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Day 0

Basic Tutorials

0.1 Today’s assignment

In this class we will introduce several fundamental concepts needed further ahead. We start with an introduc-
tion to Python, the programming language we will use in the lab sessions, and to Matplotlib and Numpy, two
modules for plotting and scientific computing in Python, respectively. Afterwards, we present several notions
on probability theory and linear algebra. Finally, we focus on numerical optimization. The goal of this class is
to give you the basic knowledge for you to understand the following lectures. We will not enter in too much
detail in any of the topics.

0.2 Manually Installing the Tools in your own Computer

0.2.1 Desktops vs. Laptops

If you have decided to use one of our provided desktops, all installation procedures have been carried out. You
merely need to go to the 1xmls-toolkit-student folder inside your home directory and start working!
You may go directly to section If you wish to use your own laptop, you will need to install Python, the
required Python libraries and download the LXMLS code base. It is important that you do this as soon as
possible (before the school starts) to avoid unnecessary delays. Please follow the install instructions.

0.2.2 Downloading the labs version from GitHub

The code of LxMLS is available online at GitHub. There are two branches of the code: the master branch
contains fully functional code. The student branch contains the same code with some parts deleted, which
you must complete in the following exercises. To download the student code, go to

https://github.com/LxMLS/1lxmls-toolkit

and select the student branch in the dropdown menu. This will reload the page to the corresponding branch.
Now you just need to click the Clone or download button to obtain the lab tools in a zip format:

lxmls-toolkit-student.zip

After this you can unzip the file where you want to work and enter the unzipped folder. This will be the
place where you will work. Important: Be careful to select the student branch and do not install the Ixmls-
toolkit (using setup.py).

0.2.3 Installing Python 2.7 from Scratch

If you are new to Python the best option right now is the Anaconda platform. You can find installers for
Windows, Linux and OSX platforms here

https://www.continuum.io/downloads

Important: Be sure to install the version for Python 2.7. This installer will already provide most of the
packages you need to work with the school toolkit. The only package missing will be Theano, you may follow
the instructions here to install it



http://deeplearning.net/software/theano/install.html#anaconda

Note that you just need a normal Theano installation. You do not need the bleeding edge version and it is not
recommended to install it.

0.24 (Advanced Users) Installing with Pip

If you are familiar with Python you will probably be used to the pip package installer. In this case it might be
more easy for you to install the packages yourself using pip

pip install -r pip-requirements.txt

You may need to pre-append sudo to the system call depending on the platform.
this will install the following packages

jupyter
numpy

scipy
matplotlib

pyyaml
nltk

theano

To check that all the modules we will use work, please run the all_imports.py file found in the
lxmls-toolkit-student folder.

0.2.5 (Advanced Users) Virtual Environments

If you are an experienced Python user and you do not want to add many packages to your existing installation,
you can use virtualenv.

sudo pip install virtualenv
virtualenv venv

This will create a local installation of Python on your work folder. To activate it use
source venv/bin/activate

then you can install packages locally with no need for root privileges and without touching your original
installation.

pip install -r pip-requirements.txt

Each time you want to work on the school code, you will have to activate the environment. To exit the envi-
ronment use

deactivate
If you want to make use of the modules already installed in your main Python installation use
virtualenv venv --system-site-packages

instead of the conventional call. Bear in mind that using virtual environments can create some problems.
For once, the Python binary will be in another location. You will therefore have to be careful when using e.g.
shebangs to specify it. The Jupyter-notebook is also known to give problems unless you also install it with
the virtual environment. For these reasons, virtual environments are only recommended for students that feel
comfortable with Python.



0.2.6 (Advanced Users) Forking and cloning the code on GitHub

It might be the case that you feel very comfortable with scientific Python, know some git/GitHub and want to
extend /improve our code base. In that case you can directly clone the project with

git clone https://github.com/LxMLS/lxmls-toolkit.git

and work from there. Remember to work on the student branch!. If you want to contribute to the code-base,
you can make pull requests to the develop branch or raise issues.

0.2.7 Deciding on the IDE and interactive shell to use

An Integrated Development Environment (IDE) includes a text editor and various tools to debug and interpret
complex code. Important: As the labs progress you will need an IDE, or at least a good editor and knowledge
of pdb/ipdb. This will not be obvious the first days since we will be seeing simpler examples.

As IDE we recommend PyCharm, but feel free to use the software you feel more comfortable with. Py-
Charm and other well known IDEs like Spyder are provided with the Anaconda installation.

Aside of an IDE, you will need an interactive command line to run commands. This is very useful to
explore variables and functions and quickly debug the exercises. For the most complex exercises you will still
need an IDE to modify particular segments of the provided code. As interactive command line we recommend
the Jupyter notebook. This also comes installed with Anaconda and is part of the pip-installed packages. The
Jupyter notebook is described in the next section. In case you run into problems or you feel uncomfortable
with the Jupyter notebook you can use the simpler iPython command line.

0.2.8 Jupyter Notebook

Jupyter is good choice when writing Python code. It is an interactive computational environment for data
science and scientific computing, where you can combine code execution, rich text, mathematics, plots and
rich media. The Jupyter Notebook is a web application that allows you to create and share documents, which
contains live code, equations, visualizations and explanatory text. It is very popular in the areas of data clean-
ing and transformation, numerical simulation, statistical modeling, machine learning and so on. It supports
more than 40 programming languages, including all those popular ones used in Data Science such as Python,
R, and Scala. It can also produce many different types of output such as images, videos, LaTex and JavaScript.
More over with its interactive widgets, you can manipulate and visualize data in real time.

The main features and advantages using the Jupyter Notebook are the following:

* In-browser editing for code, with automatic syntax highlighting, indentation, and tab completion/intro-
spection.

¢ The ability to execute code from the browser, with the results of computations attached to the code which
generated them.

¢ Displaying the result of computation using rich media representations, such as HTML, LaTeX, PNG,
SVG, etc. For example, publication-quality figures rendered by the matplotlib library, can be included
inline.

* In-browser editing for rich text using the Markdown markup language, which can provide commentary
for the code, is not limited to plain text.

* The ability to easily include mathematical notation within markdown cells using LaTeX, and rendered
natively by MathJax.

The basic commands you should know are



Esc Enter command mode

Enter Enter edit mode

up/down Change between cells

Ctrl + Enter | Runs code on selected cell

Shift + Enter | Runs code on selected cell, jumps to next cell
restart button | Deletes all variables (useful for troubleshooting)

Table 1: Basic Jupyter commands

A more detailed user guide can be found here:

http://jupyter—-notebook-beginner-guide.readthedocs.io/en/latest/index.html

0.3 Solving the Exercises

In the student branch we provide the solve.py script. This can be used to solve the exercises of each day, e.g.
python ./solve.py dayl

You can also undo the solving of an exercise by using

python ./solve.py --undo dayl

Note that this script just downloads the master or student versions of certain files from the GitHub repos-
itory. It needs an Internet connection. Since some exercises require you to have the exercises of the previous
days completed, the monitors may ask you to use this function. Important: Remember to save your own
version of the code, otherwise it will be overwritten!.

0.4 Python

0.4.1 Python Basics
Pre-requisites

At this point you should have installed the needed packages. You need also to feel comfortable with an IDE to
edit code and an interactive command line. See previous sections for the details. Your work folder will be

lxmls-toolkit-student
from there, start your interactive command line of choosing e.g.
Jjupyter—-notebook

and proceed with the following sections

Running Python code

We will start by creating and running a dummy program in Python which simply prints the “Hello World!”
message to the standard output (this is usually the first program you code when learning a new programming
language). There are two main ways in which you can run code in Python:

From a file — Create a file named yourfile.py and write your program in it, using your IDE of choosing
e.g. PyCharm:

'Hello World!' I

After saving and closing the file, you can run your code by using the run functionality in your IDE. If
you wish to run from a command line instead do




python yourfile.py

This will run the program and display the message “Hello World!”. After, that the control will return to
the command line or IDE.

In the interactive command line — Start your interactive command line of chosing e.g. Jupyter-notebook.
There, you can run Python code by simply writing it and pressing enter (ctr+enter in Jupyter).

In[]: "Hello, World!"
]: Hello, World!

out [

but you can also run Python code written into a file.

In[ run ./yourfile.py

]:
Out[]: Hello, World!

Keep in mind that you can easily switch between these two modes. You can quickly test commands in the
command line directly and e.g. inspect variables. Larger sections of code can be stored and run from files.

Help and Documentation
There are several ways to get help on Jupyter:

* Adding a question mark to the end of a function or variable and pressing Enter brings up associated doc-

umentation. Unfortunately, not all packages are well documented. Numpy and matplotlib are pleasant
exceptions;

* help(’if’) gets the online documentation for the if keyword;
* help (), enters the help system.

* When at the help system, type g to exit.

0.4.2 Python by Example
Basic Math Operations

Python supports all basic arithmetic operations, including exponentiation. For example, the following code:

will produce the following output:

8
-2
15
0
243

Notice that division is always considered as integer division, hence the result being 0 on the example above.
To force a floating point division you can force one of the operands to be a floating point number:



3/ 5.0

Also, notice that the symbol « « is used as exponentation operator, unlike other major languages which use
the symbol ~. In fact, the ~ symbol has a different meaning in Python (bitwise XOR) so, in the beginning, be
sure to double-check your code if it uses exponentiation and it is giving unexpected results.

Data Structures

In Python, you can create lists of items with the following syntax:

countries = ['Portugal', 'Spain', 'United Kingdom']

A string should be surrounded with apostrophes (") or quotes (). You can access a list with the following:

e len (L), which returns the number of items in L;
e 1[i], which returns the item at index i (the first item has index 0);

* L[i:7j], which returns a new list, containing all the items between indexes i and j — 1, inclusive.

Exercise 0.1 Use L[i:j] to return the countries in the Iberian Peninsula.

Loops and Indentation

A'loop allows a section of code to be repeated a certain number of times, until a stop condition is reached. For
instance, when the list you are iterating has reached its end or when a variable has reached a certain value (in
this case, you should not forget to update the value of that variable inside the code of the loop). In Python you
have while and for loop statements. The following two example programs output exactly the same using
both statements: the even numbers from 2 to 8.

i range (2,10,2):
i

You can copy and run this Jupyter. Alternatively you can write this into your yourfile.py file an run
it as well. Notice something? It is possible that the code did not act as expected or maybe an error message
popped up. This brings us to an important aspect of Python: indentation. Indentation is the number of blank
spaces at the leftmost of each command. This is how Python differentiates between blocks of commands inside
and outside a statement, e.g. while, for or other. All commands within a statement have the same number
of blank spaces at their leftmost. For instance, consider the following code:

a=1

and its output:



Exercise 0.2 Can you then predict the output of the following code?:

a=1

Bear in mind that indentation is often the main source of errors when starting to work with Python. Try to
get used to it as quickly as possible. It is also recommendable that you use a text editor that can display all
characters e.g. blank space, tabs, since these characters can be visually similar but are considered different by
Python. One of the most common mistakes by newcomers to Python is to have their files indented with spaces
on some lines and with tabs on other lines. Visually it might appear that all lines have proper indentation, but
you will get an IndentationError message if you try it. The recommendedﬂ way is to use 4 spaces for each
indentation level.

Control Flow

The if statement allows to control the flow of your program. The next program outputs a greeting that
depends on the time of the day.

hour = 16
hour < 12:
'Good morning!'’
hour >= 12 hour < 20:
'Good afternoon!'

'Good evening!'

Functions

A function is a block of code that can be reused to perform a similar action. The following is a function in
Python.

greet (hour) :
hour < 12:
'Good morning!'
hour >= 12 hour < 20:
'Good afternoon!'

'Good evening!'

You can write this command into Jupyter directly or write them into a file and run the file in Jupyter. Once
you do this the function will be available for you to use. Call the function greet with different hours of the
day (for example, type greet (16) ) and see that the program will greet you accordingly.

Exercise 0.3 Note that the previous code allows the hour to be less than 0 or more than 24. Change the code in order to
indicate that the hour given as input is invalid. Your output should be something like:

1The PEP8 document (www . python.org/dev/peps/pep-0008) is the official coding style guide for the Python language.



greet (50)
Invalid hour: it should be between 0

greet (-5)
Invalid hour: it should be between 0

Profiling

If you are interested in checking the performance of your program, you can use the command $prun in Jupyter.
For example:

myfunction (x) :

$prun myfunction (22)

The output of the $prun command will show the following information for each function that was called
during the execution of your code:

® ncalls: The number of times this function was called. If this function was used recursively, the output
will be two numbers; the first one counts the total function calls with recursions included, the second
one excludes recursive calls.

* tottime: Total time spent in this function, excluding the time spent in other functions called from within
this function.

® percall: Same as tottime, but divided by the number of calls.

* cumtime: Same as tottime, but including the time spent in other functions called from within this
function.

* percall: Same as cumt ime, but divided by the number of calls.

e filename:lineno (function): Tells you where this function was defined.

Debugging in Python

During the lab sessions, there will be situations in which we will use and extend modules that involve elabo-
rated code and statements, like classes and nested functions. Although desirable, it should not be necessary for
you to fully understand the whole code to carry out the exercises. It will suffice to understand the algorithm
as explained in the theoretical part of the class and the local context of the part of the code where we will be
working. For this to be possible is very important that you learn to use and IDE.

An alternative to IDEs, that can also be useful for quick debugging in Jupyter, is the pdb module. This will
stop the execution at a given point (called break-point) to get a quick glimpse of the variable structures and to
inspect the execution flow of your program. The ipdb is an improved version of pdb that has to be installed by
separate. It provides additional functionalities like larger context windows variable auto complete and colors.
Unfortunately ipdb has some compatibility problems with Jupyter. We therefore recommend to use ipdb only
in spartan configurations such as vim+ipdb as IDE.

In the following example, we use this module to inspect the greet function:

greet (hour) :
hour < 12:
'Good morning!'
hour >= 12 hour < 20:
'Good afternoon!'

pdb; pdb.set_trace()
'Good evening!'




Load the new definition of the function by writing this code in a file or a Jupyter cell and running it. Now,
if you try greet (50) the code execution should stop at the place where you located the break-point (that is,
inthe print ’Good evening!’ statement). You can now run new commands or inspect variables. For this
purpose there are a number of commands you can useﬂ but we provide here a short table with the most useful:

(h)elp Starts the help menu

(p)rint Prints a variable

(p)retty(p)rint Prints a variable, with line break (useful for lists)

(n)ext line Jumps to next line

(s)tep Jumps inside of the function we stopped at

c(ont(inue)) Continues execution until finding breakpoint or finishing

(r)eturn Continues execution until current function returns

b(reak) n Sets a breakpoint in in line n

b(reak) n, condition | Sets a conditional breakpoint in in line n

I(ist) [n], [m] Prints 11 lines around current line. Optionally starting in line n or between lines n, m
wi(here) Shows which function called the function we are in, and upwards (stack)

u(p) Goes one level up the stack (frame of the function that called the function we are on)
d(down) Goes one level down the stack

blank Repeat the last command

expression Executes the python expression as if it was in current frame

Table 2: Basic pdb/ipdb commands, parentheses indicates abbreviation

Getting back to our example, we can type n(ext) once to execute the line we stopped at

pdb> n
> ./lxmls-toolkit/yourfile.py (8)greet ()

7 pdb; pdb.set_trace()
-———> 8 'Good evening!'

Now we can inspect the variable hour using the p(retty)p(rint) option

pdb> pp hour
50

From here we could keep advancing with the n(ext) option or set a b(reak) point and type c(ontinue) to
jump to a new position. We could also execute any python expression which is valid in the current frame
(the function we stopped at). This is particularly useful to find out why code crashes, as we can try different
alternatives without the need to restart the code again.

0.4.3 Exceptions

Occasionally, a syntactically correct code statement may produce an error when an attempt is made to execute
it. These kind of errors are called exceptions in Python. For example, try executing the following:

10/0 I

A ZeroDivisionError exception was raised, and no output was returned. Exceptions can also be forced to
occur by the programmer, with customized error messages

ValueError ("Invalid input value.")

2Thecompletelistcanbefoundathttp://docs.python.org/library/pdb.html
%oraconqﬂemlmtofbuﬂbh1emmpﬁ0n&seehttp://docs.python.org/Z/library/exceptions.html


http://docs.python.org/library/pdb.html
http://docs.python.org/2/library/exceptions.html

Exercise 0.4 Rewrite the code in Exercise 0.3 in order to raise a ValueError exception when the hour is less than 0 or
more than 24.

Handling of exceptions is made with the try statement:

True:
x = int (raw_input ("Please enter a number: "))
ValueError:
"Oops! That was no valid number. Try again..."

It works by first executing the try clause. If no exception occurs, the except clause is skipped; if an exception
does occur, and if its type matches the exception named in the except keyword, the except clause is executed;
otherwise, the exception is raised and execution is aborted (if it is not caught by outer try statements).

Extending basic Functionalities with Modules

In Python you can load new functionalities into the language by using the import, from and as keywords.
For example we can load the numpy module as

numpy np

then we can run the following on the Jupyter command line

np.var?

np.random.normal?

The import will make the numpy tools available through the alias np. This shorter alias prevents the code
from getting too long if we load lots of modules. The first command will display the help for the method
numpy . var using the previously commented symbol 2. Note that in order to display the help you need the
full name of the function including the module name or alias. Modules have also submodules that can be
accessed the same way, as shown in the second example.

Organizing your Code with your own modules

Creating you own modules is extremely simple. you can for example create the file in your work directory
my_tools.py

and store there the following code

my_print (input) :
input

From Jupyter you can now import and use this tool as

my_tools

my_tools.my_print ("This works!")

Important: When you modify a module, you need to either re-start the notebook kernel or notify the
notebook to reload the module for the changes to take effect. You can use

reload (my_tools)

for the latter. Other ways of importing one or all the tools from a module are

10



my_tools my_print # my_print directly accesible in code

my_tools * # will make all functions 1in my_tools accesible

However, this makes reloading the module more complicated. You can also store tools ind different folders.
For example, if you store the previous example in the folder

day0_tools
and store inside an empty file called
__init__ .py

then the following import will work

day0_tools.my_tools I

0.4.4 Matplotlib - Plotting in Python

Matplotlibﬁ is a plotting library for Python. It supports 2D and 3D plots of various forms. It can show them
interactively or save them to a file (several output formats are supported).

numpy np
matplotlib.pyplot plt

X = np.linspace (-4, 4, 1000)

plt.plot (X, X**2xnp.cos (X*%x2))
plt.savefig("simple.pdf")

Exercise 0.5 Try running the following on Jupyter, which will introduce you to some of the basic numeric and plotting
operations.

# This will import the numpy library
# and give it the np abbreviation
numpy np

# This will import the plotting library
matplotlib.pyplot plt

# Linspace will return 1000 points,
# evenly spaced between -4 and +4
X = np.linspace (-4, 4, 1000)

# Y[1] = X[1]*%2
Y = X#*#2

# Plot using a red line ('r')
plt.plot (X, Y, 'r'")

# arange returns integers ranging from -4 to +4
# (the upper argument is excluded!)
Ints = np.arange(-4,5)

# We plot these on top of the previous plot
# using blue circles (o means a little circle)
plt.plot (Ints, Intsx**2, 'bo')

4http://matplotlib.org/

11
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# You may notice that the plot is tight around the line
# Set the display limits to see better
plt.xlim(-4.5,4.5)

plt.ylim(-1,17)

plt.show()

0.4.5 Numpy — Scientific Computing with Python

Numpyﬂ is a library for scientific computing with Python.

Multidimensional Arrays

The main object of numpy is the multidimensional array. A multidimensional array is a table with all elements
of the same type and can have several dimensions. Numpy provides various functions to access and manipu-
late multidimensional arrays. In one dimensional arrays, you can index, slice, and iterate as you can with lists.
In a two dimensional array M, you can use perform these operations along several dimensions.

 M][ij], to access the item in the i*" row and j* column;
* M][i;j,], to get the all the rows between the i and j — 1;

e M[:i], to get the i column of M.

Again, as it happened with the lists, the first item of every column and every row has index 0.

numpy np

A = np.array ([
[1,2,31,
[2,3,471,
[4,5,611)

A[O,:] # This is [1,2,3]
A[Q0] # This is [1,2,3] as well

A[:,0] # this is [1,2,4]

A[l:,0] # This is [ 2, 4 ]. Why?
# Because it is the same as A[l:n,0] where n is the size of the array.

Mathematical Operations

There are many helpful functions in numpy. For basic mathematical operations, we have np.log, np.exp,
np.cos,...with the expected meaning. These operate both on single arguments and on arrays (where they
will behave element wise).

matplotlib.pyplot plt
numpy np

X = np.linspace(0, 4 » np.pi, 1000)
C = np.cos (X)
S = np.sin(X)

plt.plot (X, C)
plt.plot (X, S)

Other functions take a whole array and compute a single value from it. For example, np . sum, np.mean,... These
are available as both free functions and as methods on arrays.

Shttp://www.numpy.org/
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numpy np
A = np.arange (100)
# These two lines do exactly the same thing

np.mean (A)
A.mean ()

C = np.cos(A)
C.ptp()

Exercise 0.6 Run the above example and lookup the ptp function/method (use the ? functionality in Jupyter).
Exercise 0.7 Consider the following approximation to compute an integral

& f(i/1000)

/f deZ 1000

Use numpy to implement this for f(x) = x2. You should not need to use any loops. Note that integer division in
Python 2.x returns the floor division (use floats —e.g. 5.0/2.0 — to obtain rationals). The exact value is 1/3. How close
is the approximation?

0.5 Essential Linear Algebra

Linear Algebra provides a compact way of representing and operating on sets of linear equations.
4X1 — 5x2 =13
—2X1 +3x; =9

This is a system of linear equations in 2 variables. In matrix notation we can write the system more com-
pactly as

with

0.5.1 Notation
We use the following notation:
e By A € R™*", we denote a matrix with m rows and n columns, where the entries of A are real numbers.

* By x € R", we denote a vector with n entries. A vector can also be thought of as a matrix with n rows and
1 column, known as a column vector. A row vector — a matrix with 1 row and n columns is denoted as
xT, the transpose of x.

® The ith element of a vector x is denoted x;:

Exercise 0.8 In the rest of the school we will represent both matrices and vectors as numpy arrays. You can create arrays
in different ways, one possible way is to create an array of zeros.

13



You can check the shape and the data type of your array using the following commands:

a.shape
(3, 2)

a.dtype.name
floaté64

This shows you that “a” is an 3*2 array of type float64. By default, arrays contain 64 bitﬁ floating point numbers. You
can specify the particular array type by using the keyword dtype.

a = np.zeros([m,n],dtype=int)
a.dtype
int64

You can also create arrays from lists of numbers:

a = np.array([[2,3],[3,4]])
a

[[2 3]

[3 4]]

There are many more ways to create arrays in numpy and we will get to see them as we progress in the classes.

0.5.2 Some Matrix Operations and Properties

e Product of two matrices A € R™*" and B € R"*? is the matrix C = AB € R™*?, where
n
Cij = ), AubByj.
k=1

Exercise 0.9 You can multiply two matrices by looping over both indexes and multiplying the individual entries.

a = np.array([[2,3],[3,4]])
b = np.array([[1,1],[1,1]])
a_diml, a_dim2 = a.shape
b_diml, b_dim2 = b.shape
c

= np.zeros([a_diml,b_dim2])
1 xrange (a_diml) :
7 xrange (b_dim?2) :
k xrange (a_dim2) :
cli,j] += ali,k]+b[k, F]

This is, however, cumbersome and inefficient. Numpy supports matrix multiplication with the dot function:

®0On your computer, particularly if you have an older computer, int might denote 32 bits integers
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np.dot (a,b)

d

Important note: with numpy, you must use dot to get matrix multiplication, the expression a * b denotes
element-wise multiplication.

e Matrix multiplication is associative: (AB)C = A(BC).
e Matrix multiplication is distributive: A(B + C) = AB + AC.
e Matrix multiplication is (generally) not commutative : AB # BA.

* Given two vectors x,y € R" the product x'y, called inner product or dot product, is given by

Y1
T Y2 g
xXyeR=[x x ... x| : =) xyi
: i—1
Yn

a np.array ([1,2])
= np.array([1,1])

np.dot (a, b)

e Given vectors x € R” and y € R”, the outer product xy! € R"*" is a matrix whose entries are given by
(xy")ij = xiyj,

X1 X1Y1 X1Y2 e X1Yn

X2 X241 X212 . nyn
xy! € R™" = : (1 v oo oyn ] = ) ) .

Xm XmY1 XmY2 .- XmlYn

np.outer (a,b)
array ([[1, 1]

(2, 211)

* The identity matrix, denoted I € R"*", is a square matrix with ones on the diagonal and zeros every-
where else. That is,
L= { 1 i=j
g 0 i#]

It has the property that for all A € R"*", Al = A = IA.

I = np.eye(2)
np.array([2.3, 3.4])

I
np.dot (I, x)

* A diagonal matrix is a matrix where all non-diagonal elements are 0.

15



* The transpose of a matrix results from “’flipping” the rows and columns. Given a matrix A € R"*", the
transpose AT € R"*™ is the n x m matrix whose entries are given by (AT);; = Aj;.

Also, (AYT=4A; (AB)T=BTAT, (A+B)T=AT+BT

In numpy, you can access the transpose of a matrix as the T attribute:

A = np.array ([ [1, 2], [3, 41 1)
A.T

e A square matrix A € R"*" is symmetric if A = AT.

e The trace of a square matrix A € R"*" is the sum of the diagonal elements, tr(A) =

Tt

Ajj

1

0.5.3 Norms

The norm of a vector is informally the measure of the “length” of the vector. The commonly used Euclidean

or £ norm is given by
n
Ixlla = /3 2.
i=1

* More generally, the £, norm of a vector x € R", where p > 1 is defined as

n Uy
Ixl[p = (ZIMI”) :
i=1

n
Note: ¢ norm: ||x|1 = ¥ | loo norm : ||X||lc0 = max |x;| .
i=1 i

0.5.4 Linear Independence, Rank, and Orthogonal Matrices

A set of vectors {x1,xp,...,X,} C R™ is said to be (linearly) independent if no vector can be represented as a
linear combination of the remaining vectors. Conversely, if one vector belonging to the set can be represented
as a linear combination of the remaining vectors, then the vectors are said to be linearly dependent. That is, if

X]' = ZDCiXi

i#]
forsome j € {1,...,n} and some scalar values &y, ..., &; 1,&;11,...,&, € R.

* The rank of a matrix is the number of linearly independent columns, which is always equal to the number
of linearly independent rows.

e For A € R™*", rank(A) < min(m, n). If rank(A) = min(m, n), then A is said to be full rank.
e For A € R"™*", rank(A) = rank(AT).

e For A € R™*", B € R"*?, rank(AB) < min(rank(A),rank(B)).

e For A,B € R™*", rank(A + B) < rank(A) + rank(B).

e Two vectors x,y € R" are orthogonal if x'y = 0. A square matrix U € R"*" is orthogonal if all its
columns are orthogonal to each other and are normalized (||x||; = 1), It follows that

vTu=1=UU".
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0.6 Probability Theory

Probability is the most used mathematical language for quantifying uncertainty. The sample space X is the set
of possible outcomes of an experiment. Events are subsets of X.

Example 0.1 (discrete space) Let H denote “heads” and T denote “tails.” If we toss a coin twice, then X = {HH,HT, TH, TT}.
The event that the first toss is heads is A = {HH, HT}.

A sample space can also be continuous (eg., X = R). The union of events A and B is defined as A|UB =
n
{weX|weAVweB}LIfA;, ..., Ayisasequence of sets then J A; = {w € X | w € A, for at least one i}.

i=1
We say that Ay, ..., A, are disjoint or mutually exclusive if A; N A; = & whenever i # j.

We want to assign a real number P(A) to every event A, called the probability of A. We also call P a
probability distribution or probability measure.

Definition 0.1 A function P that assigns a real number P(A) to each event A is a probability distribu-
tion or a probability measure if it satisfies the three following axioms:

Axiom 1: P(A) > 0 for every A

Axiom 2: P(X) =1
Axiom 3: If Ay, ..., Ay are disjoint then

P (O Ai> = iP(Ai).
i=1 1=

One can derive many properties of P from these axioms:

P(w) = 0
ACB = P(A)<P(B)
0< P(A) <1
P(A") = 1-P(A) (A isthe complementof A)
P(AUB) = P(A)+P(B)—P(ANB)

ANB=¢ = P(AUB)=P(A)+ P(B).

An important case is when events are independent, this is also a usual approximation which lends several
practical advantages for the computation of the joint probability.

Definition 0.2 Two events A and B are independent if
P(AB) = P(A)P(B) (1)

often denoted as A 1L B. A set of events {A; : i € 1} is independent if

ic] i€]

P (ﬂ Al-) =]IPA)

for every finite subset | of L.

For events A and B, where P(B) > 0, the conditional probability of A given that B has occurred is defined
as:

P(A|B) = @

Events A and B are independent if and only if P(A|B) = P(A). This follows from the definitions of
independence and conditional probability.
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A preliminary result that forms the basis for the famous Bayes’ theorem is the law of total probability which
states that if Ay, ..., Ay is a partition of X, then for any event B,

k
Z (B|A;j)P 3)

Using Equations|2|and 3| one can derive the Bayes’ theorem.

Theorem 0.1 (Bayes” Theorem) Let Aq,... Ay be a partition of X such that P(A;) > 0 for each i. If
P(B) > O then, foreachi=1,...,k,

_ P(B|A)P(A))
P(AB) = &5 (B1A) P(A)"

Remark 0.1 P(A;) is called the prior probability of A; and P(A;|B) is the posterior probability of A;.

(4)

Remark 0.2 In Bayesian Statistical Inference, the Bayes’ theorem is used to compute the estimates of distribution pa-
rameters from data. Here, prior is the initial belief about the parameters, likelihood is the distribution function of the
parameter (usually trained from data) and posterior is the updated belief about the parameters.

0.6.1 Probability distribution functions

A random variable is a mapping X : X — R that assigns a real number X(w) to each outcome w. Given a ran-
dom variable X, an important function called the cumulative distributive function (or distribution function)
is defined as:

Definition 0.3 The cumulative distribution function CDF Fx : R — [0, 1] of a random variable X is defined by
Fx(x) = P(X < x).

The CDF is important because it captures the complete information about the random variable. The CDF
is right-continuous, non-decreasing and is normalized (limy_, —F(x) = 0 and lim, ,oF(x) = 1).

Example 0.2 (discrete CDF) Flip a fair coin twice and let X be the random variable indicating the number of heads.
Then P(X =0) = P(X =2) = 1/4and P(X = 1) = 1/2. The distribution function is

0 x <0
) 174 0<x<1
Ex(*) =13 3/4 1<x<2
1 x> 2.

Definition 0.4 X is discrete if it takes countable many values {x1,xy,...}. We define the probability function or
probability mass function for X by

Deﬁnition 0.5 A random variable X is continuous if there exists a function fx such that fx > 0 for all x,

ffX x)dx = 1 and for every a < b

P(a< X <b) = /fx(x)dx. 5)

The function fx is called the probability density function (PDF). We have that

= /xfx(t)df

and fx(x) = F;((x) at all points x at which Fx is differentiable.

A discussion of a few important distributions and related properties:
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0.6.2 Bernoulli

The Bernoulli distribution is a discrete probability distribution that takes value 1 with the success probability
p and 0 with the failure probability § = 1 — p. A single Bernoulli trial is parametrized with the success
probability p, and the input k € {0,1} (1=success, O=failure), and can be expressed as

fllp) =pq'F =p*1—p)'*

0.6.3 Binomial

The probability distribution for the number of successes in n Bernoulli trials is called a Binomial distribution,
which is also a discrete distribution. The Binomial distribution can be expressed as exactly j successes is

fmp = (1 Yo = () iy

where 1 is the number of Bernoulli trials with probability p of success on each trial.

0.6.4 Categorical

The Categorical distribution (often conflated with the Multinomial distribution, in fields like Natural Lan-
guage Processing) is another generalization of the Bernoulli distribution, allowing the definition of a set of
possible outcomes, rather than simply the events “success” and “failure” defined in the Bernoulli distribution.
Considering a set of outcomes indexed from 1 to n, the distribution takes the form of

f(xi; p1, e P) = pi-

where parameters py, ..., py is the set with the occurrence probability of each outcome. Note that we must

ensure that ) ! ; p; =1,sowecansetp, =1— Z:-’;ll pi-

0.6.5 Multinomial

The Multinomial distribution is a generalization of the Binomial distribution and the Categorical distribution,
since it considers multiple outcomes, as the Categorial distribution, and multiple trials, as in the Binomial
distribution. Considering a set of outcomes indexed from 1 to #, the vector [x1, ..., x|, where x; indicates the
number of times the event with index i occurs, follows the Multinomial distribution

n!

. — N X1 Xn
F(X1, o0 X5 P1, oo Pn) = x1!...xn!pl P

Where parameters p1, ..., pn represent the occurrence probability of the respective outcome.

0.6.6 Gaussian Distribution

A very important theorem in probability theory is the Central Limit Theorem. The Central Limit Theorem
states that, under very general conditions, if we sum a very large number of mutually independent random
variables, then the distribution of the sum can be closely approximated by a certain specific continuous density
called the normal (or Gaussian) density. The normal density function with parameters y and o is defined as
follows:

fx(x) = %e_(‘”—”)z/z"z, —00 < x < 00,
o

Figure [I] compares a plot of normal density for the cases y =0and ¢ =1,and y = 0and ¢ = 2.

0.6.7 Maximum Likelihood Estimation

Until now we assumed that, for every distribution, the parameters 6 are known and are used when we calculate
p(x]0). There are some cases where the values of the parameters are easy to infer, such as the probability p of
getting a head using a fair coin, used on a Bernoulli or Binomial distribution. However, in many problems,
these values are complex to define and it is more viable to estimate the parameters using the data x. For
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Figure 1: Normal density for two sets of parameter values.

instance, in the example above with the coin toss, if the coin is somehow tampered to have a biased behavior,
rather than examining the dynamics or the structure of the coin to infer a parameter for p, a person could
simply throw the coin # times, count the number of heads & and set p = % By doing so, the person is using
the data x to estimate 6.

With this in mind, we will now generalize this process by defining the probability p(6|x) as the probability
of the parameter 6, given the data x. This probability is called likelihood £(6|x) and measures how well the
parameter § models the data x. The likelihood can be defined in terms of the distribution f as

L(O|x1, X)) = ﬁf(xﬂ@)

where x1, ..., x;; are independently and identically distributed (i.i.d.) samples.

To understand this concept better, we go back to the tampered coin example again. Suppose that we throw
the coin 5 times and get the sequence [1,1,1,1,1] (1=head, O=tail). Using the Bernoulli distribution (see Sec-
tion[0.6.2) f to model this problem, we get the following likelihood values:

e £(0,x) = f(1,0°=0°=0

e £(0.2,x) = £(1,0.2)° = 0.25 = 0.00032
o £(04,x) = f(1,04)° = 0.4° = 0.01024
e £(0.6,x) = £(1,0.6)° = 0.6° = 0.07776
e £(0.8,x) = f(1,0.8)°> = 0.8° = 0.32768
¢ L(Lx)=f(L1)°=1"=1

If we get the sequence [1,0,1,1,0] instead, the likelihood values would be:

£(0,x) = £(1,00°£(0,0)* = 0* x 1 = 0
e £(0.2,x) = £(1,0.2)3£(0,0.2)> = 0.23 x 0.82 = 0.00512
e £(04,x) = f(1,04)3£(0,0.4)? = 0.4 x 0.6 = 0.02304
e £(0.6,x) = £(1,0.6)3£(0,0.6)> = 0.6° x 0.42 = 0.03456
e £(0.8,x) = £(1,0.8)3£(0,0.8)% = 0.8% x 0.22 = 0.02048
e £(1,x)=f(1,1)°=13x0>=0
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We can see that the likelihood is the highest when the distribution f with parameter p is the best fit for
the observed samples. Thus, the best estimate for p according to x would be the value for which £(p|x) is the
highest.

The value of the parameter § with the highest likelihood is called maximum likelihood estimate (MLE)
and is defined as

0,10 = argmaxgL(0|x)

Finding this for our example is relatively easy, since we can simply derivate the likelihood function to find
the absolute maximum. For the sequence [1,0,1,1,0], the likelihood would be given as

L(plx) = f(1,p)’f(0,p)* = p*(1 = p)?
And the MLE estimate would be given by:

oL (plx)

Sp =0

which resolves to
Pmle = 0.6

Exercise 0.10 Over the next couple of exercises we will make use of the Galton dataset, a dataset of heights of fathers
and sons from the 1877 paper that first discussed the “regression to the mean” phenomenon. This dataset has 928 pairs
of numbers.

o Usethe 1oad () functioninthe galton. py file toload the dataset. The file is located under the 1xmls/readers
folderﬂ Type the following in your Python interpreter:

import galton as galton
galton_data = galton.load()

* What are the mean height and standard deviation of all the people in the sample? What is the mean height of the
fathers and of the sons?

* Plot a histogram of all the heights (you might want to use the plt.hist function and the ravel method on
arrays).

o Plot the height of the father versus the height of the son.

* You should notice that there are several points that are exactly the same (e.g., there are 21 pairs with the values 68.5
and 70.2). Use the ? command in ipython to read the documentation for the numpy . random. randn function
and add random jitter (i.e., move the point a little bit) to the points before displaying them. Does your impression
of the data change?

0.6.8 Conjugate Priors

Definition 0.6 let ¥ = {fx(x|s),s € X} be a class of likelihood functions; let P be a class of probability (density or
mass) functions; if, for any x, any ps(s) € P, and any fx(x|s) € F, the resulting a posteriori probability function
ps(s|x) = fx(x|s)ps(s) is still in P, then P is called a conjugate family, or a family of conjugate priors, for F.

0.7 Numerical optimization

Most problems in machine learning require minimization/maximization of functions (likelihoods, risk, energy,
entropy, etc.,). Let x* be the value of x which minimizes the value of some function f(x). Mathematically, this
is written as

x* = argmin f(x)
X

In a few special cases, we can solve this minimization problem analytically in closed form (solving for
optimal x* in V,f(x*) = 0), but in most cases it is too cumbersome (or impossible) to solve these equations

7 You might need to inform python about the location of the Ixmls labs toolkit. To do so you need to import sys and use the
sys.path.append function to add the path to the toolkit readers.
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analytically, and they must be tackled numerically. In this section we will cover some basic notions of numer-
ical optimization. The goal is to provide the intuitions behind the methods that will be used in the rest of the
school. There are plenty of good textbooks in the subject that you can consult for more information (Nocedal
and Wright, 1999; Bertsekas et al.,1995; Boyd and Vandenberghe, 2004).

The most common way to solve the problems when no closed form solution is available is to resort to an
iterative algorithm. In this Section, we will see some of these iterative optimization techniques. These iterative

algorithms construct a sequence of points x(*), x(1), ... € domain(f) such that hopefully x' = x* after a number
of iterations. Such a sequence is called the minimizing sequence for the problem.

0.7.1 Convex Functions

One important property of a function f(x) is whether it is a convex function (in the shape of a bowl) or a
non-convex function. Figures [2] and [3 show an example of a convex and a non-convex function. Convex
functions are particularly useful since you can guarantee that the minimizing sequence converges to the true

global minimum of the function, while in non-convex functions you can only guarantee that it will reach a
local minimum.

/
/

/

i W)

Figure 2: Illustration of a convex function. The line segment between any two points on the graph lies entirely
above the curve.
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Figure 3: Illustration of a non-convex function. Note the line segment intersecting the curve.

Intuitively, imagine dropping a ball on either side of Figure [2} the ball will roll to the bottom of the bowl

independently from where it is dropped. This is the main benefit of a convex function. On the other hand, if
you drop a ball from the left side of Figure [3|it will reach a different position than if you drop a ball from its
right side. Moreover, dropping it from the left side will lead you to a much better (i.e., lower) place than if you

drop the ball from the right side. This is the main problem with non-convex functions: there are no guarantees
about the quality of the local minimum you find.

More formally, some concepts to understand about convex functions are:
A line segment between points x; and xp: contains all points such that

x=0x;+ (1-0)x;
where 0 < 6 < 1.
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A convex set contains the line segment between any two points in the set

x,x€C, 0<0<1 = QX1+(1—9)X2€C.

A function f : R” — R is a convex function if the domain of f is a convex set and

f(Ox+ (1 -0)y) <0f(x) + (1-0)f(y)

forallx,y e R, 0<6<1

0.7.2 Derivative and Gradient

The derivative of a function is a measure of how the function varies with its input variables. Given an interval
[a,b] one can compute how the function varies within that interval by calculating the average slope of the
function in that interval:

f(b) — f(a)
b g (6)
The derivative can be seen as the limit as the interval goes to zero, and it gives us the slope of the function at
that point.
f _ i fEHH) —f(x)
ar 1% I @
Table|3|shows derivatives of some functions that we will be using during the school.
- L Of
Function f(x) | Derivative 5=
x2 2x
x" nx"1
log(x) 1
exp(x) exp(x)
1 |
x 2
Table 3: Some derivative examples
An important rule of derivation is the chain rule. Consider 1 = f o g, and u = g(x), then:
oh _df og
ox ~ou ox ®

Example 0.3 Consider the function h(x) = exp(x?), this can be decomposed as h(x) = f(g(x)) = f(u) = exp(u),

where u = g(x) = x? and has derivative % = % : gz = exp(u) - 2x = exp(x?) - 2x

Exercise 0.11 Consider the function f(x) = x? and its derivative %. Look at the derivative of that function at points [-
2,0,2], draw the tangent to the graph in that point % (—=2) = —4, % (0) =0, and % (2) = 4. For example, the tangent
equation for x = —2isy = —4x — b, where b = f(—2). The following code plots the function and the derivatives on

those points using matplotlib (See Figure[d).

a = np.arange(-5,5,0.01)
f x = np.power (a,Z2)
plt.plot (a, f_x)

plt.xlim(-5,5)
plt.ylim(-5,15)

k= np.array([-2,0,2])
plt.plot (k, kxx2, "bo")
1 k:
plt.plot(a, (2*1i)*a - (i*%*2))
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Figure 4: Tllustration of the gradient of the function f(x?) at three different points x = [—2,0,2]. Note that at
point x = 0 the gradient is zero which corresponds to the minimum of the function.

The gradient of a function is a generalization of the derivative concept we just saw before for several
dimensions. Let us assume we have a function f(x) where x € R?, so x can be seen as a pair x = [x, ). Then,
of of

the gradient measures the slope of the function in both directions: Vyf(x) = [E, E]

0.7.3 Gradient Based Methods

Gradient based methods are probably the most common methods used for finding the minimizing sequence
for a given function. The methods used in this class will make use of the function value f(x) : R” — R as well
as the gradient of the function Vy f(x). The simplest method is the Gradient descent method, an unconstrained
first-order optimization algorithm.

The intuition of this method is as follows: You start at a given point xg and compute the gradient at that
point Vy, f(x). You then take a step of length 7 on the direction of the negative gradient to find a new point:
X1 = X0 — 1Vx,f(x). Then, you compute the gradient at this new point, Vy, f(x), and take a step of length 7
on the direction of the negative gradient to find a new point: x, = x; — 17V, f(x). You proceed until you have
reached a minimum (local or global). Recall from the previous subsection that you can identify the minimum
by testing if the norm of the gradient is zero: ||V f(x)|| = 0.

There are several practical concerns even with this basic algorithm to ensure both that the algorithm con-
verges (reaches the minimum) and that it does so in a fast way (by fast we mean the number of function and
gradient evaluations).

* Step Size 7 A first question is how to find the step length 5. One condition is that eta should guarantee
sufficient decrease in the function value. We will not cover these methods here but the most common
ones are Backtracking line search or the Wolf Line Search (Nocedal and Wright, 1999).

* Descent Direction A second problem is that using the negative gradient as direction can lead to a very
slow convergence. Different methods that change the descent direction by multiplying the gradient by
a matrix B have been proposed that guarantee a faster convergence. Two notable methods are the Con-
jugate Gradient (CG) and the Limited Memory Quasi Newton methods (LBFGS) (Nocedal and Wright,
1999).

* Stopping Criteria Finally, it will normally not be possible to reach full convergence either because it will
be too slow, or because of numerical issues (computers cannot perform exact arithmetic). So normally
we need to define a stopping criteria for the algorithm. Three common criteria (that are normally used
together) are: a maximum number of iterations; the gradient norm be smaller than a given threshold

[IVf(x)|| < m, or the normalized difference in the function value be smaller than a given threshold

o)~ f (1)
max(LF O )] = 112
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Algorithm [I|shows the general gradient based algorithm. Note that for the simple gradient descent algo-
rithm B is the identity matrix and the descent direction is just the negative gradient of the function.

Algorithm 1 Gradient Descent
1: given a starting point xp,7 = 0
2: repeat
3:  Compute step size 7
4. Compute descent direction —BV f(x;).
5 X1 ¢ X — 1BV f(x)
6: i< i+1
7: until stopping criterion is satisfied.

Figure 5: Illustration of gradient descent. The blue circles correspond to contours of the function (each blue
circle is a set of points which have the same function value), while the red lines correspond to steps taken in
the negative gradient direction.

Exercise 0.12 Consider the function f(x) = (x +2)? — 16exp (—(x —2)?). Make a function that computes the
function value given x.

get_y(x):
(x+2) #%2 — 16+np.exp (—((x-2) *x*2))

Draw a plot around x € [—8,8].

X = np.arange(-8,8,0.001)
y = map( u: get_y(u),x)

plt.plot (x,Vy)
plt.show()
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Calculate the derivative of the function f(x), implement the function get_grad(x).

get_grad(x) :

(2#x+4)=16% (=2%x + 4)+np.exp (- ((x-2)**2))

Use the method gradient_descent to find the minimum of this function. Convince yourself that the code is doing the
proper thing. Look at the constants we defined. Note, that we are using a simple approach to pick the step size (always
have the value step_size) which is not necessarily correct.

gradient_descent (start_x, func,grad) :
# Precision of the solution
prec = 0.0001
#Use a fixed small step size
step_size = 0.1
#max iterations
max_iter = 100
X _new = start_x
res = []
1 xrange (max_1iter) :
x_old = X_new
#Use beta egqual to -1 for gradient descent
x_new = x_old - step_size x grad(x_new)
f _x_new = func(xX_new)
f x old = func(x_old)
res.append ([x_new, f_x_new])
(abs (f_x_new - f_x_old) < prec):
"change in function values too small, leaving"

np.array(res)
"exceeded maximum number of iterations, leaving"
np.array (res)

Run the gradient descent algorithm starting from xog = —8 and plot the minimizing sequence.

x 0 = -8

res = gradient_descent (x_0,get_y,get_grad)
plt.plot (res[:,0],res[:,1], " '+")

plt.show()

Figure[6|shows the resulting minimizing sequence. Note that the algorithm converged to a minimum, but since the
function is not convex it converged only to a local minimum.
Now try the same exercise starting from the initial point xg = 8.

x 0 = 8
res = gradient_descent (x_0,get_y,get_grad)

plot(res[:,0],res[:,1],"'+")

Figure[/|shows the resulting minimizing sequence. Note that now the algorithm converged to the global minimum.
Howeuver, note that to get to the global minimum the sequence of points jumped from one side of the minimum to the other.
This is a consequence of using a wrong step size (in this case too large). Repeat the previous exercise changing both the
values of the step-size and the precision. What do you observe?

During this school we will rely on the numerical optimization methods provided by Scipy (scientific com-
puting library in python), which are very efficient implementations.

0.8 Python Exercises

0.8.1 Numpy and Matplotlib

Exercise 0.13 1. Consider the function f(x) = (x 4+ 2)?> — 16exp (—(x —2)?). Draw a plot around the x €
[—8, 8] region.
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Figure 6: Example of running gradient descent starting on point xy = —8 for function f(x) = (x +2)? —
16 exp (—(x —2)?). The function is represented in blue, while the points of the minimizing sequence are dis-
played as green plus signs.

. of
2. What is 3’

3. Use gradient descent to find a local minimum starting from xo = —4 and xo = +4, with y = .01. Plot all of the
intermediate estimates that you obtain in the same plot.

numpy np
matplotlib.pyplot plt

X = np.linspace (-8, 8, 1000)

Y = (X+2)#%2 — 16+np.exp (- ((X-2) **2))

# derivative of the function f
get Y dev(x):
(2+x+4) =16+ (-2+x + 4)*np.exp(—((x-2) ++2))

grad desc (start_x, eps, prec):

rro

runs the gradient descent algorithm and returns the list of estimates

example of use grad_desc(start_x=3.9, eps=0.01, prec=0.00001)
rrir
X _new = start_x
x_old = start_x + prec * 2
res = [x_new]
abs (x_old-x_new) > prec:
x_old = x_new
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Figure 7: Example of running gradient descent starting on point xg = 8 for function f(x) = (x +2)? —
16 exp (—(x —2)?). The function is represented in blue, while the points of the minimizing sequence are dis-
played as green plus signs.

x_new = x_old - eps * get_Y dev(x_new)

res.append (x_new)
np.array(res)

Exercise 0.14 Consider the linear regression problem (ordinary least squares) on the Galton dataset, with a single re-
sponse variable

y:xTw+£

The linear regression problem is, given a set {y())}; of samples of y and the corresponding x\¥) vectors, estimate w
to minimise the sum of the € variables. Traditionally this is solved analytically to obtain a closed form solution (although
this is not the way in which it should be computed in this exercise, linear algebra packages have an optimised solver,
with numpy, use numpy . Iinalg.lstsq).

Alternatively, we can define the error function for each possible w:

e(w) = 2 (x(i)Tw - y(i))z.

1. Derive the gradient of the error %.
j

2. Implement a solver based on this for two dimensional problems (i.e., w € R?).
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3. Use this method on the Galton dataset from the previous exercise to estimate the relationship between father and

son’s height. Try two formulas
s = fwy +e )

where s is the son’s height, and f is the father heights; and
s = fwy) + 1wy +¢ (10)
where the input variable is now two dimensional: (f,1). This allows the intercept to be non-zero.
4. Plot the regression line you obtain with the points from the previous exercise.

5. Usethe np.linalg. 1stsq function and compare to your solution.

0.8.2 Debugging

Exercise 0.15 Use the debugger to debug the buggy . py script which attempts to repeatedly perform the following
computation:

1. Start xo =0
2. Iterate

(a) x; =Xt where r is a random variable.
(b) if x;,, >= 1., then stop.
(c) ifxi 4 <=0, then x; 1 =0

(d) else x; 1 = x4
3. Return the number of iterations.

Having repeated this computation a number of times, the programme prints the average. Unfortunately, the program
has a few bugs, which you need to fix.
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Day 1
Classification

This day will serve as an introduction to machine learning. We recall some fundamental concepts about deci-
sion theory and classification. We also present some widely used models and algorithms and try to provide
the main motivation behind them. There are several textbooks that provide a thorough description of some
of the concepts introduced here: for example, Mitchell| (1997), Duda et al. (2001), [Scholkopt and Smola|(2002),
Joachims|(2002), Bishop|(2006), Manning et al.[(2008), to name just a few. The concepts that we introduce in this
chapter will be revisited in later chapters, where the same algorithms and models will be adapted to structured
inputs and outputs. For now, we concern only with multi-class classification (with just a few classes).

Today’s assignment

The assignment of today’s class is to implement a classifier called Naive Bayes, and use it to perform sentiment
analysis on a corpus of book reviews from Amazon.

1.1 Notation

In what follows, we denote by X our input set (also called observation set) and by Y our output set. We will make
no assumptions about the set X, which can be continuous or discrete. In this lecture, we consider classification
problems, where Y = {cy, ..., ck} is a finite set, consisting of K classes (also called labels). For example, X can be
a set of documents in natural language, and Y a set of topics, the goal being to assign a topic to each document.

We use upper-case letters for denoting random variables, and lower-case letters for value assignments to
those variables: for example,

* X is a random variable taking values on X,
* Y is a random variable taking values on Y,

* x € Xand y € Y are particular values for X and Y.

We consider events suchas X = x, Y = y, etc.

For simplicity reasons, throughout this lecture we will use modified notation and let P(y) denote the prob-
ability associated with the event Y = y (instead of Py(Y = y)). Also, joint and conditional probabilities are
denoted as P(x,y) £ Pxy(X = xAY =y) and P(x|y) £ Pxy(X = x | Y = y), respectively. From the laws of
probabilities:

P(x,y) = P(yx)P(x) = P(x|y)P(y), (1)

forallx e Xandy € Y.

Quantities that are predicted or estimated from the data will be appended a hat-symbol: for example,
estimations of the probabilities above are denoted as P(y), P(x,y) and P(y|x); and a prediction of an output
will be denoted 7.

We assume that a training dataset D is provided which consists of M input-output pairs (called examples or
instances):

D={LyY),..., My} Ccaxy. (1.2)

The goal of (supervised) machine learning is to use the training dataset D to learn a function / (called a
classifier) that maps from X to Y: this way, given a new instance x € X (test example), the machine makes a
prediction by evaluating 1 on x, i.e., § = h(x).
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1.2 Generative Classifiers: Naive Bayes

If we knew the true distribution P(X, Y'), the best possible classifier (called Bayes optimal) would be one which
predicts according to

7 = argmaxP(y|x)

yeyY
P(x,y)

= arg max
gye‘d P(x)

— P(x,
argmax (x, )

= argmaxP(y)P(x|y), (1.3)
yeyY

where in T we used the fact that P(x) is constant with respect to y.

Generative classifiers try to estimate the probability distributions P(Y') and P(X|Y'), which are respectively
called the class prior and the class conditionals. They assume that the data are generated according to the follow-
ing generative story (independently for eachm =1,..., M):

1. A class y;, ~ P(Y) is drawn from the class prior distribution;
2. Aninput x,; ~ P(X|Y = yp,) is drawn from the corresponding class conditional.

Figure [1.T|shows an example of the Bayes optimal decision boundary for a toy example with K = 2 classes,
M = 100 points, class priors P(y;) = P(y2) = 0.5, and class conditionals P(x|y;) given by 2-D Gaussian
distributions with the same variance but different means.

Simple Data Set -- Meanl= (-1.00,-1.00) Varl = 0.50 Mean2= (1.00,1.00) Var2= 0.50
Nr. Points=100.00, Balance=0.50 Train-Dev-Test (0.80,.0.00,0.20)
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Figure 1.1: Example of a dataset together with the corresponding Bayes optimal decision boundary. The
input set consists in points in the real plane, X = R, and the output set consists of two classes (Red and Blue).
Training points are represented as squares, while test points are represented as circles.
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1.2.1 Training and Inference

Training a generative model amounts to estimating the probabilities P(Y) and P(X|Y) using the dataset D,
yielding estimates P(y) and P(x|y). This estimation is usually called training or learning.

After we are done training, we are given a new input x € X, and we want to make a prediction according
to

7 = argmax P(y)p(x|y), (1.4)
yeyY

using the estimated probabilities. This is usually called inference or decoding.
We are left with two important problems:

1. How should the distributions P(Y) and P(X|Y) be “defined”? (i.e., what kind of independence assump-
tions should they state, or how should they factor?)

2. How should parameters be estimated from the training data D?

The first problem strongly depends on the application at hand. Quite often, there is a natural decomposition
of the input variable X into | components,

X =(X1,..., X)) (1.5)

The naive Bayes method makes the following assumption: Xj, ..., X; are conditionally independent given the
class. Mathematically, this means that

]
P(X]Y) = J]P(XY). (1.6)
j=1

Note that this independence assumption greatly reduces the number of parameters to be estimated (degrees of
freedom) from O(exp(])) to O(J), hence estimation of P(X|Y) becomes much simpler, as we shall see. It also
makes the overall computation much more efficient for large | and it decreases the risk of overfitting the data.
On the other hand, if the assumption is over-simplistic it may increase the risk of under-fitting.

For the second problem, one of the simplest ways to solve it is using maximum likelihood estimation, which
aims to maximize the probability of the training sample, assuming that each point was generated indepen-
dently. This probability (call it P(D)) factorizes as

M
P(D) = T[PG"y")
M ]
= JIPW"IIPGly™. (1.7)

1.2.2 Example: Multinomial Naive Bayes for Document Classification

We now consider a more realistic scenario where the naive Bayes classifier may be applied. Suppose that the
task is document classification: X is the set of all possible documents, and Y = {y1,...,yx} is a set of classes for
those documents. Let V = {wy,..., w ]} be the vocabulary, i.e., the set of words that occur in some document.
A very popular document representation is through a “bag-of-words”: each document is seen as a collec-
tion of words along with their frequencies; word ordering is ignored. We are going to see that this is equivalent
to a naive Bayes assumption with the multinomial model. We associate to each class a multinomial distribution,
which ignores word ordering, but takes into consideration the frequency with which each word appears in a
document. For simplicity, we assume that all documents have the same length LF_-I Each document x is as-
sumed to have been generated as follows. First, a class y is generated according to P(y). Then, x is generated
by sequentially picking words from V with replacement. Each word w; is picked with probability P(w;|y). For
example, the probability of generating a document x = wj, ... w;, (i.e., a sequence of L words wj,,...,w;, ) is

L J

= HP(w]»l|y HP w]|y (1.8)

=1 j=1

1We can get rid of this assumption by defining a distribution on the document length. Everything stays the same if that distribution is
uniform up to a maximum document length.
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where n j(x) is the number of occurrences of word w; in document x.

Hence, the assumption is that word occurrences (tokens) are independent given the class. The parameters
that need to be estimated are P(y;), ..., P(yx), and ﬁ(w]-|yk) forj=1,...,Jandk =1,...,K. Given a training
sample D = {(x,y!),..., (xM,yM)}, denote by J the indices of those instances belonging to the kth class. The
maximum likelihood estimates of the quantities above are:

Zmeﬂk nj(xm)

YL Toeg, mi(axm)’

A

J "
Plye) = DK, plagye) =

(1.9)

In words: the class priors’ estimates are their relative frequencies (as before), and the class-conditional word
probabilities are the relative frequencies of those words across documents with that class.

1.3 Assignment
With the previous theoretical background, you will be able to solve today’s assignment.

Exercise 1.1 In this exercise we will use the Amazon sentiment analysis data (Blitzer et al.,2007), where the goal is to
classify text documents as expressing a positive or negative sentiment (i.e., a classification problem with two classes).
We are going to focus on book reviews. To load the data, type:

1lxmls.readers.sentiment_reader srs

scr = srs.SentimentCorpus ("books")

This will load the data in a bag-of-words representation where rare words (occurring less than 5 times in the training
data) are removed.

1. Implement the Naive Bayes algorithm. Open the file multinomial _naive bayes.py, which is inside the
classifiers folder. In the MultinomialNaiveBayes class you will find the train method. We have
already placed some code in that file to help you get started.

2. After implementing, run Natve Bayes with the multinomial model on the Amazon dataset (sentiment classification)
and report results both for training and testing:

Ixmls.classifiers.multinomial_naive_bayes mnbb

mnb = mnbb.MultinomialNaiveBayes ()
params_nb_sc = mnb.train(scr.train_X,scr.train_y)
y_pred_train = mnb.test (scr.train_X,params_nb_sc)
acc_train = mnb.evaluate(scr.train_y, y_pred_train)
y_pred_test = mnb.test (scr.test_X,params_nb_sc)
acc_test = mnb.evaluate (scr.test_y, y_pred_test)
"Multinomial Naive Bayes Amazon Sentiment Accuracy train: %f test: S£"%(
acc_train,acc_test)

3. Observe that words that were not observed at training time cause problems at test time. Why? To solve this
problem, apply a simple add-one smoothing technique: replace the expression in Eq.[1.9|for the estimation of the
conditional probabilities by

1+ Zmejk n],(xm)

J+ 25:1 Zmeﬂk ni(x™) '

P(wjlex) =

where | is the number of distinct words.

This is a widely used smoothing strategy which has a Bayesian interpretation: it corresponds to choosing a uniform
prior for the word distribution on both classes, and to replace the maximum likelihood criterion by a maximum a
posteriori approach. This is a form of regularization, preventing the model from overfitting on the training data.
See e.g. \Manning and Schiitze (1999); Manning et al. (2008) for more information. Report the new accuracies.
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1.4 Discriminative Classifiers

In the previous sections we discussed generative classifiers, which require us to model the class prior and class
conditional distributions (P(Y) and P(X|Y), respectively). Recall, however, that a classifier is any function
which maps objects x € X onto classes y € Y. While it’s often useful to model how the data was generated, it’s
not required. Classifiers that do not model these distributions are called discriminative classifiers.

1.4.1 Features

For the purpose of understanding discriminative classifiers, it is useful to think about each x € X as an abstract
object which is subject to a set of descriptions or measurements, which are called features. A feature is simply a
real number that describes the value of some property of x. For example, in the previous section, the features
of a document were the number of times each word w; appeared in it.

Let g1(x),...,gj(x) be J features of x. We call the vector

8(x) = (g1(x),--.,87(x)) (1.10)

a feature vector representation of x. The map g : X — R/ is called a feature mapping.
In NLP applications, features are often binary-valued and result from evaluating propositions such as:

a 1, if sentence x contains the word Ronaldo

gi(x) = { 0, otherwise. (1.11)
a 1, if all words in sentence x are capitalized

g2(%) = { 0, otherwise. (1.12)
A 1, if x contains any of the words amazing, excellent or :-)

83(x) = { 0, otherwise. (1.13)

In this example, the feature vector representation of the sentence “Ronaldo shoots and scores an amazing
goal!” would be g(x) = (1,0,1).

In multi-class learning problems, rather than associating features only with the input objects, it is useful
to consider joint feature mappings f : X x Y — RP. In that case, the joint feature vector f(x,y) can be seen as a
collection of joint input-output measurements. For example:

A 1, if x contains Ronaldo, and topic y is sport
hlxy) = { 0, otherwise. (1.14)
A 1, if x contains Ronaldo, and topic y is politics
hxy) = { 0, otherwise. (1.15)
A very simple form of defining a joint feature mapping which is often employed is via:
fluy) = glx)@ey
= (0,...,0, g(x),0,...,0) (1.16)
A d
yth slot

where g(x) € R/ is a input feature vector, ® is the Kronecker product ([a ® b] ij = ajbj) and ey € RK, with
ley]c = 1iff y = ¢, and 0 otherwise. Hence f(x,y) € R/*K.
1.4.2 Inference

Linear classifiers are very popular in natural language processing applications. They make their decision based
on the rule:

7 = argmaxw - f(x,y). (1.17)
yeY
where

e w € RP is a weight vector;

* f(x,y) € RP is a feature vector;
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e w-f(x,y) = L0, wyfs(x,y) is the inner product between w and f(x, y).

Hence, each feature f;(x,y) has a weight w,; and, for each class y € Y, a score is computed by linearly combin-
ing all the weighted features. All these scores are compared, and a prediction is made by choosing the class
with the largest score.

Remark 1.1 With the design above (Eq. , and decomposing the weight vector as w = (we,, . .., W, ), we have that
w- fxy) = wy () (118)

In words: each class y € Y gets its own weight vector wy, and one defines a input feature vector g(x) that only looks at
the input x € X. This representation is very useful when features only depend on input x since it allows a more compact
representation. Note that the number of features is normally very large.

Remark 1.2 The multinomial naive Bayes classifier described in the previous section is an instance of a linear classifier.
Recall that the naive Bayes classifier predicts according to §§ = arg maxycy P(y)P(x|y). Tuking logs, in the multinomial
model for document classification this is equivalent to:

7 = argma;logls(y)+logl5(x|y)
ye

= argma;logP + Zn] )log P (wjly)
yEe

argryr}gag(wy g(x) (1.19)
where
wy = (by,logP(w|y),... logP(w|y))
by = logP(y)
g(x) = (Lini(x),...,n5(x)). (1.20)

Hence, the multinomial model yields a prediction rule of the form

T— . 1.21
7 arg rjneag( wy - g(x) (1.21)

1.4.3 Online Discriminative Algorithms

We now discuss two discriminative classification algorithms. These two algorithms are called online (or stochas-
tic) algorithms because they only process one data point (in our example, one document) at a time. Algorithms
which look at the whole dataset at once are called offline, or batch algorithms, and will be discussed later.

Perceptron

The perceptron (Rosenblatt, [1958) is perhaps the oldest algorithm used to train a linear classifier. The perceptron
works as follows: at each round, it takes an element x from the dataset, and uses the current model to make
a prediction. If the prediction is correct, nothing happens. Otherwise, the model is corrected by adding the
feature vector w.r.t. the correct output and subtracting the feature vector w.r.t. the predicted (wrong) output.
Then, it proceeds to the next round.

Alg.[2|shows the pseudo-code of the perceptron algorithm. As it can be seen, it is remarkably simple; yet it
often reaches a very good performance, often better than the Naive Bayes, and usually not much worse than
maximum entropy models or SVMs (which will be described in the following section). EI

A weight vector w defines a separating hyperplane if it classifies all the training data correctly, i.e., if y"* =
arg max, .y w - f(x™,y)hold form = 1,..., M. A dataset D is separable if such a weight vector exists (in general,
w is not unique). A very important property of the perceptron algorithm is the following: if D is separable,
then the number of mistakes made by the perceptron algorithm until it finds a separating hyperplane is finite.
This means that if the data are separable, the perceptron will eventually find a separating hyperplane w.

There are other variants of the perceptron (e.g., with regularization) which we omit for brevity.

2 Actually, we are showing a more robust variant of the perceptron, which averages the weight vector as a post-processing step.
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Algorithm 2 Averaged perceptron

1: input: dataset D, number of rounds R
2: initialize t = 0,w' =0
3: forr =1to Rdo

4. Dy = shuffle(D)

5. fori=1to Mdo

6: m = @s(i)

7: t=t+1

8: take training pair (x™,y") and predict using the current model:
7 < argmaxw' - f(x™,y')

y'ed

9: update the model: w'*! « w' + f(x™,y™) — f(x™,7)

10:  end for

11: end for

12: output: the averaged model @ < 1 ¥!_, w'

Exercise 1.2 We provide an implementation of the perceptron algorithm in the class Perceptron (fileperceptron.py).

1. Run the following commands to generate a simple dataset similar to the one plotted on Figure[L.1}

Ixmls.readers.simple_data_set sds
= sds.SimpleDataSet (nr_examples=100, g1 = [[-1,-1],1], g2 = [[1,1],1], balance=0.

5, split=[0.5,0,0.5])

2. Run the perceptron algorithm on the simple dataset previously generated and report its train and test set accuracy:

Ixmls.classifiers.perceptron percc

perc = percc.Perceptron ()
params_perc_sd = perc.train(sd.train_X,sd.train_y)
y_pred_train = perc.test (sd.train_X,params_perc_sd)
acc_train = perc.evaluate(sd.train_y, y_pred_train)
y_pred_test = perc.test (sd.test_X,params_perc_sd)
acc_test = perc.evaluate (sd.test_y, y_pred_test)
"Perceptron Simple Dataset Accuracy train: $f test: $f"%(acc_train,acc_test)

3. Plot the decision boundary found:

fig,axis = sd.plot_data()

fig,axis = sd.add_line(fig,axis,params_perc_sd, "Perceptron", "blue")

Change the code to save the intermediate weight vectors, and plot them every five iterations. What do you observe?

4. Run the perceptron algorithm on the Amazon dataset.

Margin Infused Relaxed Algorithm (MIRA)

The MIRA algorithm (Crammer and Singer, [2002;|Crammer et al,, 2006) has achieved very good performance
in NLP problems. Recall that the Perceptron takes an input pattern and, if its prediction is wrong, adds the
quantity [f(x™,y™) — f(x™,7)] to the weight vector. MIRA changes this by adding #[f(x™,y™) — f(x™,7)] to
the weight vector. The difference is the step size 7!, which depends on the iteration ¢.

There is a theoretical basis for this algorithm, which we now briefly explain. At each round t, MIRA updates
the weight vector by solving the following optimization problem:

36



Algorithm 3 MIRA

1: input: dataset D, parameter A, number of rounds R
2: initialize t = 0, w' = 0

3: forr =1to R do

4: Dy = shuffle(D)

5. fori=1toMdo

6 m = Dy (i)

7: t=t+1

8 take training pair (x”,y") and predict using the current model:

7 < argmaxw' - f(x™,y')
y'ey

9: compute loss: ¢! = w' - f(x™, 7)) — w! f(x y ")+ y™)

10: compute stepsize: 77! = min {)L , Hf(x'” =g Hz}
m

11: update the model: w'*! «+ w’ + 5! (f(x™ ,y ) f
122 end for

13: end for

14: output: the averaged model @ < % Yo w

/9))

w'™! < argmin 4 5w — wt|? (1.22)
w’g
st w-f(a™y") > w- f(X"g) +1-¢ (1.23)
=0, (1.24)
where § = argmax,, y w' - f(x™,y') is the prediction using the model with weight vector w'. By inspecting

Eq.[1.22] we see that MIRA attempts to achieve a tradeoff between conservativeness (penalizing large changes
from the previous weight vector via the term 4 ||w — w!||?) and correctness (by requiring, through the con-
straints, that the new model w!™! “separates” the true output from the prediction with a margin (although
slack § > 0 is allowed)ﬂ Note that, if the prediction is correct (7 = y™) the solution of the problem Eq.
leaves t}E weight vector unchanged (w'*! = w'). This quadratic programming problem has a closed form
solution

w1 (FMy™) — F(XM ),
with

t mom h 1M
" :min{A W' fa )m w - flx 2] }+zp(y,y )},
Hf(x y™) = fam )l
where p : Y x Y — Ry is a non-negative cost function, such that p(7,y) is the cost incurred by predicting 7
when the true output is y; we assume p(y,y) = 0 for all y € Y. For simplicity, we focus here on the 0/1-cost
(but keep in mind that other cost functions are possible):

p(9,y) ={ L a7 7y (1.25)

0 otherwise.
MIRA is depicted in Alg. (3l For other variants of MIRA, see Crammer et al.{(2006).

Exercise 1.3 We provide an implementation of the MIRA algorithm. Compare it with the perceptron for various values
of A

Ixmls.classifiers.mira mirac

mira = mirac.Mira/()

mira.regularizer = 1.0 # This is lambda
params_mira_sd = mira.train(sd.train_X,sd.train_y)
y_pred_train = mira.test (sd.train_X,params_mira_sd)

3The intuition for this large margin separation is the same for support vector machines, which will be discussed in §
“Note that the perceptron updates are identical, except that we always have ; = 1.
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acc_train = mira.evaluate (sd.train y, y_pred_train)
y_pred_test = mira.test (sd.test_X,params_mira_sd)
acc_test = mira.evaluate(sd.test_y, y_pred_test)
"Mira Simple Dataset Accuracy train: %f test: %$f"$%$(acc_train,acc_test)
fig,axis = sd.add _line(fig,axis,params_mira_sd, "Mira", "green")

params_mira_sc = mira.train(scr.train X,scr.train_y)

y_pred_train = mira.test (scr.train_X,params_mira_sc)
acc_train = mira.evaluate(scr.train_y, y_pred_train)
y_pred_test = mira.test (scr.test_X,params_mira_sc)

acc_test = mira.evaluate(scr.test_y, y_pred _test)
"Mira Amazon Sentiment Accuracy train: %f test: $f"%(acc_train,acc_test)

Compare the results achieved and separating hiperplanes found.

1.4.4 Batch Discriminative Classifiers

As we have mentioned, the perceptron and MIRA algorithms are called online or stochastic because they look
at one data point at a time. We now describe two discriminative classifiers which look at all points at once;
these are called offline or batch algorithms.

Maximum Entropy Classifiers

The notion of entropy in the context of Information Theory (Shannon, [1948) is one of the most significant ad-
vances in mathematics in the twentieth century. The principle of maximum entropy (which appears under
different names, such as “maximum mutual information” or “minimum Kullback-Leibler divergence”) plays
a fundamental role in many methods in statistics and machine learning (Jaynes) |1982). E] The basic rationale
is that choosing the model with the highest entropy (subject to constraints that depend on the observed data)
corresponds to making the fewest possible assumptions regarding what was unobserved, making uncertainty
about the model as large as possible.

For example, if we throw a die and want to estimate the probability of its outcomes, the distribution with
the highest entropy would be the uniform distribution (each outcome having of probability a 1/6). Now
suppose that we are only told that outcomes {1,2,3} occurred 10 times in total, and {4, 5,6} occurred 30 times
in total, then the principle of maximum entropy would lead us to estimate P(1) = P(2) = P(3) = 1/12 and
P(4) = P(5) = P(6) = 1/4 (i.e., outcomes would be uniform within each of the two groups)

This example could be presented in a more formal way. Suppose that we want to use binary features to
represent the outcome of the die throw. We use two features: fip3(x,y) = 1if and only if y € {1,2,3}, and
fase(x,y) = 1if and only if y € {4,5,6}. Our observations state that in 40 throws, we observed fip3 10 times
(25%) and fa56 30 times (75%). The maximum entropy principle states that we want to find the parameters
w of our model, and consequently the probability distribution Py, (Y|X), which makes fi3 have an expected
value of 0.25 and f45¢ have an expected value of 0.75. These constraints, E[f13] = 0.25 and E[fy56] = 0.75, are
known as first moment matching constmintsﬂ

An important fundamental result, which we will not prove here, is that the maximum entropy distribution
P (Y| X) under first moment matching constraints is a log-linear model. EI It has the following parametric form:

Py (y[x) = W (1.26)

The denominator in Eq. is called the partition function:

Z(w,x) =Y exp(w- f(x,y)). (1.27)
y'ey

5For an excellent textbook on Information Theory, we recommend (Cover et al.|(1991).

%For an introduction of maximum entropy models, along with pointers to the literature, see http: //www.cs.cmu.edu/-aberger/
maxent .html,

/In general, these constraints mean that feature expectations under that distribution % Y Ey~p, [f (xm,Y)] must match the observed
relative frequencies & ¥, f(Xm, Ym)-

8 Also called a a Boltzmann distribution, or an exponential family of distributions.
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An important property of the partition function is that the gradient of its logarithm equals the feature expec-
tations:

VwlogZ(w,x) = Eu[f(x,Y)]
= ) Pu(y[x)f(x,¥). (1.28)

y'ey

The average conditional log-likelihood is:

L(w; D) = log Py (y!, ..., yM|xt, ..., xM)

M
Y (w- f(x™,y™) —log Z(w, x™)). (1.29)

We try to find the parameters w that maximize the log-likelihood £(w;D); to avoid overfitting, we add a
regularization term that penalizes values of w that have a high magnitude. The optimization problem becomes:

A
W = argmaxL(w;@)——Hsz
w 2
= argmin—£(w; D) + %Hw”z (1.30)
w

Here we use the squared Ly-norm as the regularizerﬂ but other norms are possible. The scalar A > 0 controls
the amount of regularization. Unlike the naive Bayes examples, this optimization problem does not have
a closed form solution in general; hence we need to resort to numerical optimization (see section [0.7). Let
F\(w; D) = —L(w; D) + 4 ||wl|* be the objective function in Eq. This function is convex, which implies
that a local optimum of Eq.[L.30]is also a global optimum. F) (w; D) is also differentiable: its gradient is

VwFy(w;D) = (—f(x™,y™) 4+ Vulog Z(w, x™)) + Aw

3
Il
—_

S

(—f(xX",y™) + Ew[f(x™,Y)]) + Aw. (1.31)

-~ ==
=

3
Il
_

A batch gradient method to optimize Eq. is shown in Alg. [l Essentially, Alg. [ iterates through the
following updates until convergence:

w't —  w! — Ve Fy (wh; D)
M
= (A g 1 (PO — Bl fMY))). (1.32)

m=1

Convergence is ensured for suitable stepsizes 77;. Monotonic decrease of the objective value can also be ensured
if 17; is chosen with a suitable line search method, such as Armijo’s rule (Nocedal and Wright,1999). In practice,
more sophisticated methods exist for optimizing Eq. such as conjugate gradient or L-BFGS. The latter is
an example of a quasi-Newton method, which only requires gradient information, but uses past gradients to
try to construct second order (Hessian) approximations.

In large-scale problems (very large M) batch methods are slow. Online or stochastic optimization are at-
tractive alternative methods. Stochastic gradient methods make “noisy” gradient updates by considering only
a single instance at the time. The resulting algorithm, called Stochastic Gradient Descent (SGD) is shown as
Alg. |5l At each round ¢, an instance m(t) is chosen, either randomly (stochastic variant) or by cycling through
the dataset (online variant). The stepsize sequence must decrease with t: typically, #7; = #ot~* for some 179 > 0

°In a Bayesian perspective, this corresponds to choosing independent Gaussian priors p(w,) ~ N(0;1/A2) for each dimension of the
weight vector.
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Algorithm 4 Batch Gradient Descent for Maximum Entropy

1: input: D, A, number of rounds T,
learning rate sequence (1¢);—1,..T

0 » N

initialize w' = 0
fort =1to T do
form =1to M do
take training pair (x”,y™) and compute conditional probabilities using the current model, for each
vevy:
_ exp(w' - f(x"y")
ow(y |x ) - Z(w,xm)
compute the feature vector expectation:
Eolf(x", V)] = ) Pur(y'1X") f(x™,y)
y'ey
end for
choose the stepsize #; using, e.g., Armijo’s rule
update the model:
wh e (1= Agw’ + M7 Z X% y") = Ew[f(x™, Y)])
m=1
end for
. output: @ < w! !

and a € [1,2], tuned in a development partition or with cross-validation.

Exercise 1.4 We provide an implementation of the L-BFGS algorithm for training maximum entropy models in the class
MaxEnt _batch, as well as an implementation of the SGD algorithm in the class MaxEnt _online.

1.

Train a maximum entropy model using L-BFGS on the Simple data set (try different values of A). Compare the
results with the previous methods. Plot the decision boundary.

lxmls.classifiers.max_ent_batch mebc

me_1lbfgs = mebc.MaxEntBatch ()
me_lbfgs.regularizer = 1.0
params_meb_sd = me_lbfgs.train(sd.train X,sd.train_y)
y_pred_train = me_lbfgs.test (sd.train_ X, params_meb_sd)
acc_train = me_lbfgs.evaluate(sd.train y, y_pred _train)
y_pred_test = me_lbfgs.test (sd.test_X, params_meb_sd)
acc_test = me_lbfgs.evaluate (sd.test_y, y_pred _test)
"Max-Ent batch Simple Dataset Accuracy train: $f test: $f"$%(acc_train,acc_test

fig,axis = sd.add _line(fig,axis,params_meb_sd, "Max—Ent-Batch", "orange")

Train a maximum entropy model using L-BFGS, on the Amazon dataset (try different values of A) and report
training and test set accuracy. What do you observe?

params_meb_sc = me_lbfgs.train(scr.train X,scr.train_y)
y_pred_train = me_lbfgs.test (scr.train_X, params_meb_sc)
acc_train = me_lbfgs.evaluate (scr.train y, y_pred _train)
y_pred_test = me_lbfgs.test (scr.test_X,params_meb_sc)
acc_test = me_lbfgs.evaluate (scr.test_y, y_pred test)
"Max—-Ent Batch Amazon Sentiment Accuracy train: $%f test: %f"$%$(acc_train,
acc_test)
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Algorithm 5 SGD for Maximum Entropy

1: input: D, A, number of rounds T,
learning rate sequence (1¢);—1,..T
2: initialize w' = 0
3: fort =1to T do
4:  choose m = m(t) randomly
5 take training pair (x™,y™) and compute conditional probabilities using the current model, for each ' €

Pty ) = 2R LU

6.  compute the feature vector expectation:

Eolf(x",Y)] = }_ Py (y/|x") f (", y)

y'ey

7. update the model:
wth e (1= Ang)w' + e (F(2",y") — Ew[f (™, Y)])

8: end for

output: @ < w! !

h

3. Now, fix A = 1.0 and train with SGD (you might try to adjust the initial step). Compare the objective values
obtained during training with those obtained with L-BFGS. What do you observe?

Ixmls.classifiers.max_ent_online meoc

me_sgd = meoc.MaxEntOnline ()
me_sgd.regularizer = 1.0
params_meo_sc = me_sgd.train(scr.train X,scr.train_y)
y_pred_train = me_sgd.test (scr.train_X, params_meo_sc)
acc_train = me_sgd.evaluate (scr.train_ y, y_pred_train)
y_pred_test = me_sgd.test (scr.test_X, params_meo_sc)
acc_test = me_sgd.evaluate (scr.test_y, y_pred _test)
"Max—-Ent Online Amazon Sentiment Accuracy train: $%$f test: $f"$(acc_train,
acc_test)

Support Vector Machines

Support vector machines are also a discriminative approach, but they are not a probabilistic model at all. The
basic idea is that, if the goal is to accurately predict outputs (according to some cost function), we should focus
on that goal in the first place, rather than trying to estimate a probability distribution (P(Y|X) or P(X,Y)),
which is a more difficult problem. As|Vapnik| (1995) puts it, “do not solve an estimation problem of interest by
solving a more general (harder) problem as an intermediate step.”

We next describe the primal problem associated with multi-class support vector machines (Crammer and
Singer,|2002), which is of primary interest in natural language processing. There is a significant amount of liter-
ature about Kernel Methods (Scholkoptf and Smola), 2002; Shawe-Taylor and Cristianini, 2004) mostly focused
on the dual formulation. We will not discuss non-linear kernels or this dual formulation here[l]

Consider p(y/,y) as a non-negative cost function, representing the cost of assigning a label ' when the
correct label was y. For simplicity, we focus here on the 0/1-cost defined by Equation (but keep in mind
that other cost functions are possible). The hinge lossfj] is the function

Uw; x,y) = max (w- f(x,y) —w- flx,y)+0o.y)] . (1.33)

19The main reason why we prefer to discuss the primal formulation with linear kernels is that the resulting algorithms run in linear time
(or less), while known kernel-based methods are quadratic with respect to M. In large-scale problems (large M) the former are thus more
appealing.

'The hinge loss for the 0/1 cost is sometimes defined as £(w; x, y) = max{0, max, 2, w- f(x,y") —w- f(x,y) +1}. Given our definition
of p(7,y), note that the two definitons are equivalent.
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Algorithm 6 Stochastic Subgradient Descent for SVMs

1: input: D, A, number of rounds T,
learning rate sequence (1¢);—1,..T
2: initialize w' = 0
3: fort =1to T do
4:  choose m = m(t) randomly
5. take training pair (x™,y™) and compute the “cost-augmented prediction” under the current model:

7 = argmaxw' - f(x™,y") —w' - f(x",y") + p(v,y)
y'eY

6:  update the model:
Wt (L= Mg’ + ¢ (F(X",y™) = F(x", 7))
7: end for

8: output: w + w’ !

Note that the objective of Eq. becomes zero when y' = y. Hence, we always have /(w; x,y) > 0. Moreover,
if pis the 0/1 cost, we have ¢(w; x, y) = 0if and only if the weight vector is such that the model makes a correct
prediction with a margin greater than 1: i.e., w- f(x,y) > w- f(x,y') + 1 for all y’ # y. Otherwise, a positive
loss is incurred. The idea behind this formulation is that not only do we want to make a correct prediction, but
we want to make a confident prediction; this is why we have a loss unless the prediction is correct with some
margin.

Support vector machines (SVM) tackle the following optimization problem:

M
@ = argmin Y f(w;x"y") + 2wl (134)
w m=1

where we also use the squared Ly-norm as the regularizer. For the 0/1-cost, the problem in Eq. is equiva-
lent to:

arg min Y0 G+ Al w|? (1.35)
w,g
st. w-f(x"y")>w- f(x",§")+1—Cn, Ym, g™ €Y\ {y"}. (1.36)

Geometrically, we are trying to choose the linear classifier that yields the largest possible separation margin,
while we allow some violations, penalizing the amount of slack via extra variables {1, ..., (. There is now a
trade-off: increasing the slack variables ¢, makes it easier to satisfy the constraints, but it will also increase the
value of the cost function.

Problem does not have a closed form solution. Moreover, unlike maximum entropy models, the ob-
jective function in is non-differentiable, hence smooth optimization is not possible. However, it is still
convex, which ensures that any local optimum is the global optimum. Despite not being differentiable, we can
still define a subgradient of the objective function (which generalizes the concept of gradient), which enables us
to apply subgradient-based methods. A stochastic subgradient algorithm for solving Eq. is illustrated as
Alg.[6l The similarity with maximum entropy models (Alg. ) is striking: the only difference is that, instead of
computing the feature vector expectation using the current model, we compute the feature vector associated
with the cost-augmented prediction using the current model.

A variant of this algorithm was proposed by [Shalev-Shwartz et al.|(2007) under the name Pegasos, with ex-
cellent properties in large-scale settings. Other algorithms and software packages for training SVMs that have
become popular are SVMLight (http://svmlight. joachims.org) and LIBSVM (http://www.csie.
ntu.edu.tw/~cjlin/libsvm/), which allow non-linear kernels. These will generally be more suitable for
smaller datasets, where high accuracy optimization can be obtained without much computational effort.

Remark 1.3 Note the similarity between the stochastic (sub-)gradient algorithms (Algs. and the online algorithms
seen above (perceptron and MIRA).

Exercise 1.5 Implement the SVM primal algorithm (Hint: look at the models implemented earlier, you should only need
to change a few lines of code). Do this by creating a file SVM. py and implement class SVM. Then, repeat the MaxEnt
exercise now using SVMs, for several values of A:
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Ixmls.classifiers.svm svmc

svm = svmc.SVM()
svm.regularizer = 1.0 # This is lambda
params_svm_sd = svm.train(sd.train_X,sd.train_y)
y_pred_train = svm.test (sd.train_X, params_svm_sd)
acc_train = svm.evaluate(sd.train_y, y_pred_train)
yv_pred_test = svm.test (sd.test_X, params_svm_sd)
acc_test = svm.evaluate(sd.test_y, y_pred _test)
"SVM Online Simple Dataset Accuracy train: $%f test: %$f"$%(acc_train,acc_test)

fig,axis = sd.add _line(fig,axis,params_svm_sd, "SVM", "orange")

params_svm_sc = svm.train(scr.train X,scr.train_y)
y_pred_train = svm.test (scr.train_X,params_svm_sScC)
acc_train = svm.evaluate(scr.train_y, y_pred_train)
y_pred_test = svm.test (scr.test_X,params_svm_sc)
acc_test = svm.evaluate(scr.test_y, y_pred_test)
"SVM Online Amazon Sentiment Accuracy train: $f test: %f"%(acc_train,acc_test)

Compare the results achieved and separating hiperplanes found.

1.5 Comparison

Table|1.1|provides a high-level comparison among the different algorithms discussed in this chapter.

Naive Bayes Perceptron MIRA MaxEnt SVMs
Generative/Discriminative G D D D D
Performance if true model Bad Fair (may Good Good  Good
not in the hipothesis class not converge)
Performance if features overlap Fair Good Good  Good  Good
Training Closed Form Easy Easy Fair Fair
Hyperparameters to tune 1 (smoothing) 0 1 1 1

Table 1.1: Comparison among different algorithms.

Exercise 1.6 o Using the simple dataset run the different algorithms varying some characteristics of the data: like
the number of points, variance (hence separability), class balance. Use function run_all_classifiers in file lab-
s/run_all_classifiers.py which receives a dataset and plots all decisions boundaries and accuracies. What can you
say about the methods when the amount of data increases? What about when the classes become too unbalanced?

1.6 Final remarks

Some implementations of the discussed algorithms are available on the Web:
* SVMLight: http://svmlight. joachims.org
e LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
¢ Maximum Entropy: http://homepages.inf.ed.ac.uk/lzhangl0/maxent_toolkit.html

e MALLET: http://mallet.cs.umass.edu/.

43


http://svmlight.joachims.org
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html
http://mallet.cs.umass.edu/

Day 2
Sequence Models

In this class, we relax the assumption that the data points are independently and identically distributed (i.i.d.)
by moving to a scenario of structured prediction, where the inputs are assumed to have temporal or spacial
dependencies. We start by considering sequential models, which correspond to a chain structure: for instance,
the words in a sentence. In this lecture, we will use part-of-speech tagging as our example task.

We start by defining the notation for this lecture in Section Afterwards, in section we focus on
the well known Hidden Markov Models and in Section [2.3) we describe how to estimate its parameters from
labeled data. In Section 2.4 we explain the inference algorithms (Viterbi and Forward-Backward) for sequence
models. These inference algorithms will be fundamental for the rest of this lecture, as well as for the next
lecture on discriminative training of sequence models. In Section [2.6| we describe the task of Part-of-Speech
tagging, and how the Hidden Markov Models are suitable for this task. Finally, in Section [2.7] we address
unsupervised learning of Hidden Markov Models through the Expectation Maximization algorithm.

Today’s assignment

The assignment of today’s class is to implement one inference algorithm for Hidden Markov Models, used to
find the most likely hidden state sequence given an observation sequence.

2.1 Notation

In what follows, we assume a finite set of observation labels, ¥. := {w, ..., w ]}, and a finite set of state labels,
A = {cy,...,cx}. We denote by X*, A* the two infinite sets of sequences obtained by grouping the elements
of each label set including repetitions and the empty string zﬂ Elements of 2* and A* are strings of observations
and strings of states, respectively. Throughout this class, we assume our input set is X = X*, and our output
setis Y = A*. In other words, our inputs are observation sequences, x = x1x3...xy, for some N € IN, where
each x; € X; given such an x, we seek the corresponding state sequence, y = y1y2...yn, Where each y; € A.
We also consider two special states: the start symbol, which starts the sequence, and the stop symbol, which
ends the sequence.
Moreover, in this lecture we will assume two scenarios:

1. Supervised learning. We will train models from a sample set of paired observation and state sequences,

Dp = {(xy"),...,MyM} CxxY.
2. Unsupervised learning. We will train models from the set of observations only, Dy; := {x!,...,xM} C X.

Our notation is summarized in Table 2.1]

2.2 Hidden Markov Models

Hidden Markov Models (HMMs) are one of the most common sequence probabilistic models, and have been
applied to a wide variety of tasks. HMMs are particular instances of directed probabilistic graphical models (or
Bayesian networks) which have a chain topology. In a Bayesian network, every random variable is represented

More formally, we say * := {¢} UL UZ2U...and A* := {e} UAUA? U... is the Kleene closure of each of the two sets above.
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’ Notation

Dr training set (including labeled data)
Du training set (unlabeled data only)
M number of training examples

X =x1...xN | observation sequence
y=1vy1...yny | state sequence

N length of the sequence
X; observation at position 7 in the sequence, i € {1,...,N}
Vi state at position i in the sequence, i € {1,...,N}

X observation set

] number of distinct observation labels
wj particular observation, j € {1,...,]}
A state set
K

Ck

number of distinct state labels
particular state, k € {1,...,K}

Table 2.1: General notation used in this class

as anode in a graph, and the edges in the graph are directed and represent probabilistic dependencies between
the random variables. For an HMM, the random variables are divided into two sets, the observed variables,
X = Xj...Xn, and the hidden variables Y = Y7 ...Yn. In the HMM terminology, the observed variables are
called observations, and the hidden variables are called states. The states are generated according to a first order
Markov process, in which the i state Y; depends only of the previous state Y; 1. Two special states are the
start symbol, which starts the sequence, and the stop symbol, which ends the sequence. In addition, states
emit observation symbols. In an HMM, it is assumed that all observations are independent given the states
that generated them.

As you may find out with today’s assignment, implementing the inference routines of the HMM can be
challenging. We start with a small and very simple (also very unrealistic!) example. The idea is that you may
compute the desired quantities by hand and check if your implementation yields the correct result.

Example 2.1 Consider a person who is only interested in four activities: walking in the park (walk), shopping (shop),
cleaning the apartment (clean) and playing tennis (tennis). Also, consider that the choice of what the person does on
a given day is determined exclusively by the weather on that day, which can be either rainy or sunny. Now, supposing
that we observe what the person did on a sequence of days, the question is: can we use that information to predict the
weather on each of those days? To tackle this problem, we assume that the weather behaves as a discrete Markov chain:
the weather on a given day depends only on the weather on the previous day. The entire system can be described as an
HMM.

For example, assume we are asked to predict the weather conditions on two different sequences of days. During these
two sequences, we observed the person performing the following activities:

e “walk walk shop clean”
e “clean walk tennis walk”

This will be our test set.
Moreover, and in order to train our model, we are given access to three different sequences of days, containing both
the activities performed by the person and the weather on those days, namely:

® “walk/rainy walk/sunny shop/sunny clean/sunny’
¢ “walk/rainy walk/rainy shop/rainy clean/sunny”
e “walk/sunny shop/sunny shop/sunny clean/sunny’

This will be our training set.
Figure[2.2)shows the HMM model for the first sequence of the training set, which already includes the start and
stop symbols. The notation is summarized in Table[2.2]

Exercise 2.1 Load the simple sequence dataset. From the ipython command line create a simple sequence object and look
at the training and test set.
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rainy sunny sunny sunny

walk walk shop clean

Figure 2.1: Diagram showing the conditional independence relations of the HMM. As an example, the variables
are the values of the first sentence of the training set of the simple sequence.

] HMM Notation \
x observed sequence “walk walk shop clean”
N=4 observation length
i position in the sentence: i € {1...N}

Y. = {walk,shop,clean,tennis} | observation set
j index into the observation setj € {1,...,]}
Xi = w; observation at position i has value w;
A ={rainy,sunny} state set
k index into state setk € {1,...,K}
Y; = ¢k state at position 7 has value cy
Table 2.2: HMM notation for the simple example.
Ilxmls.readers.simple_sequence ssr

simple = ssr.SimpleSequence ()
simple.train

[walk/rainy walk/sunny shop/sunny clean/sunny , walk/rainy walk/rainy shop/rainy clean/
sunny , walk/sunny shop/sunny shop/sunny clean/sunny ]

simple.test

[walk/rainy walk/sunny shop/sunny clean/sunny , clean/sunny walk/sunny tennis/sunny walk/
sunny ]

Get in touch with the classes used to store the sequences, you will need this for the next exercise. Note that each label is
internally stored as a number. This number can be used as index of an array to store information regarding that label.

sequence simple.train.seq list:
sequence

walk/rainy walk/sunny shop/sunny clean/sunny
walk/rainy walk/rainy shop/rainy clean/sunny
walk/sunny shop/sunny shop/sunny clean/sunny

sequence simple.train.seq_list:
sequence.x

o, 0, 1, 2]
o, 0, 1, 2]
o, 1, 1, 2]

sequence simple.train.seq_list:
sequence.y

(o, 1, 1, 1]
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[o, 0, 0, 1]
(1, 1, 1, 1]

The probability distributions P(Y;|Y;_1) are called transition probabilities; the distributions P(Y7|Yy = start)
are the initial probabilities, and P(Yny1 = stop|Yy) the final probabilitiesE] Finally, the distributions P(X;|Y;) are
called emission probabilities.

A first order HMM model has the following independence assumptions over the joint distribution P(X =
x,Y=y):

* Independence of previous states. The probability of being in a given state at position i only depends on
the state of the previous position i — 1. Formally,

P(Yi=yilYia=yivYia=Yia...,Yi=y)=PYi=ylYi1 =yi1)
defining a first order Markov chainE]

* Homogeneous transition. The probability of making a transition from state c; to state c is independent
of the particular position in the sequence. That is, foralli,t € {1,...,N},

P(Yi = Ck|Y1'_1 = Cl) = P(Yt = Ck|Yt_1 = Cl)

* Observation independence. The probability of observing X; = x; at position i is fully determined by the
state Y; at that position. Formally,

P(Xz = xl-|Y1 = yl,...,Yi =VYi,-- .,YN = yN) = P(XZ = xl-|Yl- = yl)
This probability is independent of the particular position so, for every i and ¢, we can write:

P(X; = wjlYi = ) = P(Xs = wj|Y; = ;)

These conditional independence assumptions are crucial to allow efficient inference, as it will be described.
The distributions that define the HMM model are summarized in Table 2.3 For each one of them we will
use a short notation to simplify the exposition.

HMM distributions
Name probability distribution short notation | array size
initial probability P(Y7 = c¢|Yy = start) Ppit(cx|start) | K
transition probability | P(Y; = ¢x|Yi_1 = ¢)) Pirans(ck|cr) K x K
final probability P(Yni1 = stop|Yn = ¢k) | Prnai(stoplcx) | K
emission probability | P(X; = w;|Y; = ¢) Pemiss (wjck) Jx K

Table 2.3: HMM probability distributions.
The joint distribution can be expressed as:

P(Xl le,...,XN:XN,Yl :yl,...,YN:yN) =
N-1 N

Pinit(y1]start) x (H Ptrans(]/i+1|yi)> X Phinai (stoplyn) X | [ Pemiss (xilvi), (2.1)
i=1 i=1

which for the example of Figure [2.1]is:

P(Xl = x1,...,X4 = X4,Y1 = ]/1,...,Y4 = ]/4) =
Ppit(rainy|start) X Pyans(sunny|rainy) X Pgans(sunny|sunny) X Pyans(sunny|sunny) X
Peinal(stop|sunny) X Pemiss(walk|rainy) X Pemiss(walk|sunny) X Pemiss(shop|sunny)
X Pemiss(clean|sunny). (2.2)

2Note that the initial and final probabilities are asymmetric.
3The order of the Markov chain depends on the number of previous positions taken into account. The remainder of the exposition can
be easily extended to higher order HMMs, giving the model more generality, but making inference more expensive.
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In the next section we turn our attention to estimating the different probability distributions of the model.

2.3 Finding the Maximum Likelihood Parameters

One important problem in HMMs is to estimate the model parameters, i.e., the distributions depicted in Ta-
ble We will refer to the set of all these parameters as 6. In a supervised setting, the HMM model is trained
to maximize the joint log-likelihood of the data. Given a dataset D, the objective being optimized is:

M
arg max Z log Py(X = x",Y =y™), (2.3)
0 m=1

where Py(X = x™,Y = y™) is given by Eq.2.1]

In some applications (e.g. speech recognition) the observation variables are continuous, hence the emission
distributions are real-valued (e.g. mixtures of Gaussians). In our case, both the state set and the observation
set are discrete (and finite), therefore we use multinomial distributions for the emission and transition prob-
abilities. Multinomial distributions are attractive for several reasons: first of all, they are easy to implement;
secondly, the maximum likelihood estimation of the parameters has a simple closed form. The parameters are
just normalized counts of events that occur in the corpus (the same as the Naive Bayes from previous class).

Given our labeled corpus Dy, the estimation process consists of counting how many times each event occurs
in the corpus and normalize the counts to form proper probability distributions. Let us define the following
quantities, called sufficient statistics, that represent the counts of each event in the corpus:

1=
[uny
—~
<
[
|
(o)
B
-

Initial Counts: Cinit(cx) = (2.4)
m=1
M N
Transition Counts: Cirans(cg, ¢j) = Z 2 1y =c ANy =¢1); (2.5)
m=1i=2
M
Final Counts: Cgpna(ck) = Z 1y = cx); (2.6)
m=1
M N
Emission Counts:  Cemiss(wj,cp) = Y Y 1(x]" = wj Ay} = cx); (2.7)
m=1i=1

Here y}", the underscript denotes the state index position for a given sequence, and the superscript denotes the
sequence index in the dataset, and the same applies for the observations. Note that 1 is an indicator function
that has the value 1 when the particular event happens, and zero otherwise. In other words, the previous
equations go through the training corpus and count how often each event occurs. For example, Eq.[2.5|counts
how many times c; follows state c;. Therefore, Cirans(sunny, rainy) contains the number of times that a sunny
day followed a rainy day.

After computing the counts, one can perform some sanity checks to make sure the implementation is cor-
rect. Summing over all entries of each count table we should observe the following:

¢ Initial Counts — Should sum to the number of sentences: Z,Ile Cinit(cx) = M

¢ Transition/Final Counts — Should sum to the number of tokens: ZkK,lzl Ctrans(cx, ¢1) + Z,Ile Ceinal(cx) =
MN

¢ Emission Counts — Should sum to the number of tokens: 2][:1 Zle Cemiss(w]-, cx) = MN.
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Using the sufficient statistics (counts) the parameter estimates are:

Cinit(c
Pinit(ck|start) = Z:ng(kgc) (2.8)
1=1 “init\¢]
(:ﬁnal(cl)
Pinal(stoplc) = 2.9
ﬁnal( p| l) E]I(<=1 Ctrans(ck/ Cl) + Cinal (Cl) ( )
(:Hans(cklcl)
Prrans(cklcr) = (2.10)
ZIp(:] Ctrans(cp/ Cl) + Cfinal(cl)
Comice (W), )
Pemiss(wj|ck) = e (2.11)

Zézl Cemiss (wq/ Ck)

Exercise 2.2 The provided function train_supervised from the hmm.py file implements the above parameter estimates.
Run this function given the simple dataset above and look at the estimated probabilities. Are they correct? You can also
check the variables ending in _counts instead of _probs to see the raw counts (for example, typing hmm.initial_counts
will show you the raw counts of initial states). How are the counts related to the probabilities?

Ixmls.sequences.hmm hmmc
hmm = hmmc.HMM(simple.x_dict, simple.y_dict)
hmm.train_ supervised(simple.train)

"Initial Probabilities:", hmm.initial_probs

[ 0.66666667 (0.33333333]
"Transition Probabilities:", hmm.transition_probs

0. ]
0.625]]

~ ~
[CINC}

"Final Probabilities:", hmm.final_probs
[ O. 0.375]

"Emission Probabilities", hmm.emission_probs

.75 0.25 ]
.25 0.375]
0.375]
0. 1]

24 Decoding a Sequence

Given the learned parameters and a new observation sequence x = x; ... xy, we want to find the sequence of
hidden states y* = y7 ...y} that “best” explains it. This is called the decoding problem. There are several ways
to define what we mean by the “best” y*, depending on our goal: for instance, we may want to minimize the
probability of error on each hidden variable Y;, or we may want to find the best assignment to the sequence
Y7 ... Yy as a whole. Therefore, finding the best sequence can be accomplished through different approaches:

¢ A first approach, normally called posterior decoding or minimum risk decoding, consists in picking the
highest state posterior for each position i in the sequence:

y; = argmax P(Y; = ;| X1 = xq,..., XN = xN). (2.12)
Vi€

Note, however, that this approach does not guarantee that the sequence y* = yj ...y}, will be a valid
sequence of the model. For instance, there might be a transition between two of the best state posteriors
with probability zero.
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* A second approach, called Viterbi decoding, consists in picking the best global hidden state sequence:

y* = argmaxP(Y1=y1,..., YN =yn|X1 =x1,..., XN = XN)
Y=Y1--YN
= argmaxP(Yl =Y, ..,YN = yN/Xl = X1,-- .,XN = XN). (213)
Y=Yy1--Yn

Both approaches (which will be explained in Sections and respectively) rely on dynamic pro-
gramming and make use of the independence assumptions of the HMM model. Moreover, they use an alter-

native representation of the HMM called a trellis.

A trellis unfolds all possible states for each position and it makes explicit the independence assumption:
each position only depends on the previous position. Here, each column represents a position in the sequence
and each row represents a possible state. Figure[2.2|shows the trellis for the particular example in Figure

rainy rainy rainy rainy
sunny sunny sunny sunny

Figure 2.2: Trellis representation of the HMM in Figure for the observation sequence “walk walk shop

clean”, where each hidden variable can take the values rainy or sunny.

Considering the trellis representation, note that we can include the following information:

* an initial probability to the arrows that depart from the start symbol;

a final probability to the arrows that reach the stop symbol;
* a transition probability to the remaining arrows; and,

* an emission probability to each circle, which is the probability that the observed symbol is emitted by that
particular state.

For convenience, we will be working with log-probabilities, rather than probabilitiesﬁ Therefore, if we
associate to each circle and arrow in the trellis a score that corresponds to the log-probabilities above, and if we
define the score of a path connecting the start and stop symbols as the sum of the scores of the circles and
arrows it traverses, then the goal of finding the most likely sequence of states (Viterbi decoding) corresponds

to finding the path with the highest score.

The trellis scores are given by the following expressions:

e For each state ¢;:
scoreinit(cx) = logPinit(Y1 = ck|start). (2.14)
e For each positioni € 1,..., N — 1 and each pair of states ¢, and ¢;:
scOretrans (i, ¢k, €;) = 108 Prrans(Yit1 = ck|Y; = ¢p). (2.15)
¢ For each state ¢;:
scorefinal(c;) = 10g Prinal(stop|Yn = ). (2.16)

e For each positioni € 1,..., N and state c:

Scoreemiss(i/ Ck) = log Pemiss(Xi = xi|Yi = Ck)~ (2.17)

“This will be motivated further in Section where we describe how operations can be performed efficiently in the log-domain.
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In the next exercise, you will compute the trellis scores.

Exercise 2.3 Convince yourself that the score of a path in the trellis (summing over the scores above) is equivalent to the
log-probability log P(X = x,Y =y), as defined in Eq. Use the given function compute_scores on the first training
sequence and confirm that the values are correct. You should get the same values as presented below.

initial scores, transition_scores, final_scores, emission_scores = hmm.compute_scores (
simple.train.seq _list[0])
initial_ scores
[-0.40546511 -1.09861229]

transition _scores

[[[-0.69314718 —inf]
[-0.69314718 —0.47000363]]

[[-0.69314718 —inf]
[-0.69314718 —-0.47000363]]

[[-0.69314718 —-inf]
[-0.69314718 -0.47000363]1]]

final_ scores
[ -inf -0.98082925]

emission_scores

[[-0.28768207 —-1.38629436]
[-0.28768207 —1.38629436]
[-1.38629436 —0.98082925]
[ —-inf -0.98082925]]

Note that scores which are —co (—1inf) correspond to zero-probability events.

24.1 Computing in log-domain

We will see that the decoding algorithms will need to multiply twice as many probability terms as the length
N of the sequence. This may cause underflowing problems when N is large, since the nested multiplication of
numbers smaller than 1 may easily become smaller than the machine precision. To avoid that problem, Rabiner
(1989) presents a scaled version of the decoding algorithms that avoids this problem. An alternative, which
is widely used, is computing in the log-domain. That is, instead of manipulating probabilities, manipulate
log-probabilities (the scores presented above). Every time we need to multiply probabilities, we can sum their
log-representations, since:

log(exp(a) x exp(b)) = a+b. (2.18)
Sometimes, we need to add probabilities. In the log domain, this requires us to compute
log(exp(a) +exp(b)) = a+log(1+exp(b—a)), (2.19)
where we assume that a is smaller than b.

Exercise 2.4 Look at the module sequences/log_domain.py. This module implements a function logsum_pair (logx,
logy) to add two numbers represented in the log-domain; it returns their sum also represented in the log-domain. The
function logsum (logv) sums all components of an array represented in the log-domain. This will be used later in our
decoding algorithms. To observe why this is important, type the following:

numpy np
a = np.random.rand (10)
np.log(sum(np.exp(a)))
2.8397172643228661
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np.log(sum(np.exp (10*a)))
10.121099917705818

np.log(sum(np.exp(100x*a)))
93.159220940569128

np.log(sum(np.exp (1000%a)))
inf

1xmls.sequences.log_domain *
logsum(a)
2.8397172643228665

logsum(10%*a)
10.121099917705818

logsum (100+*a)
93.159220940569114

logsum (1000+*a)
925.88496219586864

2.4.2 Posterior Decoding

Posterior decoding consists in picking state with the highest posterior for each position in the sequence inde-
pendently; foreachi=1,...,N:

y; = argmaxP(Y; = y;| X = x). (2.20)

VieA

The sequence posterior distribution is the probability of a particular hidden state sequence given that we have
observed a particular sequence. Moreover, we will be interested in two other posteriors distributions: the state
posterior distribution, corresponding to the probability of being in a given state in a certain position given the
observed sequence; and the transition posterior distribution, which is the probability of making a particular
transition, from position i to 7 + 1, given the observed sequence. They are formally defined as follows:

P(X=xY=
Sequence Posterior: P(Y =y|X =x) = ( P(Xxlz ) y); (2.21)
State Posterior: P(Y; = y;|X = x); (2.22)
Transition Posterior: P(Yj11 = yii1,Yi = ;| X = x). (2.23)

To compute the posteriors, a first step is to be able to compute the likelihood of the sequence P(X = x),
which corresponds to summing the probability of all possible hidden state sequences.

Likelihood: P(X=x)= ) P(X=xY=y). (2.24)
yEAN

The number of possible hidden state sequences is exponential in the length of the sequence (|A|N), which
makes the sum over all of them hard. In our simple example, there are 2* = 16 paths, which we can actually
explicitly enumerate and calculate their probability using Equation[2.1} But this is as far as it goes: for example,
for Part-of-Speech tagging with a small tagset of 12 tags and a medium size sentence of length 10, there are
1210 = 61917364224 such paths. Yet, we must be able to compute this sum (sum over y € AN) to compute
the above likelihood formula; this is called the inference problem. For sequence models, there is a well known
dynamic programming algorithm, the Forward-Backward (FB) algorithm, which allows the computation to
be performed in linear timeE] by making use of the independence assumptions.

The FB algorithm relies on the independence of previous states assumption, which is illustrated in the trellis
view by having arrows only between consecutive states. The FB algorithm defines two auxiliary probabilities,
the forward probability and the backward probability.

5The runtime is linear with respect to the sequence length. More precisely, the runtime is O(N|A|?). A naive enumeration would cost
o(|AN).
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Efficient forward probability computation

The forward probability represents the probability that in position i we are in state ¥; = ¢, and that we have
observed x1, ..., x; up to that position. Therefore, its mathematical expression is:

Forward Probability: forward(i,cx) = P(Y; = cx, X1 = x1,..., X; = x;) (2.25)

Using the independence assumptions of the HMM we can compute forward(i, ¢;) using all the forward
computations {forward(i — 1,¢) for ¢ € A}. In order to facilitate the notation of the following argument we
will denote by x;.; the assignemnt X; = x;, ..., X; = x;. Therefore we can write forward(i, y;) as P(y;, x1.;) and
rewrite the forward expression as follows:

P(y,x1i) = Y, Piyi—1,x1i) = Y. Pxilyiyio1,x1i-1) - P(yilyic, X1-1) - P(Yic1, X1:-1)  (2.26)
yi1€EA Yi_1€EA

Using the Observation independence and the Independence of previous states properties of the first order
HMM we have P(x;|y;, yi—1,x1.i-1) = P(x;|y;) and P(y;|lyi—1,x1.i-1) = P(yilyi—1). Therefore equation (2.26)
can be written, fori € {2,..., N} (where N is the length of the sequence), as

forward (i, y;) = Z P(xilyi,) - P(yilyi_1) - forward(i — 1,y; 1) (2.27)
Yi- 1€A

Using equation (2.27) we have proved that the forward probability can be defined by the following recur-
rence rule:

forward(1,cx) = Pinit(ck|start) X Pemiss(X1|ck) (2.28)
forward(i,c;) = ( Z Pirans(cx|c;) x forward(i — 1, cl)> X Pomiss(Xi|cx) (2.29)
clEN
forward(N+1,stop) = Y Ppna(stople) x forward(N, ¢;). (2.30)
clEN

Using the forward trellis one can compute the likelihood simply as:
P(X = x) = forward(N + 1, stop). (2.31)
Although the forward probability is enough to calculate the likelihood of a given sequence, we will also
need the backward probability to calculate the state posteriors.

Efficient backward probability computation

The backward probability is similar to the forward probability, but operates in the inverse direction. It repre-
sents the probability of observing x;,1,...,xy from position i + 1 up to N, given that at position i we are at
state Y; = ¢

Backward Probability: backward(i,c;) = P(Xj11 = xj11,..., Xn = an|Yi = ¢)). (2.32)

Using the independence assumptions of the HMM we can compute backward (i, c;) using all the backward
computations {backward(i + 1,¢) for ¢ € A}. Therefore we can write backward(i,y;) as P(x;1.N|y;) and
rewrite the forward expression as follows:

P(xipanlyi) = Y, P(xivunvirlvi) = Y, P(xivonN|Vi Vigr, Xig1) P(Xig1, [Vier, vi) P(yialyi)  (2.33)
Vi1 EA Vir1EA

Using the previous equation we have proved that the backward probability can be defined by the following
recurrence rule:
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backward(N,c;) = Pgna(stop|c) (2.34)

backward(i,c;) = ) Peans(cklc;) x backward(i + 1, ¢;) X Pemiss(Xi+1/ck) (2.35)
[SASVAN

backward(0,start) = ) Ppit(ck|start) x backward (1, cg) X Pemiss(1ck)- (2.36)
crEN

Using the backward trellis one can compute the likelihood simply as:.

P(X = x) = backward(0, start). (2.37)

The forward backward algorithm

We have seen how we can compute the probability of a sequence x using the the forward and backward prob-
abilities by computing forward(N + 1, st op) and backward (0, st art ) respectively. Moreover, the probability
of a sequence x can be computed with both forward and backward probabilities at a particular position i. The
probability of a given sequence x at any position i in the sequence can be computed as followsﬁ

P(X:x) = 2P(Xlle,...,XN:xN,Yi:ck)
ckEA
= Z P(Xl = xl/---/Xi = xi,Yi = Ck) X P(Xi+1 = Xit1,-- -/XN = xN|Yl~ = Ck)
wen forward (i,cx) backward (i,cx )
= ) forward(i,c) x backward(i, c). (2.38)
ckEA

This equation will work for any choice of i. Although redundant, this fact is useful when implementing
an HMM as a sanity check that the computations are being performed correctly, since one can compute this
expression for several i; they should all yield the same value.

Algorithm [7|shows the pseudo code for the forward backward algorithm. The reader can notice that the
forward and backward computations in the algorithm make use of P,iss and Pigns. There are a couple of
details that should be taken into account if the reader wants to understand the algorithm using scores instead
of probabilities.

e forward(i,¢) is computed using P,,iss (x;|¢) which does not depend on the sum over all possible states
cx € A. Therefore when taking the logarithm of the sum over all possible states the recurrence of the
forward computations can be split as a sum of two logarithms.

* backward(i,¢) is computed using Pgans(cx|¢) and Pemiss (X;+1|cx) both of which depend on ¢k. Therefore
when taking the logarithm of the sum the expression cannot be split as a sum of logarithms.

Exercise 2.5 Run the provided forward-backward algorithm on the first train sequence. Observe that both the forward
and the backward passes give the same log-likelihood.

log_likelihood, forward = hmm.decoder.run_forward(initial scores, transition_scores,
final scores, emission_scores)
'Log-Likelihood =', log_likelihood

Log-Likelihood = -5.06823232601
log_likelihood, backward = hmm.decoder.run_backward(initial_ scores, transition_scores,

final scores, emission_scores)
'Log-Likelihood =', log_likelihood

Log-Likelihood = -5.06823232601

6 The second equality in can be justified as follows. Since Y; = y; is observed then X; 1, ..., Xy is conditionally independent from
any Xy for k < i. Therefore P(xy,...,xN,Y;) = P(xiy1,..., xnlyi,x1,...,x;) - P(yi,x1,...,x;) = P(xiy1,...,xnyi) - P(yi,x1,...,%x;) =
backward(i,y;) - forward (i, y;).
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Algorithm 7 Forward-Backward algorithm

1: input: sequence x1, ..., xn, scores Pinit, Prrans, Pfinal, Pemiss

2: Forward pass: Compute the forward probabilities

3: forcy € A do

4: forward(l, Ck) = Pinit(ck|start) X Pemiss(xl|ck)

5. end for

6: fori =2to N do

7. foré e A do

8: forward(i,¢) = [ ) Prrans(é|ck) x forward(i — 1,ck)> X Pomniss (%i]€)
crEA

9: end for
10: end for

11: Backward pass: Compute the backward probabilities

12: forcy € A do

13:  backward(N, c;) = Pgna(stop|ck)

14: end for

15: fori =N —1to1do

16: foré € A do

17: backward(i,¢) = ) Prrans(ck|€) x backward (i + 1, ¢) X Pemiss(Xit1]ck)
ckEA

18:  end for

19: end for

20: output: The forward and backward probabilities.

Given the forward and backward probabilities, one can compute both the state and transition posteriors
(you can hint why by looking at the term inside the sum in Eq.[2.38).

forward (i, y;) x backward (i, y;)

State Posterior: P(Y; =y;|X =x) = P(X = ) ; (2.39)
Transition Posterior: P(Y; =y;, Y1 =yi1| X =x) =
forward (i, yi) X Pians(Yit1|Yi) X Pemiss(Xiy1|yiy1) x backward(i +1,y11) (2.40)

P(X =x)

A graphical representation of these posteriors is illustrated in Figure On the left it is shown that
forward (i, y;) x backward (i, y;) returns the sum of all paths that contain the state y;, weighted by P(X = x);
on the right we can see that forward (i, ¥;) X Perans(Yi+1|Vi) X Pemiss(Xi+1|yit+1) X backward(i 4+ 1,y;41) returns
the same for all paths containing the edge from y; to y;;.

As a practical example, given that the person performs the sequence of actions “walk walk shop clean”,
we want to know the probability of having been raining in the second day. The state posterior probability for
this event can be seen as the probability that the sequence of actions above was generated by a sequence of
weathers and where it was raining in the second day. In this case, the possible sequences would be all the
sequences which have rainy in the second position.

Using the state posteriors, we are ready to perform posterior decoding. The strategy is to compute the state
posteriors for each positioni € {1,..., N} and each state ¢, € A, and then pick the arg-max at each position:

¥; == argmax P(Y; = y;| X = x). (2.41)
Yi€EA
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rainy rainy rainy rainy rainy

AN

X
_/ / / /
sunny sunny sunny sunny sunny sunny sunny sunny
forward(2, sunny)  backward(2, sunny) forward(2, sunny) backward(3, sunny)

Pirans(sunny|sunny)  Popiss(shop|sunny)

Figure 2.3: A graphical representation of the components in the state and transition posteriors. Recall that the
observation sequence is “walk walk shop clean”.

Exercise 2.6 Compute the node posteriors for the first training sequence (use the provided compute_posteriors func-
tion), and look at the output. Note that the state posteriors are a proper probability distribution (the lines of the result
sum to 1).

initial_scores, transition_scores, final_ scores, emission_scores = hmm.compute_scores (
simple.train.seq list[0])
state_posteriors, _, _ = hmm.compute_posteriors(initial_scores,
transition scores,
final_ scores,
emission_scores)
state_posteriors

[[ 0.95738152 0.04261848]
[ 0.75281282 0.24718718]
[ 0.26184794 0.73815206]
[ 0. 1. 11

Exercise 2.7 Run the posterior decode on the first test sequence, and evaluate it.

y_pred = hmm.posterior_decode (simple.test.seq _list[0])
"Prediction test 0:", y_pred

walk/rainy walk/rainy shop/sunny clean/sunny

"Truth test 0:", simple.test.seq _list[0]

walk/rainy walk/sunny shop/sunny clean/sunny

Do the same for the second test sequence:

y_pred = hmm.posterior_decode (simple.test.seq list[1])
"Prediction test 1:", y_pred

clean/rainy walk/rainy tennis/rainy walk/rainy

"Truth test 1:", simple.test.seq_list[1]

clean/sunny walk/sunny tennis/sunny walk/sunny

What is wrong? Note the observations for the second test sequence: the observation tennis was never seen at
training time, so the probability for it will be zero (no matter what state). This will make all possible state sequences have
zero probability. As seen in the previous lecture, this is a problem with generative models, which can be corrected using
smoothing (among other options).
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Change the train_supervised method to add smoothing:

train supervised(self,sequence_list, smoothing):

Try, for example, adding 0.1 to all the counts, and repeating this exercise with that smoothing. What do you observe?

hmm.train_ supervised(simple.train, smoothing=0.1)
y_pred = hmm.posterior_decode (simple.test.seq _list[0])
"Prediction test 0 with smoothing:", y_pred
walk/rainy walk/rainy shop/sunny clean/sunny
"Truth test 0:", simple.test.seq _list[0]

walk/rainy walk/sunny shop/sunny clean/sunny

y_pred = hmm.posterior_decode (simple.test.seq list[1])
"Prediction test 1 with smoothing:", y_pred

clean/sunny walk/sunny tennis/sunny walk/sunny

"Truth test 1:", simple.test.seq _list[1]

clean/sunny walk/sunny tennis/sunny walk/sunny

2.4.3 Viterbi Decoding

Viterbi decoding consists in picking the best global hidden state sequence ¥ as follows:

y=argmaxP(Y =y|X = x) = argmaxP(X =x,Y =y). (2.42)
yeEAN yEAN

The Viterbi algorithm is very similar to the forward procedure of the FB algorithm, making use of the same
trellis structure to efficiently represent the exponential number of sequences without prohibitive computation
costs. In fact, the only difference from the forward-backward algorithm is in the recursion where instead
of summing over all possible hidden states, we take their maximum.

Viterbi viterbi(i,y;) = max P(Yiy=vy1,...Yi =y, X1 =x1,..., Xi = x;) (2.43)
Y1-Yi-1
The Viterbi trellis represents the path with maximum probability in position i when we are in state Y; = y;
and that we have observed xy,...,x; up to that position. The Viterbi algorithm is defined by the following
recurrence:

ViteI’bi(l, Ck) = Pinit(ck| Start) X Pemiss(xl |Ck) (2~44)
viterbi(i,cx) = <ma/>\< Pirans(ck|c;) x viterbi(i — 1, c,)> X Pemiss (Xi]ck) (2.45)
cre
backtrack(i,¢y) = (arg max Pyrans (ck|¢;) X viterbi(i — 1,cl)> (2.46)
clEN
viterbi(N 4+ 1, stop) = max Ppinal(stople;) x viterbi(N, ¢;) (2.47)
ce

backtrack(N +1,stop) = argmax Pynq(stop|c) x viterbi(N, ¢;). (2.48)

clEN

Algorithm (8| shows the pseudo code for the Viterbi algorithm. Note the similarity with the forward algo-
rithm. The only differences are:

* Maximizing instead of summing;

* Keeping the argmax’s to backtrack.
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Algorithm 8 Viterbi algorithm
1: input: sequence x1, ..., xn, scores Pinit, Prrans, Pfinal, Pemiss

2: Forward pass: Compute the best paths for every end state
3: Initialization
4: forcy € A do
5: Viterbi(l, Ck) = Pinit(ck\start) X Pemiss(x1|ck)
6: end for
7: fori =2to N do
8: forcp € A do
9: viterbi(i, cx) = (ma{>\< Prrans (ck|cy) x viterbi(i — 1, cl)) X Pemiss (Xi|ck)
ce
10: backtrack(7, ¢x) = | arg max Pgans(ck|c;) X viterbi(i —1,¢;)
cEN
11:  end for
12: end for
13: max, e v P(X = x,Y =y) := maxgep Phna(stop|c;) X viterbi(N, ¢;)
14:

15: Backward pass: backtrack to obtain the most likely path
16: Y = argmax, ¢ x Phinal(stop|c;) X viterbi(N, ¢;)

17: fori =N —1to1do

18:  i; = backtrack(i +1,%;41)

19: end for

20: output: the viterbi path 7.

2.5 Assignment

With the previous theoretical background, you have the necessary tools to solve today’s assignment.

Exercise 2.8 Implement a method for performing Viterbi decoding in file sequence_classification_decoder.py.

run viterbi (self, initial scores, transition scores, final_scores,
emission_scores) :

Hint: look at the implementation of run_forward. Also check the help for the numpy methods max and argmax.
This method will be called by

viterbi_decode (sclf, sequence)

in the module sequence_classifier.py.
Test your method on both test sequences and compare the results with the ones given.

hmm.train_ supervised(simple.train, smoothing=0.1)
y_pred, score = hmm.viterbi_decode (simple.test.seq _list[0])

"Viterbi decoding Prediction test 0 with smoothing:", y_pred, score
walk/rainy walk/rainy shop/sunny clean/sunny -6.02050124698

"Truth test 0:", simple.test.seq _list[0]

walk/rainy walk/sunny shop/sunny clean/sunny

y_pred, score = hmm.viterbi_decode (simple.test.seq list[1])
"Viterbi decoding Prediction test 1 with smoothing:", y_pred, score

clean/sunny walk/sunny tennis/sunny walk/sunny -11.713974074

"Truth test 1:", simple.test.seq_list[1]
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clean/sunny walk/sunny tennis/sunny walk/sunny I

Note: since we didn’t run the train_supervised method again, we are still using the result of the training using
smoothing. Therefore, you should compare these results to the ones of posterior decoding with smoothing.

2.6 Part-of-Speech Tagging (POS)

Part-of-Speech (PoS) tagging is one of the most important NLP tasks. The task is to assign each word a gram-
matical category, or Part-of-Speech, i.e. noun, verb, adjective,... Recalling the defined notation, X is a vocabu-
lary of word types, and A is the set of Part-of-Speech tags.

In English, using the Penn Treebank (PTB) corpus (Marcus et al.,[1993), the current state of the art for part
of speech tagging is around 97% for a variety of methods.

In the rest of this class we will use a subset of the PTB corpus, but instead of using the original 45 tags we
will use a reduced tag set of 12 tags, to make the algorithms faster for the class. In this task, x is a sentence (i.e.,
a sequence of word tokens) and v is the sequence of possible PoS tags.

The first step is to load the corpus. We will start by loading 1000 sentences for training and 1000 sentences
both for development and testing. Then we train the HMM model by maximum likelihood estimation.

lxmls.readers.pos_corpus pcc

corpus = pcc.PostagCorpus ()

train_seqg = corpus.read_sequence_list_conll("data/train-02-21.conll",max_sent_len=15,
max_nr_sent=1000)

test_seq = corpus.read_sequence_list_conll ("data/test-23.conll",max_sent_len=15,
max_nr_sent=1000)

dev_seq = corpus.read_sequence_list_conll ("data/dev-22.conll",max_sent_len=15,max_nr_sent
=1000)

hmm = hmmc.HMM (corpus.word_dict, corpus.tag_dict)
hmm.train_supervised(train_seq)
hmm.print_transition_matrix()

Look at the transition probabilities of the trained model (see Figure[2.4), and see if they match your intuition
about the English language (e.g. adjectives tend to come before nouns).

noun
adp
det

num

prt
verb

conj

adv
pron

ad]

adp
det
num
prt
verb
conj
adv
pron
ad]

c
3
[=]
=

Figure 2.4: Transition probabilities of the trained model. Each column is the previous state and row is the
current state. Note the high probability of having Noun after Determinant or Adjective, or of having Verb after
Nouns or Pronouns, as expected.
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Exercise 2.9 Test the model using both posterior decoding and Viterbi decoding on both the train and test set, using the
methods in class HMM:

viterbi_pred_train = hmm.viterbi_decode_corpus (train_seq)

posterior_pred_train = hmm.posterior_decode_corpus (train_seq)
eval viterbi_train = hmm.evaluate_corpus (train_seq, viterbi_pred_train)
eval_posterior_train = hmm.evaluate_corpus (train_seq, posterior_pred_train)

"Train Set Accuracy: Posterior Decode %.3f, Viterbi Decode: $%.3f"%(
eval_posterior_train,eval_viterbi_train)
Train Set Accuracy: Posterior Decode 0.985, Viterbi Decode: 0.985

viterbi_pred _test = hmm.viterbi_decode_corpus (test_seq)
posterior_pred_test = hmm.posterior_decode_corpus (test_seq)
eval viterbi_test = hmm.evaluate_corpus (test_seq,viterbi_pred test)

eval_ posterior_test = hmm.evaluate_corpus (test_seq,posterior_pred_test)
"Test Set Accuracy: Posterior Decode %.3f, Viterbi Decode: %.3f"%(
eval_posterior_test,eval_viterbi_test)
Test Set Accuracy: Posterior Decode 0.350, Viterbi Decode: 0.509

What do you observe? Remake the previous exercise but now train the HMM using smoothing. Try different values
(0,0.1,0.01,1) and report the results on the train and development set. (Use function pick_best_smoothing).

best_smoothing = hmm.pick_best_smoothing (train_seq, dev_seq, [10,1,0.1,0])

Smoothing 10.000000 —-- Train Set Accuracy: Posterior Decode 0.731, Viterbi Decode: 0.691
Smoothing 10.000000 —-- Test Set Accuracy: Posterior Decode 0.712, Viterbi Decode: 0.675
Smoothing 1.000000 —-- Train Set Accuracy: Posterior Decode 0.887, Viterbi Decode: 0.865
Smoothing 1.000000 —-- Test Set Accuracy: Posterior Decode 0.818, Viterbi Decode: 0.792
Smoothing 0.100000 —-- Train Set Accuracy: Posterior Decode 0.968, Viterbi Decode: 0.965
Smoothing 0.100000 ——- Test Set Accuracy: Posterior Decode 0.851, Viterbi Decode: 0.842
Smoothing 0.000000 -- Train Set Accuracy: Posterior Decode 0.985, Viterbi Decode: 0.985
Smoothing 0.000000 —-- Test Set Accuracy: Posterior Decode 0.370, Viterbi Decode: 0.526

hmm.train_supervised(train_seq, smoothing=best_smoothing)
viterbi_pred _test = hmm.viterbi_decode_corpus (test_seq)
posterior._pred_test = hmm.posterior_decode_corpus (test_seq)
eval viterbi_test = hmm.evaluate_corpus (test_seq, viterbi_pred test)
eval_ posterior_test = hmm.evaluate_corpus (test_seq, posterior_pred_test)
"Best Smoothing %f -- Test Set Accuracy: Posterior Decode %.3f, Viterbi Decode: $%.
3f"% (best_smoothing,eval_posterior_test,eval_viterbi_test)

Best Smoothing 0.100000 -- Test Set Accuracy: Posterior Decode 0.837, Viterbi Decode: 0.
827

Perform some error analysis to understand were the errors are coming from. You can start by visualizing the confusion
matrix (true tags vs predicted tags). You should get something like what is shown in Figure[2.5]

Ixmls.sequences.confusion_matrix cm
matplotlib.pyplot plt
confusion_matrix = cm.build confusion_matrix(test_seq.seq_list, viterbi_pred test, len(
corpus.tag_dict), hmm.get_num _states())

cm.plot_confusion_bar_graph (confusion_matrix, corpus.tag_dict, xrange (hmm.get_num states
()), 'Confusion matrix')
plt.show()

2.7 Unsupervised Learning of HMMs

We next address the problem of unsupervised learning. In this setting, we are not given any labeled data; all we
get to see is a set of natural language sentences. The underlying question is:
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Figure 2.5: Confusion Matrix for the previous example. Predicted tags are columns and the true tags corre-
sponds to the constituents of each column.

Can we learn something from raw text?

This task is challenging, since the process by which linguistic structures are generated is not always clear; and
even when it is, it is typically too complex to be formally expressed. Nevertheless, unsupervised learning
has been applied to a wide range of NLP tasks, such as: Part-of-Speech Induction (Schiitze, |1995; Merialdo)
1994; Clark) 2003), Dependency Grammar Induction (Klein and Manning), 2004; Smith and Eisner), 2006), Con-
stituency Grammar Induction (Klein and Manning)[2004), Statistical Word Alignments (Brown et al.,[1993)) and
Anaphora Resolution (Charniak and Elsner, 2009), just to name a few.

Different motivations have pushed research in this area. From both a linguistic and cognitive point of view,
unsupervised learning is useful as a tool to study language acquisition. From a machine learning point of view,
unsupervised learning is a fertile ground for testing new learning methods, where significant improvements
can yet be made. From a more pragmatic perspective, unsupervised learning is required since annotated
corpora is a scarce resource for different reasons. Independently of the reason, unsupervised learning is an
increasingly active field of research.

A first problem with unsupervised learning, since we don’t observe any labeled data (i.e., the training set is
now Dy = {x!,...,xM}), is that most of the methods studied so far (e.g., Perceptron, MIRA, SVMs) cannot be
used since we cannot compare the true output with the predicted output. Note also that a direct minimization
of the complete negative log-likelihood of the data, log Py(X! = x1,...,XM = x™), is very challenging, since it
would require marginalizing out (i.e., summing over) all possible hidden variables:

M
log Pp(X' = xt, ..., XM =x") = Y log ) Py(X =x™,Y =y). (2.49)
m=1 yeEA

Note also that the objective above is non-convex even for a linear model: hence, it may have local minima,
which makes optimization much more difficult.

The most common optimization method in the presence of hidden (latent) variables is the Expectation
Maximization (EM) algorithm, described in the next section. Note that this algorithm is a generic optimization
routine that does not depend on a particular model. Later, in Section 2.7.2] we will apply the EM algorithm to
the task of part-of-speech induction, where one is given raw text and a number of clusters and the task is to
cluster words that behave similarly in a grammatical sense.

2.7.1 Expectation Maximization Algorithm
Given the training corpus Dy; := {x!,...,xM}, training seeks model parameters 6 that minimize the negative
log-likelihood of the corpus:
- 1 M
Negative Log Likelihood: £(0) = E[—log Py(X)] = M Yolog | Y P(X=x",Y=y")|, (250)
m=1 y

me A
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where E[f(X)] := 4 XM | f(x™) denotes the empirical average of a function f over the training corpus. Be-
cause of the hidden variables y S, yM, the likelihood term contains a sum over all possible hidden structures
inside of a logarithm, which makes this quantity hard to compute.

The most common minimization algorithm to fit the model parameters in the presence of hidden variables
is the Expectation-Maximization (EM) algorithm. The EM procedure can be thought of intuitively in the fol-
lowing way. If we observe the hidden variables’ values for all sentences in the corpus, then we could easily
compute the maximum likelihood value of the parameters as described in Section On the other hand,
if we had the model parameters we could label data using the model, and collect the sufficient statistics de-
scribed in Section However, since we are working in an unsupervised setting, we never get to observe
the hidden state sequence. Instead, given the training set Dy = {x!...xM}, we will need to collect expected
sufficient statistics (in this case, expected counts) that represent the number of times that each hidden variable
is expected to be used with the current parameters setting. These expected sufficient statistics will then be
used during learning as “fake” observations of the hidden variables. Using the state and transition posterior
distributions described in Equations and the expected sufficient statistics can be computed by the
following formulas:

M
Initial Counts: Cipit(cx) = Z Po(Y" = ¢ | X" =x™); (2.51)
m=1
Transition Counts:  Cirans(ck, ;) Z Z Po(Y" = ANY" =¢; | X" =x™); (2.52)
m=1i=2
M
Final Counts: Cgpna(ck) Z YN = | X" =a"); (2.53)
m=1
M N
Emission Counts:  Cemiss (W), ¢) = ): 2 wi)Py(Y" = ¢ | X" = x™); (2.54)

Compare the previous equations with the ones described in Section 2.3 for the same quantities (Eqs.
2.7). The main difference is that while in the presence of supervised data you sum the observed events, when
you have no label data you sum the posterior probabilities of each event. If these probabilities were such that
the probability mass was around single events then both equations will produce the same result.

The EM procedure starts with an initial guess for the parameters 6° at time t = 0. The algorithm keeps
iterating until it converges to a local minima of the negative log likelihood. Each iteration is divided into two
steps:

e The E-Step (Expectation) computes the posteriors for the hidden variables Py (Y|X = x™) given the
current parameter values 6! and the observed variables X = x™ for the m-th sentence. For an HMM, this
can be done through the Forward-Backward algorithm described in the previous sections.

* The M-step (Maximization) uses those posteriors Py (Y|X = x™) to “softly fill in” the values of the
hidden variables Y™, and collects the sufficient statistics: initial counts (Eq: [2.51), transition counts (Eq:
[2.52), final counts (Eq: [2.53), and emission counts (Eq: 2.54). These counts are then used to estimate
maximum likelihood parameters /!, as described in Section

The EM algorithm is guaranteed to converge to a local minimum of the negative log-likelihood £(6), under
mild conditions. Note that we are not committing to the best assignment of the hidden variables, but summing
the occurrences of each parameter weighed by the posterior probability of all possible assignments. This
modular split into two intuitive and straightforward steps accounts for the vast popularity of EME]

Algorithm P|presents the pseudo code for the EM algorithm.

One important thing to note in Algorithm[J]is that for the HMM model we already have all the model pieces
we require. In fact the only method we don’t have yet implemented from previous classes is the method to
update the counts given the posteriors.

Exercise 2.10 Implement the method to update the counts given the state and transition posteriors.

update_ counts (self, sequence, state_posteriors, transition posteriors): I

"More formally, EM minimizes an upper bound of £(8) via block-coordinate descent. See|Neal and Hinton|(1998) for details. Also, even
though we are presenting EM in the context of HMMs, this algorithm can be more broadly applied to any probabilistic model with latent
variables.
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Algorithm 9 EM algorithm.

1: input: dataset Dy, initial model 6
2: fort =1to T do

4:  E-Step:

5. Clear counts: Cinit(.) = Ctrans(-,-) = Ctinal(-) = Cemiss(--) =0

6: forx™ € Dy do

7 Compute posterior expectations Py (Y;|X = x™) and Py(Y;, Yi+1|X = x™) using the current model 6
8 Update counts as shown in Egs.

9

:  end for
10:
11:  M-Step:
122 Update the model parameters 6 based on the counts.
13: end for

—

You now have all the pieces to implement the EM algorithm. Look at the code for EM algorithm in file sequences/hmm.py
and check it for yourself.

train EM(self, dataset, smoothing=0, num_epochs=10, evaluate=True) :

self.initialize random/()

evaluate:
acc = self.evaluate EM(dataset)
"Initial accuracy: %f"%(acc)

t xrange (1, num_epochs) :
#E-Step
total log_likelihood = 0.0
self.clear_counts (smoothing)
sequence dataset.seq_list:
# Compute scores given the observation sequence.
initial_scores, transition_scores, final_scores, emission_scores = \
self.compute_scores (sequence)

state_posteriors, transition_posteriors, log _likelihood = \
self.compute_posteriors(initial_ scores,
transition_scores,
final_ scores,
emission_scores)

self.update_counts (sequence, state_posteriors, transition _posteriors)
total log_likelihood += log_likelihood
"Iter: %1 Log Likelihood: %f"$%(t, total_log likelihood)
#M-Step

self.compute_parameters ()
evaluate:
### Evaluate accuracy at this iteration
acc = self.evaluate EM(dataset)
"Iter: %i Accuracy: $f"%(t,acc)

2.7.2 Part of Speech Induction

In this section we present the Part-of-Speech induction task. Part-of-Speech tags are pre-requisite for many
text applications. The task of Part-of-Speech tagging where one is given a labeled training set of words and
respective tags is a well studied task with several methods achieving high prediction quality, as we saw in the
first part of this chapter.
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On the other hand the task of Part-of-Speech induction where one does not have access to a labeled corpus
is a much harder task with a huge space for improvement. In this case, we are given only the raw text along
with sentence boundaries and a predefined number of clusters we can use. This problem can be seen as a
clustering problem. We want to cluster words that behave grammatically in the same way on the same cluster.
This is a much harder problem.

Depending on the task at hand we can pick an arbitrary number of clusters. If the goal is to test how well
our method can recover the true POS tags then we should use the same number of clusters as POS tags. On
the other hand, if the task is to extract features to be used by other methods we can use a much bigger number
of clusters (e.g., 200) to capture correlations not captured by POS tags, like lexical affinity.

Note, however that nothing is said about the identity of each cluster. The model has no preference in
assigning cluster 1 to nouns vs cluster 2 to nouns. Given this non-identifiability several metrics have been
proposed for evaluation (Reichart and Rappoport,[2009;[Haghighi and Klein, [2006; Meild, 2007; Rosenberg and
Hirschberg| 2007). In this class we will use a common and simple metric called 1-Many, which maps each
cluster to majority pos tag that it contains (see Figure 2.6|for an example).

3500

— r‘10un ‘ dclet - . ‘- Iverbl- a&v ‘ adlj

30001 N adp num prt Bl conj I pron
2500 |-
2000
1500 -
1000
500 iii

0 houn —noun . Tum g noun velrb colnj Toun’ prbn noun

Figure 2.6: Confusion Matrix example. Each cluster is a column. The best tag in each column is represented
under the column (1-many) mapping. Each color represents a true Pos Tag.

Exercise 2.11 Run 20 epochs of the EM algorithm for part of speech induction:

hmm.train EM(train_seq, 0.1, 20, evaluate=True)

viterbi_pred_test = hmm.viterbi_decode_corpus (test_seq)
posterior_pred_test = hmm.posterior_decode_corpus (test_seq)
eval_viterbi_test = hmm.evaluate_ corpus (test_seq, viterbi_pred _test)
eval_posterior_test = hmm.evaluate_corpus (test_seq, posterior_pred test)

Initial accuracy: 0.303638

Iter:
Iter:
Iter:
Iter:
Iter:

Log Likelihood: -75242.572729
Accuracy: 0.391121
Log Likelihood: -74392.892496
Accuracy: 0.404249
Log Likelihood: —-73357.542833

Iter: 1 Log Likelihood: -101824.763927
Iter: 1 Accuracy: 0.305441
Iter: 2 Log Likelihood: -78057.108346
Iter: 2 Accuracy: 0.321976
Iter: 3 Log Likelihood: -77813.725501
Iter: 3 Accuracy: 0.357451
Iter: 4 Log Likelihood: -77192.947674
Iter: 4 Accuracy: 0.385109
Iter: 5 Log Likelihood: -76191.800849
Iter: 5 Accuracy: 0.392123

6

6

7

7

8
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Iter: 8 Accuracy: 0.399940

Iter: 9 Log Likelihood: -72135.182778

Iter: 9 Accuracy: 0.399238

Iter: 10 Log Likelihood: -70924.246230
Iter: 10 Accuracy: 0.395430

Iter: 11 Log Likelihood: -69906.561800
Iter: 11 Accuracy: 0.394328

Iter: 12 Log Likelihood: -69140.228623
Iter: 12 Accuracy: 0.390821

Iter: 13 Log Likelihood: -68541.416423
Iter: 13 Accuracy: 0.391522

Iter: 14 Log Likelihood: -68053.456865
Iter: 14 Accuracy: 0.389117

Iter: 15 Log Likelihood: -67667.318961
Iter: 15 Accuracy: 0.386411

Iter: 16 Log Likelihood: -67337.685686
Iter: 16 Accuracy: 0.385409

Iter: 17 Log Likelihood: —-67054.571821
Iter: 17 Accuracy: 0.385409

Iter: 18 Log Likelihood: -66769.973881
Iter: 18 Accuracy: 0.385409

Iter: 19 Log Likelihood: —-66442.608458
Iter: 19 Accuracy: 0.385409

confusion_matrix = cm.build confusion_matrix(test_seq.seq_list, viterbi_pred_ test,
len (corpus.taqg_dict), hmm.get_num states())
cm.plot_confusion_bar._graph (confusion_matrix, corpus.tag_dict,
xrange (hmm.get_num_states()), 'Confusion matrix')

Note: your results may not be the same as in this example since we are using a random start, but the trend should be the
same, with log-likelihood increasing at every iteration.

In the previous exercise we used an HMM to do Part-of-Speech induction using 12 clusters (by omission
the HMM uses as number of hidden states the one provided by the corpus). A first observation is that the
log-likelihood is always increasing as expected. Another observation is that the accuracy goes up from 32% to
38%. Note that normally you will run this algorithm for 200 iterations, we stopped earlier for time constraints.
Another observation is that the accuracy is not monotonic increasing, this is because the likelihood is not a
perfect proxy for the accuracy. In fact all that the likelihood is measuring are co-occurrences of words in the
corpus; it has no idea of pos tags. The fact that we are improving derives from the fact that language is not
random but follows some specific hidden patterns. In fact this patterns are what true pos-tags try to capture.
A final observation is that the performance is really bad compared to the supervised scenario, so there is a
lot of space for improvement. The actual state of the art is around 71% for fully unsupervised (Graga, 2010;
Berg-Kirkpatrick et al.|[2010) and 80% (Das and Petrov} 2011) using parallel data and information from labels
in the other language.

Looking at Figure 2.6, it shows the confusion matrix for this particular example. A first observation is that
most clusters are mapped to nouns, verbs or punctuation. This is a known fact since there are many more
nouns and verbs than any other tags. Since maximum likelihood prefers probabilities to be uniform (imagine
two parameters: in one setting both have value 0.5 so the likelihood will be 0.5%0.5 = 0.25, while in the other
case one as 0.1 and 0.9 so the maximum likelihood is 0.09). Several approaches have been proposed to address
this problem, moving towards a Bayesian setting (Johnson| [2007), or using Posterior Regularization (Graca
et al., 2009).
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Day 3
Learning Structured Predictors

In this class, we will continue to focus on sequence classification, but instead of following a generative ap-
proach (like in the previous chapter) we move towards discriminative approaches. Recall that the difference
between these approaches is that generative approaches attempt to model the probability distribution of the
data, P(X,Y), whereas discriminative ones only model the conditional probability of the sequence, given the
observed data, P(Y|X).

Today’s Assignment

The assignment of today’s class is to implement the structured version of the perceptron algorithm.

3.1 Classification vs Sequential Classification

Table [3.1| shows how the models for classification have counterparts in sequential classification. In fact, in the
last chapter we discussed the Hidden Markov model, which can be seen as a generalization of the Naive Bayes
model for sequences. In this chapter, we will see a generalization of the Perceptron algorithm for sequence
problems (yielding the Structured Perceptron, |Collins|2002) and a generalization of Maximum Entropy model
for sequences (yielding Conditional Random Fields, Lafferty et al.[2001). Note that both these generalizations
are not specific for sequences and can be applied to a wide range of models (we will see in tomorrow’s lecture
how these methods can be applied to parsing). Although we will not cover all the methods described in
Chapter |1} bear in mind that all of those have a structured counterpart. It should be intuitive after this lecture
how those methods could be extended to structured problems, given the perceptron example.

Classification | Sequences
Generative
Naive Bayes (Sec. | Hidden Markov Models (Sec.
Discriminative
Perceptron (Sec.[1.4.3) Structured Perceptron (Sec.[3.5)
Maximum Entropy (Sec.[1.4.4) | Conditional Random Fields (Sec.

Table 3.1: Summary of the methods used for classification and sequential classification covered in this guide.

Throughout this chapter, we will be searching for the solution of

argmax P(Y = y|X = x) = argmaxw - f(x,y). (3.1)
yEAN yEAN

where w is a weight vector, and f(x,y) is a feature vector. We will see that this sort of linear models are more
flexible than HMMs, in the sense that they may incorporate more general features while being able to reuse
the same decoders (based on the Viterbi and forward-backward algorithms). In fact, the exercises in this lab will
not touch the decoders that have been developed in the previous lab. Only the training algorithms and the function
that compute the scores will change.

As in the previous section, y = yj ...y is a sequence so the maximization is over an exponential number
of objects, making it intractable for brute force methods. Again we will make an assumption analogous to the
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“first order Markov independence property,” so that the features may decompose as a sum over nodes and
edges in a trellis. This is done by assuming that expression [3.1]can be written as:

N N-1
argmNaX Z w - femiss(i/ x/}/i) +w- finit(x/yl) + Z w - ftrans(i/ xf]/i/yiJrl) +w- ffinal(x'yN) (3'2)
yeAT =l SCOT€emiss SCOTe;nit i=1 SCOTetrans SCOTefinal

In other words, the scores scoreemiss, SCOT€init, SCOT€trans and scoreg,, are now computed as inner products
between weight vectors and feature vectors rather than log-probabilities. The feature vectors depend locally
on the output variable (i.e., they only look at a single y; or a pair y;, y;11); however they may depend globally
on the observed input x = x1,...,xN.

3.2 Features

In this section we will define two simple feature setsE] The first feature set will only use identity features,
and will mimic the features used by the HMM model from the previous section. This will allow us to directly
compare the performance of a generative vs a discriminative approach. Table [3.2|depicts the features that are
implicit in the HMM, which was the subject of the previous chapter. These features are indicators of initial,
transition, final, and emission events.

Condition Name
yi=c&i=0 Initial Features

y; = ¢x & y;—1 = ¢; | Transition Features
yi=c&i=N Final Features

xi = w; &y = ck Emission Features

Table 3.2: IDFeatures feature set. This set replicates the features used by the HMM model.

Note that the fact that we were using a generative model has forced us (in some sense) to make strong
independence assumptions. However, since we now move to a discriminative approach, where we model
P(Y|X) rather than P(X,Y), we are not tied anymore to some of these assumptions. In particular:

* We may use “overlapping” features, e.g., features that fire simultaneously for many instances. For exam-
ple, we can use a feature for a word, such as a feature which fires for the word "brilliantly”, and another
for prefixes and suffixes of that word, such as one which fires if the last two letters of the word are "ly”.
This would lead to an awkward model if we wanted to insist on a generative approach.

* We may use features that depend arbitrarily on the entire input sequence x. On the other hand, we still
need to resort to “local” features with respect to the outputs (e.g. looking only at consecutive state pairs),
otherwise decoding algorithms will become more expensive.

This leads us to the second feature set, composed of features that are traditionally used in POS tagging
with discriminative models. See Table 3.3|for some examples. Of course, we could have much more complex
features, looking arbitrarily to the input sequence. We are not going to have them in this exercise only for
performance reasons (to have less features and smaller caches). State-of-the-art sequence classifiers can easily
reach over one million features!

Our features subdivide into two groups: f . isss finitr aNd fna are all instances of node features, depending
only on a single position in the state sequence (a node in the trellis); f,.. ., are edge features, depending on two
consecutive positions in the state sequence (an edge in the trellis). Similarly as in the previous chapter, we
have the following scores (also called log-potentials in the literature on CRFs and graphical models):

e [nitial scores. These are scores for the initial state. They are given by
scoreinit (X, Y1) = W - fini (X, Y1) (3.3)
e Transition scores. These are scores for two consecutive states at a particular position. They are given by

scoretrans(i, X, Yis yi+l) =w:- ftrans(i/ X, Yi, yi+l)' (3'4)

1 Although not required, all the features we will use are binary features, indicating whether a given condition is satisfied or not.
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Condition Name

yi=c&i=0 Initial Features

yi = cx & Yi—1 = ¢ Transition Features
yi=cc&i=N Final Features

xi =w; &y = ck Basic Emission Features
x; = w; & w; is uppercased & y; = ¢ Uppercase Features

x; = w; & w; contains digit & y; = ¢x Digit Features

x; = w; & w; contains hyphen & y; = ¢ Hyphen Features

x; = w; & w;[0..i]Vi € [1,2,3] & y; = ¢, Prefix Features

xj = w; & wjf|w;| —i..|w;|]Vi € [1,2,3] & y; = ¢ | Suffix Features

Table 3.3: Extended feature set. Some features in this set could not be included in the HMM model. The fea-
tures included in the bottom row are all considered emission features for the purpose of our implementation,
since they all depend on 7, x and v;.

* Final scores. These are scores for the final state. They are given by
SCOTefinal (X, YN) = W - fina (X, YN)- (3.5)
* Emission scores. These are scores for a state at a particular position. They are given by

SCOT€emiss (1, X, Yi) = W+ famiss (1 X, Vi) (3.6)

3.3 Discriminative Sequential Classifiers
Given a weight vector w, the conditional probability P, (Y = y|X = x) is then defined as follows:

Pu(Y = y|X = x) =

1 N-1 ' N |
Z(w,7) exp (w Finity1) + Y W frans (LY Yict) F W fana(GYN) + )W foniss (i) x,yi)>(3_7)
' i=1 i=1

where the normalizing factor Z(w, x) is called the partition function:

Z(w,x) =

N-—1
2 exp (w f1n1t(x yl + Z w - ftrans(Z X, yl/yl-‘rl) +w- fﬁnal X, yN Zw femlss l X, yl)> (3'8)
yeEAN i=

3.3.1 Training

For training, the important problem is that of obtaining the weight vector w that lead to an accurate classifier.
We will discuss two possible strategies:

1. Maximizing conditional log-likelihood from a set of labeled data {(x™,y™)}M , yielding conditional
random fields. This corresponds to the following optimization problem:

M
@ = argmax Y log Py (Y = y"|X = x™). (3.9)
w m=1

To avoid overfitting, it is common to regularize with the Euclidean norm function, which is equivalent
to considering a zero-mean Gaussian prior on the weight vector. The problem becomes:

M
A
W = argmax ) log Py (Y = y"|X = x™) — §||w|\2 (3.10)
w m=1

This is precisely the structured variant of the maximum entropy method discussed in Chapter 1. Un-
like HMMs, this problem does not have a closed form solution and has to be solved with numerical
optimization.
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2. Alternatively, running the structured perceptron algorithm to obtain a weight vector w that accurately
classifies the training data. We will see that this simple strategy achieves results which are competitive
with conditional log-likelihood maximization.

3.3.2 Decoding

For decoding, there are three important problems that need to be solved:
1. Given X = x, compute the most likely output sequence i (the one which maximizes Py, (Y = y|X = x)).
2. Compute the posterior marginals Py, (Y; = y;|X = x) at each position i.
3. Evaluate the partition function Z(w, x).

Interestingly, all these problems can be solved by using the very same algorithms that were already imple-
mented for HMMs: the Viterbi algorithm (for 1) and the forward-backward algorithm (for 2-3). All that
changes is the way the scores are computed.

3.4 Conditional Random Fields

Conditional Random Fields (CRF) (Latterty et al.|,[2001)) can be seen as an extension of the Maximum Entropy
(ME) models to structured problemsE] They are globally normalized models: the probability of a given sentence
is given by Equation There are only two differences with respect to the standard ME model described a
couple of days ago for multi-class classification:

e Instead of computing the posterior marginals P(Y = y|X = x) for all possible configurations of the
output variables (which are exponentially many), it assumes the model decompose into “parts” (in this
case, nodes and edges), and it computes only the posterior marginals for those parts, P(Y; = y;|X = x)
and P(Y; = y;, Yit1 = ¥it1/X = x). Crucially, we can compute these quantities by using the very same
forward-backward algorithm that we have described for HMMs.

e Instead of updating the features for all possible outputs y’ € AN, we again exploit the decomposition
into parts above and update only “local features” at the nodes and edges.

Algorithm (10| shows the pseudo code to optimize a CRF with the stochastic gradient descent (SGD) al-
gorithm (our toolkit also includes an implementation of a quasi-Newton method, L-BFGS, which converges
faster, but for the purpose of this exercise, we will stick with SGD).

Exercise 3.1 In this exercise you will train a CRF using different feature sets for Part-of-Speech Tagging. Start with the
code below, which uses the ID feature set from table[3.2]

Ixmls.sequences.crf_online crfo
Ixmls.sequences.structured_perceptron spc
lxmls.readers.pos_corpus pcc
Ixmls.sequences.id_feature idfc
Ixmls.sequences.extended feature exfc

"CRF Exercise"

corpus = pcc.PostagCorpus ()

train_seq = corpus.read_sequence_list_conll ("data/train-02-21.conll",max_sent_len=10,
max_nr._sent=1000)

test_seq = corpus.read_sequence_list_conll ("data/test-23.conll", max_sent_len=10,
max_nr_sent=1000)

dev_seq = corpus.read_sequence_list_conll ("data/dev-22.conll",max_sent_len=10,max_nr_sent
=1000)

feature _mapper = idfc.IDFeatures (train_seq)

feature_mapper.build_ features()

2 An earlier, less successful, attempt to perform such an extension was via Maximum Entropy Markov models (MEMM) (McCallum
et al., |2000). There each factor (a node or edge) is a locally normalized maximum entropy model. A shortcoming of MEMMs is its so-
called labeling bias (Bottou}|1991), which makes them biased towards states with few successor states (see |Lafferty et al.| (2001) for more
information).
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Algorithm 10 SGD for Conditional Random Fields

1: input: D, A, number of rounds T, learning rate sequence (#¢);—1,.. T
2: initialize w! = 0

3: fort =

1to T do

4:  choose m = m(t) randomly
5 take training pair (¥, y") and compute the probability P, (Y = y"|X = x™) using the current model w
and Eq.
6 for every i, yj, and y;,,, compute marginal probabilities P(Y; = yi|X = x) and P(Y; = y;,Yi;1 =
Yi.1|X = x™) using the current model w, for each node and edge, through the forward-backward algo-
rithm.
7. compute the feature vector expectation:

Eu[f(x",Y)] = Y Pyilx™) fie(x™ y1) +
n

8:  update the model:

9: end for

10: output: W « w

T+1

N-1
Yo Y PiYiralx™) firans (i X" Yis viga) +
i=1 YiYi+1

ZP(yN\xm)ffmal(xmr]/N) +

YN

N
ZZp<yi|xm)femiss(i’xm/yi>' (311)

i=1Yi

W (1= Ag)w! + e (F(X", ") — Eqe [F(x™, Y)])

crf _onlin

Epoch: 0
Epoch: 1
Epoch: 2
Epoch: 3
Epoch: 4
Epoch: 5
Epoch: 6
Epoch: 7
Epoch: 8
Epoch: 9
Epoch: 10
Epoch: 11
Epoch: 12
Epoch: 13
Epoch: 14
Epoch: 15
Epoch: 16
Epoch: 17
Epoch: 18
Epoch: 19

e = crfo.CRFOnline (corpus.word_dict, corpus.tag_dict, feature_mapper)
crf_online.num_epochs = 20
crf_online.train_supervised(train_seq)

Objective
Objective
Objective
Objective
Objective
Objective
Objective
Objective
Objective
Objective
Objective
Objective
Objective
Objective
Objective
Objective
Objective
Objective
Objective
Objective

value:
value:
value:
value:
value:
value:
value:
value:
value:
value:

value:
value:
value:
value:
value:
value:
value:
value:
value:
value:

-5.

779018

.192724
. 717537
.436614
.240491
.091833
.973353
.875643
. 793034

721857
.659605
.604499
.555229
.510806
.470468
.433612
.399759
.368518
. 339566
.312636

You will receive feedback when each epoch is finished, note that running the 20 epochs might take a while.
After training is done, evaluate the learned model on the training, development and test sets.

pred_trai
pred_dev
pred_test

n = crf_online.viterbi_decode_corpus (train_seq)
= crf_online.viterbi_decode_corpus (dev_seq)
= crf_online.viterbi_decode_corpus (test_seq)
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eval_train = crf_online.evaluate_corpus (train_seq, pred_train)
eval_dev = crf_online.evaluate_corpus (dev_seq, pred_dev)
eval_test = crf_online.evaluate_corpus (test_seq, pred_test)

"CRF — ID Features Accuracy Train: %.3f Dev: $.3f Test: $.3f"%$(eval_train,eval_dev,

eval_test)

You should get values similar to these:

Out[]: CRF -

ID Features Accuracy Train: 0.949 Dev: 0.846 Test: 0.858

Compare with the results achieved with the HMM model (0.837 on the test set, from the previous lecture).
Even using a similar feature set a CRF yields better results than the HMM from the previous lecture. Perform
some error analysis and figure out what are the main errors the tagger is making. Compare them with the
errors made by the HMM model. (Hint: use the methods developed in the previous lecture to help you with
the error analysis).

Exercise 3.2 Repeat the previous exercise using the extended feature set. Compare the results.

feature_mapper = exfc.ExtendedFeatures (train_seq)
feature_mapper.build_features ()

crf_online = crfo.CRFOnline (corpus.word_dict, corpus.tag_dict, feature_mapper)
crf_online.num _epochs = 20
crf_online.train_supervised(train_seq)

Epoch: 0 Objective value: —-7.141596
Epoch: 1 Objective value: -1.807511
Epoch: 2 Objective value: -1.218877
Epoch: 3 Objective value: —-0.955739
Epoch: 4 Objective value: -0.807821
Epoch: 5 Objective value: -0.712858
Epoch: 6 Objective value: -0.647382
Epoch: 7 Objective value: —-0.599442
Epoch: 8 Objective value: -0.562584

Epoch: 9 Objective value: -0.533411

Epoch: 10 Objective value: -0.509885
Epoch: 11 Objective value: -0.490548
Epoch: 12 Objective value: —-0.474318
Epoch: 13 Objective value: —-0.460438
Epoch: 14 Objective value: -0.448389
Epoch: 15 Objective value: —-0.437800
Epoch: 16 Objective value: -0.428402
Epoch: 17 Objective value: -0.419990
Epoch: 18 Objective value: —-0.412406
Epoch: 19 Objective value: -0.405524

pred_train = crf_online.viterbi_decode_corpus (train_seq)
pred_dev = crf_online.viterbi_decode_corpus (dev_seq)

pred_test = crf_online.viterbi_decode_ corpus (test_seq)
eval_train = crf_online.evaluate_corpus (train_seq, pred_train)
eval_dev = crf_online.evaluate_corpus (dev_seq, pred_dev)
eval_test = crf_online.evaluate_corpus (test_seq, pred_test)

"CRF - Extended Features Accuracy Train: %.3f Dev: %.3f Test: %.3f"%(eval_train,
eval_dev,eval_test)

You should get values close to the following:
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CRF - Extended Features Accuracy Train: 0.984 Dev: 0.899 Test: 0.894

Compare the errors obtained with the two different feature sets. Do some error analysis: what errors were correct by
using more features? Can you think of other features to use to solve the errors found?

The main lesson to learn from this exercise is that, usually, if you are not satisfied by the accuracy of your
algorithm, you can perform some error analysis and find out which errors your algorithm is making. You can
then add more features which attempt to improve those specific errors (this is known as feature engineering).
This can lead to two problems:

* More features will make training and decoding more expensive. For example, if you add features that
depend on the current word and the previous word, the number of new features is the square of the
number of different words, which is quite large. For example, the Penn Treebank has around 40000
different words, so you are adding a lot of new features, even though not all pairs of words will ever
occur. Features that depend on three words (previous, current, and next) are even more numerous.

o If features are very specific, such as the (previous word, current word, next word) one just mentioned,
they might occur very rarely in the training set, which leads to overfit problems. Some of these problems
(not all) can be mitigated with techniques such as smoothing, which you already learned about.

3.5 Structured Perceptron

The structured perceptron (Collins}[2002), namely its averaged version, is a very simple algorithm that relies on
Viterbi decoding and very simple additive updates. In practice this algorithm is very easy to implement and
behaves remarkably well in a variety of problems. These two characteristics make the structured perceptron
algorithm a natural first choice to try and test a new problem or a new feature set.

Recall what you learned about the perceptron algorithm (Section and compare it against the struc-
tured perceptron (Algorithm 1.

Algorithm 11 Averaged Structured perceptron

1: input: D, number of rounds T
initialize w! = 0
fort =1to T do
choose m = m(t) randomly
take training pair (¥, y™) and predict using the current model w, through the Viterbi algorithm:

7 « argmaxw' - f(x™,y')
yleAN

6: update the model: w'*! « w' + f(x™,y™) — f(x™,7)
7: end for

8: output: the averaged model w <+ % YL, wt

There are only two differences, which mimic the ones already seen for the comparison between CRFs and
multi-class ME models:

* Instead of explicitly enumerating all possible output configurations (exponentially many of them) to
compute i := argmax, .y w - f(x", y'), it finds the best sequence through the Viterbi algorithm.

* Instead of updating the features for the entire ¥, it updates only the node and edge features at the posi-
tions where the labels are different—i.e., where mistakes are made.

3.6 Assignment

Exercise 3.3 Implement the structured perceptron algorithm.
To do this, edit file sequences/structured_perceptron.py and implement the function
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perceptron _update (sclf, sequence):

This function should apply one round of the perceptron algorithm, updating the weights for a given sequence, and return-
ing the number of predicted labels (which equals the sequence length) and the number of mistaken labels.
Hint: adapt the function

gradient update (self, sequence, eta):

defined in file sequences/crf_online.py. You will need to replace the computation of posterior marginals by the
Viterbi algorithm, and to change the parameter updates according to Algorithm [T} Note the role of the functions

. feature_mapper.get_+_features ()

in providing the indices for the features obtained for f(x™,y™) or f(x™,7)

Exercise 3.4 Repeat Exercises using the structured perceptron algorithm instead of a CRF. Report the results.
Here is the code for the simple feature set:

feature _mapper = idfc.IDFeatures (train_seq)
feature_mapper.build_features()
"Perceptron Exercise"
sp = spc.StructuredPerceptron (corpus.word_dict, corpus.tag_dict, feature_mapper)
sp.num_epochs = 20
sp.train_supervised(train_seq)
Epoch: 0 Accuracy: 0.656806
Epoch: 1 Accuracy: 0.820898
Epoch: 2 Accuracy: 0.879176
Epoch: 3 Accuracy: 0.907432
Epoch: 4 Accuracy: 0.925239
Epoch: 5 Accuracy: 0.939956
Epoch: 6 Accuracy: 0.946284
Epoch: 7 Accuracy: 0.953790
Epoch: 8 Accuracy: 0.958499
Epoch: 9 Accuracy: 0.955114
Epoch: 10 Accuracy: 0.959235
Epoch: 11 Accuracy: 0.968065
Epoch: 12 Accuracy: 0.968212
Epoch: 13 Accuracy: 0.966740
Epoch: 14 Accuracy: 0.971302
Epoch: 15 Accuracy: 0.968653
Epoch: 16 Accuracy: 0.970419
Epoch: 17 Accuracy: 0.971891
Epoch: 18 Accuracy: 0.971744
Epoch: 19 Accuracy: 0.973510
pred_train = sp.viterbi_decode_corpus (train_seq)
pred_dev = sp.viterbi_decode_corpus (dev_seq)
pred_test = sp.viterbi_decode corpus (test_seq)
eval_train = sp.evaluate_corpus (train_seq, pred_train)
eval_dev = sp.evaluate_corpus (dev_seq, pred_dev)
eval_test = sp.evaluate_corpus (test_seq, pred_test)
"Structured Perceptron — ID Features Accuracy Train: %.3f Dev: %.3f Test: $.3f"%(
eval_train,eval_dev,eval_test)
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Structured Perceptron - ID Features Accuracy Train: 0.984 Dev: 0.835 Test: 0.840

Here is the code for the extended feature set:

feature_mapper = exfc.ExtendedFeatures (train_seq)

feature_mapper.build features()

sp = spc.StructuredPerceptron (corpus.word_dict, corpus.tag_dict, feature_mapper)

sp.num_epochs = 20

sp.train_supervised (train_seq)

Epoch: 0 Accuracy: 0.764386

Epoch: 1 Accuracy: 0.872701

Epoch: 2 Accuracy: 0.903458

Epoch: 3 Accuracy: 0.927594

Epoch: 4 Accuracy: 0.938484

Epoch: 5 Accuracy: 0.951141

Epoch: 6 Accuracy: 0.949816

Epoch: 7 Accuracy: 0.959529

Epoch: 8 Accuracy: 0.957616

Epoch: 9 Accuracy: 0.962325

Epoch: 10 Accuracy: 0.961148

Epoch: 11 Accuracy: 0.970567

Epoch: 12 Accuracy: 0.968212

Epoch: 13 Accuracy: 0.973216

Epoch: 14 Accuracy: 0.974393

Epoch: 15 Accuracy: 0.973951

Epoch: 16 Accuracy: 0.976600

Epoch: 17 Accuracy: 0.977483

Epoch: 18 Accuracy: 0.974834

Epoch: 19 Accuracy: 0.977042

pred_train = sp.viterbi_decode_corpus (train_seq)

pred_dev = sp.viterbi_decode_corpus (dev_seq)

pred_test = sp.viterbi_decode_corpus (test_seq)

eval_train = sp.evaluate_corpus (train_seq, pred_train)

eval_dev = sp.evaluate_corpus (dev_seq, pred_dev)

eval_test = sp.evaluate_corpus (test_seq, pred_test)

"Structured Perceptron — Extended Features Accuracy Train: %.3f Dev: %.3f Test: %.

3f"%(eval_train,eval_dev,eval_test)

And here are the expected results:

Structured Perceptron - Extended Features Accuracy Train: 0.984 Dev: 0.888 Test: 0.890
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Day 4
Syntax and Parsing

In this lab we will implement some exercises related with parsing.

4.1 Phrase-based Parsing

4.1.1 Context Free Grammars

Let T be an alphabet (i.e., a finite set of symbols), and denote by T* its Kleene closure, i.e., the infinite set of
strings produced with those symbols:
T*=gUJTUT?U...

A language L is a subset of T7*. The “complexity” of a language L can be loosely defined by how hard it is to
construct a machine (an automaton) capable of distinguishing the words in L from the elements of T* which
are not in LEI If L is finite, a very simple automaton can be built which just memorizes the strings in L. The
next simplest case is that of reqular languages, which are recognizable by finite state machines. These are the
languages that can be expressed by regular expressions. An example (where T = {a,b}) is the language
L = {ab™aa™ |ni,ny; € N}, which corresponds to the regular expression ab x a+. Hidden Markov models
(studied in previous lectures) can be seen as a stochastic version of finite state machines.

A step higher in the hierarchy of languages leads to context-free languages, which are more complex than
regular languages. These are languages that are generated by context-free grammars, and recognizable by push-
down automata (which are slightly more complex than finite state machines). In this section we describe context-
free grammars and how they can be made probabilistic. This will yield models that are more powerful than
hidden Markov models, and are specially amenable for modeling the syntax of natural languagesEI

A context-free grammar (CFG) is a tuple G = (N, T, R, S) where:

1. N is a finite set of non-terminal symbols. Elements of N are denoted by upper case letters (A, B,C, . ..).
Each non-terminal symbol is a syntactic category: it represents a different type of phrase or clause in the
sentence.

2. T is a finite set of terminal symbols (disjoint from N). Elements of T are denoted by lower case letters
(a,b,c,...). Each terminal symbol is a surface word: terminal symbols make up the actual content of
sentences. The set T is called the alphabet of the language defined by the grammar G.

3. Ris a set of production rules, i.e., a finite relation from N to (N U T)*. G is said to be in Chomsky normal
form (CNF) if production rules in R are either of the form A — BCor A — a.

4. s is a start symbol, used to represent the whole sentence. It must be an element of N.

Any CFG can be transformed to be in CNF without loosing any expressive power in terms of the language
it generates. Hence, we henceforth assume that G is in CNF without loss of generality.
To see how CFGs can model the syntax of natural languages, consider the following sentence,

1We recommend the classic book by [Hopcroft et al.|(1979) for a thorough introduction on the subject of automata theory and formal
languages.

This does not mean that natural languages are context free. There is an immense body of work on grammar formalisms that relax
the “context-free” assumption, and those formalisms have been endowed with a probabilistic framework as well. Examples are: lex-
ical functional grammars, head-driven phrase structured grammars, combinatorial categorial grammars, tree adjoining grammars, etc.
Some of these formalisms are mildly context sensitive, a relaxation of the “context-free” assumption which still allows polynomial parsing
algorithms. There is also equivalence in expressive power among several of these formalisms.
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She enjoys the Summer school.
along with a grammar (in CNF) with the following production rules:

S ——> NP VP
NP —--> Det N
NP —-> She
VP ——> V NP
V —-—> enjoys
Det —--> the
Nbar -——> N N
N —--> Summer
N —-> school

With this grammar, we may derive the following parse tree:

S
/\
NP VP
| /\
She v N
enj ‘oys Det Nbar
tl‘le N N

Summer school

41.2 Ambiguity
A fundamental characteristic of natural languages is ambiguity. For example, consider the sentence
The man sees the boy in the park with a telescope.

for which all the following parse trees are plausible interpretations:

1. The boy is in a park and he has a telescope:

S
NP VP
N
Det N
\ \
The man v NP
\
sees
NP PP
NP PP P NP
/\ ‘
Det N p/\Np with  Det N
\ \ \ PN \ \
the boy 5 Det N a  telescope
\ \
the park

2. The boy is in a park, and the man sees him using a telescope as an instrument:



NP VP
N
Det N
| \
The man
\% NP PP
sees NP PP P NP
/\ ‘
Det N p/\Np with Det N
I NG | |
the boy in Det N a  telescope
\ \
the park

3. The man is in the park and he has a telescope, through which he sees a boy somewhere:

S
NP VP
P
Det N
\ \
The man
v NP PP PP
| P P
sees Det N P NP I’/\NP
\ \ \ TN |
the boy in Det N b Det N
\
the park | |

a  telescope

The ambiguity is caused by the several places to each the prepositional phrase could be attached. This kind
of syntactical ambiguity (PP-attachment) is one of the most frequent in natural language.

4.1.3 Probabilistic Context-Free Grammars

A probabilistic context-free grammar is a tuple Gg = (N, T, R, s, 0), where (N, T, R, s) is a CFG and 0 is a vector
of parameters, one per each production rule in R. Assuming that the grammar is in CNF, each rule of the kind
Z — XY is endowed a conditional probability

0z-xy = Po(XY|Z),
and each unary rule of the kind Z — w is endowed with a conditional probability
Gzﬁw = Pg(w|Z).

For these conditional probabilities to be well defined, the entries of 8 must be non-negative and need to nor-
malize properly for each Z € N:

Y bzaxy+ Y, 0750w =1
X, YEN weT

Let s be a string and t a parse tree derivation for s. For each r € R, let ,(t, s) be the number of times production
rule r appears in the derivation. According to this generative model, the joint probability of t and s factors as
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the product of the conditional probabilities above:

P(t,s) — 1_[ Gyr(f,s).

reR

For example, for the sentence above (She enjoys the Summer school) this probability would be

P(t,s) = P(NP VP|S) x P(She|NP) x P(V NP|VP) X P(enjoys|V)
x P(Det Nbar|NP) X P(the|Det) X P(N N|Nbar)
x P(Summer|N) x P(school|N). 4.1)

When a sentence is ambiguous, the most likely parse tree can be obtained by maximizing the conditional
probability P(t|s); this quantity is proportional to P(t,s) and therefore the latter quantity can be maximized.
The number of possible parse trees, however, grows exponentially with the sentence length, rendering a direct
maximization intractable. Fortunately, a generalization of the Viterbi algorithm exists which uses dynamic
programming to carry out this computation. This is the subject of the next section.

4.1.4 The CKY Parsing Algorithm

Algorithm 12 CKY algorithm
1: input: probabilistic CFG Gy in CNF, and sentence s = w; ... wy (each w; is a word)
2:
3: {We'll fill the CKY table bottom-up with partial probabilities § and backtrack pointers . This is similar to
the Viterbi algorithm but it works for parse trees rather than sequences. }

{Initialization}
fori =1to N do
for each production rule r € R of the form Z — w; do
0(i,i,Z) = 07,
end for
10: end for
11:
12: {Induction}
13: fori =2 to N do {i is length of span}
14:  forj=1to N —i+1do {jisstart of span}
15: for each non-terminal Z € N do
16: Set partial probability:

D A

(5(]',]'+l'* 1,Z) = I%Ei/x 5(]',](*1,)() X 5(k,j+l’*2,Y) X 07 _xy

j<k<j+i
17: Store backpointer:

Y(j,j+i—1,Z2) =argmaxd(j,k—1,X) x5(k,j+i—2,Y) X 0z_,xy

XY
j<k<j+i
18: end for
19: end for
20: end for
21:

22: {Termination}
23: P(s,}) = 6(1,N,s)
24: Backtrack through ¢ to obtain most likely parse tree

One of the most widely known algorithm for parsing natural language sentences is the Cocke-Kasami-
Younger (CKY) algorithm. Given a grammar in CNF with |R| production rules, its runtime complexity for
parsing a sentence of length N is O(N3|R|). We present here a simple extension of the CKY algorithm that
obtains the most likely parse tree of a sentence, along with its probability.Given a sequence of words w; in a
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sentence s = w1, ..., wy, we want to learn probability for each possible non-terminal rule Z € R, and take the
most probable parsing tree that generates the sentence. EI This is displayed in Alg.

This algorithm assigns a probability 6(i, j, Z), for every possible subtree of the sentence, starting from word
j and spanning k words (wj, wj1, . .., wj), which are generated by rule Z. The process goes from spanning
sequences of length one to n and for each size partitioning the subtree into two parts X, and Y to compute the
probability that each production rule Z — X, Y generates the subsequence. Those of length one correspond
to the set of terminal rules Z — w;, to which it is assign a conditional probability 6(i,i, Z) = 07_,,,. At each
step the most probable rule Z — X, Y is stored in (7, ], Z). Once the process is completed, the sentence is
recognized by the grammar if the subsequence containing the entire sentence is matched by the start symbol,
and the most probable parse tree f can be recovered by iterating backwards through the stored rules.

Exercise 4.1 In this simple exercise, you will see the CKY algorithm in action. There is a Javascript applet that illus-
trates how CKY works (in its non-probabilistic form). Go to http://Ixmls.it.pt/2015/cky.html| and observe
carefully the several steps taken by the algorithm. Write down a small grammar in CNF that yields multiple parses for
the ambiguous sentence The man saw the boy in the park with a telescope, and run the demo for this particular
sentence. What would happen in the probabilistic form of CKY?

4.1.5 Learning the Grammar

There is an immense body of work on grammar induction using probabilistic models (see e.g., [Manning and
Schiitze| (1999) and the references therein, as well as the most recent works of [Klein and Manning (2002); Smith
and Eisner| (2005); (Cohen et al.,| (2008)): this is the problem of learning the parameters of a grammar from
plain sentences only. This can be done in an EM fashion (like in sequence models), except that the forward-
backward algorithm is replaced by inside-outside. Unfortunately, the performance of unsupervised parsers
is far from good, at present days. Much better results have been produced by supervised systems, which,
however, require expensive annotation in the form of treebanks: this is a corpus of sentences annotated with
their corresponding syntactic trees. The following is an example of an annotated sentence in one of the most
widely used treebanks, the Penn Treebank (http://www.cis.upenn.edu/~treebank/):

( (s
(NP-SBJ (NNP BELL) (NNP INDUSTRIES) (NNP Inc.) )
(VP (VBD increased)
(NP (PRPS$ its) (NN quarterly) )
(PP-DIR (TO to)
(NP (CD 10) (NNS cents) ))
(PP-DIR (IN from)
(NP
(NP (CD seven) (NNS cents) )
(NP-ADV (DT a) (NN share) ))))
(. ) )

Exercise 4.2 This exercise will show you that real-world sentences can have complicated syntactic structures. There is
a parse tree visualizer in |http://brenocon.com/parseviz/, Go to your local data/treebanks folder and
open the file PTB_excerpt.txt. Copy a few trees from the file, one at a time, and examine their parse trees in the
visualizer.

A treebank makes possible to learn a parser in a supervised fashion. The simplest way is via a generative
approach. Instead of counting transition and observation events of an HMM (as we did for sequence models),
we now need to count production rules and symbol occurrences to estimate the parameters of a probabilistic
context-free grammar. While performance would be much better than that of unsupervised parsers, it would
still be rather poor. The reason is that the model we have described so far is oversimplistic: it makes too strong
independence assumptions. In this case, the Markovian assumptions are:

1. Each terminal symbol w in some position i is independent of everything else given that it was derived
by the rule Z — w (i.e., given its parent Z);

2. Each pair of non-terminal symbols X and Y spanning positions i to j, with split point k, is independent
of everything else given that they were derived by the rule Z — XY (i.e., given their parent Z).

3Similarly, the forward-backward algorithm for computing posterior marginals in sequence models can be extended for context-free
parsing. It takes the name inside-outside algorithm. See Manning and Schiitze|(1999) for details.
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The next section describes some model refinements that complicate the problem of parameter estimation,
but usually allow for a dramatic improvement on the quality of the parser.

4.1.6

Model Refinements

A number of refinements has been made that yield more accurate parsers. We mention just a few:

Parent annotation. This strategy splits each non-terminal symbol in the grammar (e.g. Z) by annotating it with

all its possible parents (e.g. creates nodes Z%X,ZY, ... every time production rules like X — Z-, X — -Z,
orY — Z.,Y — -Z exist in the original grammar). This increases the vertical Markovian length of the
model, hence weakening the independence assumptions. Parent annotation was initiated by Johnson
(1998) and carried on in the unlexicalized parsers of Klein and Manning| (2003) and follow-up works.

Lexicalization. A particular weakness of PCFGs is that they ignore word context for interior nodes in the

parse tree. Yet, this context is relevant in determining the production rules that should be invoked in
the derivation. A way of overcoming this limitation is by lexicalizing parse trees, i.e., annotating each
phrase node with the lexical item (word) which governs that phrase: this is called the head word of the
phrase. Fig.|4.1)shows an example of a lexicalized parse tree. To account for lexicalization, each non-
terminal symbol in the grammar (e.g. Z) is split into many symbols, each annotated with a word that
may govern that phrase (e.g. Z%1,Z%2,...). This greatly increases the size of the grammar, but it has a
significant impact in performance. A string of work involving lexicalized PCFGs includes Magerman
(1995); |(Charniak! (1997); |Collins| (1999).

Discriminative models. Similarly as in sequence models (where it was shown how to move from an HMM

to a CRF), we may abandon our generative model and consider a discriminative one. An advantage of
doing that is that it becomes much easier to adopt non-local input features (i.e., features that depend
arbitrarily on the surface string), for example the kind of features obtained via lexicalization, and much
more. The CKY parsing algorithm can still be used for decoding, provided the feature vector decompose
according to non-terminal symbols and production rules. In this case, productions and non-terminals will
have a score which does not correspond to a log-probability; the partition function and the posterior
marginals can be computed with the inside-outside algorithm. See Taskar et al.[(2004) for an application
of structured SVMs to parsing, and [Finkel et al.| (2008) for an application of CRFs.

Latent variables. Splitting the variables in the grammar by introducing latent variables appears as an alterna-

tive to lexicalization and parent annotation. There is a string of work concerning latent variable gram-
mars, either for the generative and discriminative cases: |Petrov and Klein| (2007, 2008a)b). Some related
work also considers coarse-to-fine parsing, which iteratively applies more and more refined models:
Charniak et al.| (2006).

History-based parsers. Finally, there is a totally different line of work which models parsers as a sequence of

4.2

4.2.1

greedy shift-reduce decisions made by a push-down automaton (Ratnaparkhi), [1999; Henderson), [2003).
When discriminative models are used, arbitrary conditioning can be done on past decisions made by the
automaton, allowing to include features that are difficult to handle by the other parsers. This comes at
the price of greediness in the decisions taken, which implies suboptimality in maximizing the desired
objective function.

Dependency Parsing

Motivation

Consider again the sentence

She enjoys the Summer school.

along with the lexicalized parse tree displayed in Fig. If we drop the phrase constituents and keep only
the head words, the parse tree would become:

enjoys

she school

T

the Summer
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S (enjoys)

TN

NP (she) VP (enjoys)
|
She
V (enjoys) NP (school)
|
enjoys
Det (the) Nbar (school)
|
the

N (Summer) N (school)
| |

Summer school
Figure 4.1: A lexicalized parse tree for the sentence She enjoys the Summer school.

This representation is called a dependency tree; it can be alternatively represented as shown in Fig. De-
pendency trees retain the lexical relationships involved in lexicalized phrase-based parse trees. However, they
drop phrasal constituents, which render non-terminal nodes unnecessary. This has computational advantages
(no grammar constant is involved in the complexity of the parsing algorithms) as well as design advantages
(no grammar is necessary, and treebank annotations are way simpler, since no internal constituents need to
be annotated). It also shifts the focus from internal syntactic structures and generative grammars (Chomsky,
1965) to lexical and transformational grammars (Tesniere,|1959; Hudson, |1984; Melcuk, 1988;(Covington) 1990).
Arcs connecting words are called dependency links or dependency arcs. In an arc (h, m), the source word h is called
the head and the target word m is called the modifier.

* She enjoys the Summer school

Figure 4.2: A dependency tree for the sentence She enjoys the Summer school. Note the additional dummy root
symbol (*) which is included for convenience.

4.2.2 Projective and Non-projective Parsing

Dependency trees constructed using the method just described (i.e., lexicalization of context-free phrase-based
trees) always satisfy the following properties:

1. Each word (excluding the dummy root symbol) has exactly one parent.
2. The dummy root symbol has no parents.

3. There are no cycles.

4. The dummy root symbol has exactly one child.

5. All arcs are projective. This means that for any arc (h, m), all words in its span (i.e., all words lying between
h and m) are descendents from / (i.e. there is a directed path of dependency links from # to such word).

Conditions 1-3 ensure that the set of dependency links form a well-formed tree, rooted in the dummy
symbol, which spans all the words of the sentence. Condition 4 requires that there is a single link departing
from the root. Finally, a tree satisfying condition 5 is said projective: it implies that arcs cannot cross (e.g., we
cannot have arcs (h,m) and (I',m’) such that the word positions are ordered as h < h' < m < m’).

In many languages (e.g., those which have free-order) we would like to relax the assumption that all trees
must be projective. Even in languages which have fixed word order (such as English) there are syntactic
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* We leaned a lesson in 1987  about volatility

Figure 4.3: A non-projective parse tree.

phenomena which are awkward to characterize using projective trees arising from the context-free assumption.
Usually, such phenomena are characterized with additional linguistic artifacts (e.g., traces, Wh-movement,
etc.). An example is the sentence (extracted from the Penn Treebank)

We learned a lesson in 1987 about volatility.

There, the prepositional phrase in 1987 should be attached to the verb phrase headed by learned (since this
is when we learned the lesson), but the other prepositional phrase about volatility should be attached to the
noun phrase headed by lesson (since the lesson was about volatility). To explain such phenomenon, context-free
grammars need to use additional machinery which allows words to be scrambled (in this case, via a movement
transformation and the consequent insertion of a trace). In the dependency-based formalism, we can get rid of
all those artifacts altogether by allowing non-projective parse trees. These are trees that satisfy conditions 1-3
above, but not necessarily conditions 4 or SEI The dependency tree in Fig. |4.3|is non-projective: note that the
arc (lesson, about) is not projective.

We end this section by mentioning that dependency trees can have their arcs labeled, to provide more
detailed syntactic information. For example, the arc (enjoys, She) could be labeled as SUBJ to denote that
the modifier She has a subject function, and the arc (enjoys, school) could be labeled as OBJ to denote that
the modifier school has an object function. For simplicity, we resort to unlabeled trees, which just convey the
backbone structure. To cope with the labels, one can use either a joint model that infers the backbone and
labels altogether, or to have a two-stage approach that first gets the backbone structure, and then the arc labels.

4.2.3 Algorithms for Projective Dependency Parsing

We now turn our attention to algorithms for obtaining a dependency parse tree. We start by considering a
simple kind of models which are called arc-factored. These models assign a score sg(h, m) to each possible
arc (h,m) connecting a pair of words; they then score a particular dependency tree ¢ by summing over the
individual scores of the arcs that are present in the tree:

scoreg(t) = Y sg(h,m).
(h,m)et

As usual, from the point of view of the parsing algorithm, it does not matter whether the scores come from
a generative or discriminative approach, and which features were used to compute the scores. The three
important inference tasks are:

1. Obtain the tree with the largest score,

F = argmaxscoreg(t).
t

2. Compute the partition function (for a log-linear model),
Z(sp) = )_exp(scoreq(t)),
t

where sy is short-hand notation for the set of all the sg(h, m) coefficients.

4Tt is also common to impose conditions 1-4, in which case the tree need not be projective, but it must have a single link departing from
the root. The algorithms to be described below can be adapted for this case.
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3. Compute the posterior marginals for all the possible arcs (which for a log-linear model is the gradient of
the log-partition function),
dlog Z(sp)

Py((h,m) € t) = dsg(h,m) -

As explained in this morning’s lecture, in projective dependency parsing using arc-factored models, the
three tasks above can be solved in time O(N?), through Eisner’s algorithm (Eisner}|1996), which is represented
as Algorithm[13] Eisner’s algorithm is related with the CKY algorithm in the sense that it also parses a sentence
in a bottom-up fashion, building larger spans from smaller spans. In fact, the CKY algorithm can be adapted in
a naive manner to perform projective dependency parsing by dropping the constituent symbols and keeping
track of the head positions of each span. This naive strategy, however, would force us to manipulate five
indices when combining two spans to form a larger span (the start and end points of the large span, the mid
point, and the head positions for the two spans being combined), which would increase the complexity of the
algorithm to O(N®). Eisner’s algorithm uses the notion of complete and incomplete spans (in which all the right
modifiers and all the left modifiers of a given head are all built separately) to reduce the complexity back to
O(N?). By replacing maximizations with summations, the same dynamic programming algorithm can be used
to compute the partition function and the posterior marginals.

Algorithm 13 Eisner’s algorithm for first-order projective dependency parsing

1: input: Arc scores sg(h,m), for h € {0,...,N}, m € {1,...,N}, and h # m, associated with a sentence
S=wWy...WN-

2: {Initialization}
3: fori =0to N do
4:  {Initialize incomplete spans.}
5 incompleteli, i, <] := 0.0
6:  incomplete[i, i, —] := 0.0
7:
8:  {Initialize complete spans.}
9:  complete[i, i, ] := 0.0
10:  complete[i,i, —] := 0.0
11: end for
12:
13: {Induction}
14: fork = 1to N do {k is length of span}
15:  fors =0to N —k do {s is start of span}
16: Set t := s+ k {t is end of span}
17:
18: {First, create incomplete spans.}
19: incomplete[s, t, <] := maxs<,<¢(complete[s, r, =] + complete[r + 1, ¢, <] + s¢(t,5))
20: incomplete[s, t, —] := maxs<,<¢(complete[s, r, —| + complete[r + 1, ¢, <] + sq(s, t))
21:
22: {Then, create complete spans.}
23 complete[s, t, «—| := maxs<,<¢(complete[s, r, «<—| + incomplete[r, t, <)
24: complete[s, t, —] := maxs<,<;(incomplete[s, r + 1, —] + complete[r + 1, t, —])
25:  end for
26: end for
27:

28: {Termination}
29: Backtrack to obtain the actual tree, whose score is complete[0, N, —].

4.2.4 Algorithms for Non-Projective Dependency Parsing

We turn our attention to non-projective dependency parsing. In that case, efficient solutions also exist for the
three problems above; interestingly, they are based in combinatorial algorithms which are not related at all
with dynamic programming:

* The first problem corresponds to finding the maximum weighted directed spanning tree in a directed graph.
This problem is well known in combinatorics and can be solved in O(N?) using Chu-Liu-Edmonds’
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algorithm (Chu and Liu) [1965; [Edmonds, 1967)E] This has first been noted by McDonald et al.| (2005).

* The second and third problems can be solved by invoking another important result in combinatorics, the
matrix-tree theorem (Tutte, |[1984). This fact has been noticed independently by Smith and Smith| (2007);
Koo et al.| (2007); McDonald and Sattal(2007). The cost is that of computing a determinant and inverting
a matrix, which can be done in time O(N?). The procedure is as follows. We first consider the directed
weighted graph formed by including all the possible dependency links (h, m) (including the ones de-
parting from the dummy root symbol, for which & = 0 by convention), along with weights given by
exp(sg(h,m)), and compute its (N + 1)-by-(N + 1) Laplacian matrix L whose entries are:

- ):}I:{ZO exp(sg(h',m)), ifh=m,
Lom = { —exp(sg(h,m))), otherwise. (4.2)

Denote by I the (0,0)-minor of L, i.e., the matrix obtained from L by removing the first row and column.
Consider its determinant det . and its inverse .. Then:

— the partition function is given by

Z(sg) = det L; 4.3)
— the posterior marginals are given by
_ [ exp(so(hm)) - ([L-Voum — (L7 ) i 1 70
Po((h,m) € t) = { exp(se(0,m)) - [L™ ] um otherwise. @4

Exercise 4.3 In this exercise you are going to experiment with arc-factored non-projective dependency parsers.

The CoNLL-X and CoNLL 2008 shared task datasets (Buchholz and Marsi, | 2006} |Surdeanu et al., 2008) contain
dependency treebanks for 14 languages. In this lab, we are going to experiment with the Portuguese and English datasets.
We preprocessed those datasets to exclude all sentences with more than 15 words; this yielded the files:

® data/deppars/portuguese_train.conll,
® data/deppars/portuguese_test.conll,
® data/deppars/english_train.conll,

® data/deppars/english_test.conll.

1. After importing all the necessary libraries, load the Portuguese dataset:

sys
sys.path.append('."' )

Ixmls.parsing.dependency_parser depp

dp = depp.DependencyParser ()
dp.read_data ("portuguese”)

Observe the statistics which are shown. How many features are there in total?
2. We will now have a close look on the features that can be used in the parser. Examine the file:
1xmls/parsing/dependency_features.py.

The following method takes a sentence and computes a vector of features for each possible arc (h, m):

create arc features(self, instance, h, m, add=False):

rro

"'"'"Creates features for arc h——>m.

We grouped the features in several subsets, so that we can conduct some ablation experiments:

5There is a asymptotically faster algorithm by [Tarjan|(1977) which solves the same problem in O(N?).
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* Basic features that look only at the parts-of-speech of the words that can be connected by an arc;
¢ Lexical features that also look at these words themselves;

* Distance features that look at the length and direction of the dependency link (i.e., distance between the two
words);

¢ Contextual features that look at the context (part-of-speech tags) of the words surrounding h and m.
In the default configuration, only the basic features are enabled. The total number of features is the quantity

observed in the previous question. With this configuration, train the parser by running 10 epochs of the structured
perceptron algorithm:

dp.train_perceptron(10)

dp.test ()

What is the accuracy obtained in the test set? (Note: the shown accuracy is the fraction of words whose parent was
correctly predicted.)

. Repeat the previous exercise by subsequently enabling the lexical, distance and contextual features:

dp.features.use_lexical = True
dp.read _data ("portuguese”)
dp.train_perceptron(10)
dp.test ()

dp.features.use_distance = True
dp.read_data ("portuguese”)
dp.train_perceptron(10)
dp.test ()

dp. features.use_contextual = True
dp.read_data ("portuguese”)
dp.train_perceptron (10)

dp.test ()

For each configuration, write down the number of features and test set accuracies. Observe the improvements
obtained when more features were added.
Feel free to engineer new features!

. Which of the three important inference tasks discussed above (computing the most likely tree, computing the parti-
tion function, and computing the marginals) need to be performed in the structured perceptron algorithm? What
about a maximum entropy classifier, with stochastic gradient descent? Check your answers by looking at the fol-
lowing two methods in code/dependency._parser.py:

train perceptron(self, n_epochs):

train crf sgd(self, n_epochs, sigma, etal = 0.001):

Repeat the last exercise by training a maximum entropy classifier, with stochastic gradient descent, using A = 0.01
and a initial stepsize of 1jg = 0.1:

dp.train_crf_sgd (10, 0.01, 0.1)

dp.test ()
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Compare the results with those obtained by the perceptron algorithm.

. Train a parser for English using your favourite learning algorithm:

dp.read _data ("english")
dp.train_perceptron(10)

dp.test ()

The predicted trees are placed in the file data/deppars/english_test.conll.pred. To get a sense of
which errors are being made, you can check the sentences that differ from the gold standard (see the data in
data/deppars/english_test.conll)and visualize those sentences, e.g., in http://brenocon. com/|
parseviz/,

. (Optional.) Implement Eisner’s algorithm for projective dependency parsing. The pseudo-code is shown as Algo-
rithm I3} Implement this algorithm as the function

parse _proj(self, scores):

rro

Parse using Eisner's algorithm.
rr

in file dependency_decoder.py. The input is a matrix of arc scores, whose dimension is (N + 1)-by-(N + 1),
and whose (h, m) entry contains the score sg(h, m). In particular, the first row contains the scores for the arcs that
depart from the root, and the first column’s values, along with the main diagonal, are to be ignored (since no arcs
point to the root, and there are no self-pointing arcs). To make your job easier, we provide an implementation of the
backtracking part:

backtrack _eisner (self, incomplete_backtrack, complete backtrack, s, t,
direction, complete, heads):

s0 you just need to build complete/incomplete spans and their backtrack pointers and then call

heads = —-np.ones (N+1, dtype=int)
self.backtrack_eisner (incomplete_backtrack, complete_backtrack, O,

heads)
heads

to obtain the final parse.

To test the algorithm, retrain the parser on the English data (where the trees are actually all projective) by setting
the flag dp.projective to True:

dp = depp.DependencyParser ()
dp.features.use_lexical = True
dp.features.use_distance = True
dp. features.use_contextual = True
dp.read_data ("english")
dp.projective = True
dp.train_perceptron(10)

dp.test ()

You should get the following results:
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Number of sentences: 8044

Number of tokens: 80504

Number of words: 12202

Number of pos: 48

Number of features: 338014

Epoch 1

Training accuracy: 0.835637168541
Epoch 2

Training accuracy: 0.922426254687
Epoch 3

Training accuracy: 0.947621628947
Epoch 4

Training accuracy: 0.960326602521
Epoch 5

Training accuracy: 0.967689840538
Epoch 6

Training accuracy: 0.97263631025
Epoch 7

Training accuracy: 0.97619370285
Epoch 8

Training accuracy: 0.979209016579
Epoch 9

Training accuracy: 0.98127569228
Epoch 10

Training accuracy: 0.981320865519
Test accuracy (509 test instances): 0.886732599366

4.2.5 Model Refinements

A number of refinements has been made that yield more accurate dependency parsers. We mention just a few:

Sibling and grandparent features. The arc-factored assumption fails to capture correlations between pairs of
arcs. The dynamic programming algorithms for the projective case can be extended (at some additional
cost) to handle features that look at consecutive sibling arcs on the same side of the head (i.e., pairs of arcs
of the form (h,m) and (h,s) with h < m < sorh > m > s, such that no arc (h,r) exists with r between m
and s. This has been done by [Eisner and Sattal (1999). Similarly, grandparents can also be accommodated
with similar extensions (Carreras| 2007). These are called “second-order models.”

For the non-projective case, however, any extension beyond the arc-factored model becomes NP-hard
(McDonald and Satta, [2007). Yet, approximate algorithms have been proposed to handle “second-order
models” that seem to work well: a greedy method (McDonald et al., [2006), loopy belief propagation
(Smith and Eisner) [2008), a linear programming relaxation (Martins et al.| 2009), and a dual decomposi-
tion method (Koo et al.,2010).

Third-order models. For the projective case, third order models have also been considered (Koo and Collins)
2010). This was extended to the non-projective case by Martins et al.|(2013).

Transition-based parsers. Like in the phrase-based case, there is a totally different line of work which models
parsers as a sequence of greedy shift-reduce decisions (Nivre et al., 2006;[Huang and Sagae, 2010). These
parsers seem to be very fast (expected linear time) and only slightly less accurate than the state-of-the-art.
Solutions have been worked out for the non-projective case also (Nivre, 2009).

4.2.6 External Links

If you want to check a demo of a parser that use some of the extensions above, you can do so at
http://demo.ark.cs.cmu.edu/parse

This demo uses TurboParser (http://www.ark.cs.cmu.edu/TurboParser), a free software implementa-
tion of a fast and accurate dependency parser that can parse thousands of tokens per second with state-of-the-
art accuracies (way faster than the Python implementation that you have used at the labs). Feel free to try it at
home!
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Other well-known software toolkits that implement dependency parsers are:

* MSTParser (http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html), a graph-
based dependency parser;

® MaltParser (http://www.maltparser.org/), a transition-based parser;
e DPO3 (http://groups.csail.mit.edu/nlp/dpo3/), a third-order projective parser;

® Linear-time dynamic programming parser (http://acl.cs.gc.edu/~lhuang/), a fast transition-
based parser.
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Day 5

Deep Learning I

5.1 Today’s assignment

Today’s class will be divided in two main parts. Firstly, we will learn about computation graphs and the Back-
propagation algorithm. We will also code Backpropagation in Numpy for a simple model (a feed forward
network). Secondly, we will learn the basics of the Theano module for Python. Theano allows you to im-
plement generic computation graphs, automatically compute gradients with respect to their parameters and
make use of Graphical Processing Units (GPUs) for optimal speed.

If you are new to the topic, you should aim to understand the concept of computation graph, finish the
Backpropagation exercise and attain a basic understanding of Theano. If you already know Backpropagation
well and have experience with normal Python, you should aim to complete the whole day.

5.2 Introduction to Deep Learning and Theano

Deep learning is the name behind the latest wave of neural network research. This is a very old topic, dating
from the first half of the 20th century, that has attained formidable impact in the machine learning community
recently. There is nothing particularly difficult in deep learning. You have already visited all the mathemat-
ical principles you need in the first days of the labs of this school. At their core, deep learning models are
just functions mapping vector inputs x to vector outputs y, constructed by composing linear and non-linear
functions. This composition can be expressed in the form of a computation graph, where each node applies a
function to its inputs and passes the result as its output. The parameters of the model are the weights given
to the different inputs in nodes applying linear functions. This vaguely resembles synapse strengths in human
neural networks, hence the name artificial neural networks.

Due to their compositional nature, gradient methods and the chain rule can be applied learn the parameters
of these models regardless of their complexity. See Section for a refresh on the basic concept. We will also refer
to the gradient learning methods introduced in Section Today we will focus on feed-forward networks.
Tomorrow we will extended today’s class to recurrent neural networks (RNNs).

Some of the changes that led to the surge of deep learning are not only improvements on the existing neural
network algorithms, but also the increase in the amount of data available and computing power. In particular,
the use of Graphical Processing Units (GPUs) has allowed neural networks to be applied to very large datasets.
Working with GPUs is not trivial as it requires dealing with specialized hardware. Luckily, as it is often the
case, we are one Python import away from solving this problem.

For the particular case of deep learning, there is a growing number of python toolboxes available that allow
you to design custom computational graphs for GPUs as e.g. Theancﬂ or TensorFlowﬂ

In these labs we will be working with Theano. Theano allows us to express computation graphs symbol-
ically in terms of basic algebraic operations. It also automatically computes gradients and produces CUDA-
compatible code for GPUs. The exercises are designed to gain a low-level understanding of Theano. If you
are only looking forward to utilize pre-designed models, the Keras toolboxﬂ provides high-level operations
compatible with both Theano and TensorFlow.

1htt-p: / / deeplearning.net/software/theano/
2h’ttps: / /www.tensorflow.org/
Shttp:/ /keras.io/
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5.3 Computation Graphs

5.3.1 Example: The computation graph of a log-linear model

Softmax
Cost

Figure 5.1: Representation of a log-linear model as a computation graph: a composition of linear and non-
linear transformations. The classification cost for the m-th training example D™ = {x,y} is also shown. Note
1Y is an indicator vector with a one in position y.

A computation graph is just a way of expressing a multi-input multi-output function with a directed acyclic
graph. Each node in the graph applies a function over the outputs of its parent nodes and passes the result
to its child-nodes, thus attaining very complex functions by composing simpler functions. To introduce the
concept we will work with a very simple example, a categorical distribution over K classes parametrized as a
log-linear model. This is given by

1 I
ply = klx) = Z(W,b,x) exp (l; Wiix; + bk> , (5.1)

where

K I
Z(W,b,x) = Z exp (Z Wyix; + bk/> (5.2)

K=1 i=1

is the partition function ensuring that all output values sum to one, so that we can interpret these values as
probabilities. The model thus receives a feature vector x € R! and assigns a probability over y € 1---K
possible class indices. It is parametrized by weights and bias @ = {W,b}, with W € RK*! and b € RX. This
is a well known classifier bearing resemblance to the models seen in the second day of the school, in particular
the maxent modelf]

Another way of looking at these models is as the composition of the linear transformation

i
zk = Y Wixi + by, (5.3)
i=1

with the softmax non-linear transformation
ply = Kx) = 7 = — P& (5.4)
Y—1 exp(zx)

This is shown as a computation graph in Fig. Note that in the following sections we will also use z and
Z to denote the output of linear and non-linear functions respectively.

“There are some differences with respect to Eq[1.26] like the use of a bias b. Also, if we consider the binary joint feature mapping
f(x,y) = g(x) ® e, of Eq the maximum entropy classifier in Eq becomes a special case of Eq in which the feature vector x
only take binary values and the bias parameters in b are all set to zero.
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5.3.2 Stochastic Gradient Descent: a refresher

As we saw on day one, the parameters of a log linear model ® = {W,b} can be learned with Stochastic
Gradient Descent (SGD). To apply SGD we first need to define an error function that measures how good we
are doing for any given parameter values. To remain close to the maximum entropy example, we will use as
cost function the average minus posterior probability of the correct class, also known as the Cross-Entropy
(CE) criterion. Bear in mind, however, that we could pick other non-linear functions and cost functions that
do not have a probabilistic interpretation. For example, the same principle could be applied to a regression
problem where the cost is the Mean Square Error (MSE).
For a training data-set D = {(x},y!),..., (XM, yM)} of M examples, the CE cost function is given by

M
F(D;0) = - ). logp(y” = k(m)x"), (5.5)

where k(m) is the correct class index for the m-th example. To learn the parameters of this model with SGD,
all we need to do is compute the gradient of the cost VJ with respect to the parameters of the model and
iteratively update our parameter estimates as

W W— yVnF (5.6)

and
b+ b—1Vy7, (5.7)

where 7 is the learning rate. Note that in practice we will use a mini-batch of examples as opposed to the
whole train set. Very often, more elaborated learning rules as e.g. momentum or Adagrad are used. Bear in
mind that, in general, these still require the computation of the gradients as the main step. The reasoning here
outlined will also be applicable to these.

5.3.3 Deriving Gradients in Computation Graphs using the Chain Rule

)

* z 1
® SIE
x

2 , . £ %
o.. Wka £ 3
. Sso 2 5., ].y
) D2xc OF ZK K
. - D < l—@
° ; Wi dzk

xy 6 bK l

Figure 5.2: Forward-pass (blue) and Backpropagation (red) calculations to estimate the gradient of weight W,
and bias by of a log-linear model.

The expressions for VJ are well known in the case of log-linear models. However, for the sake of the
introduction to deep learning, we will show how they can be derived by exploiting the decomposition of the
cost function into the computational graph seen in the last section (and represented in Fig.[5.1). To simplify
notation, and without loss of generality, we will work with the classification cost of an individual example

F(D";0) = —logp(y" = k(m)|x™), (5.8)

where D" = {(x™,y™)}. Due to linearity, extending the gradients of Eq.5.8/to M examples as in Eq. [5.5/simply
requires computing the average of the gradients for the individual examples. That is
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M
VwF(D;0) — % 3 Vwd(D";0) (59)

m=1

All we need to do to compute VwF(D; ©) is to have an expression for Vw log p(y™ = k(m)|x™).

Lets start by computing the element (k, i) of the gradient matrix VwJ(D; ®), which contains the partial
derivative with respect to the weight Wy;. To do this, we invoke the chain rule to split the derivative calculation
into two terms at variable zy (Eq5.3) with k' =1---K

0F(D;0) & 97(D;0) dzp

= — . 5.10
d Wki kgl 0z K d Wk,' ( )

We have thus transformed the problem of computing the derivative into computing two easier derivatives.
Since zjs only depends on the weight Wy; in a linear way (see the graph in Fig.[5.2), the second derivative in

EqB.10]is given by

" ifk =k

0z 0 [
= Wyuxlt +by | = ! 5.11
Wi IWg (El K k) {0 otherwise, 61D

which implies that

IF(D™;0)  2F(D™;0) ,
T (5.12)

The first term derivative is given by

m. K - —Z i = i
I(DTE) _ _aik (Zk(m) —log (Z eXP(Zk/)>> = { (1-%) itk=k(m) (5.13)

0z K—1 —(—z) otherwise .

From the formula for each element and a single example, we can now obtain the gradient matrix for a batch of
M examples by simply averaging and expressing the previous equations in vector form as follows

M
VwI(D;0) = —ﬁ ) (1" —2") () (5.14)

Here 1" € RX is a vector of zeros with a one in y" = k(m), which is the index of the correct class for the
example m.

In order to compute the derivatives of the cost function with respect to the bias parameters by, we only
need to compute one additional derivative

oz 1 ifk=FK
— 5.15
by {O otherwise . G.15)
This leads us to the last gradient expression
1 &
@) = — — Y gm
VbF(D;0) = — 5 m§:;1 (1 z ) . (5.16)

Animportant consequence of the previous derivation is the fact that each gradient of the parameters VwF(D; ©)
and V,J(D; @) can be computed from two terms:

1. The derivative of the cost with respect to the linear transformation applying the weight 0F(D™; ®) / 0z,
denoted in red.

2. The derivative of the forward-pass up to the linear transformation applying the weight dz;/9dWj;, de-
noted in blue. This is always equal to the variable multiplying that weight and one in the case of the
bias.

This is the key to the Backpropagation algorithm as we will see in the next Section 5.4}
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5.4 Going Deeper than Log-linear by using Composition

5.4.1 The Multilayer Perceptron or Feed-Forward Network

We have seen that just by using the chain rule we can easily compute gradients for compositions of two func-
tions (one non-linear and one linear). However, there was nothing in the derivation that would stop us from
composing more than two functions. Let us think, for example of the following model

Algorithm 14 Forward pass of a Multi-Layer Perceptron (MLP) or Feed-Forward (FF) network

1: input: Initial parameters for an MLP of N layers ® = {W!,b!,... WN bN}
2: input: Input data vector 72 =x.
3: forn=1to N —1do
4:  Apply linear transformation
I
_ sn—1
zf = 2Wj’}z? + b}
i=1
5 Apply non-linear transformation e.g. sigmoid (hereby denoted o/())
1
A L
Z] —U(Z]) 1+8Xp(—Z;-l)
6: end for

N

: Apply final linear transformation

J
N NsN-1 N
j=1

[

: Apply final non-linear transformation e.g. softmax

i exp(zy)
ply=rklx) =5 =
25:1 exp(zy))

In a similar fashion to the log-linear model, the MLP/FF can be expressed as a computation graph. This is
displayed in Fig.

Softmax
Cost

Figure 5.3: Representation of a Multi-Layer Perceptron (MLP) or Feed-Forward (FF) network as a computation
graph. The classification cost for the m-th training example D™ = {x,y} is also shown.
Some considerations:

* MLPs/FFs are characterized by applying functions in a set of layers subsequently to a single input. This
characteristic is also shared by convolutional networks, although the latter also have parameter tying
constraints.

* The non-linearities in the intermediate layers are usually one-to-one transformations. The most typical
are the sigmoid, hyperbolic tangent and the rectified linear unit (ReLU).
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¢ The output non-linearity is determined by the output to be estimated. In order to estimate probability
distributions the softmax is typically used. For regression problems a last linear layer is used instead.

5.4.2 Backpropagation: an overview

For the examples in this chapter we will consider the case in which we are estimating a distribution over
classes, thus we will use the CE cost function (Eq. .

To compute the gradient with respect the parameters of the n-th layer, we just need to apply the chain rule
as in the previous section, consecutively. Fortunately, we do not need to repeat this procedure for each layer
as it is easy to spot a recursive rule (the Backpropagation recursion) that is valid for many neural models,
including feed-forward networks (such as MLPs) as well as recurrent neural networks (RNNs) with minor
modifications. The Backpropagation method, which is given in Algorithm [15|for the case of an MLP, consists
of the following steps:

* The forward pass step, where the input signal is injected though the network in a forward fashion (see
Alg.

* The backpropagation step, where the derivative of the cost function (also called error) is injected back
through the network and backpropagated according to the derivative rules (see steps 8-17 in Alg.

* Finally, the gradients with respect to the parameters are computed by multiplying the input signal from
the forward pass and the backpropagated error signal, at the corresponding places in the network (step

18 in Alg.[15)

¢ Given the gradients computed in the previous step, the model weights can then be easily update accord-
ing to a specified learning rule (step 19 in Alg.[I5uses a mini-batch SGD update rule).

The main step of the method is the backpropagation step, where one has to compute the backpropagation
recursion rules for a specific network. The next section presents a careful deduction of these recursion rules,
for the present MLP model.

5.4.3 Backpropagation: deriving the rule

ar V-1 1y
;s Wi < <0
SN 3 -
{:)—» £ 3
: 02‘\'_1 § © 1y
. ] .
7 owh-1 = K
71
g
@ a l
.............................................. F(D™:0)
Layer N-1

Figure 5.4: Forward-pass (blue) and Backpropagation (red) calculations to estimate the gradient of weight Wj;
atlayer N — 1 of a MLP.

In a generic MLP we would like to compute the values of all parameters ® = {Wl,b1,~ - WN pN } As
explained previously, we will thus need to compute the backpropagated error at each node 0F(D";®)/0z},
and the corresponding derivative for the forward-pass 9z} /dWj;, for n = 1- - - N. Fortunately, it is easy to spot
a recursion that will allow us to compute these values for each node, given all its child nodes. To spot it, we
can start trying to compute the gradients one layer before the output layer (see Fig.[5.4), i.e. layer N — 1. We
start by splitting at N — 1

oF(Dm0) L oF(pm;0)97) 7 aF(pme) 0z

IWji _]'gl 32]13]71 IW;; aszfl oWj;

(5.17)
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where, as in the case of the log-linear model, we have used the fact that only z; depends on W;;. We now
advance forward from z}V and apply the non-linearity to obtain Z]N . As long as the non-linearity is a one-to-one
operation (and this is often the case in neural-networks), we will also get rid of the summation leading to

(5.18)

ag(‘Dm;G)) B < ] ag(gm;@)) afj-\,]l> az;-\]*l B ag:(pm;@) aZ]N*l azj.\]*1
ji =1

OWj; L ozy 2z Wizt Azt oWy

We will not be so lucky in the next application of the chain rule. Looking at Fig. it is clear that the deriva-
tives at each node in layer N — 1 will depend on all values of layer N. We thus have

m. K m. ozN ozN -1 9zN-1
mf@):( 9F(D";0) Zk) I (5.19)

IW;; o) azi\,] az;\f—l az]N_1 oW;;

Now, comparing Eq. with Eq. it is easy to see that, if we denote the derivative of the cost (or error)
with respect to the N linear layer of the graph as

AF(D™; O)

N-1 ;

e = , 5.20
az,I(\] ! (5.20)

then we can relate this to the cost derivative with respect to the preceding layer with

N-1 KN ooz aZJI'\P1 K NN N-1 N-1
- :(Ze ~N1)N1:(Zewwk’f)'zf_ 1=z, (5:21)
=1 aZ] aZ] =1

where we have used the fact that for sigmoid non-linearities
L —z.(1-3) (5.22)

This formula can also be interpreted as traversing the graph in Fig.[5.3|backwards, multiplying at each node
the backpropagated error by the derivative of its inputs and summing the errors propagated from different
nodes. A more formal expression of the algorithm can be found in Algorithm [15]
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Algorithm 15 Mini-batch SGD with Back-Propagation

1: input: Data D = {Dj, Dy, ..., Dp} split into B mini-batches of size M’, MLP of N layers, with parameters

® = {WLbl,...WN bN} number of rounds T, learning rate
g Ui

2: initialize parameters ® randomly
3: fort =1to T do

4 forb=1toBdo
5: form =1to M’ do
6: Compute the forward pass for each of the M’ examples in batch b; keep not only p(y"|x") = "N
but also all the intermediate non-linear outputs 2! - - - 2N,
7: end for
8: forn = Ntoldo
9: if n==N then
10: form =1to M’ do
11: Initialize the error at last layer, for each example m. For the softmax with CE cost this is given
by:
em'N = (1k(m) — Zm'N).
12: end for
13: else
14: form =1to M’ do
15: Backpropagate the error through the linear layer, for each example m:
e — ((wn+1)Tem,n+l)
16: Backpropagate the error through the non-linearity, for the sigmoid this is:
e =e" oz o (1-2""),
where © is the element-wise product and the 1 is replicated to match the size of z".
17: end for
18: end if
19: Compute the gradients using the backpropagated errors and the inputs from the forward pass
1M 1\ T
VwiF(D;0) = -7 Y e (271)
m=1
1 M
Vbn?(@,@) = —M Z em’”.
m=1
20: Update the parameters
W+ W' — Uanffr,
b" < b" — yVpnF.
21: end for
22:  end for
23: end for
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Exercise 5.1 Start by loading Amazon sentiment corpus used in day/I]

numpy np

lxmls.readers.sentiment_reader sSrs
scr = srs.SentimentCorpus ("books")
train x = scr.train X.T

train y = scr.train_y[:, 0]
test_x = scr.test_X.T
test_y = scr.test_y[:, 0]

Go to Ixmls/deep_learning/mlp.py:class NumpyMLP:def grads() and complete the code of the NumpyMLP class with
the Backpropagation recursion that we just saw. Once you are done. Try different network geometries by increasing the
number of layers and layer sizes e.g.

# Neural network modules
Ixmls.deep_learning.mlp dl
Ixmls.deep_learning.sgd sgd

# Model parameters

geometry = [train_x.shape([0], 20, 2]

actvfunc = ['sigmoid', 'softmax']
# Instantiate model
mlp = d1.NumpyMLP (geometry, actvfunc)

You can test the different hyperparameters

# Model parameters
n iter =5
bsize =5
lrate = 0.01
# Train
sgd.SGD_train(mlp, n_iter, bsize=bsize, lrate=lrate, train_set=(train_x, train_y))
acc_train = sgd.class_acc (mlp.forward(train_x), train_y) [0]
acc_test = sgd.class_acc(mlp.forward(test_x), test_y)[0]
"MLP (%s) Amazon Sentiment Accuracy train: %f test: 3f" % (geometry, acc_train,
acc_test)

5.4.4 Some final reflections on Backpropagation

If you are new to the neural network topic, this is about the most important piece of theory you should learn
about deep learning. Here are some reflections that you should keep in mind.

* Thanks to the multi-layer structure and the chain rule, Backpropagation allows models that compose
linear and non-linear functions with any depth (in principleﬂ).

* The formulas are also valid for other cost functions and output layer non-linearities with minor modifi-
cations. It is only necessary to compute the equivalent of Eq.

¢ The formulas are also valid for hidden non-linearities other than the sigmoid. Element-wise non-linear
transformations still allow the simplification in Eq. With little effort it is also possible to deal with
other cases.

¢ However, there is an important limitation: unlike the log-linear models, the optimization problem is non
convex. This removes some formal guarantees, most importantly we can get trapped in local minima
during training.

5Not exactly, since it is possible to run into numerical problems.
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5.5 Deriving gradients and GPU code with Theano

5.5.1 An Introduction to Theano

As you may have observed, the speed of SGD training for MLPs slows down considerably when we increase
the number of layers. One reason for this is that the code that we use here is not very optimized. It is thought
for you to learn the basic principles. Even if the code was more optimized, it would still be very slow for
reasonable network sizes. The cost of computing each linear layer is proportional to the dimensionality of the
previous and current layers, which in most cases will be rather large.

For this reason most deep learning applications use Graphics Processing Units (GPU) in their computations.
This specialized hardware is normally used to accelerate computer graphics, but can also be used for general
computation intensive tasks. However, we need to deal with specific interfaces and operations in order to use
a GPU. This is where Theano comes in. Theano is a multidimensional symbolic expression python module
with focus on neural networks. It will provide us with the following nice features:

* Symbolic expressions: Express the operations of the MLP (forward pass, cost) symbolically, as mathe-
matical operations rather than explicit code

¢ Symbolic Differentiation: As a consequence of the previous feature, we can compute gradients of arbi-
trary mathematical functions automatically.

¢ GPU integration: The code will be ready to work on a GPU, provided that you have one and it is active
within Theano. It will also be faster on normal CPUs since the symbolic operations are compiled to C
code.

* Theano is focused on Deep Learning, with an active community and several tutorials easily available.
However, this does not come at a free price. There are a number of limitations

¢ Symbolic algebra is more difficult to debug, as we can not easily step in at each operation.

¢ Working with CPU and GPU code implies that we have to be more careful about the types of the vari-
ables.

¢ Theano tends to output long error messages. However, once you get used to it, error messages accurately
point the source of the problem.

e Handling recurrent neural networks is much simpler than in Numpy but it still implies working with
complicated constructs that are complicated to debug.

Exercise 5.2 Get in contact with Theano. Learn the difference between a symbolic representation and a function. Start
by implementing the first layer of our previous MLP in Numpy

# Numpy code

X = test_x # Test set

wi, bl = mlp.params|[:2] # Weights and bias of fist layer
z1 = np.dot (W1, x) + bl # Linear transformation

tilde z1 = 1/(l+np.exp(-z1)) # Non-linear transformation

Now we will implement this in Theano. We start by creating the variables over which we will produce the operations. For
example the symbolic input is defined as

# Theano code.
# NOTE: We use undescore to denote symbolic equivalents to Numpy variables.
# This is no Python convention!.

theano
theano.tensor T
X = T.matrix('x")
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Note that this variable does not have any particular value, nor a space reserved in memory for it. It contains just
a symbolic definition of what the variable can contain. The particular values will be given when we use it to compile a
function.

We could actually use the same definition format to define the weights and give their particular values as inputs to
the compiled function. However, since we will be using a more complicated format in later exercises, we will use it here
as well. The shared class allows to define variables that are shared across functions. They are also given a concrete value
so that we do not need to give it for each function call. This format is therefore ideal for the weights of our network.

_W1 = theano.shared(value=wl, name='Wl', borrow=True)

_bl = theano.shared(value=bl, name='bl', borrow=True, broadcastable=(False, True))

Important: One of the main differences between Numpy and theano data is broadcast. In Numpy if we sum an array
with shape (N, M) to one with shape (1, M), the second array will be copied N times to form a (N, M) matrix. This is
known as broadcasting. In Theano this is not automatic. You need to specify broadcasting explicitly. This is important
for example when using a bias, which will be copied to match the number of examples in the batch. In other cases, like
when using variables for recurrent neural networks, broadcast has to be set to False. Broadcast is one of the typical source
of errors when you start working with Theano. Keep this in mind.

Now lets describe the operations we want to do with the variables. Again only symbolically. This is done by replacing
our usual operations by Theano symbolic ones when necessary e. g. the internal product dot() or the sigmoid. Some
operations like e.g. + are automatically recognized by Theano (operator overloading).

_z1 T.dot (W1, _x) + _bl
_tilde zl1 = T.nnet.sigmoid(_z1)
# Keep in mind that naming variables is useful when debugging

_z1.name = 'z1'
_tilde_zl.name = 'tilde z1'

When debugging the code it is often useful to print the graph of computations.

# Perceptron computation graph
theano.printing.debugprint (_tilde_z1)

sigmoid [@A] 'tilde_z1'
|Elemwise{add, no_inplace} [@B] 'z1'
[dot [@C] "'
| |Wl [@D]
| Ix [GE]
/bl [@F]

It is important to keep in mind that, until this point, we do not have a function we can use to produce any practical input.
In order to obtain this we have to compile this function by calling

layerl = theano.function([_x], _tilde z1) I

Note the use of | | for the input variables, even if we just specify one variable. We can now do a test to compare the Numpy
and Theano implementations and see that they give the same outputs.

# Check Numpy and Theano match
np.allclose(tilde_z1, layerl (x.astype (theano.config.floatX))), \

"Numpy and Theano Perceptrons are different”

One of the main sources of errors in Theano is the type of the arrays used. To ensure compatibility with the
GPU check every array that you are going to work with and be sure it has the propper type To automatically
switch between float64 (CPU) and float32 (GPU) types Theano provides the floatX type. Keep in mind not
using these is the number one source of errors when you start with Theano.
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= train_x.astype (theano.config.floatX)

= train_y.astype ('int32")

5.5.2 Symbolic Forward Pass

In the previous section you have seen how to create symbolic Theano functions with shared parameters. You
have thus all you need to implement the whole forward pass of a generic MLP in Theano.

Exercise 5.3 Complete the method _forward() inside of the Ixmls/deep_learning/mlp.py:class TheanoMLP. Note that this
is called only once at the initialization of the class. To debug your implementation put a breakpoint at the __init__ function
call. Hint: Note that this is very similar to NumpyMLP.forward(). You just need to keep track of the symbolic variable
representing the output of the network after each layer is applied and compile the function at the end. After you are
finished instantiate a Theano class and check that Numpy and Theano forward pass are the same.

mlp_a = dIl.NumpyMLP (geometry, actvfunc)
mlp b = dl.TheanoMLP (geometry, actvfunc)

To help debugging in Theano is sometimes useful to switch off the optimizer. This helps Theano point out which part
of the Python code generated the error

theano.config.optimizer="'None' I

In general, the best way to debug Theano is to compile often. Try to compile the intermediate variables and perform the
algebraic operations in Numpy. Once you are done, the following code should yield no error

np.allclose (mlp_a.forward(test_x), mlp _b.forward (test_x)), \

"ERROR: Numpy and Theano forward passes differ"

5.5.3 Symbolic Differentiation

In the previous section we compiled the forward pass of a MLP. In this section we will do the same with the
cost used for training. We will also derive the gradients although this will be trivial once we have the cost
function compiled.

Exercise 5.4 We first see an example that does not use any of the code in TheanoMLP but rather continues from what
you wrote in Ex. In this exercise you completed a sigmoid layer with Theano. To get some values for the weights
we used the first layer of the network you trained in Now we are going to use the second layer as well. This is thus
assuming that your network in [b.2 has only two layers e.g. the recommended geometry (I, 20, 2). Make sure this is the
case before starting this exercise.

For the sake of clarity, lets write here the part of Ex. |5.2|that we had completed

# Get the values from our MLP

wil, bl = mlp.params|[:2] # Weights and bias of fist layer
# First layer symbolic variables

x = T.matrix('x")

_ W1 = theano.shared(value=wWl, name='Wl', borrow=True)

_bl = theano.shared(value=bl, name='bl', borrow=True, broadcastable=(False, True))
# First layer symbolic expressions

_zl = T.dot (_W1l, _x) + _bl

_tilde z1 = T.nnet.sigmoid(_z1)

Now we just need to complete this with the second layer, using a softmax non-linearity
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w2, b2 = mlp.params/[2:] # Weights and bias of second (and last!) layer
# Second layer symbolic variables

_W2 = theano.shared (value=Ww2, name='W2', borrow=True)

_b2 = theano.shared (value=b2, name='b2', borrow=True, broadcastable=(False, True))
# Second layer symbolic expressions

_z2 = T.dot (_wW2, _tilde_zl) + _b2

# NOTE: Theano softmax does not support T.nnet.softmax(_z2, axis=1) this 1is a workaround
_tilde z2 = T.nnet.softmax(_z2.T).T

With this, we could compile a function to obtain the output of the network symb_tilde z2 for a given input symb_x. In
this exercise we are however interested in obtaining the misclassification cost. This is given in Eq: First we are going
to need the symbolic variable for the correct output

_y = T.ivector('y') I

The minus posterior probability of the class given the input is the same as selecting the k(m)-th softmax output, were
k(m) is the index of the correct class for x™. If we want to do this for a vector y containing M different examples, we can
write this as

-T.mean (T.log(_tilde_z2[_y, T.arange(_y.shape[0])]))

Now obtaining a function that computes the gradient could not be easier.

_nabla F = T.grad(_F, _W1)

nabla_F = theano.function([_x, _y], _nabla_F)

To finish this exercise have a look at the TheanoMLP class. As you may realise it just implements what is shown above
for the generic case of N layers.

5.5.4 Symbolic mini-batch update

One important aspect to take into account is that to obtain a good speed up, the batch update operation must
be carried out inside of Theano. To do this we may use the updates argument of theano.function

Exercise 5.5 Define the updates list. This is a list where each element is a tuple of a parameter and the update rule to be
applied that parameter. In this case we are defining the SGD update rule, but take into account that using more complex
update rules like e.g. momentum or adam implies just replacing the last line of the following snippet.

mlp_c = dl.TheanoMLP (geometry, actvfunc)

_X = T.matrix('x")

_y = T.ivector('y"')

_F = mlp _c._cost(_x, _vy)

# SGD update rule

updates = [(par, par - lratexT.grad(_F, par)) par mlp_c.params]

This will return the cost of each batch and update the MLP parameters at the indent same time using updates

batch_up = theano.function([_x, _y], _F, updates=updates)

n_batch = int (np.ceil (float (train_x.shape[l])/bsize))

Once we have defined this, we can compare speed and accuracy of the Numpy and simple gradient versions using
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time

# Model
geometry = [train x.shape[0], 20, 2]
actvfunc = ['sigmoid', 'softmax']

# Numpy MLP

mlp_a = dl.NumpyMLP (geometry, actvfunc)

init_t = time.clock ()

sgd.SGD_train(mlp_a, n_iter, bsize=bsize, lrate=lrate, train_set=(train_x, train_y))
"\nNumpy version took $2.2f sec" % (time.clock() - init_t)

acc_train = sgd.class_acc(mlp_a.forward(train_x), train_y)[0]

acc_test = sgd.class_acc(mlp_a.forward(test_x), test_y)[0]

)

"Amazon Sentiment Accuracy train: $f test: $f\n" % (acc_train, acc_test)

# Theano grads

mlp_b = dl.TheanoMLP (geometry, actvfunc)

init_t = time.clock ()

sgd.SGD_train(mlp_b, n_iter, bsize=bsize, lrate=lrate, train_set=(train_x, train_y))

"\nCompiled gradient version took $2.2f sec" % (time.clock() - init_t)
acc_train = sgd.class_acc(mlp_b.forward(train_x), train_y)[0]
acc_test = sgd.class_acc(mlp_b.forward(test_x), test_y)[0]

"Amazon Sentiment Accuracy train: $f test: $f\n" % (acc_train, acc_test)

# Theano batch update

init_t = time.clock ()

sgd.SGD_train(mlp_c, n_iter, batch_up=batch_up, n_batch=n_batch, bsize=bsize,
train_set=(train_x, train_y))

"\nTheano compiled batch update version took %2.2f" % (time.clock() - init_t)
acc_train = sgd.class_acc(mlp_c.forward(train_x), train_y)[0]
acc_test = sgd.class_acc(mlp_c.forward(test_x), test_y)[0]

"Amazon Sentiment Accuracy train: $f test: $f\n"$%(acc_train,acc_test)

As you may observe, just computing the gradients with Theano may not lead to a decrease, but rather an increase in
computing time. To maximally exploit the power of Theano, it is necessary to bundle both computations and data together
using approaches like the compiled batch update.
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Day 6

Deep Learning II

6.1 Today’s assignment

Today’s class will be focused on advanced deep learning concepts, mainly Recurrent Neural Networks (RNNs).
In the first day we saw how the chain-rule allowed us to compute gradients for arbitrary computation graphs.
Today we will see that we can still do this for more complex models like Recurrent Neural Networks (RNNss).
In these models we will input data in different points of the graph, which will correspond to different time
instants. The key factor to consider is that, for a fixed number of time steps, this is still a computation graph
and all what we saw on the first day applies with no need for extra math.

If you managed to finish the previous day completely you should aim at finishing this as well. If you still
have pending exercises from the first day e.g. the Theano part. It is recommended that you try to solve them
first and then continue with this day. If you are not interested in Theano, the first exercise is also a pure Numpy
implementation that you can use to learn about RNNSs.

6.2 Recurrent Neural Networks: Backpropagation Through Time

3)“’” 3)‘”’” 3)“”’

t i i
hy, o -y o h op - hy
Wh Wh Wh
W+ W WwW*
X1 Xt X7

Figure 6.1: The simplest RNN can be seen as replicating a single hidden-layer FF network T times and passing
the intermediate hidden variable h; across different steps. Note that all nodes operate over vector inputs e.g,.
x; € RI. Circles indicate matrix multiplications.

The previous day focused on Feed Forward (FF) networks. These networks are ill suited to learn variable
length patterns since they only accept inputs of a fixed size. In order to learn sequences using neural networks,
we need therefore to define some architecture that is able to process variable length inputs. Recurrent Neural
Networks (RNNs) solve this problem by unfolding the computation graph in time. In other words, the network
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is replicated as many times as it is necessary to cover the sequence to be modeled. In order to model the
sequence one or more connections across different time instants are created. This allows the network to have a
memory in time and thus capture complex patterns in sequences. In the simplest model, depicted in Fig.
and detailed in Algorithm 6.2} a RNN is created by replicating a single hidden-layer FF network T times and
passing the intermediate hidden variable across different steps.

Since RNNs are computation graphs involving the same operations as FF networks, they can also be trained
with backpropagation. However the error is propagated over the length of the entire sequence. This often leads
to numerical problems know as vanishing and exploding gradients. A number of solutions are used to mitigate
this issue. One simple, yet inelegant, method is clipping the gradients to a fixed threshold. Another solution
is to resort to more complex RNN models that are able to better handle long range dependencies and are less
sensitive to this phenomena. It is important to bear in mind, however, that all RNNSs still use backpropagation
as seen in the previous day, although it is often referred as Backpropagation through time.

Algorithm 16 Forward pass of a Recurrent Neural Network (RNN)

1: input: Initial parameters for an RNN Input @ = {W* € RFX! W ¢ RF*H Wy € RE*H} input, recurrent
and output transformations respectively.

input: Input data matrix x € R'*T of size T. Initial recurrent variable hy.

:fort=1toT —1do

Apply linear transformation combining input and recurrent signals

=N

! J
h h

zjy =) Wiixis + ) Wiihj 4
i=1 j'=1

9

Apply non-linear transformation e.g. sigmoid (hereby denoted o ())
o b
1+ exp(—z;?t)

end for
: Apply final linear transformation to each of the recurrent variables h; - - - hr

N

J
y o_ V.
Zht = Z Wit
j=1

e

: Apply final non-linear transformation e.g. softmax

exp(z})

plye =kxe) = cp—— 7~
Z15:1 exp (Zz/t)

Exercise 6.1 Convince yourself that a RNN is just an FF unfolded in time. Run the NumpyRNN code. Set break-points
and compare with what you learned about backpropagation in the previous day.
To work with RNNs we will use the Part-of-speech data-set seen in the sequence models day.

# Load Part-of-Speech data

Ixmls.readers.pos_corpus pcc

corpus = pcc.PostagCorpus ()

train_seq = corpus.read_sequence_list_conll ("data/train-02-21.conll", max_sent_len=15,
max_nr_sent=1000)

test_seq = corpus.read_sequence_list_conll ("data/test-23.conll", max_sent_len=15,
max_nr._sent=1000)

dev_seq = corpus.read_sequence_list_conll ("data/dev-22.conll", max_sent_len=15,
max_nr_sent=1000)

We will need to redo the indices of the data so that they are consecutive and cast all data to numpy arrays of int32 for
compatibility with GPUs. This function will also add reverse indices to recover tag and word from its index word_dict
and tag_dict
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# Redo indices
train_seq, test_seq, dev_seq = pcc.compacify(train_seq, test_seq, dev_seq, theano=True)
# Get number of words and tags in the corpus

nr._words = len(train_seqg.x_dict)
nr._tags = len(train_seq.y_dict)

Load and configure the NumpyRNN. Remember to use reload if you want to modify the code inside the rnns module

I1xmls.deep_learning.rnn rnns
reload (rnns)
# RNN configuration

SEED = 1234 # Random seed to initialize weigths
emb_size = 50 # Size of word embeddings
hidden_size = 20 # size of hidden layer

# RNN

np_rnn = rnns.NumpyRNN (nr_words, emb_size, hidden_size, nr_tags, seed=SEED)

# Example sentence
x0 = train seq[0].x
y0 = train_seq[0].y

Compute forward pass and gradients

# Forward pass

p_y, yv_rnn, h, z1, x = np_rnn.forward(x0, all_outputs=True)
# Gradients

numpy_rnn_gradients = np_rnn.grads (x0, yO0)

6.3 The Scan operation in Theano

Handling variable length computation graphs in an automatic fashion is not simple. Theano provides the scan
function for this purpose. The scan function acts as a symbolic “for” loop. Since, unlike for normal python
“for” loops, it is not possible to put a breakpoint in the scan loop, the design of graphs with scan has to be
handled with care. Toolboxes like Keras conveniently abstract the user from such constructs. However, for
complex designs it will be necessary to be able to use scan or equivalent functions.

Exercise 6.2 Understand the basics of scan with these examples. Scan allows you to build computation graphs with
a variable number of nodes. It acts as a python "for” loop but it is symbolic. The following example should help you
understand the basic scan functionality. It generates a sequence for a given length. Run it and modify it. Try to arrive at
an error and understand what happened.

numpy np
theano
theano.tensor T
theano.config.optimizer="'None'

square (x) :

XA A2
# Python
np square n_steps (nr_steps) :
out = []
n np.arange (nr_steps) :

out.append (square (n))
np.array (out)
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# Theano
nr._steps = T.lscalar('nr_steps')

h, _ = theano.scan (fn=square, sequences=T.arange (nr_steps))
th_square_n_steps = theano.function([nr_steps], h)

# Compare both
np_square_n_steps(10)
th_square_n_steps (10)

The following example should help you understand about matrix multiplications and passing values from one iteration to
the other. At each step, we will multiply the output of the previous step by a matrix A. We start with an initial vector s0.
The matrix and vector are random but normalized to result on a Markov chain (this is irrelevant for the use of scan).

# Configuration
nr_states = 3
nr._steps = 5

# Transition matrix

A = np.abs (np.random.randn (nr_states, nr_states))
A = A/A.sum (0, keepdims=True)

# Initial state

sO0 = np.zeros (nr_states)

s0[0] =1

# Numpy version
np _markov_step (s_tml) :
s_t = np.dot (s_tml, A.T)
s_t

np _markov_chain (nr_steps, A, s0):
# Pre-allocate space
s = np.zeros((nr_steps+1, nr_states))
s[0, :] = s0
t np.arange (nr_steps) :
s[t+l, :] = np_markov_step(s[t, :])
S

np_markov_chain (nr_steps, A, s0)

# Theano version

# Store variables as shared variables

th_A = theano.shared (A, name='A', borrow=True)

th s0 = theano.shared(s0, name='s(0', borrow=True)
# Symbolic variable for the number of steps
th_nr._steps = T.lscalar('nr_steps')

th markov_step(s_tml) :
s t = T.dot(s_tml, th A.T)
# Remember to name variables

s_t.name = 's_t'
s_t
s, _ = theano.scan(th_markov_step,

outputs_info=[dict (initial=th_s0)],
n_steps=th_nr_steps)
th_markov_chain = theano.function([th_nr_steps], T.concatenate((th_sO[None, :], s), 0))

th_markov_chain (nr_steps)
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6.4 A RNN in Theano for Part-of-Speech Tagging

Exercise 6.3 Complete the theano code for a RNN inside Ixmls/deep_learning/rnn.py. Use exercise [6.1| for a numpy

example and |6.2| to learn how to handle scan. Keep in mind that you only need to implement the forward pass! Theano
will handle backpropagation for us.

# Instantiate the class
rnn = rnns.RNN (nr_words, emb_size, hidden size, nr_tags, seed=SEED)
# Compile the forward pass function

T.ivector('x")
th forward = theano.function([x], rnn._ forward(x).T)

When working with theano, it is more difficult to localize the source of errors. It is therefore important to work step by
step and test the code frequently. To debug we suggest to implement and compile the forward pass first. You can use this
code for testing. If it raises no error you are good to go.

np.allclose (th_forward(x0), np_rnn.forward (x0)), \

"Numpy and Theano forward pass differ!"

Once you are confident the forward pass is working you can test the gradients

# Compile function returning the list of gradients

x = T.ivector('x") # Input words

y = T.ivector('y"') # gold tags

p_y = rnn._forward(x)

cost = -T.mean (T.log(p_y) [T.arange (y.shape([0]), y]i)

grads_fun = theano.function([x, y], [T.grad(cost, par) par rnn.param])

# Compare numpy and theano gradients
theano_rnn_gradients = grads_fun (x0, yO0)
n range (len (theano_rnn_gradients)) :
np.allclose (numpy_rnn_gradients([n], theano _rnn_gradients[n]), \
"Numpy and Theano gradients differ in step n"

Finally, it is time to test our network in the task of POS tagging. Lets define the optimization parameters and compile
batch update and prediction functions

# Parameters

lrate = 0.5 # Learning rate

n_iter = 5 # Number of iterations

# Get list of SGD batch update rule for each parameter

updates = [(par, par - lratex*T.grad(cost, par)) par rnn.param]
# compile

rnn_prediction = theano.function([x], T.argmax(p_y, 1))
rnn_batch_update = theano.function([x, y], cost, updates=updates)
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To train the newtwork with SGD, you can use the following code for this purpose

nr._words = sum([len(seq.x) seq train_seq])
i range (n_1iter):
# Training
cost = 0
errors = 0
n, seq enumerate (train_seq) :
cost += rnn_batch_update (seq.x, seq.y)
errors += sum(rnn_prediction(seq.x) != seq.y)
acc_train = 100+ (l-errors+1./nr_words)

"Epoch %d: Train cost $2.2f Acc $2.2f %%" % (i+l1, cost, acc_train),
# Evaluation

errors = 0
n, seq enumerate (dev_seq) :
errors += sum(rnn_prediction(seq.x) != seq.y)
acc_dev = 100+ (l-errors+1l./nr_words)
" Devel Acc %2.2f %%" % acc_dev
sys.stdout.flush()

6.5 The Importance of Pre-training

One of the key insights that has played a role in the rise of deep learning in NLP tasks is the use of neural
word-embeddings. These are just numeric representations of words that can be learned from unsupervised
data using simple FF networks such as e.g. skip-grams.

Such representations can be plugged into supervised models such as the RNN that we just trained to ini-
tialize its initial layer. The use of pre-trained embeddings very often leads to important improvements in
performance.

Exercise 6.4 Test the effect of using pre-trained embeddings. Run the following code to download the embeddings. Reset
the layer parameters and initialize the embedding layer with the pre-trained embeddings. Then run the training code from
the last exercise.

# Embeddings Path

Ixmls.deep_learning.embeddings emb

os
reload (emb)

os.path.isfile("data/senna_50") :

emb.download_embeddings ('senna_b50', "data/senna_ 50")

E = emb.extract_embeddings ("data/senna_50", train_seq.x_dict)
# Reset model to remove the effect of training
rnn = rnns.reset_model (rnn, seed=SEED)
# Set the embedding layer to the pre-trained values
rnn.param([0].set_value (E.astype (theano.config.floatX))

# Now re-run SGD training

6.6 More Complex RNNs: LSTMs

As previously mentioned, the basic RNN that we saw until now suffers from a number of drawbacks like
exploding or vanishing gradients, and the inability to model long term dependencies. These deficiencies are
solved by more complex RNNs that include more complex internal logics, and are able to selectively forget,
thus capturing better long term information. The so called Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) have replaced simple RNNSs in most of modern models. However, they only imply
more complex architectures. For an excellent visual explanation of the differences between simple RNNs,
GRUs and LSTMs please visit
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Figure 6.2: Detailed explanation of the LSTM internal logic, see source: http://colah.github.io/posts/
2015-08-Understanding—-LSTMs/.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Exercise 6.5 Convince yourself that LSTMSs are just more complex RNNs. Run them, play around with the hyper
parameters and compare the RNN and LSTM classes.

# Instantiate LSTM

lstm = rnns.LSTM(nr_words, emb_size, hidden_size, nr_tags)

# Compile prediction and bacth update functions

lstm _prediction = theano.function([x], T.argmax(lstm._forward(x), 1))
lstm cost = -T.mean(T.log(lstm._forward(x))|[T.arange (y.shape[0]), y])
# Get 1list of SGD batch update rule for each parameter

lstm_updates = [ (par, par - lratexT.grad(lstm_cost, par)) par lstm.param]
# compile

lstm_batch_update = theano.function([x, y], lstm _cost, updates=lstm_updates)

nr._words = sum([len(seq.x) seq train_seq])
i range (n_1iter) :
# Training
cost = 0
errors = 0
n, seq enumerate (train_seq) :
cost += 1lstm _batch_update (seq.x, seq.y)
errors += sum(lstm _prediction(seq.x) != seq.y)
acc_train = 100+ (l-errors*1./nr_words)

"Epoch %d: Train cost $2.2f Acc $2.2f %%" % (i+1, cost, acc_train),
# Evaluation:

errors = 0

n, seq enumerate (dev_seq) :

errors += sum(lstm _prediction(seq.x) != seq.y)
acc_dev = 100%(l-errors+1./nr_words)

" Devel Acc %2.2f %%" % acc_dev
sys.stdout.flush ()
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