Learning Structured Predictors

Xavier Carreras

Supervised (Structured) Prediction

Learning to predict: given training data

$$\{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)})\}$$

learn a predictor $\mathbf{x} \rightarrow \mathbf{y}$ that works well on unseen inputs \mathbf{x}

Non-Structured Prediction: outputs y are atomic

- Binary prediction: $\mathbf{y} \in \{-1, +1\}$
- Multiclass prediction: $\mathbf{y} \in \{1, 2, \dots, L\}$

Structured Prediction: outputs y are structured

- Sequence prediction: y are sequences
- Parsing: y are trees
- ...

Named Entity Recognition

Named Entity Recognition

yPER-QNT--ORGORG-TIMExJimbought300sharesofAcmeCorp.in2006

- y PER PER - LOC x Jack London went to Paris
- \mathbf{y} PER PER - LOC \mathbf{x} Paris Hilton went to London
 - $\begin{array}{cccccc} \mathbf{y} & \mathrm{PER} & & & \mathrm{LOC} \\ \mathbf{x} & \mathsf{Jackie} & \mathsf{went} & \mathsf{to} & \mathsf{Lisdon} \end{array}$

Part-of-speech Tagging

Syntactic Parsing

 ${f x}$ are sentences y are syntactic dependency trees

Machine Translation

(Galley et al 2006)

 ${\bf x}$ are sentences in Chinese ${\bf y}$ are sentences in English aligned to ${\bf x}$

Object Detection

(Kumar and Hebert 2003)

 ${\bf x}$ are images ${\bf y}$ are grids labeled with object types

Object Detection

(Kumar and Hebert 2003)

 ${\bf x}$ are images ${\bf y}$ are grids labeled with object types

Today's Goals

Introduce basic concepts for structured prediction

- We will restrict to sequence prediction
- What can we can borrow from standard classification?
 - Learning paradigms and algorithms, in essence, work here too
 - However, computations behind algorithms are prohibitive

What can we borrow from HMM and other structured formalisms?

- Representations of structured data into feature spaces
- Inference/search algorithms for tractable computations
- E.g., algorithms for HMMs (Viterbi, forward-backward) will play a major role in today's methods

Today's Goals

Introduce basic concepts for structured prediction

- We will restrict to sequence prediction
- What can we can borrow from standard classification?
 - Learning paradigms and algorithms, in essence, work here too
 - However, computations behind algorithms are prohibitive
- What can we borrow from HMM and other structured formalisms?
 - Representations of structured data into feature spaces
 - Inference/search algorithms for tractable computations
 - E.g., algorithms for HMMs (Viterbi, forward-backward) will play a major role in today's methods

Sequence Prediction

У	PER	PER	-	-	LOC
\mathbf{x}	Jack	London	went	to	Paris

Sequence Prediction

- $\mathbf{x} = x_1 x_2 \dots x_n$ are input sequences, $x_i \in \mathcal{X}$
- $\mathbf{y} = y_1 y_2 \dots y_n$ are output sequences, $y_i \in \{1, \dots, L\}$
- Goal: given training data

$$\{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)})\}$$

learn a predictor $\mathbf{x} \rightarrow \mathbf{y}$ that works well on unseen inputs \mathbf{x}

What is the form of our prediction model?

Exponentially-many Solutions

- Let $\mathcal{Y} = \{-, \text{PER}, \text{LOC}\}$
- The solution space (all output sequences):

- Each path is a possible solution
- For an input sequence of size n, there are $|\mathcal{Y}|^n$ possible outputs

Exponentially-many Solutions

- Let $\mathcal{Y} = \{-, \text{PER}, \text{LOC}\}$
- The solution space (all output sequences):

- Each path is a possible solution
- For an input sequence of size n, there are $|\mathcal{Y}|^n$ possible outputs

Approach 1: Local Classifiers

Decompose the sequence into n classification problems:

A classifier predicts individual labels at each position

$$\hat{y}_i = \operatorname*{argmax}_{l \in \{ \text{loc, per, -} \}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, l)$$

- f(x, i, l) represents an assignment of label l for x_i
- ightarrow w is a vector of parameters, has a weight for each feature of ${f f}$
 - \blacktriangleright Use standard classification methods to learn ${\bf w}$
- At test time, predict the best sequence by a simple concatenation of the best label for each position

Approach 1: Local Classifiers

Decompose the sequence into n classification problems:

A classifier predicts individual labels at each position

$$\hat{y}_i = \operatorname*{argmax}_{l \in \{\text{loc, per, -}\}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, l)$$

- $\mathbf{f}(\mathbf{x}, i, l)$ represents an assignment of label l for x_i
- \blacktriangleright w is a vector of parameters, has a weight for each feature of ${\bf f}$
 - \blacktriangleright Use standard classification methods to learn ${\bf w}$
- At test time, predict the best sequence by a simple concatenation of the best label for each position

Indicator Features

• $\mathbf{f}(\mathbf{x}, i, l)$ is a vector of d features representing label l for x_i

 $[\mathbf{f}_1(\mathbf{x},i,l),\ldots,\mathbf{f}_j(\mathbf{x},i,l),\ldots,\mathbf{f}_d(\mathbf{x},i,l)]$

- What's in a feature $\mathbf{f}_j(\mathbf{x}, i, l)$?
 - Anything we can compute using x and i and l
 - Anything that indicates whether l is (not) a good label for x_i
 - Indicator features: binary-valued features looking at:
 - a simple pattern of x and target position i
 - \blacktriangleright and the candidate label l for position i

$$\begin{aligned} \mathbf{f}_{j}(\mathbf{x}, i, l) &= \begin{cases} 1 & \text{if } x_{i} = \text{London and } l = \text{LOC} \\ 0 & \text{otherwise} \end{cases} \\ \mathbf{f}_{k}(\mathbf{x}, i, l) &= \begin{cases} 1 & \text{if } x_{i+1} = \text{went and } l = \text{LOC} \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

Feature Templates

- ► Feature templates generate many indicator features mechanically
- A feature template is identified by a type, and a number of values
 - Example: template WORD extracts the current word

$$\mathbf{f}_{\langle \mathrm{WORD}, a, w \rangle}(\mathbf{x}, i, l) = \left\{ \begin{array}{ll} 1 & \text{if } x_i = w \text{ and } l = a \\ 0 & \text{otherwise} \end{array} \right.$$

- A feature of this type is identified by the tuple $\langle {\rm WORD}, a, w \rangle$
- \blacktriangleright Generates a feature for every label $a \in \mathcal{Y}$ and every word w

e.g.:
$$a = \text{LOC}$$
 $w = \text{London}$, $a = w = \text{London}$
 $a = \text{LOC}$ $w = \text{Paris}$ $a = \text{PER}$ $w = \text{Paris}$
 $a = \text{PER}$ $w = \text{John}$ $a = w = \text{the}$

Feature Templates

- ► Feature templates generate many indicator features mechanically
- A feature template is identified by a type, and a number of values
 - Example: template WORD extracts the current word

$$\mathbf{f}_{\langle \mathrm{WORD}, a, w \rangle}(\mathbf{x}, i, l) = \left\{ \begin{array}{ll} 1 & \text{if } x_i = w \text{ and } l = a \\ 0 & \text{otherwise} \end{array} \right.$$

- A feature of this type is identified by the tuple $\langle {\rm WORD}, a, w \rangle$
- \blacktriangleright Generates a feature for every label $a \in \mathcal{Y}$ and every word w

e.g.: $a = loc$	w = London,	a = -	w = London
a = loc	w = Paris	a = PER	w = Paris
a = PER	w = John	a = -	w = the

- In feature-based models:
 - Define feature templates manually
 - ► Instantiate the templates on every set of values in the training data → generates a very high-dimensional feature space
 - \blacktriangleright Define parameter vector ${\bf w}$ indexed by such feature tuples
 - Let the learning algorithm choose the relevant features

More Features for NE Recognition

PER Jack London went to Paris

In practice, construct $\mathbf{f}(\mathbf{x},i,l)$ by \ldots

- Define a number of simple patterns of x and i
 - current word x_i
 - ▶ is x_i capitalized?
 - ► x_i has digits?
 - prefixes/suffixes of size 1, 2, 3, ...
 - ▶ is x_i a known location?
 - ▶ is x_i a known person?

- next word
- previous word
- current and next words together
- other combinations
- Define feature templates by combining patterns with labels l
- Generate actual features by instantiating templates on training data

More Features for NE Recognition

PER PER -Jack London went to Paris

In practice, construct $\mathbf{f}(\mathbf{x},i,l)$ by \ldots

- Define a number of simple patterns of x and i
 - current word x_i
 - ▶ is x_i capitalized?
 - ► x_i has digits?
 - prefixes/suffixes of size 1, 2, 3, ...
 - ▶ is x_i a known location?
 - ▶ is x_i a known person?

- next word
- previous word
- current and next words together
- other combinations
- \blacktriangleright Define feature templates by combining patterns with labels l
- Generate actual features by instantiating templates on training data

Main limitation: features can't capture interactions between labels!

Approach 2: HMM for Sequence Prediction

- Define an HMM were each label is a state
- Model parameters:
 - π_l : probability of starting with label l
 - $T_{l,l'}$: probability of transitioning from l to l'
 - $O_{l,x}$: probability of generating symbol x given label l
- Predictions:

$$p(\mathbf{x}, \mathbf{y}) = \pi_{y_1} O_{y_1, x_1} \prod_{i>1} T_{y_{i-1}, y_i} O_{y_i, x_i}$$

- Learning: relative counts + smoothing
- Prediction: Viterbi algorithm

Approach 2: Representation in HMM

- Label interactions are captured in the transition parameters
- But interactions between labels and input symbols are quite limited!
 - Only $O_{y_i,x_i} = p(x_i \mid y_i)$
 - Not clear how to exploit patterns such as:
 - Capitalization, digits
 - Prefixes and suffixes
 - Next word, previous word
 - Combinations of these with label transitions
- Why? HMM independence assumptions: given label y_i, token x_i is independent of anything else

Approach 2: Representation in HMM

- Label interactions are captured in the transition parameters
- But interactions between labels and input symbols are quite limited!
 - Only $O_{y_i,x_i} = p(x_i \mid y_i)$
 - Not clear how to exploit patterns such as:
 - Capitalization, digits
 - Prefixes and suffixes
 - Next word, previous word
 - Combinations of these with label transitions
- Why? HMM independence assumptions: given label y_i, token x_i is independent of anything else

Local Classifiers vs. HMM

LOCAL CLASSIFIERS

► Form:

 $\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, l)$

- Learning: standard classifiers
- Prediction: independent for each x_i
- Advantage: feature-rich
- Drawback: no label interactions

HMM

► Form:

$$\pi_{y_1}O_{y_1,x_1}\prod_{i>1}T_{y_{i-1},y_i}O_{y_i,x_i}$$

- Learning: relative counts
- Prediction: Viterbi
- Advantage: label interactions
- Drawback: no fine-grained features

Approach 3: Global Sequence Predictors

y: PER PER - - LOC x: Jack London went to Paris

Learn a single classifier from $\mathbf{x} \to \mathbf{y}$

$$\operatorname{predict}(\mathbf{x}_{1:n}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$$

Next questions: ...

- How do we represent entire sequences in f(x, y)?
- There are exponentially-many sequences y for a given x, how do we solve the argmax problem?

Approach 3: Global Sequence Predictors

y: PER PER - - LOC x: Jack London went to Paris

Learn a single classifier from $\mathbf{x} \to \mathbf{y}$

$$\operatorname{predict}(\mathbf{x}_{1:n}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$$

Next questions: ...

- How do we represent entire sequences in f(x, y)?
- There are exponentially-many sequences y for a given x, how do we solve the argmax problem?

y: PER PER - - LOC x: Jack London went to Paris

• How do we represent entire sequences in f(x, y)?

- Look at individual assignments y_i (standard classification)
- Look at bigrams of outputs labels $\langle y_{i-1}, y_i \rangle$
- Look at trigrams of outputs labels $\langle y_{i-2}, y_{i-1}, y_i \rangle$
- Look at *n*-grams of outputs labels $\langle y_{i-n+1}, \ldots, y_{i-1}, y_i \rangle$
- Look at the full label sequence y (intractable)
- A factored representation will lead to a tractable model

y: PER PER - - LOC x: Jack London went to Paris

• How do we represent entire sequences in f(x, y)?

- Look at individual assignments y_i (standard classification)
- Look at bigrams of outputs labels $\langle y_{i-1}, y_i \rangle$
- Look at trigrams of outputs labels $\langle y_{i-2}, y_{i-1}, y_i \rangle$
- Look at *n*-grams of outputs labels $\langle y_{i-n+1}, \ldots, y_{i-1}, y_i \rangle$
- Look at the full label sequence y (intractable)
- A factored representation will lead to a tractable model

y: PER PER - - LOC x: Jack London went to Paris

• How do we represent entire sequences in f(x, y)?

- Look at individual assignments y_i (standard classification)
- Look at bigrams of outputs labels $\langle y_{i-1}, y_i \rangle$
- Look at trigrams of outputs labels $\langle y_{i-2}, y_{i-1}, y_i \rangle$
- Look at *n*-grams of outputs labels $\langle y_{i-n+1}, \ldots, y_{i-1}, y_i \rangle$
- Look at the full label sequence y (intractable)
- A factored representation will lead to a tractable model

• How do we represent entire sequences in f(x, y)?

- Look at individual assignments y_i (standard classification)
- Look at bigrams of outputs labels $\langle y_{i-1}, y_i \rangle$
- Look at trigrams of outputs labels $\langle y_{i-2}, y_{i-1}, y_i \rangle$
- Look at *n*-grams of outputs labels $\langle y_{i-n+1}, \ldots, y_{i-1}, y_i \rangle$
- Look at the full label sequence y (intractable)

► A factored representation will lead to a tractable model

Bigram Feature Templates

• A template for word + bigram:

$$\mathbf{f}_{\langle \mathrm{WB}, a, b, w \rangle}(\mathbf{x}, i, y_{i-1}, y_i) = \begin{cases} 1 & \text{if } x_i = w \text{ and} \\ & y_{i-1} = a \text{ and } y_i = b \\ 0 & \text{otherwise} \end{cases}$$

e.g.,
$$\mathbf{f}_{\langle WB, PER, PER, London \rangle}(\mathbf{x}, 2, PER, PER) = 1$$

 $\mathbf{f}_{\langle WB, PER, PER, London \rangle}(\mathbf{x}, 3, PER, -) = 0$
 $\mathbf{f}_{\langle WB, PER, -, went \rangle}(\mathbf{x}, 3, PER, -) = 1$

More Templates for NER

	1	2	3	4	5
\mathbf{x}	Jack	London	went	to	Paris
У	PER	PER	-	-	LOC
\mathbf{y}'	PER	LOC	-	-	LOC
$\mathbf{y}^{\prime\prime}$	-	-	-	LOC	-
\mathbf{x}'	My	trip	to	London	

 $\mathbf{f}_{\langle W, \text{PER}, \text{PER}, \text{London} \rangle}(\ldots) = 1$ iff $x_i =$ "London" and $y_{i-1} = \text{PER}$ and $y_i = \text{PER}$ $\mathbf{f}_{\langle W, \text{PER}, \text{LOC}, \text{London} \rangle}(\ldots) = 1$ iff $x_i =$ "London" and $y_{i-1} = \text{PER}$ and $y_i = \text{LOC}$ $\mathbf{f}_{\langle \text{PREP}, \text{LOC}, \text{to} \rangle}(\ldots) = 1$ iff $x_{i-1} =$ "to" and $x_i \sim /[\text{A-Z}]/$ and $y_i = \text{LOC}$ $\mathbf{f}_{\langle \text{CITY}, \text{LOC} \rangle}(\ldots) = 1$ iff $y_i = \text{LOC}$ and WORLD-CITIES $(x_i) = 1$ $\mathbf{f}_{\langle \text{FNAME}, \text{PER} \rangle}(\ldots) = 1$ iff $y_i = \text{PER}$ and FIRST-NAMES $(x_i) = 1$

More Templates for NER

	1	2	3	4	5
x	Jack	London	went	to	Paris
У	PER	PER	-	-	LOC
\mathbf{y}'	PER	LOC	-	-	LOC
$\mathbf{y}^{\prime\prime}$	-	-	-	LOC	-
\mathbf{x}'	My	trip	to	London	

 $\mathbf{f}_{\langle W, \text{PER,PER,London} \rangle}(\ldots) = 1$ iff $x_i =$ "London" and $y_{i-1} = \text{PER}$ and $y_i = \text{PER}$ $\mathbf{f}_{\langle W, \text{PER,LOC,London} \rangle}(\ldots) = 1$ iff $x_i =$ "London" and $y_{i-1} = \text{PER}$ and $y_i = \text{LOC}$ $\mathbf{f}_{\langle \text{PREP,LOC,to} \rangle}(\ldots) = 1$ iff $x_{i-1} =$ "to" and $x_i \sim /[\text{A-Z}]/$ and $y_i = \text{LOC}$ $\mathbf{f}_{\langle \text{CITY,LOC} \rangle}(\ldots) = 1$ iff $y_i = \text{LOC}$ and WORLD-CITIES $(x_i) = 1$ $\mathbf{f}_{\langle \text{FNAME,PER} \rangle}(\ldots) = 1$ iff $y_i = \text{PER}$ and FIRST-NAMES $(x_i) = 1$

More Templates for NER

	1	2	3	4	5
\mathbf{x}	Jack	London	went	to	Paris
У	PER	PER	-	-	LOC
\mathbf{y}'	PER	LOC	-	-	LOC
$\mathbf{y}^{\prime\prime}$	-	-	-	LOC	-
\mathbf{x}'	My	trip	to	London	

 $\mathbf{f}_{\langle W, \text{PER}, \text{PER}, \text{London} \rangle}(\ldots) = 1$ iff $x_i =$ "London" and $y_{i-1} = \text{PER}$ and $y_i = \text{PER}$ $\mathbf{f}_{\langle W, \text{PER}, \text{LOC}, \text{London} \rangle}(\ldots) = 1$ iff $x_i =$ "London" and $y_{i-1} = \text{PER}$ and $y_i = \text{LOC}$ $\mathbf{f}_{\langle \text{PREP}, \text{LOC}, \text{to} \rangle}(\ldots) = 1$ iff $x_{i-1} =$ "to" and $x_i \sim /[\text{A-Z}]/$ and $y_i = \text{LOC}$ $\mathbf{f}_{\langle \text{CITY}, \text{LOC} \rangle}(\ldots) = 1$ iff $y_i = \text{LOC}$ and WORLD-CITIES $(x_i) = 1$ $\mathbf{f}_{\langle \text{FNAME}, \text{PER} \rangle}(\ldots) = 1$ iff $y_i = \text{PER}$ and FIRST-NAMES $(x_i) = 1$
More Templates for NER

	1	2	3	4	5
x	Jack	London	went	to	Paris
У	PER	PER	-	-	LOC
\mathbf{y}'	PER	LOC	-	-	LOC
$\mathbf{y}^{\prime\prime}$	-	-	-	LOC	-
\mathbf{x}'	My	trip	to	London	

 $\mathbf{f}_{\langle W, \text{PER,PER,London} \rangle}(\ldots) = 1$ iff $x_i =$ "London" and $y_{i-1} = \text{PER}$ and $y_i = \text{PER}$ $\mathbf{f}_{\langle W, \text{PER,LOC,London} \rangle}(\ldots) = 1$ iff $x_i =$ "London" and $y_{i-1} = \text{PER}$ and $y_i = \text{LOC}$ $\mathbf{f}_{\langle \text{PREP,LOC,to} \rangle}(\ldots) = 1$ iff $x_{i-1} =$ "to" and $x_i \sim /[\text{A-Z}]/$ and $y_i = \text{LOC}$ $\mathbf{f}_{\langle \text{CITY,LOC} \rangle}(\ldots) = 1$ iff $y_i = \text{LOC}$ and WORLD-CITIES $(x_i) = 1$ $\mathbf{f}_{\langle \text{FNAME,PER} \rangle}(\ldots) = 1$ iff $y_i = \text{PER}$ and FIRST-NAMES $(x_i) = 1$

More Templates for NER

	1	2	3	4	5
\mathbf{x}	Jack	London	went	to	Paris
У	PER	PER	-	-	LOC
\mathbf{y}'	PER	LOC	-	-	LOC
$\mathbf{y}^{\prime\prime}$	-	-	-	LOC	-
\mathbf{x}'	My	trip	to	London	

 $\mathbf{f}_{\langle W, \text{PER,PER,London} \rangle}(\ldots) = 1$ iff $x_i =$ "London" and $y_{i-1} = \text{PER}$ and $y_i = \text{PER}$ $\mathbf{f}_{\langle W, \text{PER,LOC,London} \rangle}(\ldots) = 1$ iff $x_i =$ "London" and $y_{i-1} = \text{PER}$ and $y_i = \text{LOC}$ $\mathbf{f}_{\langle \text{PREP,LOC,to} \rangle}(\ldots) = 1$ iff $x_{i-1} =$ "to" and $x_i \sim /[\text{A-Z}]/$ and $y_i = \text{LOC}$ $\mathbf{f}_{\langle \text{CITY,LOC} \rangle}(\ldots) = 1$ iff $y_i = \text{LOC}$ and WORLD-CITIES $(x_i) = 1$ $\mathbf{f}_{\langle \text{FNAME,PER} \rangle}(\ldots) = 1$ iff $y_i = \text{PER}$ and FIRST-NAMES $(x_i) = 1$

Representations Factored at Bigrams

- $\blacktriangleright \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$
 - \blacktriangleright A d-dimensional feature vector of a label bigram at i
 - Each dimension is typically a boolean indicator (0 or 1)

•
$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

- A d-dimensional feature vector of the entire y
- Aggregated representation by summing bigram feature vectors
- Each dimension is now a count of a feature pattern

Linear Sequence Prediction

$$predict(\mathbf{x}_{1:n}) = \underset{\mathbf{y} \in \mathcal{Y}^n}{\operatorname{argmax}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$$
$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

where

Note the linearity of the expression:

$$\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{w} \cdot \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$
$$= \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

► Next questions:

- How do we solve the argmax problem?
- ► How do we learn w?

Linear Sequence Prediction

$$predict(\mathbf{x}_{1:n}) = \underset{\mathbf{y} \in \mathcal{Y}^n}{\operatorname{argmax}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$$
$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

where

Note the linearity of the expression:

$$\begin{aligned} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) &= \mathbf{w} \cdot \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i) \\ &= \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i) \end{aligned}$$

Next questions:

- How do we solve the argmax problem?
- ► How do we learn w?

Linear Sequence Prediction

$$predict(\mathbf{x}_{1:n}) = \underset{\mathbf{y} \in \mathcal{Y}^n}{\operatorname{argmax}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$$
$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

where

$$\begin{split} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) &= \mathbf{w} \cdot \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i) \\ &= \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i) \end{split}$$

Next questions:

- How do we solve the argmax problem?
- ► How do we learn w?

Predicting with Factored Sequence Models

• Consider a fixed \mathbf{w} . Given $\mathbf{x}_{1:n}$ find:

$$\underset{\mathbf{y}\in\mathcal{Y}^n}{\operatorname{argmax}}\sum_{i=1}^{n}\mathbf{w}\cdot\mathbf{f}(\mathbf{x},i,y_{i-1},y_i)$$

- Use the Viterbi algorithm, takes $O(n|\mathcal{Y}|^2)$
- ▶ Notational change: since \mathbf{w} and $\mathbf{x}_{1:n}$ are fixed we will use

$$s(i, a, b) = \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, a, b)$$

Viterbi for Factored Sequence Models

► Given scores s(i, a, b) for each position i and output bigram a, b, find:

$$\underset{\mathbf{y}\in\mathcal{Y}^n}{\operatorname{argmax}}\sum_{i=1}^n s(i, y_{i-1}, y_i)$$

- Use the Viterbi algorithm, takes $O(n|\mathcal{Y}|^2)$
- Intuition: output sequences that share bigrams will share scores

Intuition for Viterbi

- Consider a fixed x_{1:n}
- Assume we have the best sub-sequences up to position i-1

 $1 \quad \cdots \quad i-1 \qquad i$ best subsequence with $y_{i-1} = PER$

best subsequence with $y_{i-1} = LOC$

best subsequence with $y_{i-1} = -$

• What is the best sequence up to position *i* with $y_i = \text{LOC}$?

Intuition for Viterbi

- Consider a fixed x_{1:n}
- Assume we have the best sub-sequences up to position i-1

 $1 \quad \cdots \quad i-1$ ibest subsequence with $y_{i-1} = PER$

best subsequence with $y_{i-1} = LOC$

best subsequence with $y_{i-1} = -$

• What is the best sequence up to position *i* with $y_i = \text{LOC}$?

Intuition for Viterbi

- Consider a fixed x_{1:n}
- Assume we have the best sub-sequences up to position i-1

• What is the best sequence up to position *i* with $y_i = \text{LOC}$?

Viterbi for Linear Factored Predictors

$$\hat{\mathbf{y}} = \underset{\mathbf{y} \in \mathcal{Y}^n}{\operatorname{argmax}} \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

Definition: score of optimal sequence for $\mathbf{x}_{1:i}$ ending with $a \in \mathcal{Y}$

$$\delta(i,a) = \max_{\mathbf{y}\in\mathcal{Y}^i: y_i=a} \sum_{j=1}^i s(j, y_{j-1}, y_j)$$

• Use the following recursions, for all $a \in \mathcal{Y}$:

$$\begin{split} \delta(1,a) &= s(1,y_0 = \text{NULL},a) \\ \delta(i,a) &= \max_{b \in \mathcal{Y}} \delta(i-1,b) + s(i,b,a) \end{split}$$

- The optimal score for \mathbf{x} is $\max_{a \in \mathcal{Y}} \delta(n, a)$
- The optimal sequence $\hat{\mathbf{y}}$ can be recovered through *back-pointers*

Linear Factored Sequence Prediction

$$\operatorname{predict}(\mathbf{x}_{1:n}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$$

- Factored representation, e.g. based on bigrams
- Flexible, arbitrary features of full x and the factors
- Efficient prediction using Viterbi
- Next, learning w:
 - Probabilistic log-linear models:
 - Local learning, a.k.a. Maximum-Entropy Markov Models
 - Global learning, a.k.a. Conditional Random Fields
 - Margin-based methods:
 - Structured Perceptron
 - Structured SVM

Training Data

- PER Maria is beautiful
- LOC -Lisbon is beautiful
- ▶ PER - LOC Jack went to Lisbon
- ► LOC -Argentina is nice
- PER PER - LOC LOC Jack London went to South Paris
- ORG - ORG
 Argentina played against Germany

Training Data

- ► PER -Maria is beautiful
- ► LOC -Lisbon is beautiful
- ► PER - LOC Jack went to Lisbon
- ► LOC -Argentina is nice
- ▶ PER PER - LOC LOC Jack London went to South Paris
- ► ORG - ORG Argentina played against Germany

Weight Vector ${\bf w}$

 $\mathbf{w}_{(\text{LOWER},-)} = +1$

Training Data

- Maria is beautiful
- LOC -Lisbon is beautiful
- ► PER - LOC Jack went to Lisbon
- ► LOC -Argentina is nice
- ▶ PER PER - LOC LOC Jack London went to South Paris
- ORG - ORG
 Argentina played against Germany

Weight Vector ${\bf w}$

Training Data

- PER Maria is beautiful
- ► LOC -Lisbon is beautiful
- ► PER - LOC Jack went to Lisbon
- ► LOC -Argentina is nice
- ► PER PER - LOC LOC Jack London went to South Paris
- ORG - ORG
 Argentina played against Germany

$$\mathbf{w}_{\langle \text{LOWER},-\rangle} = +1 \\ \mathbf{w}_{\langle \text{UPPER},\text{PER}\rangle} = +1 \\ \mathbf{w}_{\langle \text{UPPER},\text{LOC}\rangle} = +1$$

Training Data

- PER Maria is beautiful
- LOC -Lisbon is beautiful
- ► PER - LOC Jack went to Lisbon
- LOC -Argentina is nice
- PER PER - LOC LOC Jack London went to South Paris
- ORG - ORG
 Argentina played against Germany

$$\begin{split} \mathbf{w}_{\langle \text{LOWER}, -\rangle} &= +1 \\ \mathbf{w}_{\langle \text{UPPER}, \text{PER} \rangle} &= +1 \\ \mathbf{w}_{\langle \text{UPPER}, \text{LOC} \rangle} &= +1 \\ \mathbf{w}_{\langle \text{WORD}, \text{PER}, \text{Maria} \rangle} &= +2 \end{split}$$

Training Data

- PER Maria is beautiful
- LOC -Lisbon is beautiful
- ► PER - LOC Jack went to Lisbon
- ► LOC -Argentina is nice
- ▶ PER PER - LOC LOC Jack London went to South Paris
- ORG - ORG
 Argentina played against Germany

Training Data

- PER Maria is beautiful
- LOC -Lisbon is beautiful
- ► PER - LOC Jack went to Lisbon
- ► LOC -Argentina is nice
- ▶ PER PER - LOC LOC Jack London went to South Paris
- ORG - ORG
 Argentina played against Germany

$$\begin{split} \mathbf{w}_{\langle \text{LOWER}, -\rangle} &= +1 \\ \mathbf{w}_{\langle \text{UPPER, PER} \rangle} &= +1 \\ \mathbf{w}_{\langle \text{UPPER, LOC} \rangle} &= +1 \\ \mathbf{w}_{\langle \text{WORD, PER, Maria} \rangle} &= +2 \\ \mathbf{w}_{\langle \text{WORD, PER, Jack} \rangle} &= +2 \\ \mathbf{w}_{\langle \text{NEXTW, PER, went} \rangle} &= +2 \end{split}$$

Training Data

- PER Maria is beautiful
- ► LOC -Lisbon is beautiful
- ▶ PER - LOC Jack went to Lisbon
- ► LOC -Argentina is nice
- PER PER - LOC LOC Jack London went to South Paris
- ORG - ORG
 Argentina played against Germany

Training Data

- PER Maria is beautiful
- ► LOC -Lisbon is beautiful
- ▶ PER - LOC Jack went to Lisbon
- ► LOC -Argentina is nice
- PER PER - LOC LOC Jack London went to South Paris
- ORG - ORG
 Argentina played against Germany

Training Data

- PER Maria is beautiful
- LOC -Lisbon is beautiful
- ▶ PER - LOC Jack went to Lisbon
- ► LOC -Argentina is nice
- ▶ PER PER - LOC LOC Jack London went to South Paris
- ► ORG - ORG Argentina played against Germany

Weight Vector ${\bf w}$

. . .

$$\begin{split} \mathbf{w}_{\langle \text{UPPERBIGRAM, PER, PER} \rangle} &= +2 \\ \mathbf{w}_{\langle \text{UPPERBIGRAM, LOC, LOC} \rangle} &= +2 \\ \mathbf{w}_{\langle \text{NEXTW, LOC, played} \rangle} &= -1000 \end{split}$$

Log-linear Models for Sequence Prediction

Log-linear Models for Sequence Prediction

Model the conditional distribution:

$$\Pr(\mathbf{y} \mid \mathbf{x}; \mathbf{w}) = \frac{\exp\left\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})\right\}}{Z(\mathbf{x}; \mathbf{w})}$$

where

$$Z(\mathbf{x}; \mathbf{w}) = \sum_{\mathbf{z} \in \mathcal{Y}^*} \exp \left\{ \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{z}) \right\}$$

To predict the best sequence

$$\operatorname{predict}(\mathbf{x}_{1:n}) = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \Pr(\mathbf{y} | \mathbf{x})$$

Log-linear Models: Name

Let's take the log of the conditional probability:

$$\log \Pr(\mathbf{y} \mid \mathbf{x}; \mathbf{w}) = \log \frac{\exp\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})\}}{Z(\mathbf{x}; \mathbf{w})}$$
$$= \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) - \log \sum_{y} \exp\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})\}$$
$$= \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) - \log Z(\mathbf{x}; \mathbf{w})$$

- ▶ Partition function: $Z(\mathbf{x}; \mathbf{w}) = \sum_{\mathbf{y}} \exp\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})\}$
- $\log Z(\mathbf{x}; \mathbf{w})$ is a constant for a fixed \mathbf{x}
- In the log space, computations are linear,
 i.e., we model log-probabilities using a linear predictor

Making Predictions with Log-Linear Models

For tractability, assume f(x, y) decomposes into bigrams:

$$\mathbf{f}(\mathbf{x}_{1:n}, \mathbf{y}_{1:n}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

• Given \mathbf{w} , given $\mathbf{x}_{1:n}$, find:

$$\operatorname{argmax}_{\mathbf{y}_{1:n}} \Pr(\mathbf{y}_{1:n} | \mathbf{x}_{1:n}; \mathbf{w}) = \operatorname{amax}_{\mathbf{y}} \frac{\exp\left\{\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_{i})\right\}}{Z(\mathbf{x}; \mathbf{w})}$$
$$= \operatorname{amax}_{\mathbf{y}} \exp\left\{\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_{i})\right\}$$
$$= \operatorname{amax}_{\mathbf{y}} \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_{i})$$

We can use the Viterbi algorithm

Making Predictions with Log-Linear Models

For tractability, assume f(x, y) decomposes into bigrams:

$$\mathbf{f}(\mathbf{x}_{1:n}, \mathbf{y}_{1:n}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

• Given \mathbf{w} , given $\mathbf{x}_{1:n}$, find:

$$\operatorname{argmax}_{\mathbf{y}_{1:n}} \Pr(\mathbf{y}_{1:n} | \mathbf{x}_{1:n}; \mathbf{w}) = \operatorname{amax}_{\mathbf{y}} \frac{\exp\left\{\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_{i})\right\}}{Z(\mathbf{x}; \mathbf{w})}$$
$$= \operatorname{amax}_{\mathbf{y}} \exp\left\{\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_{i})\right\}$$
$$= \operatorname{amax}_{\mathbf{y}} \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_{i})$$

We can use the Viterbi algorithm

Parameter Estimation in Log-Linear Models

$$\Pr(\mathbf{y} \mid \mathbf{x}; \mathbf{w}) = \frac{\exp\left\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})\right\}}{Z(\mathbf{x}; \mathbf{w})}$$

How to estimate \mathbf{w} given training data?

Two approaches:

- MEMMs: assume that $Pr(\mathbf{y} \mid \mathbf{x}; \mathbf{w})$ decomposes
- \blacktriangleright CRFs: assume that $\mathbf{f}(\mathbf{x},\mathbf{y})$ decomposes

Parameter Estimation in Log-Linear Models

$$\Pr(\mathbf{y} \mid \mathbf{x}; \mathbf{w}) = \frac{\exp\left\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})\right\}}{Z(\mathbf{x}; \mathbf{w})}$$

How to estimate \mathbf{w} given training data?

Two approaches:

- MEMMs: assume that $\Pr(\mathbf{y} \mid \mathbf{x}; \mathbf{w})$ decomposes
- \blacktriangleright CRFs: assume that $\mathbf{f}(\mathbf{x},\mathbf{y})$ decomposes

Maximum Entropy Markov Models (MEMMs) (McCallum, Freitag, Pereira '00)

Similarly to HMMs:

$$\begin{aligned} \Pr(\mathbf{y}_{1:n} \mid \mathbf{x}_{1:n}) &= & \Pr(y_1 \mid \mathbf{x}_{1:n}) \times \Pr(\mathbf{y}_{2:n} \mid \mathbf{x}_{1:n}, y_1) \\ &= & \Pr(y_1 \mid \mathbf{x}_{1:n}) \times \prod_{i=2}^{n} \Pr(y_i | \mathbf{x}_{1:n}, \mathbf{y}_{1:i-1}) \\ &= & \Pr(y_1 | \mathbf{x}_{1:n}) \times \prod_{i=2}^{n} \Pr(y_i | \mathbf{x}_{1:n}, \mathbf{y}_{i-1}) \end{aligned}$$

Assumption under MEMMs:

$$\Pr(y_i | \mathbf{x}_{1:n}, \mathbf{y}_{1:i-1}) = \Pr(y_i | \mathbf{x}_{1:n}, y_{i-1})$$

Parameter Estimation in MEMMs

Decompose sequential problem:

$$\Pr(y_{1:n} \mid \mathbf{x}_{1:n}) = \Pr(y_1 \mid \mathbf{x}_{1:n}) \times \prod_{i=2}^n \Pr(y_i \mid \mathbf{x}_{1:n}, i, y_{i-1})$$

Learn local log-linear distributions (i.e. MaxEnt)

$$\Pr(y \mid \mathbf{x}, i, y') = \frac{\exp\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y', y)\}}{Z(\mathbf{x}, i, y')}$$

where

- x is an input sequence
- ▶ y and y' are tags
- ► f(x, i, y', y) is a feature vector of x, the position to be tagged, the previous tag and the current tag

Sequence learning reduced to multi-class logistic regression

Conditional Random Fields

(Lafferty, McCallum, Pereira 2001)

Log-linear model of the conditional distribution:

$$\Pr(\mathbf{y}|\mathbf{x};\mathbf{w}) = \frac{\exp\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x},\mathbf{y})\}}{Z(\mathbf{x})}$$

where

$$\bullet \mathbf{x} = x_1 x_2 \dots x_n \in \mathcal{X}^*$$

•
$$\mathbf{y} = y_1 y_2 \dots y_n \in \mathcal{Y}^*$$
 and $\mathcal{Y} = \{1, \dots, L\}$

- $\blacktriangleright~ \mathbf{f}(\mathbf{x},\mathbf{y})$ is a feature vector of \mathbf{x} and \mathbf{y}
- w are model parameters
- To predict the best sequence

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^*} \Pr(\mathbf{y} | \mathbf{x})$$

 \blacktriangleright Assumption in CRF (for tractability): $\mathbf{f}(\mathbf{x},\mathbf{y}) \text{ decomposes into factors}$

Parameter Estimation in CRFs

Given a training set

$$\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\} \quad ,$$

estimate \mathbf{w}

Define the conditional log-likelihood of the data:

$$L(\mathbf{w}) = \sum_{k=1}^{m} \log \Pr(\mathbf{y}^{(k)} | \mathbf{x}^{(k)}; \mathbf{w})$$

- ► L(w) measures how well w explains the data. A good value for w will give a high value for Pr(y^(k)|x^(k); w) for all k = 1...m.
- We want \mathbf{w} that maximizes $L(\mathbf{w})$

Learning the Parameters of a CRF

We pose it as a concave optimization problem

► Find:

$$\mathbf{w}^* = \operatorname*{argmax}_{\mathbf{w} \in \mathbb{R}^D} L(\mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^2$$

where

- The first term is the log-likelihood of the data
- The second term is a regularization term, it penalizes solutions with large norm (similar to norm-minimization in SVM)
- \blacktriangleright λ is a parameter to control the trade-off between fitting the data and model complexity

Learning the Parameters of a CRF

Find

$$\mathbf{w}^* = \operatorname*{argmax}_{\mathbf{w} \in \mathbb{R}^D} L(\mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^2$$

In general there is no analytical solution to this optimization

We use iterative techniques, i.e. gradient-based optimization

- 1. Initialize $\mathbf{w} = \mathbf{0}$
- 2. Take derivatives of $L(\mathbf{w}) \frac{\lambda}{2} ||\mathbf{w}||^2$, compute gradient
- 3. Move \mathbf{w} in steps proportional to the gradient
- 4. Repeat steps 2 and 3 until convergence
- Fast and scalable algorithms exist
Computing the Gradient in CRFs

Consider a parameter \mathbf{w}_j and its associated feature \mathbf{f}_j :

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}_j} = \frac{1}{m} \sum_{k=1}^m \mathbf{f}_j(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) \\ -\sum_{k=1}^m \sum_{\mathbf{y} \in \mathcal{Y}^*} \Pr(\mathbf{y} | \mathbf{x}^{(k)}; \mathbf{w}) \mathbf{f}_j(\mathbf{x}^{(k)}, \mathbf{y})$$

where

$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}_j(\mathbf{x}, i, y_{i-1}, y_i)$$

- First term: observed value of f_j in training examples
- Second term: expected value of f_j under current w
- In the optimal, observed = expected

Computing the Gradient in CRFs

The first term is easy to compute, by counting explicitly

$$\frac{1}{m} \sum_{k=1}^{m} \sum_{i} \mathbf{f}_j(\mathbf{x}, i, y_{i-1}^{(k)}, y_i^{(k)})$$

The second term is more involved,

$$\sum_{k=1}^{m} \sum_{\mathbf{y} \in \mathcal{Y}^*} \Pr(\mathbf{y} | \mathbf{x}^{(k)}; \mathbf{w}) \sum_{i} \mathbf{f}_j(\mathbf{x}^{(k)}, i, y_{i-1}, y_i)$$

because it sums over all sequences $\mathbf{y} \in \mathcal{Y}^*$

But there is an efficient solution ...

Computing the Gradient in CRFs

• For an example $(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$:

$$\sum_{\mathbf{y}\in\mathcal{Y}^n} \Pr(\mathbf{y}|\mathbf{x}^{(k)};\mathbf{w}) \sum_{i=1}^n \mathbf{f}_j(\mathbf{x}^{(k)}, i, y_{i-1}, y_i) = \sum_{i=1}^n \sum_{a,b\in\mathcal{Y}} \mu_i^k(a, b) \mathbf{f}_j(\mathbf{x}^{(k)}, i, a, b)$$

where

$$\begin{split} \mu_i^k(a,b) = & \Pr(\langle i, a, b \rangle \mid \mathbf{x}^{(k)}; \mathbf{w}) \\ = & \sum_{\mathbf{y} \in \mathcal{Y}^n \ : \ y_{i-1} = a, \ y_i = b} \Pr(\mathbf{y} | \mathbf{x}^{(k)}; \mathbf{w}) \end{split}$$

► The quantities µ^k_i can be computed efficiently in O(nL²) using the forward-backward algorithm

Forward-Backward for CRFs

• Assume fixed x. Calculate in $O(n|\mathcal{Y}|^2)$

 $\mu_i(a,b) = \sum_{\mathbf{y} \in \mathcal{Y}^n: y_{i-1} = a, y_i = b} \Pr(\mathbf{y}|\mathbf{x}; \mathbf{w}) \quad , \ 1 \le i \le n; \ a, b \in \mathcal{Y}$

Definition: forward and backward quantities

$$\begin{aligned} \alpha_i(a) &= \sum_{\mathbf{y}_{1:i} \in \mathcal{Y}^i: y_i = a} \exp\left\{\sum_{j=1}^i \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, j, y_{j-1}, y_j)\right\} \\ \beta_i(b) &= \sum_{\mathbf{y}_{i:n} \in \mathcal{Y}^{(n-i+1)}: y_i = b} \exp\left\{\sum_{j=i+1}^n \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, j, y_{j-1}, y_j)\right\} \end{aligned}$$

 $\blacktriangleright \ Z = \sum_{a} \alpha_n(a)$

• $\mu_i(a,b) = \{\alpha_{i-1}(a) * \exp\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x},i,a,b)\} * \beta_i(b) * Z^{-1}\}$

Similarly to Viterbi, α_i(a) and β_i(b) can be computed efficiently in a recursive manner

Forward-Backward for CRFs

• Assume fixed x. Calculate in $O(n|\mathcal{Y}|^2)$

 $\mu_i(a,b) = \sum_{\mathbf{y} \in \mathcal{Y}^n: y_{i-1} = a, y_i = b} \Pr(\mathbf{y}|\mathbf{x};\mathbf{w}) \quad , \ 1 \le i \le n; \ a, b \in \mathcal{Y}$

Definition: forward and backward quantities

$$\alpha_{i}(a) = \sum_{\mathbf{y}_{1:i}\in\mathcal{Y}^{i}:y_{i}=a} \exp\left\{\sum_{j=1}^{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, j, y_{j-1}, y_{j})\right\}$$

$$\beta_{i}(b) = \sum_{\mathbf{y}_{i:n}\in\mathcal{Y}^{(n-i+1)}:y_{i}=b} \exp\left\{\sum_{j=i+1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, j, y_{j-1}, y_{j})\right\}$$

$$Z = \sum_{a} \alpha_n(a)$$

$$\mu_i(a,b) = \{\alpha_{i-1}(a) * \exp\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x},i,a,b)\} * \beta_i(b) * Z^{-1}\}$$

Similarly to Viterbi, α_i(a) and β_i(b) can be computed efficiently in a recursive manner

CRFs: summary so far

- \blacktriangleright Log-linear models for sequence prediction, $\Pr(\mathbf{y}|\mathbf{x};\mathbf{w})$
- Computations factorize on label bigrams
- Model form:

$$\operatorname*{argmax}_{\mathbf{y}\in\mathcal{Y}^*}\sum_i \mathbf{w}\cdot\mathbf{f}(\mathbf{x},i,y_{i-1},y_i)$$

- Prediction: uses Viterbi (from HMMs)
- Parameter estimation:
 - Gradient-based methods, in practice L-BFGS
 - Computation of gradient uses forward-backward (from HMMs)

CRFs: summary so far

- \blacktriangleright Log-linear models for sequence prediction, $\Pr(\mathbf{y}|\mathbf{x};\mathbf{w})$
- Computations factorize on label bigrams
- Model form:

$$\operatorname*{argmax}_{\mathbf{y}\in\mathcal{Y}^*}\sum_{i}\mathbf{w}\cdot\mathbf{f}(\mathbf{x},i,y_{i-1},y_i)$$

- Prediction: uses Viterbi (from HMMs)
- Parameter estimation:
 - Gradient-based methods, in practice L-BFGS
 - Computation of gradient uses forward-backward (from HMMs)
- ► Next Question: MEMMs or CRFs? HMMs or CRFs?

MEMMs and CRFs

MEMMs:
$$\Pr(\mathbf{y} \mid \mathbf{x}) = \prod_{i=1}^{n} \frac{\exp \left\{ \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i) \right\}}{Z(\mathbf{x}, i, y_{i-1}; \mathbf{w})}$$

CRFs:
$$\Pr(\mathbf{y} \mid \mathbf{x}) = \frac{\exp\left\{\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)\right\}}{Z(\mathbf{x})}$$

- Both exploit the same factorization, i.e. same features
- Same computations to compute $\operatorname{argmax}_{\mathbf{v}} \Pr(\mathbf{y} \mid \mathbf{x})$
- MEMMs locally normalized; CRFs globally normalized
 - MEMM assume that $Pr(y_i \mid x_{1:n}, y_{1:i-1}) = Pr(y_i \mid x_{1:n}, y_{i-1})$
 - Leads to "Label Bias Problem"
- MEMMs are cheaper to train (reduces to multiclass learning)
- CRFs are easier to extend to other structures (next lecture)

HMMs for sequence prediction

- $\blacktriangleright~{\bf x}$ are the observations, ${\bf y}$ are the hidden states
- HMMs model the joint distributon $\Pr(\mathbf{x}, \mathbf{y})$
- ▶ Parameters: (assume $X = \{1, ..., k\}$ and $Y = \{1, ..., l\}$)

Model form

$$\Pr(\mathbf{x}, \mathbf{y}) = \pi_{y_1} O_{y_1, x_1} \prod_{i=2}^n T_{y_{i-1}, y_i} O_{y_i, x_i}$$

 Parameter Estimation: maximum likelihood by counting events and normalizing

HMMs and CRFs

► In CRFs:
$$\hat{\mathbf{y}} = \operatorname{amax}_{\mathbf{y}} \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

► In HMMs:

$$\hat{\mathbf{y}} = \operatorname{amax}_{\mathbf{y}} \pi_{y_1} O_{y_1, x_1} \prod_{i=2}^n T_{y_{i-1}, y_i} O_{y_i, x_i} \\
= \operatorname{amax}_{\mathbf{y}} \log(\pi_{y_1} O_{y_1, x_1}) + \sum_{i=2}^n \log(T_{y_{i-1}, y_i} O_{y_i, x_i})$$

An HMM can be expressed as factored linear models:

$\underline{\qquad \mathbf{f}_{j}(\mathbf{x},i,y,y')}$	\mathbf{w}_{j}
i = 1 & y' = a	$\log(\pi_a)$
i > 1 & y = a & y' = b	$\log(T_{a,b})$
$y' = a \& x_i = c$	$\log(O_{a,b})$

Hence, HMM are factored linear models

HMMs and CRFs: main differences

Representation:

- HMM "features" are tied to the generative process.
- ► CRF features are very flexible. They can look at the whole input x paired with a label bigram (y_i, y_{i+1}).
- In practice, for prediction tasks, "good" discriminative features can improve accuracy a lot.
- Parameter estimation:
 - HMMs focus on explaining the data, both x and y.
 - CRFs focus on the mapping from x to y.
 - A priori, it is hard to say which paradigm is better.
 - Same dilemma as Naive Bayes vs. Maximum Entropy.

Structured Prediction

Perceptron, SVMs, CRFs

Learning Structured Predictors

▶ Goal: given training data $\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$ learn a predictor $\mathbf{x} \rightarrow \mathbf{y}$ with small error on unseen inputs

- ► In a CRF: $\underset{\mathbf{y} \in \mathcal{Y}^*}{\operatorname{argmax}} P(\mathbf{y} | \mathbf{x}; \mathbf{w}) = \frac{\exp \left\{ \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i) \right\}}{Z(\mathbf{x}; \mathbf{w})}$ $= \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$
 - To predict new values, $Z(\mathbf{x}; \mathbf{w})$ is not relevant
 - Parameter estimation: w is set to maximize likelihood

Can we learn w more directly, focusing on errors?

Learning Structured Predictors

▶ Goal: given training data $\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$ learn a predictor $\mathbf{x} \rightarrow \mathbf{y}$ with small error on unseen inputs

- ► In a CRF: $\underset{\mathbf{y} \in \mathcal{Y}^*}{\operatorname{argmax}} P(\mathbf{y} | \mathbf{x}; \mathbf{w}) = \frac{\exp \left\{ \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i) \right\}}{Z(\mathbf{x}; \mathbf{w})}$ $= \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$
 - To predict new values, $Z(\mathbf{x}; \mathbf{w})$ is not relevant
 - Parameter estimation: w is set to maximize likelihood
- Can we learn w more directly, focusing on errors?

The Structured Perceptron (Collins, 2002)

- Set w = 0
- For $t = 1 \dots T$
 - For each training example (\mathbf{x}, \mathbf{y})
 - 1. Compute $\mathbf{z} = \operatorname{argmax}_{\mathbf{z}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{z})$ 2. If $\mathbf{z} \neq \mathbf{y}$ $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{x}, \mathbf{y}) - \mathbf{f}(\mathbf{x}, \mathbf{z})$

► Return w

The Structured Perceptron + Averaging (Freund and Schapire, 1998) (Collins 2002)

- Set $\mathbf{w} = \mathbf{0}$, $\mathbf{w}^a = \mathbf{0}$
- For $t = 1 \dots T$
 - For each training example (x, y)
 1. Compute z = argmax_z w ⋅ f(x, z)
 2. If z ≠ y

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{x}, \mathbf{y}) - \mathbf{f}(\mathbf{x}, \mathbf{z})$$

3. $\mathbf{w}^{\mathbf{a}} = \mathbf{w}^{\mathbf{a}} + \mathbf{w}$

• Return $\mathbf{w}^{\mathbf{a}}/mT$, where m is the number of training examples

Perceptron Updates: Example

У	PER	\mathbf{PER}	-	-	LOC
\mathbf{Z}	PER	LOC	-	-	LOC
\mathbf{x}	Jack	London	went	to	Paris

- Let \mathbf{y} be the correct output for \mathbf{x} .
- \blacktriangleright Say we predict z instead, under our current w
- The update is:

$$\begin{aligned} \mathbf{g} &= \mathbf{f}(\mathbf{x}, \mathbf{y}) - \mathbf{f}(\mathbf{x}, \mathbf{z}) \\ &= \sum_{i} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i) - \sum_{i} \mathbf{f}(\mathbf{x}, i, z_{i-1}, z_i) \\ &= \mathbf{f}(\mathbf{x}, 2, \text{PER}, \text{PER}) - \mathbf{f}(\mathbf{x}, 2, \text{PER}, \text{LOC}) \\ &+ \mathbf{f}(\mathbf{x}, 3, \text{PER}, -) - \mathbf{f}(\mathbf{x}, 3, \text{LOC}, -) \end{aligned}$$

Perceptron updates are typically very sparse

Properties of the Perceptron

- Online algorithm. Often much more efficient than "batch" algorithms
- If the data is separable, it will converge to parameter values with 0 errors
- Number of errors before convergence is related to a definition of margin. Can also relate margin to generalization properties
- In practice:
 - 1. Averaging improves performance a lot
 - 2. Typically reaches a good solution after only a few (say 5) iterations over the training set
 - 3. Often performs nearly as well as CRFs, or SVMs

Averaged Perceptron Convergence

Iteration	Accuracy
1	90.79
2	91.20
3	91.32
4	91.47
5	91.58
6	91.78
7	91.76
8	91.82
9	91.88
10	91.91
11	91.92
12	91.96

(results on validation set for a parsing task)

Margin-based Structured Prediction

• Let
$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

• Model:
$$\operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^*} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$$

► Consider an example
$$(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$$
:
 $\exists \mathbf{y} \neq \mathbf{y}^{(k)} : \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) < \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}) \Longrightarrow \text{ error}$

► Let
$$\mathbf{y}' = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^*: \mathbf{y} \neq \mathbf{y}^{(k)}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y})$$

Define $\gamma_k = \mathbf{w} \cdot (\mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) - \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}'))$

• The quantity γ_k is a notion of margin on example k: $\gamma_k > 0 \iff$ no mistakes in the example high $\gamma_k \iff$ high confidence

Margin-based Structured Prediction

• Let
$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

• Model:
$$\operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^*} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$$

► Consider an example
$$(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$$
:
 $\exists \mathbf{y} \neq \mathbf{y}^{(k)} : \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) < \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}) \Longrightarrow \text{ error}$

► Let
$$\mathbf{y}' = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^* : \mathbf{y} \neq \mathbf{y}^{(k)}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y})$$

Define $\gamma_k = \mathbf{w} \cdot (\mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) - \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}'))$

• The quantity γ_k is a notion of margin on example k: $\gamma_k > 0 \iff$ no mistakes in the example high $\gamma_k \iff$ high confidence

Margin-based Structured Prediction

• Let
$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

• Model:
$$\operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^*} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$$

► Consider an example
$$(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$$
:
 $\exists \mathbf{y} \neq \mathbf{y}^{(k)} : \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) < \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}) \Longrightarrow \text{ error}$

► Let
$$\mathbf{y}' = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^* : \mathbf{y} \neq \mathbf{y}^{(k)}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y})$$

Define $\gamma_k = \mathbf{w} \cdot (\mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) - \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}'))$

• The quantity γ_k is a notion of margin on example k: $\gamma_k > 0 \iff$ no mistakes in the example high $\gamma_k \iff$ high confidence

Mistake-augmented Margins (Taskar et al, 2004)

 $e(\mathbf{y}^{(k)}, \cdot)$

$\mathbf{x}^{(k)}$	Jack	London	went	to	Paris	
$\mathbf{y}^{(k)}$	PER	PER	-	-	LOC	0
\mathbf{y}'	PER	LOC	-	-	LOC	1
$\mathbf{y}^{\prime\prime}$	PER	-	-	-	-	2
$\mathbf{y}^{\prime\prime\prime}$	-	-	PER	PER	-	5

▶ Def: $e(\mathbf{y}, \mathbf{y}') = \sum_{i=1}^{n} [y_i \neq y'_i]$ e.g., $e(\mathbf{y}^{(k)}, \mathbf{y}^{(k)}) = 0, \ e(\mathbf{y}^{(k)}, \mathbf{y}') = 1, \ e(\mathbf{y}^{(k)}, \mathbf{y}''') = 0$

▶ We want a w such that

 $\forall \mathbf{y} \neq \mathbf{y}^{(k)} : \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) > \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}) + e(\mathbf{y}^{(k)}, \mathbf{y})$

(the higher the error of \mathbf{y} , the larger the separation should be)

Mistake-augmented Margins (Taskar et al, 2004)

 $e(\mathbf{y}^{(k)}, \cdot)$ $\mathbf{x}^{(k)}$ Jack London Paris went to $\mathbf{y}^{(k)}$ PER LOC 0 PER -- \mathbf{y}' PER 1 LOC LOC -- \mathbf{y}'' 2 PER y''' 5 _ _ PER PER _

▶ Def:
$$e(\mathbf{y}, \mathbf{y}') = \sum_{i=1}^{n} [y_i \neq y'_i]$$

e.g., $e(\mathbf{y}^{(k)}, \mathbf{y}^{(k)}) = 0$, $e(\mathbf{y}^{(k)}, \mathbf{y}') = 1$, $e(\mathbf{y}^{(k)}, \mathbf{y}''') = 5$

We want a w such that

$$\forall \mathbf{y} \neq \mathbf{y}^{(k)} : \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) > \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}) + e(\mathbf{y}^{(k)}, \mathbf{y})$$

(the higher the error of ${f y}$, the larger the separation should be)

Mistake-augmented Margins (Taskar et al, 2004)

 $e(\mathbf{y}^{(k)}, \cdot)$

$\mathbf{x}^{(k)}$	Jack	London	went	to	Paris	
$\mathbf{y}^{(k)}$	PER	PER	-	-	LOC	0
\mathbf{y}'	PER	LOC	-	-	LOC	1
$\mathbf{y}^{\prime\prime}$	PER	-	-	-	-	2
$\mathbf{y}^{\prime\prime\prime}$	-	-	PER	PER	-	5

▶ Def:
$$e(\mathbf{y}, \mathbf{y}') = \sum_{i=1}^{n} [y_i \neq y'_i]$$

e.g., $e(\mathbf{y}^{(k)}, \mathbf{y}^{(k)}) = 0$, $e(\mathbf{y}^{(k)}, \mathbf{y}') = 1$, $e(\mathbf{y}^{(k)}, \mathbf{y}''') = 5$

We want a w such that

$$\forall \mathbf{y} \neq \mathbf{y}^{(k)} : \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) > \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}) + e(\mathbf{y}^{(k)}, \mathbf{y})$$

(the higher the error of y, the larger the separation should be)

Structured Hinge Loss

Define a mistake-augmented margin

$$\gamma_{k,\mathbf{y}} = \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) - \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}) - e(\mathbf{y}^{(k)}, \mathbf{y})$$
$$\gamma_k = \min_{\mathbf{y} \neq \mathbf{y}^{(k)}} \gamma_{k,\mathbf{y}}$$

Define loss function on example k as:

$$L(\mathbf{w}, \mathbf{x}^{(k)}, \mathbf{y}^{(k)}) = \max_{\mathbf{y} \in \mathcal{Y}^*} \left\{ \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}) + e(\mathbf{y}^{(k)}, \mathbf{y}) - \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) \right\}$$

- Leads to an SVM for structured prediction
- Given a training set, find:

$$\underset{\mathbf{w}\in\mathbb{R}^{D}}{\operatorname{argmin}} \quad \sum_{k=1}^{m} L(\mathbf{w}, \mathbf{x}^{(k)}, \mathbf{y}^{(k)}) + \frac{\lambda}{2} \|\mathbf{w}\|^{2}$$

Regularized Loss Minimization

• Given a training set $\{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)})\}$. Find:

$$\underset{\mathbf{w}\in\mathbb{R}^{D}}{\operatorname{argmin}} \quad \sum_{k=1}^{m} L(\mathbf{w}, \mathbf{x}^{(k)}, \mathbf{y}^{(k)}) + \frac{\lambda}{2} \|\mathbf{w}\|^{2}$$

- Two common loss functions $L(\mathbf{w}, \mathbf{x}^{(k)}, \mathbf{y}^{(k)})$:
 - Log-likelihood loss (CRFs)

$$-\log P(\mathbf{y}^{(k)} \mid \mathbf{x}^{(k)}; \mathbf{w})$$

Hinge loss (SVMs)

$$\max_{\mathbf{y}\in\mathcal{Y}^*} \left(\mathbf{w}\cdot\mathbf{f}(\mathbf{x}^{(k)},\mathbf{y}) + e(\mathbf{y}^{(k)},\mathbf{y}) - \mathbf{w}\cdot\mathbf{f}(\mathbf{x}^{(k)},\mathbf{y}^{(k)})\right)$$

Learning Structure Predictors: summary so far

Linear models for sequence prediction

$$\underset{\mathbf{y}\in\mathcal{Y}^{*}}{\operatorname{argmax}}\sum_{i}\mathbf{w}\cdot\mathbf{f}(\mathbf{x},i,y_{i-1},y_{i})$$

- Computations factorize on label bigrams
 - Decoding: using Viterbi
 - Marginals: using forward-backward
- Parameter estimation:
 - Perceptron, Log-likelihood, SVMs
 - Extensions from classification to the structured case
 - Optimization methods:
 - Stochastic (sub)gradient methods (LeCun et al 98) (Shalev-Shwartz et al. 07)
 - Exponentiated Gradient (Collins et al 08)
 - SVM Struct (Tsochantaridis et al. 04)
 - Structured MIRA (McDonald et al 05)

Beyond Linear Sequence Prediction

Sequence Prediction, Beyond Bigrams

It is easy to extend the scope of features to k-grams

$$\mathbf{f}(\mathbf{x}, i, y_{i-k+1:i-1}, y_i)$$

- ▶ In general, think of state σ_i remembering relevant history
 - $\sigma_i = y_{i-1}$ for bigrams
 - $\sigma_i = y_{i-k+1:i-1}$ for k-grams
 - σ_i can be the state at time i of a deterministic automaton generating y
- The structured predictor is

$$\operatorname*{argmax}_{\mathbf{y}\in\mathcal{Y}^*}\sum_{i}\mathbf{w}\cdot\mathbf{f}(\mathbf{x},i,\sigma_i,y_i)$$

▶ Viterbi and forward-backward extend naturally, in $O(nL^k)$

Dependency Structures

- Directed arcs represent dependencies between a head word and a modifier word.
- ► E.g.:

movie *modifies* saw, John *modifies* saw, today *modifies* saw

Dependency Parsing: arc-factored models (McDonald et al. 2005)

• Parse trees decompose into single dependencies $\langle h, m \rangle$

$$\mathop{\mathrm{argmax}}_{\mathbf{y}\in\mathcal{Y}(\mathbf{x})}\sum_{\langle h,m\rangle\in y}\mathbf{w}\cdot\mathbf{f}(\mathbf{x},h,m)$$

► Some features: $f_1(\mathbf{x}, h, m) = [$ "saw" \rightarrow "movie"] $f_2(\mathbf{x}, h, m) = [$ distance = +2]

Tractable inference algorithms exist (tomorrow's lecture)

Linear Structured Prediction

Sequence prediction (bigram factorization)

$$\underset{\mathbf{y}\in\mathcal{Y}(\mathbf{x})}{\operatorname{argmax}}\sum_{i}\mathbf{w}\cdot\mathbf{f}(\mathbf{x},i,\mathbf{y}_{i-1},\mathbf{y}_{i})$$

Dependency parsing (arc-factored)

$$\operatorname*{argmax}_{\mathbf{y}\in\mathcal{Y}(\mathbf{x})}\sum_{\langle h,m\rangle\in y}\mathbf{w}\cdot\mathbf{f}(\mathbf{x},h,m)$$

• In general, we can enumerate parts $r \in \mathbf{y}$

$$\operatorname*{argmax}_{\mathbf{y}\in\mathcal{Y}(\mathbf{x})}\sum_{r\in\mathbf{y}}\mathbf{w}\cdot\mathbf{f}(\mathbf{x},r)$$

Factored Sequence Prediction: from Linear to Non-linear

score(
$$\mathbf{x}, \mathbf{y}$$
) = $\sum_{i} s(\mathbf{x}, i, y_{i-1}, y_i)$

Linear:

$$\mathbf{s}(\mathbf{x}, i, y_{i-1}, y_i) = \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)$$

Non-linear, using a feed-forward neural network:

$$\mathbf{s}(\mathbf{x}, i, y_{i-1}, y_i) = \mathbf{w}_{y_{i-1}, y_i} \cdot h(\mathbf{f}(\mathbf{x}, i))$$

where:

$$h(\mathbf{f}(\mathbf{x},i)) = \sigma(W^2 \sigma(W^1 \sigma(W^0 \mathbf{f}(\mathbf{x},i))))$$

Remarks:

- The non-linear model computes a hidden representation of the input
- Still factored: Viterbi and Forward-Backward work
- Parameter estimation becomes non-convex, use backpropagation

Recurrent Sequence Prediction

- Maintains a state: a hidden variable that keeps track of previous observations and predictions
- Making predictions is not tractable
 - In practice: greedy predictions or beam search
- Learning is non-convex
- Popular methods: RNN, LSTM, Spectral Models,

Thanks!