCA feat)
14 21 7
_10
0 Tr
a 2 | 19 5
XRMB --> XRMB XRMB --> TIMIT XRMB --> WSJ
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Multi-lingual word embedding learning

[Lu+ 2015, Wang+ 2015]

English
word vector 1

fou] magnificent
awful . cute
beastly horrid
grotesque gorgeous
ugly
marvelous charming
hideous splendid
pretty
elegant

vl

German
word vector 2

haassliche bezaubernder

foul | abscheulichen
ziemlich aufzuklaaren
grotesk schrecklichen

gebot elegante
grobbartige

hervorragende
wunderbaren

clever
blonden
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CCA on translation pairs [Faruqui & Dyer 2014

e Different languages provide different views of a single "“concept”
e Consider pairs of translationally equivalent words (e.g., Mr.<»Herr)
e Can we improve monolingual word embeddings using both views?

e Monolingual embeddings often conflate antonyms; translational
context should help!
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Procedure [Faruqui & Dyer 2014]

Start with off-the-shelf word embeddings, learned independently for
each language (via LSA [Deerwester et al. 1990], word2vec, etc.)

Do unsupervised word alignment on parallel sentences

Extract aligned word pairs:

i ich

and und

the die

mr  herr

correlation zusammenhang

CCA on set of paired word vectors to map them to a shared space
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Word embedding results

[Lu+ 2015, Wang+ 2015]

=EE

Table: Spearman’s correlation (p) for bigram similarities.

Method | AN VN [ Avg.
Baseline | 45.0 39.1 | 42.1
CCA 46.6 37.7 | 422
1—-2AE | 47.0 45.0 | 46.0
CorrAE | 43.0 42.0| 425
DistAE | 43.6 394 | 415
FKCCA | 46.4 429 | 447
NKCCA | 443 395 | 419
DCCA 485 425 | 455
DCCAE | 49.1 43.2 | 46.2

32/37



Other applications pwang+ 2016]

Digit classification

Image tagging
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Even more applications

CCA and related methods have been used for...

Learning word embeddings, where the views are past + present word
context [Dhillon+ 2011] or word + context [Stratos+ 2015]

Learning probabilistic context-free grammars, using inside 4 outside
trees [Cohen+ 2012]

Learning hidden Markov models [Hsu+ 2012]
Localizing a sound source in video [Kidron+ 2005]

Decoding brain signals, using stimulus 4 response pairs [de Cheveign'e+
2018]
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Summary

It is often possible to learn better representations using multi-view
learning

e CCA is often a good baseline method

e Nonlinear (deep neural) extensions can be a lot better

e Contrastive learning often a good (sometimes better) alternative

e A key step is defining the views

e Applications in speech, NLP, computer vision, neuroscience, ...
Try it at homel!

® http://ttic.edu/livescu/software/dcca.tgz

® https://bitbucket.org/qingming tang/interspeech2017_vccap
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