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Modeling the Frog’s Perceptual System
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Introduction

Modeling the Frog’s Perceptual System

I [Lettvin et al. 1959] show that the frog’s perceptual system
constructs reality by four separate operations:

I contrast detection: presence of sharp boundary?
I convexity detection: how curved and how big is object?
I movement detection: is object moving?
I dimming speed: how fast does object obstruct light?

I The frog’s goal: Capture any object of the size of an insect or
worm providing it moves like one.

I Can we build a model of this perceptual system and learn to
capture the right objects?
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Introduction

Learning from Data

I Assume training data of edible (+) and inedible (-) objects

convex speed label convex speed label
small small - small large +
small medium - medium large +
small medium - medium large +

medium small - large small +
large small - large large +
small small - large medium +
small large -
small medium -

I Learning model parameters from data:
I p(+) =

8/14

, p(-) =

6/14

I p(convex = small|-) =

6/8

, p(convex = med|-) =

1/8

, p(convex = large|-) =

1/8

p(speed = small|-) =

4/8

, p(speed = med|-) =

3/8

, p(speed = large|- ) =

1/8

p(convex = small|+) =

1/6

, p(convex = med|+) =

2/6

, p(convex = large|+) =

3/6

p(speed = small|+) =

1/6

, p(speed = med|+) =

1/6

, p(speed = large|+ ) =

4/6

I Predict unseen p(label = ?, convex = med, speed = med)
I p(-) · p(convex = med|-) · p(speed = med|-) = 8/14 · 1/8 · 3/8 = 0.027
I p(+) · p(convex = med|+) · p(speed = med|+) = 6/14 · 2/6 · 1/6 = 0.024
I Inedible: p(convex = med, speed = med, label = -) > p(convex = med, speed = med, label = +)!
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Introduction

Machine Learning is a Frog’s World

I Machine learning problems can be seen as problems of
function estimation where

I our models are based on a combined feature representation of
inputs and outputs

I similar to the frog whose world is constructed by
four-dimensional feature vector based on detection operations

I learning of parameter weights is done by optimizing fit of
model to training data

I frog uses binary classification into edible/inedible objects as
supervision signals for learning

I The model used in the frog’s perception example is called
Naive Bayes: It measures compatibility of inputs to outputs by
a linear model and optimizes parameters by linear optimization

Introduction to Machine Learning 5(124)



Introduction

Machine Learning is a Frog’s World

I Machine learning problems can be seen as problems of
function estimation where

I our models are based on a combined feature representation of
inputs and outputs

I similar to the frog whose world is constructed by
four-dimensional feature vector based on detection operations

I learning of parameter weights is done by optimizing fit of
model to training data

I frog uses binary classification into edible/inedible objects as
supervision signals for learning

I The model used in the frog’s perception example is called
Naive Bayes: It measures compatibility of inputs to outputs by
a linear model and optimizes parameters by linear optimization

Introduction to Machine Learning 5(124)



Introduction

Machine Learning is a Frog’s World

I Machine learning problems can be seen as problems of
function estimation where

I our models are based on a combined feature representation of
inputs and outputs

I similar to the frog whose world is constructed by
four-dimensional feature vector based on detection operations

I learning of parameter weights is done by optimizing fit of
model to training data

I frog uses binary classification into edible/inedible objects as
supervision signals for learning

I The model used in the frog’s perception example is called
Naive Bayes: It measures compatibility of inputs to outputs by
a linear model and optimizes parameters by linear optimization

Introduction to Machine Learning 5(124)



Introduction

Lecture Outline: Linear Learners for NLP

I Preliminaries
I Data: input/output, assumptions
I Feature representations
I Linear models

I Linear learners
I Naive Bayes
I Generative versus discriminative
I Logistic Regression
I Perceptron
I Large-Margin Learners (SVMs)

I Regularization

I Online learning

I Non-linear models
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Preliminaries

Inputs and Outputs

I Input: x ∈ X
I e.g., document or sentence with some words x = w1 . . .wn

I Output: y ∈ Y
I e.g., document class, translation, parse tree

I Input/Output pair: (x,y) ∈ X × Y
I e.g., a document x and its class label y,
I a source sentence x and its translation y,
I a sentence x and its parse tree y
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Preliminaries

Feature Representations

I We assume a mapping from input x to a high dimensional
feature vector

I φ(x) : X → Rm

I For many cases, more convenient to have mapping from
input-output pairs (x,y)

I φ(x,y) : X × Y → Rm

I Under certain assumptions, these are equivalent

I Most papers in NLP use φ(x,y)

I (Was?) not so common in NLP: φ ∈ Rm (but see word
embeddings)

I More common: φi ∈ {1, . . . ,Fi}, Fi ∈ N+ (categorical)

I Very common: φ ∈ {0, 1}m (binary)

I For any vector v ∈ Rm, let vj be the j th value
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Preliminaries

Examples

I x is a document and y is a label

φj(x,y) =


1 if x contains the word “interest”

and y =“financial”
0 otherwise

We expect this feature to have a positive weight, “interest” is
a positive indicator for the label “financial”
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Preliminaries

Examples

φj(x,y) = % of words in x containing punctuation and y =“scientific”

Punctuation symbols - positive indicator or negative indicator for
scientific articles?
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Preliminaries

Examples

I x is a word and y is a part-of-speech tag

φj(x,y) =

{
1 if x = “bank” and y = Verb
0 otherwise

What weight would it get?
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Preliminaries

Examples

I x is a source sentence and y is translation

φj(x,y) =


1 if “y a-t-il” present in x

and “are there” present in y
0 otherwise

φk(x,y) =


1 if “y a-t-il” present in x

and “are there any” present in y
0 otherwise

Which phrase indicator should be preferred?
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Preliminaries

Examples

Note: Label y includes sentence x

Introduction to Machine Learning 13(124)



Linear Models

Linear Models

I Linear model: Defines a discriminant function that is based
on linear combination of features and weights

f (x;ω) = argmax
y∈Y

ω · φ(x,y)

= argmax
y∈Y

m∑
j=0

ωj × φj(x,y)

I Let ω ∈ Rm be a high dimensional weight vector
I Assume that ω is known

I Multiclass Classification: Y = {0, 1, . . . ,N}

y = argmax
y∈Y

ω · φ(x,y)

I Binary Classification just a special case of multiclass

Introduction to Machine Learning 14(124)
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Linear Models

Binary Linear Model

ω defines a hyperplane (line in 2 dimensions) that divides all
points:

1 2-2 -1

1

2

-2

-1

Points along line
have scores of 0
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Linear Models

Multiclass Linear Model

Defines regions of space. Visualization difficult.

I + are all points (x,y) where + = argmaxy ω · φ(x,y)

Introduction to Machine Learning 16(124)



Linear Models

Separability

I A set of points is separable, if there exists a ω such that
classification is perfect

Separable Not Separable

Introduction to Machine Learning 17(124)



Linear Learners

Supervised Learning

We now have a way to make decisions... if we have a weight vector
ω. But where do we get this ω?

I Input:
I i.i.d. (independent and identically distributed) training

examples T = {(xt ,yt)}|T |t=1
I feature representation φ

I Output: ω that maximizes an objective function on the
training set

I ω = argmaxL(T ;ω)
I Equivalently minimize: ω = argmin−L(T ;ω)
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Linear Learners

Objective Functions

I Ideally we can decompose L by training pairs (x,y)
I L(T ;ω) ∝

∑
(x,y)∈T loss((x,y);ω)

I loss is a function that measures some value correlated with
errors of parameters ω on instance (x,y)

I Example:
I y ∈ {1,−1}, f (x;ω) is the prediction we make for x using ω

I 0-1 loss function: loss((x,y);ω) =

{
0 if f (x;ω) = y ,
1 else

Introduction to Machine Learning 19(124)
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Linear Learners

Convex Optimization

I A function is convex if its graph lies on or below the line
segment connecting any two points on the graph

f (αx+βy) ≤ αf (x)+βf (y) for all α, β ≥ 0, α+β = 1 (1)

I For linear models we have equality in (1)

Introduction to Machine Learning 20(124)



Linear Learners

Convex Optimization

I Optimization problem is defined as problem of finding a point
that minimizes our objective function (maximization is
minimization of −f (x))

I Limit attention to convex (or even linear) functions
I Find point at which gradient of f is 0

I Slope of the gradient is non-decreasing as one moves away
from minimum, 0 at minimum

I In order to find minimum, follow opposite direction of gradient
I For convex functions, this will lead to the single global

minimum
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Naive Bayes

Naive Bayes
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Naive Bayes

Naive Bayes

I Probabilistic decision model:

argmax
y

P(y|x) ∝ argmax
y

P(y)P(x|y)

I Uses Bayes Rule:

P(y|x) =
P(y)P(x|y)

P(x)
for fixed x

I Generative model since P(y)P(x|y) = P(x,y) is a joint
probability

I Because we model a distribution that can randomly generate
outputs and inputs, not just outputs
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Naive Bayes

Naivety of Naive Bayes

I We need to decide on the structure of P(x,y)

I P(x|y) = P(φ(x)|y) = P(φ1(x), . . . ,φm(x)|y)

Naive Bayes Assumption
(conditional independence)

P(φ1(x), . . . ,φm(x)|y) =
∏

i P(φi(x)|y)

P(x,y) = P(y)P(φ1(x), . . . ,φm(x)|y) = P(y)
m∏
i=1

P(φi (x)|y)
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Naive Bayes

Naive Bayes – Learning

I Input: T = {(xt ,yt)}|T |t=1

I Let φi (x) ∈ {1, . . . ,Fi}

I Parameters P = {P(y),P(φi (x)|y)}
I Both P(y) and P(φi (x)|y) are multinomials
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Naive Bayes

Maximum Likelihood Estimation

I What’s left? Defining an objective L(T )

I P plays the role of ω

I What objective to use?

I Objective: Maximum Likelihood Estimation (MLE)

L(T ) =

|T |∏
t=1

P(xt ,yt) =

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)
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Naive Bayes

Naive Bayes – Learning

MLE has closed form solution

P = argmax
P

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)

P(y) =

∑|T |
t=1[[yt = y]]

|T |

P(φi (x)|y) =

∑|T |
t=1[[φi (xt) = φi (x) and yt = y]]∑|T |

t=1[[yt = y]]

where [[p]] =

{
1 if p is true,
0 otherwise.

Thus, these are just normalized counts over events in T
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Naive Bayes

Naive Bayes Document Classification

I doc 1: y1 = sports, “hockey is fast”

I doc 2: y2 = politics, “politicians talk fast”

I doc 3: y3 = politics, “washington is sleazy”

I φ0(x) = 1 if doc has word ‘hockey’, 0 else

I φ1(x) = 1 if doc has word ‘is’, 0 else

I φ2(x) = 1 if doc has word ‘fast’, 0 else

I φ3(x) = 1 if doc has word ‘politicians’, 0 else

I φ4(x) = 1 if doc has word ‘talk’, 0 else

I φ5(x) = 1 if doc has word ‘washington’, 0 else

I φ6(x) = 1 if doc has word ‘sleazy’, 0 else

Your turn? What is P(sports)? What is P(φ0(x) = 1|politics)?
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Naive Bayes
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I doc 2: y2 = politics, “politicians talk fast”

I doc 3: y3 = politics, “washington is sleazy”

I φ0(x) = 1 if doc has word ‘hockey’, 0 else

I φ1(x) = 1 if doc has word ‘is’, 0 else

I φ2(x) = 1 if doc has word ‘fast’, 0 else

I φ3(x) = 1 if doc has word ‘politicians’, 0 else

I φ4(x) = 1 if doc has word ‘talk’, 0 else

I φ5(x) = 1 if doc has word ‘washington’, 0 else

I φ6(x) = 1 if doc has word ‘sleazy’, 0 else

Your turn? What is P(sports)? 1/3 What is
P(φ0(x) = 1|politics)? 0
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Naive Bayes

Deriving MLE

P = argmax
P

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)
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Naive Bayes

Deriving MLE

P = argmax
P

|T |∏
t=1

(
P(yt)

m∏
i=1

P(φi (xt)|yt)

)

= argmax
P

|T |∑
t=1

(
logP(yt) +

m∑
i=1

logP(φi (xt)|yt)

)

= argmax
P(y)

|T |∑
t=1

logP(yt) + argmax
P(φi (x)|y)

|T |∑
t=1

m∑
i=1

logP(φi (xt)|yt)

such that
∑
y P(y) = 1,

∑Fi
j=1 P(φi (x) = j |y) = 1, P(·) ≥ 0
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Naive Bayes

Deriving MLE

P = argmax
P(y)

|T |∑
t=1

logP(yt) + argmax
P(φi (x)|y)

|T |∑
t=1

m∑
i=1

logP(φi (xt)|yt)

Both optimizations are of the form

argmaxP
∑

v count(v) logP(v), s.t.,
∑

v P(v) = 1, P(v) ≥ 0

where v is event in T , e.g. (yt = y) or
(φi (xt) = φi (x) and yt = y)
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Naive Bayes

Deriving MLE

argmaxP
∑

v count(v) logP(v)
s.t.,

∑
v P(v) = 1, P(v) ≥ 0

Introduce Lagrangian multiplier λ, optimization becomes

argmaxP,λ
∑

v count(v) logP(v)− λ (
∑

v P(v)− 1)

I Derivative:

I Set to zero:

I Final solution:
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Naive Bayes

Deriving MLE

argmaxP
∑

v count(v) logP(v)
s.t.,

∑
v P(v) = 1, P(v) ≥ 0

Introduce Lagrangian multiplier λ, optimization becomes

argmaxP,λ
∑

v count(v) logP(v)− λ (
∑

v P(v)− 1)

I Derivative w.r.t P(v) is
count(v)

P(v) − λ

I Setting this to zero P(v) =
count(v)

λ

I Combine with
∑

v P(v) = 1. P(v) ≥ 0, then

P(v) =
count(v)∑
v′ count(v ′)
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Naive Bayes

Deriving MLE

Reinstantiate events v in T :

P(y) =

∑|T |
t=1[[yt = y]]

|T |

P(φi (x)|y) =

∑|T |
t=1[[φi (xt) = φi (x) and yt = y]]∑|T |

t=1[[yt = y]]
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Naive Bayes

Naive Bayes is a linear model

I Let ωy = logP(y), ∀y ∈ Y
I Let ωφi (x),y = logP(φi (x)|y), ∀y ∈ Y,φi (x) ∈ {1, . . . ,Fi}
I Let ω be set of all ω∗ and ω∗,∗

argmax
y

P(y|φ(x)) ∝ argmax
y

P(φ(x),y) = argmax
y

P(y)
m∏
i=1

P(φi (x)|y) =

where ψ∗ ∈ {0, 1}, ψi,j (x) = [[φi (x) = j]], ψy′ (y) = [[y = y′]]
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Naive Bayes

Naive Bayes is a linear model

I Let ωy = logP(y), ∀y ∈ Y
I Let ωφi (x),y = logP(φi (x)|y), ∀y ∈ Y,φi (x) ∈ {1, . . . ,Fi}
I Let ω be set of all ω∗ and ω∗,∗

argmax
y

P(y|φ(x)) ∝ argmax
y

P(φ(x),y) = argmax
y

P(y)
m∏
i=1

P(φi (x)|y)

= argmax
y

log P(y) +
m∑
i=1

log P(φi (x)|y)

= argmax
y

ωy +
m∑
i=1

ωφi (x),y

= argmax
y

∑
y′
ωyψy′ (y) +

m∑
i=1

Fi∑
j=1

ωφi (x),yψi,j (x)

where ψ∗ ∈ {0, 1}, ψi,j (x) = [[φi (x) = j]], ψy′ (y) = [[y = y′]]
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Naive Bayes

Smoothing

I doc 1: y1 = sports, “hockey is fast”

I doc 2: y2 = politics, “politicians talk fast”

I doc 3: y3 = politics, “washington is sleazy”

I New doc: “washington hockey is fast”

I Both ‘sports’ and ‘politics’ have probabilities of 0

I Smoothing aims to assign a small amount of probability to
unseen events

I E.g., Additive/Laplacian smoothing

P(v) =
count(v)∑
v ′ count(v ′)

=⇒ P(v) =
count(v) + α∑

v ′ (count(v ′) + α)
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Naive Bayes

Discriminative versus Generative

I Generative models attempt to model inputs and outputs
I e.g., Naive Bayes = MLE of joint distribution P(x,y)
I Statistical model must explain generation of input

I Occam’s Razor: “Among competing hypotheses, the one with
the fewest assumptions should be selected”

I Discriminative models
I Use L that directly optimizes P(y|x) (or something related)
I Logistic Regression – MLE of P(y|x)
I Perceptron and SVMs – minimize classification error

I Generative and discriminative models use P(y|x) for
prediction

I Differ only on what distribution they use to set ω
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Logistic Regression

Logistic Regression
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Logistic Regression

Logistic Regression

Define a conditional probability:

P(y|x) =
eω·φ(x,y)

Zx
, where Zx =

∑
y′∈Y

eω·φ(x,y′)

Note: still a linear model

argmax
y

P(y|x) = argmax
y

eω·φ(x,y)

Zx

= argmax
y

eω·φ(x,y)

= argmax
y

ω · φ(x,y)
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Logistic Regression

Logistic Regression

P(y|x) =
eω·φ(x,y)

Zx

I Q: How do we learn weights ω
I A: Set weights to maximize log-likelihood of training data:

ω = argmax
ω

L(T ;ω)

= argmax
ω

|T |∏
t=1

P(yt |xt) = argmax
ω

|T |∑
t=1

logP(yt |xt)

I In a nutshell we set the weights ω so that we assign as much
probability to the correct label y for each x in the training set

Introduction to Machine Learning 43(124)



Logistic Regression

Logistic Regression

P(y|x) =
eω·φ(x,y)

Zx
, where Zx =

∑
y′∈Y

eω·φ(x,y′)

ω = argmax
ω

|T |∑
t=1

logP(yt |xt) (*)

I The objective function (*) is concave

I Therefore there is a global maximum
I No closed form solution, but lots of numerical techniques

I Gradient methods (gradient ascent, conjugate gradient,
iterative scaling)

I Newton methods (limited-memory quasi-newton)
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Logistic Regression

Gradient Ascent
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Logistic Regression

Gradient Ascent

I Let L(T ;ω) =
∑|T |

t=1 log
(
eω·φ(xt ,yt)/Zx

)
I Want to find argmaxω L(T ;ω)

I Set ω0 = Om

I Iterate until convergence

ωi = ωi−1 + αOL(T ;ωi−1)

I α > 0 and set so that L(T ;ωi ) > L(T ;ωi−1)
I OL(T ;ω) is gradient of L w.r.t. ω

I A gradient is all partial derivatives over variables wi

I i.e., OL(T ;ω) = ( ∂
∂ω0
L(T ;ω), ∂

∂ω1
L(T ;ω), . . . , ∂

∂ωm
L(T ;ω))

I Gradient ascent will always find ω to maximize L
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Logistic Regression

Gradient Descent

I Let L(T ;ω) = −
∑|T |

t=1 log
(
eω·φ(xt ,yt)/Zx

)
I Want to find argminωL(T ;ω)

I Set ω0 = Om

I Iterate until convergence

ωi = ωi−1 − αOL(T ;ωi−1)

I α > 0 and set so that L(T ;ωi ) < L(T ;ωi−1)
I OL(T ;ω) is gradient of L w.r.t. ω

I A gradient is all partial derivatives over variables wi

I i.e., OL(T ;ω) = ( ∂
∂ω0
L(T ;ω), ∂

∂ω1
L(T ;ω), . . . , ∂

∂ωm
L(T ;ω))

I Gradient descent will always find ω to minimize L
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Logistic Regression

The partial derivatives

I Need to find all partial derivatives ∂
∂ωi
L(T ;ω)

L(T ;ω) =
∑
t

logP(yt |xt)

=
∑
t

log
eω·φ(xt ,yt)∑
y′∈Y e

ω·φ(xt ,y′)

=
∑
t

log
e
∑

j ωj×φj (xt ,yt)

Zxt
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Logistic Regression

Partial derivatives - some reminders

1. ∂
∂x log F = 1

F
∂
∂x F

I We always assume log is the natural logarithm loge

2. ∂
∂x e

F = eF ∂
∂x F

3. ∂
∂x

∑
t Ft =

∑
t
∂
∂x Ft

4. ∂
∂x

F
G =

G ∂
∂x

F−F ∂
∂x

G

G2
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Logistic Regression

The partial derivatives

∂

∂ωi
L(T ;ω) =
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Logistic Regression

The partial derivatives (1)

∂

∂ωi
L(T ;ω) =

∂

∂ωi

∑
t

log
e
∑

j ωj×φj (xt ,yt)

Zxt

=
∑
t

∂

∂ωi
log

e
∑

j ωj×φj (xt ,yt)

Zxt

=
∑
t

(
Zxt

e
∑

j ωj×φj (xt ,yt)
)(

∂

∂ωi

e
∑

j ωj×φj (xt ,yt)

Zxt

)
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Logistic Regression

The partial derivatives

Now, ∂
∂ωi

e
∑

j ωj×φj (xt ,yt )

Zxt
=
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Logistic Regression

The partial derivatives (2)
Now,

∂

∂ωi

e
∑

j ωj×φj (xt ,yt )

Zxt

=
Zxt

∂
∂ωi

e
∑

j ωj×φj (xt ,yt ) − e
∑

j ωj×φj (xt ,yt ) ∂
∂ωi

Zxt

Z 2
xt

=
Zxt e

∑
j ωj×φj (xt ,yt )φi (xt ,yt)− e

∑
j ωj×φj (xt ,yt ) ∂

∂ωi
Zxt

Z 2
xt

=
e
∑

j ωj×φj (xt ,yt )

Z 2
xt

(Zxtφi (xt ,yt)−
∂

∂ωi
Zxt )

=
e
∑

j ωj×φj (xt ,yt )

Z 2
xt

(Zxtφi (xt ,yt)

−
∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′)φi (xt ,y

′))

because

∂

∂ωi
Zxt =

∂

∂ωi

∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′) =

∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′)φi (xt ,y

′)
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Logistic Regression

The partial derivatives
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Logistic Regression

The partial derivatives (3)
From (2),

∂

∂ωi

e
∑

j ωj×φj (xt ,yt )

Zxt

=
e
∑

j ωj×φj (xt ,yt )

Z 2
xt

(Zxtφi (xt ,yt)

−
∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′)φi (xt ,y

′))

Sub this in (1),

∂

∂ωi
L(T ;ω) =

∑
t

(
Zxt

e
∑

j ωj×φj (xt ,yt )
)(

∂

∂ωi

e
∑

j ωj×φj (xt ,yt )

Zxt

)

=
∑
t

1

Zxt

(Zxtφi (xt ,yt)−
∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′)φi (xt ,y

′)))

=
∑
t

φi (xt ,yt)−
∑
t

∑
y′∈Y

e
∑

j ωj×φj (xt ,y
′)

Zxt

φi (xt ,y
′)

=
∑
t

φi (xt ,yt)−
∑
t

∑
y′∈Y

P(y′|xt)φi (xt ,y
′)
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Logistic Regression

FINALLY!!!

I After all that,

∂

∂ωi
L(T ;ω) =

∑
t

φi (xt ,yt)−
∑
t

∑
y′∈Y

P(y′|xt)φi (xt ,y
′)

I And the gradient is:

OL(T ;ω) = (
∂

∂ω0
L(T ;ω),

∂

∂ω1
L(T ;ω), . . . ,

∂

∂ωm
L(T ;ω))

I So we can now use gradient ascent to find ω!!
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Logistic Regression

Logistic Regression Summary

I Define conditional probability

P(y|x) =
eω·φ(x,y)

Zx

I Set weights to maximize log-likelihood of training data:

ω = argmax
ω

∑
t

logP(yt |xt)

I Can find the gradient and run gradient ascent (or any
gradient-based optimization algorithm)

∂

∂ωi
L(T ;ω) =

∑
t

φi (xt ,yt)−
∑
t

∑
y′∈Y

P(y′|xt)φi (xt ,y
′)

Introduction to Machine Learning 57(124)



Logistic Regression

Logistic Regression = Maximum Entropy

I Well-known equivalence
I Max Ent: maximize entropy subject to constraints on

features: P = arg maxP H(P) under constraints
I Empirical feature counts must equal expected counts

I Quick intuition
I Partial derivative in logistic regression

∂

∂ωi
L(T ;ω) =

∑
t

φi (xt ,yt)−
∑
t

∑
y′∈Y

P(y′|xt)φi (xt ,y
′)

I First term is empirical feature counts and second term is
expected counts

I Derivative set to zero maximizes function
I Therefore when both counts are equivalent, we optimize the

logistic regression objective!
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Perceptron

Perceptron

Introduction to Machine Learning 59(124)



Perceptron

Perceptron

I Choose a ω that minimizes error

L(T ;ω) =

|T |∑
t=1

1− [[yt = argmax
y

ω · φ(xt ,y)]]

ω = argmin
ω

|T |∑
t=1

1− [[yt = argmax
y

ω · φ(xt ,y)]]

[[p]] =

{
1 p is true
0 otherwise

I This is a 0-1 loss function
I We will see later how to formalize the perceptron error

function as hinge-loss
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Perceptron

Perceptron Learning Algorithm

Training data: T = {(xt ,yt)}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y′ = argmaxy′ ω
(i) · φ(xt ,y

′)
5. if y′ 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y

′)
7. i = i + 1
8. return ωi
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Perceptron

Perceptron: Separability and Margin

I Given an training instance (xt ,yt), define:
I Ȳt = Y − {yt}
I i.e., Ȳt is the set of incorrect labels for xt

I A training set T is separable with margin γ > 0 if there exists
a vector u with ‖u‖ = 1 such that:

u · φ(xt ,yt)− u · φ(xt ,y
′) ≥ γ (2)

for all y′ ∈ Ȳt and ||u|| =
√∑

j u2
j

I Assumption: the training set is separable with margin γ
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Perceptron

Perceptron: Main Theorem

I Theorem: For any training set separable with a margin of γ,
the following holds for the perceptron algorithm:

mistakes made during training ≤ R2

γ2

where R ≥ ||φ(xt ,yt)− φ(xt ,y
′)|| for all (xt ,yt) ∈ T and

y′ ∈ Ȳt
I Thus, after a finite number of training iterations, the error on

the training set will converge to zero

I Let’s prove it! (proof taken from [Collins 2002])
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Perceptron

Perceptron Learning Algorithm
Training data: T = {(xt ,yt )}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y′ = argmaxy′ ω
(i) · φ(xt ,y

′)
5. if y′ 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt )− φ(xt ,y

′)
7. i = i + 1

8. return ωi

I Lower bound:

ω(k−1) are weights before kth error

Suppose kth error made at (xt ,yt)

y′ = argmaxy′ ω
(k−1) · φ(xt ,y′)

y′ 6= yt

ω(k) =
ω(k−1) + φ(xt ,yt)− φ(xt ,y′)

u · ω(k) = u · ω(k−1) + u · (φ(xt ,yt)− φ(xt ,y′)) ≥ u · ω(k−1) + γ, by (2)
Since ω(0) = 0 and u · ω(0) = 0, for all k: u · ω(k) ≥ kγ, by induction on k
Since u · ω(k) ≤ ||u|| × ||ω(k)||, by the law of cosines, and ||u|| = 1, then
||ω(k)|| ≥ kγ

I Upper bound:

||ω(k)||2 = ||ω(k−1)||2 + ||φ(xt ,yt)− φ(xt ,y
′)||2 + 2ω(k−1) · (φ(xt ,yt)− φ(xt ,y

′))

||ω(k)||2 ≤ ||ω(k−1)||2 + R2, since R ≥ ||φ(xt ,yt)− φ(xt ,y
′)||

and ω(k−1) · φ(xt ,yt)− ω(k−1) · φ(xt ,y
′) ≤ 0

≤ kR2 for all k, by induction on k
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Perceptron

Perceptron Learning Algorithm
Training data: T = {(xt ,yt )}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y′ = argmaxy′ ω
(i) · φ(xt ,y

′)
5. if y′ 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt )− φ(xt ,y

′)
7. i = i + 1

8. return ωi

I Lower bound:

ω(k−1) are weights before kth error

Suppose kth error made at (xt ,yt)

y′ = argmaxy′ ω
(k−1) · φ(xt ,y′)

y′ 6= yt

ω(k) =
ω(k−1) + φ(xt ,yt)− φ(xt ,y′)

u · ω(k) = u · ω(k−1) + u · (φ(xt ,yt)− φ(xt ,y′)) ≥ u · ω(k−1) + γ, by (2)
Since ω(0) = 0 and u · ω(0) = 0, for all k: u · ω(k) ≥ kγ, by induction on k
Since u · ω(k) ≤ ||u|| × ||ω(k)||, by the law of cosines, and ||u|| = 1, then
||ω(k)|| ≥ kγ

I Upper bound:

||ω(k)||2 = ||ω(k−1)||2 + ||φ(xt ,yt)− φ(xt ,y
′)||2 + 2ω(k−1) · (φ(xt ,yt)− φ(xt ,y

′))

||ω(k)||2 ≤ ||ω(k−1)||2 + R2, since R ≥ ||φ(xt ,yt)− φ(xt ,y
′)||

and ω(k−1) · φ(xt ,yt)− ω(k−1) · φ(xt ,y
′) ≤ 0

≤ kR2 for all k, by induction on k
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Perceptron

Perceptron Learning Algorithm
Training data: T = {(xt ,yt )}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y′ = argmaxy′ ω
(i) · φ(xt ,y

′)
5. if y′ 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt )− φ(xt ,y

′)
7. i = i + 1

8. return ωi

I Lower bound:

ω(k−1) are weights before kth error

Suppose kth error made at (xt ,yt)

y′ = argmaxy′ ω
(k−1) · φ(xt ,y′)

y′ 6= yt

ω(k) =
ω(k−1) + φ(xt ,yt)− φ(xt ,y′)

u · ω(k) = u · ω(k−1) + u · (φ(xt ,yt)− φ(xt ,y′)) ≥ u · ω(k−1) + γ, by (2)
Since ω(0) = 0 and u · ω(0) = 0, for all k: u · ω(k) ≥ kγ, by induction on k
Since u · ω(k) ≤ ||u|| × ||ω(k)||, by the law of cosines, and ||u|| = 1, then
||ω(k)|| ≥ kγ

I Upper bound:

||ω(k)||2 = ||ω(k−1)||2 + ||φ(xt ,yt)− φ(xt ,y
′)||2 + 2ω(k−1) · (φ(xt ,yt)− φ(xt ,y

′))

||ω(k)||2 ≤ ||ω(k−1)||2 + R2, since R ≥ ||φ(xt ,yt)− φ(xt ,y
′)||

and ω(k−1) · φ(xt ,yt)− ω(k−1) · φ(xt ,y
′) ≤ 0

≤ kR2 for all k, by induction on k
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Perceptron

Perceptron Learning Algorithm

I We have just shown that ||ω(k)|| ≥ kγ and ||ω(k)||2 ≤ kR2

I Therefore,
k2γ2 ≤ ||ω(k)||2 ≤ kR2

I and solving for k

k ≤ R2

γ2

I Therefore the number of errors is bounded!
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Perceptron

Perceptron Summary

I Learns parameters of a linear model by minimizing error

I Guaranteed to find a ω in a finite amount of time
I Perceptron is an example of an Online Learning Algorithm

I ω is updated based on a single training instance in isolation

ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y
′)
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Perceptron

Averaged Perceptron

Training data: T = {(xt ,yt)}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y′ = argmaxy′ ω
(i) · φ(xt ,y

′)
5. if y′ 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y

′)
7. else

6. ω(i+1) = ω(i)

7. i = i + 1

8. return
(∑

i ω
(i)
)
/ (N × T )
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Perceptron

Margin

Training Testing

Denote the
value of the
margin by γ
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Perceptron

Maximizing Margin

I For a training set T
I Margin of a weight vector ω is smallest γ such that

ω · φ(xt ,yt)− ω · φ(xt ,y
′) ≥ γ

I for every training instance (xt ,yt) ∈ T , y′ ∈ Ȳt
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Perceptron

Maximizing Margin

I Intuitively maximizing margin makes sense

I More importantly, generalization error to unseen test data is
proportional to the inverse of the margin

ε ∝ R2

γ2 × |T |

I Perceptron: we have shown that:
I If a training set is separable by some margin, the perceptron

will find a ω that separates the data
I However, the perceptron does not pick ω to maximize the

margin!
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Support Vector Machines

Support Vector Machines (SVMs)
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Support Vector Machines

Maximizing Margin

Let γ > 0
max
||ω||=1

γ

such that:
ω · φ(xt ,yt)− ω · φ(xt ,y

′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

I Note: algorithm still minimizes error if data is separable

I ||ω|| is bound since scaling trivially produces larger margin

β(ω · φ(xt ,yt)− ω · φ(xt ,y
′)) ≥ βγ, for some β ≥ 1
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Change variables: u =
ω

γ
?

||ω|| = 1 iff ||u|| = 1/γ,
then γ = 1/||u||
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Change variables: u =
ω

γ
?

||ω|| = 1 iff ||u|| = 1/γ,
then γ = 1/||u||

Min Norm (step 1):

max
u

1

||u||
= min

u
||u||

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Change variables: u =
ω

γ
?

||ω|| = 1 iff ||u|| = 1/γ,
then γ = 1/||u||

Min Norm (step 2):

min
u
||u||

such that:

γu·φ(xt ,yt)−γu·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Change variables: u =
ω

γ
?

||ω|| = 1 iff ||u|| = 1/γ,
then γ = 1/||u||

Min Norm (step 2):

min
u
||u||

such that:

u·φ(xt ,yt)−u·φ(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Change variables: u =
ω

γ
?

||ω|| = 1 iff ||u|| = 1/γ,
then γ = 1/||u||

Min Norm (step 3):

min
u

1

2
||u||2

such that:

u·φ(xt ,yt)−u·φ(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt
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Support Vector Machines

Max Margin = Min Norm

Let γ > 0

Max Margin:

max
||ω||=1

γ

such that:

ω·φ(xt ,yt)−ω·φ(xt ,y
′) ≥ γ

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

Min Norm:

min
u

1

2
||u||2

such that:

u·φ(xt ,yt)−u·φ(xt ,y
′) ≥ 1

∀(xt ,yt) ∈ T

and y′ ∈ Ȳt

I Intuition: Instead of fixing ||ω|| we fix the margin γ = 1
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Support Vector Machines

Support Vector Machines

What if data is not separable? (Original problem: will not satisfy
the constraints!)

ω = argmin
ω,ξ

1

2
||ω||2 + C

|T |∑
t=1

ξt

such that:

ω · φ(xt ,yt)− ω · φ(xt ,y
′) ≥ 1− ξt and ξt ≥ 0

∀(xt ,yt) ∈ T and y′ ∈ Ȳt

ξt : slack variable representing amount of constraint violation
If data is separable, optimal solution has ξi = 0, ∀i
C balances focus on margin (C < 1

2 ) and on error (C > 1
2 )
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Support Vector Machines

Support Vector Machines

ω = argmin
ω,ξ

1

2
||ω||2 + C

|T |∑
t=1

ξt

such that:

ω · φ(xt ,yt)− ω · φ(xt ,y
′) ≥ 1− ξt

where ξt ≥ 0 and ∀(xt ,yt) ∈ T and y′ ∈ Ȳt

I Computing the dual form results in a quadratic programming
problem – a well-known convex optimization problem
[Boyd and Vandenberghe 2004]

I Can we have representation of this objective that allows more
direct optimization?
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Support Vector Machines

Support Vector Machines

ω = argmin
ω,ξ

1

2
||ω||2 + C

|T |∑
t=1

ξt

such that:

ω · φ(xt ,yt)− max
y′ 6=yt

ω · φ(xt ,y
′) ≥ 1− ξt
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Support Vector Machines

Support Vector Machines

ω = argmin
ω,ξ

1

2
||ω||2 + C

|T |∑
t=1

ξt

such that:

ξt ≥ 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt)︸ ︷︷ ︸

negated margin for example

Introduction to Machine Learning 81(124)



Support Vector Machines

Support Vector Machines

ω = argmin
ω,ξ

λ

2
||ω||2 +

|T |∑
t=1

ξt λ =
1

C

such that:

ξt ≥ 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt)︸ ︷︷ ︸

negated margin for example
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Support Vector Machines

Support Vector Machines

ξt ≥ 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt)︸ ︷︷ ︸

negated margin for example

I If ‖ω‖ classifies (xt ,yt) with margin 1, penalty ξt = 0

I Otherwise: ξt = 1 + maxy′ 6=yt ω · φ(xt ,y
′)− ω · φ(xt ,yt)

I That means that in the end ξt will be:

ξt = max{0, 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt)}
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Support Vector Machines

Support Vector Machines

ω = argmin
ω,ξ

λ

2
||ω||2+

|T |∑
t=1

ξt s.t. ξt ≥ 1+ max
y′ 6=yt

ω·φ(xt ,y
′)−ω·φ(xt ,yt)

Hinge loss

ω = argmin
ω

L(T ;ω) = argmin
ω

|T |∑
t=1

loss((xt ,yt);ω) +
λ

2
||ω||2

= argmin
ω

 |T |∑
t=1

max (0, 1 + max
y′ 6=yt

ω · φ(xt ,y
′)− ω · φ(xt ,yt))

+
λ

2
||ω||2

I We will see later how to do efficient optimization of hinge loss
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Support Vector Machines

Summary

What we have covered
I Linear Learners

I Naive Bayes
I Logistic Regression
I Perceptron
I Support Vector Machines

What is next
I Regularization

I Online learning

I Non-linear models

Introduction to Machine Learning 84(124)



Regularization

Regularization
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Regularization

Fit of a Model

I Two sources of error:

I Bias error, measures how well the hypothesis class fits the
space we are trying to model

I Variance error, measures sensitivity to training set selection
I Want to balance these two things
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Regularization

Overfitting

I Early in lecture we made assumption data was i.i.d.
I Rarely is this true

I E.g., syntactic analyzers typically trained on 40,000 sentences
from early 1990s WSJ news text

I Even more common: T is very small

I This leads to overfitting

I E.g.: ‘fake’ is never a verb in WSJ treebank (only adjective)
I High weight on “φ(x,y) = 1 if x=fake and y=adjective”
I Of course: leads to high log-likelihood / low error

I Other features might be more indicative

I Adjacent word identities: ‘He wants to X his death’→ X=verb
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Regularization

Regularization

I In practice, we regularize models to prevent overfitting

argmax
ω

L(T ;ω)− λR(ω)

I Where R(ω) is the regularization function

I λ controls how much to regularize

I Common functions

I L2: R(ω) ∝ ‖ω‖2 = ‖ω‖ =
√∑

i ω
2
i – smaller weights desired

I L0: R(ω) ∝ ‖ω‖0 =
∑

i [[ωi > 0]] – zero weights desired
I Non-convex
I Approximate with L1: R(ω) ∝ ‖ω‖1 =

∑
i |ωi |
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Regularization

Logistic Regression with L2 Regularization

I Perhaps most common learner in NLP

L(T ;ω)− λR(ω) =

|T |∑
t=1

log
(
eω·φ(xt ,yt)/Zx

)
− λ

2
‖ω‖2

I What are the new partial derivatives?
∂

∂wi
L(T ;ω)− ∂

∂wi
λR(ω)

I We know ∂
∂wi
L(T ;ω)

I Just need ∂
∂wi

λ
2 ‖ω‖

2 = ∂
∂wi

λ
2

(√∑
i ω

2
i

)2

= ∂
∂wi

λ
2

∑
i ω

2
i = λωi
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Regularization

Support Vector Machines

I SVM in hinge-loss formulation: L2 regularization corresponds
to margin maximization!

ω = argmin
ω

L(T ;ω) + λR(ω)

= argmin
ω

|T |∑
t=1

loss((xt ,yt);ω) + λR(ω)

= argmin
ω

|T |∑
t=1

max (0, 1 + max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt)) + λR(ω)

= argmin
ω

|T |∑
t=1

max (0, 1 + max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt)) +
λ

2
‖ω‖2
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Regularization

SVMs vs. Logistic Regression

ω = argmin
ω

L(T ;ω) + λR(ω)

= argmin
ω

|T |∑
t=1

loss((xt ,yt);ω) + λR(ω)

SVMs/hinge-loss: max (0, 1 + maxy 6=yt (ω · φ(xt ,y)− ω · φ(xt ,yt)))

ω = argmin
ω

|T |∑
t=1

max (0, 1 + max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt)) +
λ

2
‖ω‖2

Logistic Regression/log-loss: − log
(
eω·φ(xt ,yt )/Zx

)

ω = argmin
ω

|T |∑
t=1

− log
(
eω·φ(xt ,yt )/Zx

)
+
λ

2
‖ω‖2
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Regularization

SVMs vs. Logistic Regression

ω = argmin
ω

L(T ;ω) + λR(ω)

= argmin
ω

|T |∑
t=1

loss((xt ,yt);ω) + λR(ω)

SVMs/hinge-loss: max (0, 1 + maxy 6=yt (ω · φ(xt ,y)− ω · φ(xt ,yt)))

ω = argmin
ω

|T |∑
t=1

max (0, 1 + max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt)) +
λ

2
‖ω‖2

Logistic Regression/log-loss: − log
(
eω·φ(xt ,yt )/Zx

)

ω = argmin
ω

|T |∑
t=1

− log
(
eω·φ(xt ,yt )/Zx

)
+
λ

2
‖ω‖2
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Regularization

SVMs vs. Logistic Regression

ω = argmin
ω

L(T ;ω) + λR(ω)

= argmin
ω

|T |∑
t=1

loss((xt ,yt);ω) + λR(ω)

SVMs/hinge-loss: max (0, 1 + maxy 6=yt (ω · φ(xt ,y)− ω · φ(xt ,yt)))

ω = argmin
ω

|T |∑
t=1

max (0, 1 + max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt)) +
λ

2
‖ω‖2

Logistic Regression/log-loss: − log
(
eω·φ(xt ,yt )/Zx

)

ω = argmin
ω

|T |∑
t=1

− log
(
eω·φ(xt ,yt )/Zx

)
+
λ

2
‖ω‖2
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Regularization

Generalized Linear Learners

ω = argmin
ω

L(T ;ω) + λR(ω) = argmin
ω

|T |∑
t=1

loss((xt ,yt);ω) + λR(ω)
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Regularization

Which Learner to Use?

I Trial and error

I Training time available

I Choice of features is often more important
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Online Learning

Online Learning
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Online Learning

Online vs. Batch Learning

Batch(T );

I for 1 . . . N

I ω ← update(T ;ω)

I return ω

E.g., SVMs, logistic regres-
sion, Naive Bayes

Online(T );

I for 1 . . . N

I for (xt ,yt) ∈ T
I ω ← update((xt ,yt);ω)

I end for

I end for

I return ω

E.g., Perceptron
ω = ω + φ(xt ,yt)− φ(xt ,y)
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Online Learning

Batch Gradient Descent

I Let L(T ;ω) =
∑|T |

t=1 loss((xt ,yt);ω)
I Set ω0 = Om

I Iterate until convergence

ωi = ωi−1 − αOL(T ;ωi−1)

= ωi−1 −
|T |∑
t=1

αOloss((xt ,yt);ωi−1)

I α > 0 and set so that L(T ;ωi ) < L(T ;ωi−1)
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Online Learning

Stochastic Gradient Descent

I Stochastic Gradient Descent (SGD)
I Approximate batch gradient OL(T ;ω) with stochastic

gradient Oloss((xt ,yt);ω)

I Let L(T ;ω) =
∑|T |

t=1 loss((xt ,yt);ω)
I Set ω0 = Om

I iterate until convergence
I sample (xt ,yt) ∈ T // “stochastic”
I ωi = ωi−1 − αOloss((xt ,yt);ωi−1)

I return ω

Introduction to Machine Learning 97(124)



Online Learning

SGD over Finite Training Data

I NLP practice: Cycling over finite data set
I Set ω0 = Om

I for 1 . . .N
I for (xt ,yt) ∈ T
I ωi = ωi−1 − αOloss((xt ,yt);ωi−1)

I return ω
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Online Learning

Online Logistic Regression

I Stochastic Gradient Descent (SGD)

I loss((xt ,yt);ω) = log-loss

I Oloss((xt ,yt);ω) = O
(
− log

(
eω·φ(xt ,yt)/Zxt

))
I From logistic regression section:

O
(
− log

(
eω·φ(xt ,yt)/Zxt

))
= −

(
φ(xt ,yt)−

∑
y

P(y|x)φ(xt ,y)

)

I Plus regularization term (if part of model)
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Online Learning

Online SVMs

I Stochastic Gradient Descent (SGD)
I loss((xt ,yt);ω) = hinge-loss

Oloss((xt ,yt);ω) = O

(
max (0, 1 + max

y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt))

)
I Subgradient is:

O

(
max (0, 1 + max

y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt))

)

=

{
0, if ω · φ(xt ,yt)−maxy ω · φ(xt ,y) ≥ 1

φ(xt ,y)− φ(xt ,yt), otherwise, where y = maxy ω · φ(xt ,y)

I Plus regularization term (required for SVMs)
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Online Learning

Perceptron and Hinge-Loss

SVM subgradient update looks like perceptron update

ωi = ωi−1 − α
{

0, if ω · φ(xt ,yt)−maxy ω · φ(xt ,y) ≥ 1

φ(xt ,y)− φ(xt ,yt), otherwise, where y = maxy ω · φ(xt ,y)

Perceptron

ωi = ωi−1 − α
{

0, if ω · φ(xt ,yt)−maxy ω · φ(xt ,y) ≥ 0

φ(xt ,y)− φ(xt ,yt), otherwise, where y = maxy ω · φ(xt ,y)

where α = 1, note φ(xt ,y)− φ(xt ,yt) not φ(xt ,yt)− φ(xt ,y) since ‘−’ (descent)

Perceptron = SGD with no-margin hinge-loss

max (0, 1+ max
y 6=yt

ω · φ(xt ,y)− ω · φ(xt ,yt))
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Online Learning

Online vs. Batch Learning

I Online algorithms
I Each update step relies only on the derivative for a single

randomly chosen example
I Computational cost of one step is 1/T compared to batch
I Easier to implement

I Larger variance since each gradient is different
I Variance slows down convergence
I Requires fine-tuning of decaying learning rate

I Batch algorithms
I Higher cost of averaging gradients over T for each update

I Implementation more complex
I Less fine-tuning, e.g., allows constant learning rates
I Faster convergence
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Online Learning

Variance-Reduced Online Learning

I SGD update extended by velocity vector v weighted by
momentum coefficient 0 ≤ µ < 1 [Polyak 1964]:

I

ωi+1 = ωi − αOloss((xt ,yt);ωi ) + µvi

where
vi = ωi − ωi−1

I Momentum accelerates learning if gradients are aligned along
same direction, and restricts changes when successive gradient
are opposite of each other

I General direction of gradient reinforced, perpendicular
directions filtered out

I Best of both worlds: Efficient and effective!
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Online Learning

Online-to-Batch Conversion

I Classical online learning:
I data are given as an infinite sequence of input examples
I model makes prediction on next example in sequence
I online error is averaged over predictions after each update

I Standard NLP applications:
I Finite set of training data, prediction on new batch of test data
I Online learning applied by cycling over finite data
I Online-to-batch conversion: Which model to use at test time?

I Last model? Random model? Best model on heldout set?
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Online Learning

Online-to-Batch Conversion by Averaging

I Averaged Perceptron
I ω̄ =

(∑
i ω

(i)
)
/ (N × T )

I Use weight vector averaged over online updates for prediction

I How does the perceptron mistake bound carry over to batch?
I Let MK be number of mistakes made during online learning,

then with probability of at least 1− δ:

E[loss((x,y); ω̄] ≤ Mk +

√
2

k
ln

1

δ

I = generalization bound based on online performance
[Cesa-Bianchi et al. 2004]

I can be applied to all online learners with convex losses

Introduction to Machine Learning 105(124)



Summary

Quick Summary
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Summary

Linear Learners

I Naive Bayes, Perceptron, Logistic Regression and SVMs

I Generative vs. Discriminative
I Objective functions and loss functions

I Log-loss, min error and hinge loss
I Generalized linear learners

I Regularization

I Online vs. Batch learning
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Non-Linear Models

Non-Linear Models
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Non-Linear Models

Non-Linear Models

I Some data sets require more than a linear decision boundary
to be correctly modeled

I Decision boundary is no longer a hyperplane in the feature
space

I A lot of models out there
I K-Nearest Neighbours
I Decision Trees
I Neural Networks
I Kernels
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Non-Linear Models

Kernels

I A kernel is a similarity function between two points that is
symmetric and positive semi-definite, which we denote by:

K (xt ,xr ) ∈ R

I Let M be a n × n matrix such that ...

Mt,r = K (xt ,xr )

I ... for any n points. Called the Gram matrix.

I Symmetric:
K (xt ,xr ) = K (xr ,xt)

I Positive definite: positivity on diagonal

K (x,x) ≥ 0 forall x with equality only for x = 0
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Non-Linear Models

Kernels

I Mercer’s Theorem: for any kernel K , there exists an φ, in
some Rd , such that:

K (xt ,xr ) = φ(xt) · φ(xr )

I Since our features are over pairs (x,y), we will write kernels
over pairs

K ((xt ,yt), (xr ,yr )) = φ(xt ,yt) · φ(xr ,yr )
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Non-Linear Models

Kernel Trick: General Overview

I Define a kernel, and do not explicitly use dot product between
vectors, only kernel calculations

I In some high-dimensional space, this corresponds to dot
product

I In that space, the decision boundary is linear, but in the
original space, we now have a non-linear decision boundary

I Let’s do it for the Perceptron!
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Non-Linear Models

Kernel Trick – Perceptron Algorithm
Training data: T = {(xt ,yt)}|T |t=1

1. ω(0) = 0; i = 0
2. for n : 1..N
3. for t : 1..T

4. Let y = argmaxy ω
(i) · φ(xt ,y)

5. if y 6= yt
6. ω(i+1) = ω(i) + φ(xt ,yt)− φ(xt ,y)
7. i = i + 1
8. return ωi

I Each feature function φ(xt ,yt) is added and φ(xt ,y) is
subtracted to ω say αy,t times

I αy,t is the # of times during learning label y is predicted for
example t

I Thus,
ω =

∑
t,y

αy,t [φ(xt ,yt)− φ(xt ,y)]
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Non-Linear Models

Kernel Trick – Perceptron Algorithm

I We can re-write the argmax function as:
y∗ = argmaxy∗ ω

(i) · φ(x,y∗)

=

=

=

I We can then re-write the perceptron algorithm strictly with
kernels
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Non-Linear Models

Kernel Trick – Perceptron Algorithm

I We can re-write the argmax function as:

y∗ = argmax
y∗

ω(i) · φ(x,y∗)

= argmax
y∗

∑
t,y

αy,t [φ(xt ,yt)− φ(xt ,y)] · φ(x,y∗)

= argmax
y∗

∑
t,y

αy,t [φ(xt ,yt) · φ(xt ,y
∗)− φ(xt ,y) · φ(x,y∗)]

= argmax
y∗

∑
t,y

αy,t [K ((xt ,yt), (xt ,y
∗))− K ((xt ,y), (x,y∗))]

I We can then re-write the perceptron algorithm strictly with
kernels
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Non-Linear Models

Kernel Trick – Perceptron Algorithm

Training data: T = {(xt ,yt)}|T |t=1

1. ∀y, t set αy,t = 0
2. for n : 1..N
3. for t : 1..T
4. Let y∗ = argmaxy∗

∑
t,y αy,t [K((xt ,yt), (xt ,y∗))− K((xt ,y), (xt ,y∗))]

5. if y∗ 6= yt
6. αy∗,t = αy∗,t + 1

I Given a new instance x

y∗ = argmax
y∗

∑
t,y

αy,t [K ((xt ,yt), (x,y
∗))−K ((xt ,y), (x,y∗))]

I But it seems like we have just complicated things???
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Non-Linear Models

Kernels = Tractable Non-Linearity

I A linear model in a higher dimensional feature space is a
non-linear model in the original space

I Computing a non-linear kernel is often better computationally
than calculating the corresponding dot product in the high
dimensional feature space

I Thus, kernels allow us to efficiently learn non-linear models by
convex optimization
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Non-Linear Models

Linear Learners in High Dimension
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Example: Polynomial Kernel

I φ(x) ∈ RM , d ≥ 2

I K (xt ,xs) = (φ(xt) · φ(xs) + 1)d

I O(M) to calculate for any d!!

I But in the original feature space (primal space)
I Consider d = 2, M = 2, and φ(xt) = [xt,1, xt,2]

(φ(xt) · φ(xs) + 1)2 = ([xt,1, xt,2] · [xs,1, xs,2] + 1)2

= (xt,1xs,1 + xt,2xs,2 + 1)2

= (xt,1xs,1)2 + (xt,2xs,2)2 + 2(xt,1xs,1) + 2(xt,2xs,2)

+2(xt,1xt,2xs,1xs,2) + (1)2

which equals:

[(xt,1)2, (xt,2)2,
√

2xt,1,
√

2xt,2,
√

2xt,1xt,2, 1]︸ ︷︷ ︸
feature vector in high-dimensional space

· [(xs,1)2, (xs,2)2,
√

2xs,1,
√

2xs,2,
√

2xs,1xs,2, 1]︸ ︷︷ ︸
feature vector in high-dimensional space
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Popular Kernels

I Polynomial kernel

K (xt ,xs) = (φ(xt) · φ(xs) + 1)d

I Gaussian radial basis kernel (infinite feature space
representation!)

K (xt ,xs) = exp(
−||φ(xt)− φ(xs)||2

2σ
)

I String kernels

I Tree kernels
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Kernels Summary

I Can turn a linear model into a non-linear model
I Kernels project feature space to higher dimensions

I Sometimes exponentially larger
I Sometimes an infinite space!

I Can “kernelize” algorithms to make them non-linear

I Convex optimization methods still applicable to learn
parameters
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Kernels for Large Training Sets

I Exact kernel methods depend polynomially on the number of
training examples - infeasible for large datasets

I Alternative: Explicit randomized feature map
[Rahimi and Recht 2007]

I Shallow neural network by random Fourier transformation:
I Random weights from input to hidden units
I Cosine as transfer function
I Linear learning of weights from hidden to output units
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Wrap up and time for questions
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Wrap Up and Questions

Summary

Basic principles of machine learning:

I To do learning, we set up an objective function that tells the
fit of the model to the data

I We optimize with respect to the model (weights, probability
model, etc.)

I Can do it in a batch or online (preferred!) fashion

What model to use?

I One example of a model: linear model
I Can kernelize/randomize these models to get non-linear

models
I Convex optimization applicable for both types of model

Introduction to Machine Learning 124(124)



References

Further Reading

I Introductory Example:

I J. Y. Lettvin, H. R. Maturana, W. S. McCulloch, and W. H. Pitts. 1959.
What the frog’s eye tells the frog’s brain. Proc. Inst. Radio Engr., 47:1940–1951.

I Naive Bayes:

I Pedro Domingos and Michael Pazzani. 1997.
On the optimality of the simple bayesian classifier under zero-one loss. Machine
Learning, (29):103–130.

I Logistic Regression:

I Bradley Efron. 1975.
The efficiency of logistic regression compared to normal discriminant analysis.
Journal of the American Statistical Association, 70(352):892–898.

I Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra. 1996.
A maximum entropy approach to natural language processing. Computational
Linguistics, 22(1):39–71.

I Stefan Riezler, Detlef Prescher, Jonas Kuhn, and Mark Johnson. 2000.

Introduction to Machine Learning 124(124)



References

Lexicalized Stochastic Modeling of Constraint-Based Grammars using Log-Linear
Measures and EM Training. In Proceedings of the 38th Annual Meeting of the
Association for Computational Linguistics (ACL’00), Hong Kong.

I Perceptron:

I Albert B.J. Novikoff. 1962.
On convergence proofs on perceptrons. Symposium on the Mathematical Theory of
Automata, 12:615–622.

I Yoav Freund and Robert E. Schapire. 1999.
Large margin classification using the perceptron algorithm. Journal of Machine
Learning Research, 37:277–296.

I Michael Collins. 2002.
Discriminative training methods for hidden markov models: theory and experiments
with perceptron algorithms. In Proceedings of the conference on Empirical
Methods in Natural Language Processing (EMNLP’02), Philadelphia, PA.

I SVM:

I Vladimir N. Vapnik. 1998.
Statistical Learning Theory. Wiley.

I Olivier Chapelle. 2007.

Introduction to Machine Learning 124(124)



References

Training a support vector machine in the primal. Neural Computation,
19(5):1155–1178.

I Ben Taskar, Carlos Guestrin, and Daphne Koller. 2003.
Max-margin markov networks. In Advances in Neural Information Processing
Systems 17 (NIPS’03), Vancouver, Canada.

I Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun.
2004.
Support vector machine learning for interdependent and structured output spaces.
In Proceedings of the 21st International Conference on Machine Learning
(ICML’04), Banff, Canada.

I Kernels and Regularization:

I Bernhard Schölkopf and Alexander J. Smola. 2002.
Learning with Kernels. Support Vector Machines, Regularization, Optimization, and
Beyond. The MIT Press.

I Ali Rahimi and Ben Recht. 2007.
Random features for large-scale kernel machines. In Advances in Neural
Information Processing Systems (NIPS), Vancouver, B.C., Canada.

Introduction to Machine Learning 124(124)



References

I Zhiyun Lu, Dong Guo, Alireza Bagheri Garakani, Kuan Liu, Avner May, Aurelien
Bellet, Linxi Fan, Michael Collins, Brian Kingsbury, Michael Picheny, and Fei Sha.
2016.
A comparison between deep neural nets and kernel acoustic models for speech
recognition. In IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP).

I Convex and Non-Convex Optimization:

I Yurii Nesterov. 2004.
Introductory lectures on convex optimization: A basic course. Springer.

I Stephen Boyd and Lieven Vandenberghe. 2004.
Convex Optimization. Cambridge University Press.

I Dimitri P. Bertsekas and John N. Tsitsiklis. 1996.
Neuro-Dynamic Programming. Athena Scientific.

I Online/Stochastic Optimization:

I Herbert Robbins and Sutton Monro. 1951.
A stochastic approximation method. Annals of Mathematical Statistics,
22(3):400–407.

I Boris T. Polyak. 1964.

Introduction to Machine Learning 124(124)



References

Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1 – 17.
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