Learning Language by Grounding Language

Karl Moritz Hermann DeepMind

LxMLS 2018

How do machines learn language?

Labeled data (eg. sentiment analysis, classification)
Language corpora (eg. MT, word embeddings)
Parsing / knowledge graphs (eg. QA, Penn Treebank)
Image and text pairs (eg. classification, caption generation)

How do we learn language?

Skinner: Behaviourist, **reinforcement** and imitation; operator conditioning (trial and error) Chomsky: Skinner is wrong. Poverty of stimulus, **innate ability**

Snow / Bruner: **Social Interactionist**, language acquisition in the context of parent-child interaction Bates / MacWhinney: Chomsky wrong. Emergentist view, acquisition through **cognitive process competition** Piaget: **Cognitive theory**, four stages of development, symbolic reasoning → language acquisition Tomasello: Functional theory of language acquisition, **shared understanding of intention**, structure from usage

BF Skinner, Noam Chomsky, Catherine Snow, Jerome Bruner, Brian MacWhinney, Elizabeth Bates, Jean Piaget, Anne Fernald, Michael Tomasello, Annick De Houwer, Kim Plunkett, Lev Vygotsky, Edward Sapir, Benjamin Lee Whorf, ...

"Humans learn language by inferring statistics from a billion tokens worth of text."

- Nobody, ever

LxMLS 2018 - Karl Moritz Hermann

No problem!

Machines are doing just fine.

- Most NLP systems are trained on tons of text data only.
- Large progress in machine translation, question answering, language modelling, information retrieval, you name it ...
- So, maybe our approach is not too bad?

No, problem!

Why do humans and machines disagree on this?

"A young woman in front of an old man"

1) A young man in front of an old woman

3) A young woman behind an old man

2) An old woman in front of a young man

4) An old man behind a young woman

Image Credit - arif fajar yulianto, dDara, Creative Stall, Royyan Wijaya

LxMLS 2018 - Karl Moritz Hermann

How can we fix this?

Of course this is just one problem. There are many things that are difficult to learn for machines these days, such as:

- Spatial reasoning
- Resolving ambiguity
- Coherence
- Forms of humour

Grounding language learning in other types of information should allow us to learn better semantics.

...

Grounding for the spatial reference problem

We built a large corpus of 3D scenes ...

- Multiple objects per scene
- Randomly placed
- Synthetic descriptions
- Natural language descriptions

1: (NL) To the far left is a big green hexigon. The the right and back of that is a taller pink triangle.

(SYN) There is a pink torus behind a lime icosahedron.

2: (NL) On the left side forefront is a medium sized green three dimensional hexagon. Another object is to the left and is slightly visible. Moving straight back towards the right wall is a medium sized pink hollow triangle.

(SYN) There is a pink torus behind a lime icosahedron.

3: (NL) There is a red ball in front of a pink triangle. In the middle of them is a green diamond.

(SYN) There is a red sphere to the left of a pink torus. The sphere is in front of the torus. There is a red sphere to the left of a lime icosahedron. There is a pink torus behind a lime icosahedron

... trained with a bi-modal encoder-decoder setup ...

LxMLS 2018 - Karl Moritz Hermann

... and repeated the experiments on that model.

Image Credit - arif fajar yulianto, dDara, Creative Stall, Royyan Wijaya

Much better.

We do not match human rankings, but get the key bit - meaning preserving change - right!

The model generates convincing scenes from text

Changing camera angle shows actual scene learning rather than just a flat image

This works for synthetic and for natural language

Can we do language grounding in a more general fashion?

The paradigm problem

What is a minimally **adequate** training paradigm for an intelligent agent to learn to comprehend language?

The previous model integrated language, vision and location (camera angle), but it could not act in the world.

For an agent to interpret the meaning of an utterance, linguistic symbols must be **grounded** in an environment in which the agent can act and learn.

The paradigm problem

All approaches to natural language understanding so far have failed. Except us (humanity).

Question: What is the (data) environment within which humans learn language?

There is no one answer to this question. But we know this:

- Children learn language with minimal direct teaching and with incredible variations in data,
- they learn amazingly quickly from sparse and ambiguous data,
- children learn language in adverse circumstances, despite blindness, brain injury, or the inability to move or speak.

This would be great for artificial agents, too!

An agent that solves language tasks in simulation

- Solve billions of different (but closely related) tasks
- hundreds of fine-grained actions per task

- grounding: language -> solution space
- From scratch!

DeepMind Lab Environment

Beattie et al. DeepMind Lab. arXiv 2016. (https://github.com/deepmind/lab)

LxMLS 2018 - Karl Moritz Hermann

Language in DeepMind Lab: The Object Inventory

Shapes (40)

tv, ball, balloon, cake, can, cassette, chair, guitar, hairbrush, hat, ice lolly, ladder, mug, pencil, suitcase, toothbrush, key, bottle, car, cherries, fork, fridge, hammer, knife, spoon, apple, banana, cow, flower, jug, pig, pincer, plant, saxophone, shoe, tennis racket, tomato, tree, wine glass, zebra.

Colours (13)

red, blue, white, grey, cyan, pink, orange, black, green, magenta, brown, purple, yellow.

Patterns (9)

plain, chequered, crosses, stripes, discs, hex, pinstripe, spots, swirls.

Shades (3) light, dark, neutral.

Sizes (3) small, large, medium.

Building on the thing that can learn to play 2D games

Building on the thing that can learn to play 2D games

Building on the thing that can learn to play 2D games

LxMLS 2018 - Karl Moritz Hermann

A simple test case: single words

Auxiliary objectives help agent learning

LxMLS 2018 - Karl Moritz Hermann

Language prediction provides 'interpretability'

Maybe you noticed....

Knowing some words makes learning faster

Much like little people

Moving towards longer sequences...

Agents naturally generalise word composition...

Decompose before re-compose

How far can we go...

Top-down view of the level

single-room layout

two room layout

words and descriptors

2

↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓

1

single-room layout

two object words and room descriptors

2

two room layout

two object words and room descriptors

3

two room layout

10 10 10 ode (/10) 6 6 ard per Agent trained from scratch Agent previously trained on level 1 Agent previously trained on level 2 Agent previously trained on level 1 Agent trained from scratch Agent trained from scratch 1000000 1000000 2000000 3000000 4000000 5000000 6000000 1000000 Training Episodes Training Episodes

pick the chequered hair_brush

How can we understand (and learn from) this model... Does this have anything to do with human language learning?

'Shape bias' helps humans to resolve reference

example training

example test

Agent learns bias from the training distribution

DeepMind

LxMLS 2018 - Karl Moritz Hermann

Layerwise attention

Layerwise attention

LxMLS 2018 - Karl Moritz Hermann

Processing colour words

100 \$2.02

Processing shape words

100 \$2.02

Summary

• We can learn to ground language in perception and actions

- Advantages of learning everything from scratch:
 - Avoid fallibility of human intuition
 - Generalisable representations and transferable knowledge
 - Accelerating learning
- Disadvantages:
 - Slow
 - Capacity / forgetting
- Let's understand these models by testing them like we test humans

Can we ground language in the real world?

observation

structure

observation

structure

We can use StreetView as an RL environment ...

streetview images

google maps

 RGB image cropped from panorama (84x84) Actions: move to next node, rotate view 20° or 60°

Learning to navigate in cities without a map Piotr Mirowski et al., arXiv 2018

... grounding learning in the real world.

- 14,000 to 60,000 nodes (panoramas) per city, covering range of 3-5km per city
- Discrete action space allows rotating in place and stepping to next node
- Multi-city dataset and RL environment will be released later this year

Without language this works: The Courier Task

- Random start/end navigation without a map
 Reward when close to goal
 Actions: rotate left, right, or step forward
 Inputs for the agent at every time point *t*:
 84x84 RGB image observations
 - landmark-based goal description

Can we also use this to learn language?

Short answer: Yes

Long answer:

We could construct language-based tasks in this environment, using information from e.g.

- Driving directions
- Tourist guidebooks and information
- Wikipedia

?

This should be the next frontier for grounded language learning

(if you want to get involved, e-mail me at kmh@google.com)

Thanks to my many collaborators!

Grounded language learning in a simulated 3D world & Understanding grounded language learning agents

Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer, David Szepesvari, Wojtek Czarnecki, Max Jaderberg, Denis Teplyashin, Stephen Clark, Marcus Wainwright, Chris Apps, Demis Hassabis, Phil Blunsom

Encoding Spatial Relations from Natural Language

Tomas Kocisky, Tiago Ramalho, Frederic Besse, Ali Eslami, Gabor Melis, Fabio Viola, Phil Blunsom

Learning to Navigate in Cities without a Map

Piotr Mirowski, Matthew Koichi Grimes, Keith Anderson, Denis Teplyashin, Mateusz Malinowski, Karen Simonyan, Koray Kavukcuoglu, Andrew Zisserman, Raia Hadsell

