
Learning Structured Predictors

Xavier Carreras

Xerox Research Centre Europe

Supervised (Structured) Prediction

I Learning to predict: given training data
{
(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))

}

learn a predictor x→ y that works well on unseen inputs x

I Non-Structured Prediction: outputs y are atomic
I Binary prediction: y ∈ {−1,+1}
I Multiclass prediction: y ∈ {1, 2, . . . , L}

I Structured Prediction: outputs y are structured
I Sequence prediction: y are sequences
I Parsing: y are trees
I . . .

Named Entity Recognition

y per - qnt - - org org - time
x Jim bought 300 shares of Acme Corp. in 2006

y per per - - loc
x Jack London went to Paris

y per per - - loc
x Paris Hilton went to London

y per - - loc
x Jackie went to Lisdon

Named Entity Recognition

y per - qnt - - org org - time
x Jim bought 300 shares of Acme Corp. in 2006

y per per - - loc
x Jack London went to Paris

y per per - - loc
x Paris Hilton went to London

y per - - loc
x Jackie went to Lisdon

Part-of-speech Tagging

y NNP NNP VBZ NNP .
x Ms. Haag plays Elianti .

Syntactic Parsing

? Unesco is now holding its biennial meetings in New York .

ROOT

SBJ TMP

VC NMOD

NMOD

OBJ

LOC

NAME

PMOD

P

x are sentences
y are syntactic dependency trees

Machine Translation

rules may describe the transformation of does not
into ne ... pas in French. A particular instance may
look like this:

VP(AUX(does), RB(not), x0:VB)→ ne, x0, pas

lhs(ri) can be any arbitrary syntax tree fragment.
Its leaves are either lexicalized (e.g. does) or vari-
ables (x0, x1, etc). rhs(ri) is represented as a se-
quence of target-language words and variables.

Now we give a brief overview of how such
transformational rules are acquired automatically
in GHKM.1 In Figure 1, the (π, f ,a) triple is rep-
resented as a directed graph G (edges going down-
ward), with no distinction between edges of π and
alignments. Each node of the graph is labeled with
its span and complement span (the latter in italic
in the figure). The span of a node n is defined by
the indices of the first and last word in f that are
reachable from n. The complement span of n is
the union of the spans of all nodes n� in G that
are neither descendants nor ancestors of n. Nodes
of G whose spans and complement spans are non-
overlapping form the frontier set F ∈ G.

What is particularly interesting about the fron-
tier set? For any frontier of graph G containing
a given node n ∈ F , spans on that frontier de-
fine an ordering between n and each other frontier
node n�. For example, the span of VP[4-5] either
precedes or follows, but never overlaps the span of
any node n� on any graph frontier. This property
does not hold for nodes outside of F . For instance,
PP[4-5] and VBG[4] are two nodes of the same
graph frontier, but they cannot be ordered because
of their overlapping spans.

The purpose of xRs rules in this framework is
to order constituents along sensible frontiers in G,
and all frontiers containing undefined orderings,
as between PP[4-5] and VBG[4], must be disre-
garded during rule extraction. To ensure that xRs
rules are prevented from attempting to re-order
any such pair of constituents, these rules are de-
signed in such a way that variables in their lhs can
only match nodes of the frontier set. Rules that
satisfy this property are said to be induced by G.2

For example, rule (d) in Table 1 is valid accord-
ing to GHKM, since the spans corresponding to

1Note that we use a slightly different terminology.
2Specifically, an xRs rule ri is extracted from G by taking

a subtree γ ∈ π as lhs(ri), appending a variable to each
leaf node of γ that is internal to π, adding those variables to
rhs(ri), ordering them in accordance to a, and if necessary
inserting any word of f to ensure that rhs(ri) is a sequence of
contiguous spans (e.g., [4-5][6][7-8] for rule (f) in Table 1).

!" #! $%& ''()' ''&

'&

''($%*

!""# $%& ' ' ()

" ! ' (* $ &)

!
!"#$%"&

"
!"&

"
!"&

#
#"&

$%&
!"'$&

'
!"&

'
!"&

(
!"%$("&

)
!")

#%"
*"&

'&
$%&
!"'$&

'&
(

!"%$+("&

&&
'%(

!"%$("&

$&
'%(

!"*$("&

'&
'%&
!"*$&

$&
!%&
!"#$&

(
#%)
!

!! "#$ %& '() *+ , "

"#$%$ &$'&($)*+(,-$.%/0'*.,/% +'1)*2 30'1 40.*+$ +

+

5

-

Figure 1: Spans and complement-spans determine what
rules are extracted. Constituents in gray are members of the
frontier set; a minimal rule is extracted from each of them.

(a) S(x0:NP, x1:VP, x2:.) → x0, x1, x2

(b) NP(x0:DT, CD(7), NNS(people))→ x0, 7
(c) DT(these)→
(d) VP(x0:VBP, x1:NP)→ x0, x1

(e) VBP(include)→
(f) NP(x0:NP, x1:VP)→ x1, , x0

(g) NP(x0:NNS)→ x0

(h) NNS(astronauts)→ ,
(i) VP(VBG(coming), PP(IN(from), x0:NP))→ , x0

(j) NP(x0:NNP)→ x0

(k) NNP(France)→
(l) .(.) → .

Table 1: A minimal derivation corresponding to Figure 1.

its rhs constituents (VBP[3] and NP[4-8]) do not
overlap. Conversely, NP(x0:DT, x1:CD:, x2:NNS)
is not the lhs of any rule extractible from G, since
its frontier constituents CD[2] and NNS[2] have
overlapping spans.3 Finally, the GHKM proce-
dure produces a single derivation from G, which
is shown in Table 1.

The concern in GHKM was to extract minimal
rules, whereas ours is to extract rules of any arbi-
trary size. Minimal rules defined over G are those
that cannot be decomposed into simpler rules in-
duced by the same graph G, e.g., all rules in Ta-
ble 1. We call minimal a derivation that only con-
tains minimal rules. Conversely, a composed rule
results from the composition of two or more min-
imal rules, e.g., rule (b) and (c) compose into:

NP(DT(these), CD(7), NNS(people))→ , 7

3It is generally reasonable to also require that the root n
of lhs(ri) be part of F , because no rule induced by G can
compose with ri at n, due to the restrictions imposed on the
extraction procedure, and ri wouldn’t be part of any valid
derivation.

(Galley et al 2006)

x are sentences in Chinese
y are sentences in English aligned to x

Object Detection

(Kumar and Hebert 2003)

x are images
y are grids labeled with object types

Object Detection

(Kumar and Hebert 2003)

x are images
y are grids labeled with object types

Today’s Goals

I Introduce basic concepts for structured prediction
I We will restrict to sequence prediction

I What can we can borrow from standard classification?
I Learning paradigms and algorithms, in essence, work here too
I However, computations behind algorithms are prohibitive

I What can we borrow from HMM and other structured formalisms?
I Representations of structured data into feature spaces
I Inference/search algorithms for tractable computations
I E.g., algorithms for HMMs (Viterbi, forward-backward) will play a

major role in today’s methods

Today’s Goals

I Introduce basic concepts for structured prediction
I We will restrict to sequence prediction

I What can we can borrow from standard classification?
I Learning paradigms and algorithms, in essence, work here too
I However, computations behind algorithms are prohibitive

I What can we borrow from HMM and other structured formalisms?
I Representations of structured data into feature spaces
I Inference/search algorithms for tractable computations
I E.g., algorithms for HMMs (Viterbi, forward-backward) will play a

major role in today’s methods

Sequence Prediction

y per per - - loc
x Jack London went to Paris

Sequence Prediction

I x = x1x2 . . . xn are input sequences, xi ∈ X
I y = y1y2 . . . yn are output sequences, yi ∈ {1, . . . , L}

I Goal: given training data

{
(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))

}

learn a predictor x→ y that works well on unseen inputs x

I What is the form of our prediction model?

Exponentially-many Solutions

I Let Y = {-,per, loc}

I The solution space (all output sequences):

Jack London went to Paris

-

per

loc

-

per

loc

-

per

loc

-

per

loc

-

per

loc

I Each path is a possible solution

I For an input sequence of size n, there are |Y|n possible outputs

Exponentially-many Solutions

I Let Y = {-,per, loc}

I The solution space (all output sequences):

Jack London went to Paris

-

per

loc

-

per

loc

-

per

loc

-

per

loc

-

per

loc

I Each path is a possible solution

I For an input sequence of size n, there are |Y|n possible outputs

Approach 1: Local Classifiers

?
Jack London went to Paris

Decompose the sequence into n classification problems:

I A classifier predicts individual labels at each position

ŷi = argmax
l ∈ {loc, per, -}

w · f(x, i, l)

I f(x, i, l) represents an assignment of label l for xi
I w is a vector of parameters, has a weight for each feature of f

I Use standard classification methods to learn w

I At test time, predict the best sequence by
a simple concatenation of the best label for each position

Approach 1: Local Classifiers

?
Jack London went to Paris

Decompose the sequence into n classification problems:

I A classifier predicts individual labels at each position

ŷi = argmax
l ∈ {loc, per, -}

w · f(x, i, l)

I f(x, i, l) represents an assignment of label l for xi
I w is a vector of parameters, has a weight for each feature of f

I Use standard classification methods to learn w

I At test time, predict the best sequence by
a simple concatenation of the best label for each position

Indicator Features

I f(x, i, l) is a vector of d features representing label l for xi

[f1(x, i, l), . . . , fj(x, i, l), . . . , fd(x, i, l)]

I What’s in a feature fj(x, i, l)?
I Anything we can compute using x and i and l
I Anything that indicates whether l is (not) a good label for xi
I Indicator features: binary-valued features looking at:

I a simple pattern of x and target position i
I and the candidate label l for position i

fj(x, i, l) =

{
1 if xi =London and l =loc
0 otherwise

fk(x, i, l) =

{
1 if xi+1 =went and l =loc
0 otherwise

Feature Templates

I Feature templates generate many indicator features mechanically
I A feature template is identified by a type, and a number of values

I Example: template word extracts the current word

f〈word,a,w〉(x, i, l) =

{
1 if xi = w and l = a
0 otherwise

I A feature of this type is identified by the tuple 〈word, a, w〉
I Generates a feature for every label a ∈ Y and every word w

e.g.: a = loc w = London, a = - w = London
a = loc w = Paris a = per w = Paris
a = per w = John a = - w = the

I In feature-based models:
I Define feature templates manually
I Instantiate the templates on every set of values in the training data
→ generates a very high-dimensional feature space

I Define parameter vector w indexed by such feature tuples
I Let the learning algorithm choose the relevant features

Feature Templates

I Feature templates generate many indicator features mechanically
I A feature template is identified by a type, and a number of values

I Example: template word extracts the current word

f〈word,a,w〉(x, i, l) =

{
1 if xi = w and l = a
0 otherwise

I A feature of this type is identified by the tuple 〈word, a, w〉
I Generates a feature for every label a ∈ Y and every word w

e.g.: a = loc w = London, a = - w = London
a = loc w = Paris a = per w = Paris
a = per w = John a = - w = the

I In feature-based models:
I Define feature templates manually
I Instantiate the templates on every set of values in the training data
→ generates a very high-dimensional feature space

I Define parameter vector w indexed by such feature tuples
I Let the learning algorithm choose the relevant features

More Features for NE Recognition

per

per

-

Jack London went to Paris

In practice, construct f(x, i, l) by . . .

I Define a number of simple patterns of x and i

I current word xi
I is xi capitalized?
I xi has digits?
I prefixes/suffixes of size 1, 2, 3, . . .
I is xi a known location?
I is xi a known person?

I next word
I previous word
I current and next words

together
I other combinations

I Define feature templates by combining patterns with labels l

I Generate actual features by instantiating templates on training data

Main limitation: features can’t capture interactions between labels!

More Features for NE Recognition

per per -
Jack London went to Paris

In practice, construct f(x, i, l) by . . .

I Define a number of simple patterns of x and i

I current word xi
I is xi capitalized?
I xi has digits?
I prefixes/suffixes of size 1, 2, 3, . . .
I is xi a known location?
I is xi a known person?

I next word
I previous word
I current and next words

together
I other combinations

I Define feature templates by combining patterns with labels l

I Generate actual features by instantiating templates on training data

Main limitation: features can’t capture interactions between labels!

Approach 2: HMM for Sequence Prediction

per
πper

per
Tper,per

- - loc

Jack London

Oper, London

went to Paris

I Define an HMM were each label is a state
I Model parameters:

I πl : probability of starting with label l
I Tl,l′ : probability of transitioning from l to l′

I Ol,x: probability of generating symbol x given label l

I Predictions:

p(x,y) = πy1Oy1,x1

∏

i>1

Tyi−1,yiOyi,xi

I Learning: relative counts + smoothing

I Prediction: Viterbi algorithm

Approach 2: Representation in HMM

per
πper

per
Tper,per

- - loc

Jack London

Oper, London

went to Paris

I Label interactions are captured in the transition parameters
I But interactions between labels and input symbols are quite

limited!
I Only Oyi,xi

= p(xi | yi)
I Not clear how to exploit patterns such as:

I Capitalization, digits
I Prefixes and suffixes
I Next word, previous word
I Combinations of these with label transitions

I Why? HMM independence assumptions:
given label yi, token xi is independent of anything else

Approach 2: Representation in HMM

per
πper

per
Tper,per

- - loc

Jack London

Oper, London

went to Paris

I Label interactions are captured in the transition parameters
I But interactions between labels and input symbols are quite

limited!
I Only Oyi,xi

= p(xi | yi)
I Not clear how to exploit patterns such as:

I Capitalization, digits
I Prefixes and suffixes
I Next word, previous word
I Combinations of these with label transitions

I Why? HMM independence assumptions:
given label yi, token xi is independent of anything else

Local Classifiers vs. HMM

Local Classifiers

I Form:

w · f(x, i, l)

I Learning: standard classifiers

I Prediction: independent for
each xi

I Advantage: feature-rich

I Drawback: no label
interactions

HMM

I Form:

πy1Oy1,x1

∏

i>1

Tyi−1,yiOyi,xi

I Learning: relative counts

I Prediction: Viterbi

I Advantage: label interactions

I Drawback: no fine-grained
features

Approach 3: Global Sequence Predictors

y: per per - - loc
x: Jack London went to Paris

Learn a single classifier from x→ y

predict(x1:n) = argmax
y∈Yn

w · f(x,y)

Next questions: . . .

I How do we represent entire sequences in f(x,y)?

I There are exponentially-many sequences y for a given x,
how do we solve the argmax problem?

Approach 3: Global Sequence Predictors

y: per per - - loc
x: Jack London went to Paris

Learn a single classifier from x→ y

predict(x1:n) = argmax
y∈Yn

w · f(x,y)

Next questions: . . .

I How do we represent entire sequences in f(x,y)?

I There are exponentially-many sequences y for a given x,
how do we solve the argmax problem?

Factored Representations

y: per per - - loc
x: Jack London went to Paris

I How do we represent entire sequences in f(x,y)?

I Look at individual assignments yi (standard classification)
I Look at bigrams of outputs labels 〈yi−1, yi〉
I Look at trigrams of outputs labels 〈yi−2, yi−1, yi〉
I Look at n-grams of outputs labels 〈yi−n+1, . . . , yi−1, yi〉
I Look at the full label sequence y (intractable)

I A factored representation will lead to a tractable model

Factored Representations

y: per per - - loc
x: Jack London went to Paris

I How do we represent entire sequences in f(x,y)?

I Look at individual assignments yi (standard classification)
I Look at bigrams of outputs labels 〈yi−1, yi〉
I Look at trigrams of outputs labels 〈yi−2, yi−1, yi〉
I Look at n-grams of outputs labels 〈yi−n+1, . . . , yi−1, yi〉
I Look at the full label sequence y (intractable)

I A factored representation will lead to a tractable model

Factored Representations

y: per per - - loc
x: Jack London went to Paris

I How do we represent entire sequences in f(x,y)?

I Look at individual assignments yi (standard classification)
I Look at bigrams of outputs labels 〈yi−1, yi〉
I Look at trigrams of outputs labels 〈yi−2, yi−1, yi〉
I Look at n-grams of outputs labels 〈yi−n+1, . . . , yi−1, yi〉
I Look at the full label sequence y (intractable)

I A factored representation will lead to a tractable model

Factored Representations

y: per per - - loc
x: Jack London went to Paris

I How do we represent entire sequences in f(x,y)?

I Look at individual assignments yi (standard classification)
I Look at bigrams of outputs labels 〈yi−1, yi〉
I Look at trigrams of outputs labels 〈yi−2, yi−1, yi〉
I Look at n-grams of outputs labels 〈yi−n+1, . . . , yi−1, yi〉
I Look at the full label sequence y (intractable)

I A factored representation will lead to a tractable model

Bigram Feature Templates

1 2 3 4 5
y per per - - loc
x Jack London went to Paris

I A template for word + bigram:

f〈wb,a,b,w〉(x, i, yi−1, yi) =

1 if xi = w and
yi−1 = a and yi = b

0 otherwise

e.g., f〈wb,per,per,London〉(x, 2,per,per) = 1

f〈wb,per,per,London〉(x, 3,per, -) = 0

f〈wb,per,-,went〉(x, 3,per, -) = 1

More Templates for NER

1 2 3 4 5
x Jack London went to Paris
y per per - - loc
y′ per loc - - loc
y′′ - - - loc -
x′ My trip to London . . .

f〈w,per,per,London〉(. . .) = 1 iff xi =”London” and yi−1 = per and yi = per

f〈w,per,loc,London〉(. . .) = 1 iff xi =”London” and yi−1 = per and yi = loc

f〈prep,loc,to〉(. . .) = 1 iff xi−1 =”to” and xi ∼/[A-Z]/ and yi = loc

f〈city,loc〉(. . .) = 1 iff yi = loc and world-cities(xi) = 1

f〈fname,per〉(. . .) = 1 iff yi = per and first-names(xi) = 1

More Templates for NER

1 2 3 4 5
x Jack London went to Paris
y per per - - loc
y′ per loc - - loc
y′′ - - - loc -
x′ My trip to London . . .

f〈w,per,per,London〉(. . .) = 1 iff xi =”London” and yi−1 = per and yi = per

f〈w,per,loc,London〉(. . .) = 1 iff xi =”London” and yi−1 = per and yi = loc

f〈prep,loc,to〉(. . .) = 1 iff xi−1 =”to” and xi ∼/[A-Z]/ and yi = loc

f〈city,loc〉(. . .) = 1 iff yi = loc and world-cities(xi) = 1

f〈fname,per〉(. . .) = 1 iff yi = per and first-names(xi) = 1

More Templates for NER

1 2 3 4 5
x Jack London went to Paris
y per per - - loc
y′ per loc - - loc
y′′ - - - loc -
x′ My trip to London . . .

f〈w,per,per,London〉(. . .) = 1 iff xi =”London” and yi−1 = per and yi = per

f〈w,per,loc,London〉(. . .) = 1 iff xi =”London” and yi−1 = per and yi = loc

f〈prep,loc,to〉(. . .) = 1 iff xi−1 =”to” and xi ∼/[A-Z]/ and yi = loc

f〈city,loc〉(. . .) = 1 iff yi = loc and world-cities(xi) = 1

f〈fname,per〉(. . .) = 1 iff yi = per and first-names(xi) = 1

More Templates for NER

1 2 3 4 5
x Jack London went to Paris
y per per - - loc
y′ per loc - - loc
y′′ - - - loc -
x′ My trip to London . . .

f〈w,per,per,London〉(. . .) = 1 iff xi =”London” and yi−1 = per and yi = per

f〈w,per,loc,London〉(. . .) = 1 iff xi =”London” and yi−1 = per and yi = loc

f〈prep,loc,to〉(. . .) = 1 iff xi−1 =”to” and xi ∼/[A-Z]/ and yi = loc

f〈city,loc〉(. . .) = 1 iff yi = loc and world-cities(xi) = 1

f〈fname,per〉(. . .) = 1 iff yi = per and first-names(xi) = 1

More Templates for NER

1 2 3 4 5
x Jack London went to Paris
y per per - - loc
y′ per loc - - loc
y′′ - - - loc -
x′ My trip to London . . .

f〈w,per,per,London〉(. . .) = 1 iff xi =”London” and yi−1 = per and yi = per

f〈w,per,loc,London〉(. . .) = 1 iff xi =”London” and yi−1 = per and yi = loc

f〈prep,loc,to〉(. . .) = 1 iff xi−1 =”to” and xi ∼/[A-Z]/ and yi = loc

f〈city,loc〉(. . .) = 1 iff yi = loc and world-cities(xi) = 1

f〈fname,per〉(. . .) = 1 iff yi = per and first-names(xi) = 1

Representations Factored at Bigrams

y: per per - - loc
x: Jack London went to Paris

I f(x, i, yi−1, yi)
I A d-dimensional feature vector of a label bigram at i
I Each dimension is typically a boolean indicator (0 or 1)

I f(x,y) =
∑n

i=1 f(x, i, yi−1, yi)
I A d-dimensional feature vector of the entire y
I Aggregated representation by summing bigram feature vectors
I Each dimension is now a count of a feature pattern

Linear Sequence Prediction

predict(x1:n) = argmax
y∈Yn

w · f(x,y)

where
f(x,y) =

n∑

i=1

f(x, i, yi−1, yi)

I Note the linearity of the expression:

w · f(x,y) = w ·
n∑

i=1

f(x, i, yi−1, yi)

=

n∑

i=1

w · f(x, i, yi−1, yi)

I Next questions:
I How do we solve the argmax problem?
I How do we learn w?

Linear Sequence Prediction

predict(x1:n) = argmax
y∈Yn

w · f(x,y)

where
f(x,y) =

n∑

i=1

f(x, i, yi−1, yi)

I Note the linearity of the expression:

w · f(x,y) = w ·
n∑

i=1

f(x, i, yi−1, yi)

=

n∑

i=1

w · f(x, i, yi−1, yi)

I Next questions:
I How do we solve the argmax problem?
I How do we learn w?

Linear Sequence Prediction

predict(x1:n) = argmax
y∈Yn

w · f(x,y)

where
f(x,y) =

n∑

i=1

f(x, i, yi−1, yi)

I Note the linearity of the expression:

w · f(x,y) = w ·
n∑

i=1

f(x, i, yi−1, yi)

=

n∑

i=1

w · f(x, i, yi−1, yi)

I Next questions:
I How do we solve the argmax problem?
I How do we learn w?

Predicting with Factored Sequence Models

I Consider a fixed w. Given x1:n find:

argmax
y∈Yn

n∑

i=1

w · f(x, i, yi−1, yi)

I Use the Viterbi algorithm, takes O(n|Y|2)

I Notational change: since w and x1:n are fixed we will use

s(i, a, b) = w · f(x, i, a, b)

Viterbi for Factored Sequence Models

I Given scores s(i, a, b) for each position i and output bigram a, b,
find:

argmax
y∈Yn

n∑

i=1

s(i, yi−1, yi)

I Use the Viterbi algorithm, takes O(n|Y|2)

I Intuition: output sequences that share bigrams will share scores
1 . . . i− 2 i− 1 i i+ 1 . . . n

best subsequence with yi−1 = per

best subsequence with yi−1 = loc

best subsequence with yi−1 = –

best subsequence with yi = per

s(i
,lo

c,
per

)

best subsequence with yi = loc

best subsequence with yi = –

Intuition for Viterbi

I Consider a fixed x1:n

I Assume we have the best sub-sequences up to position i− 1

1 . . . i− 1 i

best subsequence with yi−1 = per

best subsequence with yi−1 = loc

best subsequence with yi−1 = –

s(i,per, loc)

s(i,loc, loc)

s(i
,–,

loc
)

I What is the best sequence up to position i with yi =loc?

Intuition for Viterbi

I Consider a fixed x1:n

I Assume we have the best sub-sequences up to position i− 1

1 . . . i− 1 i

best subsequence with yi−1 = per

best subsequence with yi−1 = loc

best subsequence with yi−1 = –

s(i,per, loc)

s(i,loc, loc)

s(i
,–,

loc
)

I What is the best sequence up to position i with yi =loc?

Intuition for Viterbi

I Consider a fixed x1:n

I Assume we have the best sub-sequences up to position i− 1

1 . . . i− 1 i

best subsequence with yi−1 = per

best subsequence with yi−1 = loc

best subsequence with yi−1 = –

s(i,per, loc)

s(i,loc, loc)

s(i
,–,

loc
)

I What is the best sequence up to position i with yi =loc?

Viterbi for Linear Factored Predictors

ŷ = argmax
y∈Yn

n∑

i=1

w · f(x, i, yi−1, yi)

I Definition: score of optimal sequence for x1:i ending with a ∈ Y

δ(i, a) = max
y∈Yi:yi=a

i∑

j=1

s(j, yj−1, yj)

I Use the following recursions, for all a ∈ Y:

δ(1, a) = s(1, y0 = null, a)

δ(i, a) = max
b∈Y

δ(i− 1, b) + s(i, b, a)

I The optimal score for x is maxa∈Y δ(n, a)
I The optimal sequence ŷ can be recovered through back-pointers

Linear Factored Sequence Prediction

predict(x1:n) = argmax
y∈Yn

w · f(x,y)

I Factored representation, e.g. based on bigrams

I Flexible, arbitrary features of full x and the factors

I Efficient prediction using Viterbi
I Next, learning w:

I Probabilistic log-linear models:
I Local learning, a.k.a. Maximum-Entropy Markov Models
I Global learning, a.k.a. Conditional Random Fields

I Margin-based methods:
I Structured Perceptron
I Structured SVM

The Learner’s Game

Training Data

I per - -
Maria is beautiful

I loc - -
Lisbon is beautiful

I per - - loc
Jack went to Lisbon

I loc - -
Argentina is nice

I per per - - loc loc
Jack London went to South Paris

I org - - org
Argentina played against Germany

Weight Vector w

w〈Lower,-〉 = +1

w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +2
w〈UpperBigram,loc,loc〉 = +2
w〈NextW,loc,played〉 = −1000

The Learner’s Game

Training Data

I per - -
Maria is beautiful

I loc - -
Lisbon is beautiful

I per - - loc
Jack went to Lisbon

I loc - -
Argentina is nice

I per per - - loc loc
Jack London went to South Paris

I org - - org
Argentina played against Germany

Weight Vector w

w〈Lower,-〉 = +1

w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +2
w〈UpperBigram,loc,loc〉 = +2
w〈NextW,loc,played〉 = −1000

The Learner’s Game

Training Data

I per - -
Maria is beautiful

I loc - -
Lisbon is beautiful

I per - - loc
Jack went to Lisbon

I loc - -
Argentina is nice

I per per - - loc loc
Jack London went to South Paris

I org - - org
Argentina played against Germany

Weight Vector w

w〈Lower,-〉 = +1
w〈Upper,per〉 = +1

w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +2
w〈UpperBigram,loc,loc〉 = +2
w〈NextW,loc,played〉 = −1000

The Learner’s Game

Training Data

I per - -
Maria is beautiful

I loc - -
Lisbon is beautiful

I per - - loc
Jack went to Lisbon

I loc - -
Argentina is nice

I per per - - loc loc
Jack London went to South Paris

I org - - org
Argentina played against Germany

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1

w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +2
w〈UpperBigram,loc,loc〉 = +2
w〈NextW,loc,played〉 = −1000

The Learner’s Game

Training Data

I per - -
Maria is beautiful

I loc - -
Lisbon is beautiful

I per - - loc
Jack went to Lisbon

I loc - -
Argentina is nice

I per per - - loc loc
Jack London went to South Paris

I org - - org
Argentina played against Germany

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2

w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +2
w〈UpperBigram,loc,loc〉 = +2
w〈NextW,loc,played〉 = −1000

The Learner’s Game

Training Data

I per - -
Maria is beautiful

I loc - -
Lisbon is beautiful

I per - - loc
Jack went to Lisbon

I loc - -
Argentina is nice

I per per - - loc loc
Jack London went to South Paris

I org - - org
Argentina played against Germany

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2

w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +2
w〈UpperBigram,loc,loc〉 = +2
w〈NextW,loc,played〉 = −1000

The Learner’s Game

Training Data

I per - -
Maria is beautiful

I loc - -
Lisbon is beautiful

I per - - loc
Jack went to Lisbon

I loc - -
Argentina is nice

I per per - - loc loc
Jack London went to South Paris

I org - - org
Argentina played against Germany

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2

w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +2
w〈UpperBigram,loc,loc〉 = +2
w〈NextW,loc,played〉 = −1000

The Learner’s Game

Training Data

I per - -
Maria is beautiful

I loc - -
Lisbon is beautiful

I per - - loc
Jack went to Lisbon

I loc - -
Argentina is nice

I per per - - loc loc
Jack London went to South Paris

I org - - org
Argentina played against Germany

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2

w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +2
w〈UpperBigram,loc,loc〉 = +2
w〈NextW,loc,played〉 = −1000

The Learner’s Game

Training Data

I per - -
Maria is beautiful

I loc - -
Lisbon is beautiful

I per - - loc
Jack went to Lisbon

I loc - -
Argentina is nice

I per per - - loc loc
Jack London went to South Paris

I org - - org
Argentina played against Germany

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2

. . .
w〈UpperBigram,per,per〉 = +2
w〈UpperBigram,loc,loc〉 = +2
w〈NextW,loc,played〉 = −1000

The Learner’s Game

Training Data

I per - -
Maria is beautiful

I loc - -
Lisbon is beautiful

I per - - loc
Jack went to Lisbon

I loc - -
Argentina is nice

I per per - - loc loc
Jack London went to South Paris

I org - - org
Argentina played against Germany

Weight Vector w

w〈Lower,-〉 = +1

((((((((
w〈Upper,per〉 = +1
w〈Upper,loc〉 = +1
w〈Word,per,Maria〉 = +2
w〈Word,per,Jack〉 = +2
w〈NextW,per,went〉 = +2
w〈NextW,org,played〉 = +2
w〈PrevW,org,against〉 = +2
. . .
w〈UpperBigram,per,per〉 = +2
w〈UpperBigram,loc,loc〉 = +2
w〈NextW,loc,played〉 = −1000

Log-linear Models

for Sequence Prediction

y per per - - loc
x Jack London went to Paris

Log-linear Models for Sequence Prediction

I Model the conditional distribution:

Pr(y | x;w) =
exp {w · f(x,y)}

Z(x;w)

where
I x = x1x2 . . . xn ∈ X ∗
I y = y1y2 . . . yn ∈ Y∗ and Y = {1, . . . , L}
I f(x,y) represents x and y with d features
I w ∈ Rd are the parameters of the model
I Z(x;w) is a normalizer called the partition function

Z(x;w) =
∑

z∈Y∗
exp {w · f(x, z)}

I To predict the best sequence

predict(x1:n) = argmax
y∈Yn

Pr(y|x)

Log-linear Models: Name

I Let’s take the log of the conditional probability:

log Pr(y | x;w) = log
exp{w · f(x,y)}

Z(x;w)

= w · f(x,y)− log
∑

y

exp{w · f(x,y)}

= w · f(x,y)− logZ(x;w)

I Partition function: Z(x;w) =
∑

y exp{w · f(x,y)}
I logZ(x;w) is a constant for a fixed x

I In the log space, computations are linear,
i.e., we model log-probabilities using a linear predictor

Making Predictions with Log-Linear Models

I For tractability, assume f(x,y) decomposes into bigrams:

f(x1:n,y1:n) =

n∑

i=1

f(x, i, yi−1, yi)

I Given w, given x1:n, find:

argmax
y1:n

Pr(y1:n|x1:n;w) = amax
y

exp {∑n
i=1w · f(x, i, yi−1, yi)}

Z(x;w)

= amax
y

exp

{
n∑

i=1

w · f(x, i, yi−1, yi)
}

= amax
y

n∑

i=1

w · f(x, i, yi−1, yi)

I We can use the Viterbi algorithm

Making Predictions with Log-Linear Models

I For tractability, assume f(x,y) decomposes into bigrams:

f(x1:n,y1:n) =

n∑

i=1

f(x, i, yi−1, yi)

I Given w, given x1:n, find:

argmax
y1:n

Pr(y1:n|x1:n;w) = amax
y

exp {∑n
i=1w · f(x, i, yi−1, yi)}

Z(x;w)

= amax
y

exp

{
n∑

i=1

w · f(x, i, yi−1, yi)
}

= amax
y

n∑

i=1

w · f(x, i, yi−1, yi)

I We can use the Viterbi algorithm

Parameter Estimation in Log-Linear Models

Pr(y | x;w) =
exp {w · f(x,y)}

Z(x;w)

How to estimate w given training data?

Two approaches:

I MEMMs: assume that Pr(y | x;w) decomposes

I CRFs: assume that f(x,y) decomposes

Parameter Estimation in Log-Linear Models

Pr(y | x;w) =
exp {w · f(x,y)}

Z(x;w)

How to estimate w given training data?

Two approaches:

I MEMMs: assume that Pr(y | x;w) decomposes

I CRFs: assume that f(x,y) decomposes

Maximum Entropy Markov Models (MEMMs)
(McCallum, Freitag, Pereira ’00)

I Similarly to HMMs:

Pr(y1:n | x1:n) = Pr(y1 | x1:n)× Pr(y2:n | x1:n, y1)

= Pr(y1 | x1:n)×
n∏

i=2

Pr(yi|x1:n,y1:i−1)

= Pr(y1|x1:n)×
n∏

i=2

Pr(yi|x1:n,yi−1)

I Assumption under MEMMs:

Pr(yi|x1:n,y1:i−1) = Pr(yi|x1:n, yi−1)

Parameter Estimation in MEMMs

I Decompose sequential problem:

Pr(y1:n | x1:n) = Pr(y1 | x1:n)×
n∏

i=2

Pr(yi|x1:n, i, yi−1)

I Learn local log-linear distributions (i.e. MaxEnt)

Pr(y | x, i, y′) = exp{w · f(x, i, y′, y)}
Z(x, i, y′)

where
I x is an input sequence
I y and y′ are tags
I f(x, i, y′, y) is a feature vector of x, the position to be tagged, the

previous tag and the current tag

I Sequence learning reduced to multi-class logistic regression

Conditional Random Fields
(Lafferty, McCallum, Pereira 2001)

I Log-linear model of the conditional distribution:

Pr(y|x;w) =
exp{w · f(x,y)}

Z(x)

where
I x = x1x2 . . . xn ∈ X ∗
I y = y1y2 . . . yn ∈ Y∗ and Y = {1, . . . , L}
I f(x,y) is a feature vector of x and y
I w are model parameters

I To predict the best sequence

ŷ = argmax
y∈Y∗

Pr(y|x)

I Assumption in CRF (for tractability):
f(x,y) decomposes into factors

Parameter Estimation in CRFs

I Given a training set

{
(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))

}
,

estimate w

I Define the conditional log-likelihood of the data:

L(w) =

m∑

k=1

log Pr(y(k)|x(k);w)

I L(w) measures how well w explains the data. A good value for w
will give a high value for Pr(y(k)|x(k);w) for all k = 1 . . .m.

I We want w that maximizes L(w)

Learning the Parameters of a CRF

I We pose it as a concave optimization problem

I Find:

w∗ = argmax
w∈RD

L(w)− λ

2
||w||2

where
I The first term is the log-likelihood of the data
I The second term is a regularization term, it penalizes solutions with

large norm (similar to norm-minimization in SVM)
I λ is a parameter to control the trade-off between fitting the data

and model complexity

Learning the Parameters of a CRF

I Find

w∗ = argmax
w∈RD

L(w)− λ

2
||w||2

I In general there is no analytical solution to this optimization
I We use iterative techniques, i.e. gradient-based optimization

1. Initialize w = 0
2. Take derivatives of L(w)− λ

2 ||w||2, compute gradient
3. Move w in steps proportional to the gradient
4. Repeat steps 2 and 3 until convergence

I Fast and scalable algorithms exist

Computing the Gradient in CRFs

Consider a parameter wj and its associated feature fj :

∂L(w)

∂wj
=

1

m

m∑

k=1

fj(x
(k),y(k))

−
m∑

k=1

∑

y∈Y∗
Pr(y|x(k);w) fj(x

(k),y)

where

f(x,y) =

n∑

i=1

fj(x, i, yi−1, yi)

I First term: observed value of fj in training examples

I Second term: expected value of fj under current w

I In the optimal, observed = expected

Computing the Gradient in CRFs

I The first term is easy to compute, by counting explicitly

1

m

m∑

k=1

∑

i

fj(x, i, y
(k)
i−1, y

(k)
i)

I The second term is more involved,

m∑

k=1

∑

y∈Y∗
Pr(y|x(k);w)

∑

i

fj(x
(k), i, yi−1, yi)

because it sums over all sequences y ∈ Y∗

I But there is an efficient solution . . .

Computing the Gradient in CRFs

I For an example (x(k),y(k)):

∑

y∈Yn

Pr(y|x(k);w)

n∑

i=1

fj(x
(k), i, yi−1, yi) =

n∑

i=1

∑

a,b∈Y
µki (a, b)fj(x

(k), i, a, b)

where

µki (a, b) =Pr(〈i, a, b〉 | x(k);w)

=
∑

y∈Yn : yi−1=a, yi=b

Pr(y|x(k);w)

I The quantities µki can be computed efficiently in O(nL2) using the
forward-backward algorithm

Forward-Backward for CRFs

I Assume fixed x. Calculate in O(n|Y|2)

µi(a, b) =
∑

y∈Yn:yi−1=a,yi=b

Pr(y|x;w) , 1 ≤ i ≤ n; a, b ∈ Y

I Definition: forward and backward quantities

αi(a) =
∑

y1:i∈Yi:yi=a

exp
{∑i

j=1 w · f(x, j, yj−1, yj)
}

βi(b) =
∑

yi:n∈Y(n−i+1):yi=b

exp
{∑n

j=i+1 w · f(x, j, yj−1, yj)
}

I Z =
∑

a αn(a)

I µi(a, b) = {αi−1(a) ∗ exp{w · f(x, i, a, b)} ∗ βi(b) ∗ Z−1}
I Similarly to Viterbi, αi(a) and βi(b) can be computed efficiently in

a recursive manner

Forward-Backward for CRFs

I Assume fixed x. Calculate in O(n|Y|2)

µi(a, b) =
∑

y∈Yn:yi−1=a,yi=b

Pr(y|x;w) , 1 ≤ i ≤ n; a, b ∈ Y

I Definition: forward and backward quantities

αi(a) =
∑

y1:i∈Yi:yi=a

exp
{∑i

j=1 w · f(x, j, yj−1, yj)
}

βi(b) =
∑

yi:n∈Y(n−i+1):yi=b

exp
{∑n

j=i+1 w · f(x, j, yj−1, yj)
}

I Z =
∑

a αn(a)

I µi(a, b) = {αi−1(a) ∗ exp{w · f(x, i, a, b)} ∗ βi(b) ∗ Z−1}
I Similarly to Viterbi, αi(a) and βi(b) can be computed efficiently in

a recursive manner

CRFs: summary so far

I Log-linear models for sequence prediction, Pr(y|x;w)

I Computations factorize on label bigrams

I Model form:
argmax
y∈Y∗

∑

i

w · f(x, i, yi−1, yi)

I Prediction: uses Viterbi (from HMMs)
I Parameter estimation:

I Gradient-based methods, in practice L-BFGS
I Computation of gradient uses forward-backward (from HMMs)

CRFs: summary so far

I Log-linear models for sequence prediction, Pr(y|x;w)

I Computations factorize on label bigrams

I Model form:
argmax
y∈Y∗

∑

i

w · f(x, i, yi−1, yi)

I Prediction: uses Viterbi (from HMMs)
I Parameter estimation:

I Gradient-based methods, in practice L-BFGS
I Computation of gradient uses forward-backward (from HMMs)

I Next Question: MEMMs or CRFs? HMMs or CRFs?

MEMMs and CRFs

MEMMs: Pr(y | x) =
n∏

i=1

exp {w · f(x, i, yi−1, yi)}
Z(x, i, yi−1;w)

CRFs: Pr(y | x) = exp {∑n
i=1 w · f(x, i, yi−1, yi)}

Z(x)

I Both exploit the same factorization, i.e. same features

I Same computations to compute argmaxy Pr(y | x)
I MEMMs locally normalized; CRFs globally normalized

I MEMM assume that Pr(yi | x1:n, y1:i−1) = Pr(yi | x1:n, yi−1)
I Leads to “Label Bias Problem”

I MEMMs are cheaper to train (reduces to multiclass learning)

I CRFs are easier to extend to other structures (next lecture)

HMMs for sequence prediction

I x are the observations, y are the hidden states

I HMMs model the joint distributon Pr(x,y)

I Parameters: (assume X = {1, . . . , k} and Y = {1, . . . , l})
I π ∈ Rl, πa = Pr(y1 = a)
I T ∈ Rl×l, Ta,b = Pr(yi = b|yi−1 = a)
I O ∈ Rl×k, Oa,c = Pr(xi = c|yi = a)

I Model form

Pr(x,y) = πy1Oy1,x1

n∏

i=2

Tyi−1,yiOyi,xi

I Parameter Estimation: maximum likelihood by counting events and
normalizing

HMMs and CRFs

I In CRFs: ŷ = amaxy
∑

iw · f(x, i, yi−1, yi)

I In HMMs:
ŷ = amaxy πy1Oy1,x1

∏n
i=2 Tyi−1,yiOyi,xi

= amaxy log(πy1Oy1,x1) +
∑n

i=2 log(Tyi−1,yiOyi,xi)

I An HMM can be expressed as factored linear models:

fj(x, i, y, y
′) wj

i = 1 & y′ = a log(πa)
i > 1 & y = a & y′ = b log(Ta,b)

y′ = a & xi = c log(Oa,b)

I Hence, HMM are factored linear models

HMMs and CRFs: main differences

I Representation:
I HMM “features” are tied to the generative process.
I CRF features are very flexible. They can look at the whole input x

paired with a label bigram (yi, yi+1).
I In practice, for prediction tasks, “good” discriminative features can

improve accuracy a lot.

I Parameter estimation:
I HMMs focus on explaining the data, both x and y.
I CRFs focus on the mapping from x to y.
I A priori, it is hard to say which paradigm is better.
I Same dilemma as Naive Bayes vs. Maximum Entropy.

Structured Prediction

Perceptron, SVMs, CRFs

Learning Structured Predictors

I Goal: given training data{
(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))

}

learn a predictor x→ y with small error on unseen inputs

I In a CRF:
argmax
y∈Y∗

P (y|x;w) =
exp {∑n

i=1w · f(x, i, yi−1, yi)}
Z(x;w)

=

n∑

i=1

w · f(x, i, yi−1, yi)

I To predict new values, Z(x;w) is not relevant
I Parameter estimation: w is set to maximize likelihood

I Can we learn w more directly, focusing on errors?

Learning Structured Predictors

I Goal: given training data{
(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))

}

learn a predictor x→ y with small error on unseen inputs

I In a CRF:
argmax
y∈Y∗

P (y|x;w) =
exp {∑n

i=1w · f(x, i, yi−1, yi)}
Z(x;w)

=

n∑

i=1

w · f(x, i, yi−1, yi)

I To predict new values, Z(x;w) is not relevant
I Parameter estimation: w is set to maximize likelihood

I Can we learn w more directly, focusing on errors?

The Structured Perceptron
(Collins, 2002)

I Set w = 0

I For t = 1 . . . T
I For each training example (x,y)

1. Compute z = argmaxz w · f(x, z)
2. If z 6= y

w← w + f(x,y)− f(x, z)

I Return w

The Structured Perceptron + Averaging
(Freund and Schapire, 1998) (Collins 2002)

I Set w = 0, wa = 0

I For t = 1 . . . T
I For each training example (x,y)

1. Compute z = argmaxz w · f(x, z)
2. If z 6= y

w← w + f(x,y)− f(x, z)

3. wa = wa +w

I Return wa/mT , where m is the number of training examples

Perceptron Updates: Example

y per per - - loc
z per loc - - loc
x Jack London went to Paris

I Let y be the correct output for x.

I Say we predict z instead, under our current w

I The update is:

g = f(x,y)− f(x, z)

=
∑

i

f(x, i, yi−1, yi)−
∑

i

f(x, i, zi−1, zi)

= f(x, 2,per,per)− f(x, 2,per, loc)

+ f(x, 3,per, -)− f(x, 3, loc, -)

I Perceptron updates are typically very sparse

Properties of the Perceptron

I Online algorithm. Often much more efficient than “batch”
algorithms

I If the data is separable, it will converge to parameter values with 0
errors

I Number of errors before convergence is related to a definition of
margin. Can also relate margin to generalization properties

I In practice:

1. Averaging improves performance a lot
2. Typically reaches a good solution after only a few (say 5) iterations

over the training set
3. Often performs nearly as well as CRFs, or SVMs

Averaged Perceptron Convergence

Iteration Accuracy
1 90.79
2 91.20
3 91.32
4 91.47
5 91.58
6 91.78
7 91.76
8 91.82
9 91.88

10 91.91
11 91.92
12 91.96
. . .

(results on validation set for a parsing task)

Margin-based Structured Prediction

I Let f(x,y) =
∑n

i=1 f(x, i, yi−1, yi)

I Model: argmaxy∈Y∗ w · f(x,y)

I Consider an example (x(k),y(k)):
∃y 6= y(k) : w · f(x(k),y(k)) < w · f(x(k),y) =⇒ error

I Let y′ = argmaxy∈Y∗:y 6=y(k) w · f(x(k),y)

Define γk = w · (f(x(k),y(k))− f(x(k),y′))

I The quantity γk is a notion of margin on example k:
γk > 0⇐⇒ no mistakes in the example
high γk ⇐⇒ high confidence

Margin-based Structured Prediction

I Let f(x,y) =
∑n

i=1 f(x, i, yi−1, yi)

I Model: argmaxy∈Y∗ w · f(x,y)

I Consider an example (x(k),y(k)):
∃y 6= y(k) : w · f(x(k),y(k)) < w · f(x(k),y) =⇒ error

I Let y′ = argmaxy∈Y∗:y 6=y(k) w · f(x(k),y)

Define γk = w · (f(x(k),y(k))− f(x(k),y′))

I The quantity γk is a notion of margin on example k:
γk > 0⇐⇒ no mistakes in the example
high γk ⇐⇒ high confidence

Margin-based Structured Prediction

I Let f(x,y) =
∑n

i=1 f(x, i, yi−1, yi)

I Model: argmaxy∈Y∗ w · f(x,y)

I Consider an example (x(k),y(k)):
∃y 6= y(k) : w · f(x(k),y(k)) < w · f(x(k),y) =⇒ error

I Let y′ = argmaxy∈Y∗:y 6=y(k) w · f(x(k),y)

Define γk = w · (f(x(k),y(k))− f(x(k),y′))

I The quantity γk is a notion of margin on example k:
γk > 0⇐⇒ no mistakes in the example
high γk ⇐⇒ high confidence

Mistake-augmented Margins
(Taskar et al, 2004)

e(y(k), ·)
x(k) Jack London went to Paris
y(k) per per - - loc 0
y′ per loc - - loc 1
y′′ per - - - - 2
y′′′ - - per per - 5

I Def: e(y,y′) =
∑n

i=1[yi 6= y′i]
e.g., e(y(k),y(k))=0, e(y(k),y′)=1, e(y(k),y′′′)=5

I We want a w such that

∀y 6= y(k) : w · f(x(k),y(k)) > w · f(x(k),y) + e(y(k),y)

(the higher the error of y, the larger the separation should be)

Mistake-augmented Margins
(Taskar et al, 2004)

e(y(k), ·)
x(k) Jack London went to Paris
y(k) per per - - loc 0
y′ per loc - - loc 1
y′′ per - - - - 2
y′′′ - - per per - 5

I Def: e(y,y′) =
∑n

i=1[yi 6= y′i]
e.g., e(y(k),y(k))=0, e(y(k),y′)=1, e(y(k),y′′′)=5

I We want a w such that

∀y 6= y(k) : w · f(x(k),y(k)) > w · f(x(k),y) + e(y(k),y)

(the higher the error of y, the larger the separation should be)

Mistake-augmented Margins
(Taskar et al, 2004)

e(y(k), ·)
x(k) Jack London went to Paris
y(k) per per - - loc 0
y′ per loc - - loc 1
y′′ per - - - - 2
y′′′ - - per per - 5

I Def: e(y,y′) =
∑n

i=1[yi 6= y′i]
e.g., e(y(k),y(k))=0, e(y(k),y′)=1, e(y(k),y′′′)=5

I We want a w such that

∀y 6= y(k) : w · f(x(k),y(k)) > w · f(x(k),y) + e(y(k),y)

(the higher the error of y, the larger the separation should be)

Structured Hinge Loss

I Define a mistake-augmented margin

γk,y =w · f(x(k),y(k))−w · f(x(k),y)− e(y(k),y)

γk = min
y 6=y(k)

γk,y

I Define loss function on example k as:

L(w,x(k),y(k)) = max
y∈Y∗

{
w · f(x(k),y) + e(y(k),y)−w · f(x(k),y(k))

}

I Leads to an SVM for structured prediction

I Given a training set, find:

argmin
w∈RD

m∑

k=1

L(w,x(k),y(k)) +
λ

2
‖w‖2

Regularized Loss Minimization

I Given a training set
{
(x(1),y(1)), . . . , (x(m),y(m))

}
.

Find:

argmin
w∈RD

m∑

k=1

L(w,x(k),y(k)) +
λ

2
‖w‖2

I Two common loss functions L(w,x(k),y(k)) :
I Log-likelihood loss (CRFs)

− logP (y(k) | x(k);w)

I Hinge loss (SVMs)

max
y∈Y∗

(
w · f(x(k),y) + e(y(k),y)−w · f(x(k),y(k))

)

Learning Structure Predictors: summary so far

I Linear models for sequence prediction

argmax
y∈Y∗

∑

i

w · f(x, i, yi−1, yi)

I Computations factorize on label bigrams
I Decoding: using Viterbi
I Marginals: using forward-backward

I Parameter estimation:
I Perceptron, Log-likelihood, SVMs
I Extensions from classification to the structured case
I Optimization methods:

I Stochastic (sub)gradient methods (LeCun et al 98)
(Shalev-Shwartz et al. 07)

I Exponentiated Gradient (Collins et al 08)
I SVM Struct (Tsochantaridis et al. 04)
I Structured MIRA (McDonald et al 05)

Beyond Linear Sequence Prediction

Sequence Prediction, Beyond Bigrams

I It is easy to extend the scope of features to k-grams

f(x, i, yi−k+1:i−1, yi)

I In general, think of state σi remembering relevant history
I σi = yi−1 for bigrams
I σi = yi−k+1:i−1 for k-grams
I σi can be the state at time i of a deterministic automaton

generating y

I The structured predictor is

argmax
y∈Y∗

∑

i

w · f(x, i, σi, yi)

I Viterbi and forward-backward extend naturally, in O(nLk)

Dependency StructuresDependency Structures

liked today* John saw a movie that he

! Directed arcs represent dependencies between a head word
and a modifier word.

! E.g.:

movie modifies saw,
John modifies saw,
today modifies saw

I Directed arcs represent dependencies between a head word and a
modifier word.

I E.g.:

movie modifies saw,
John modifies saw,
today modifies saw

Dependency Parsing: arc-factored models
(McDonald et al. 2005)

Dependency Parsing: arc-factored models

(McDonald et al. 2005)

liked today* John saw a movie that he

! Parse trees decompose into single dependencies 〈h, m〉

argmax
y∈Y(x)

∑

〈h,m〉∈y

w · f(x, h, m)

! Some features: f1(x, h, m) = [”saw” → ”movie”]
f2(x, h, m) = [distance = +2]

! Tractable inference algorithms exist (tomorrow’s lecture)

I Parse trees decompose into single dependencies 〈h,m〉

argmax
y∈Y(x)

∑

〈h,m〉∈y
w · f(x, h,m)

I Some features: f1(x, h,m) = [”saw” → ”movie”]
f2(x, h,m) = [distance = +2]

I Tractable inference algorithms exist (tomorrow’s lecture)

Linear Structured Prediction

I Sequence prediction (bigram factorization)

argmax
y∈Y(x)

∑

i

w · f(x, i,yi−1,yi)

I Dependency parsing (arc-factored)

argmax
y∈Y(x)

∑

〈h,m〉∈y
w · f(x, h,m)

I In general, we can enumerate parts r ∈ y

argmax
y∈Y(x)

∑

r∈y
w · f(x, r)

Factored Sequence Prediction: from Linear to Non-linear

score(x,y) =
∑

i

s(x, i, yi−1, yi)

I Linear:
s(x, i, yi−1, yi) = w · f(x, i,yi−1,yi)

I Non-linear, using a feed-forward neural network:

s(x, i, yi−1, yi) = wyi−1,yi · h(f(x, i))

where:
h(f(x, i)) = σ(W 2σ(W 1σ(W 0f(x, i))))

I Remarks:
I The non-linear model computes a hidden representation of the input
I Still factored: Viterbi and Forward-Backward work
I Parameter estimation becomes non-convex, use backpropagation

Recurrent Sequence Prediction

. . .

x2 xnx3x1

y1 y2 y3 yn

h1 h2 h3 hn

I Maintains a state: a hidden variable that keeps track of previous
observations and predictions

I Making predictions is not tractable
I In practice: greedy predictions or beam search

I Learning is non-convex

I Popular methods: RNN, LSTM, Spectral Models, . . .

Thanks!

