
Turbo Parser Redux:
From Dependencies to Constituents

André Martins

Joint work with: Noah Smith, Mário Figueiredo, Eric Xing, Pedro Aguiar,
Miguel Almeida, Mariana Almeida, and Daniel Fernández-González

LxMLS, Lisboa, 26/07/16

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 1 / 55

Structured Prediction and NLP

Structured prediction: a machine learning framework for predicting
structured, constrained, and interdependent outputs

NLP deals with structured and ambiguous textual data:

machine translation

speech recognition

syntactic parsing

semantic parsing

information extraction

...

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 2 / 55

Constituent/Phrase-Structure Parsing

S --> NP VP

NP --> Det Adj N

VP --> V NP Adv

Adj --> minimal

Adv --> here

Det --> a

N --> logic

N --> role

V --> plays

S

NP

N

Logic

VP

V

plays

NP

Det

a

Adj

minimal

N

role

Adv

here

Example extracted from the Penn Treebank.

(Magerman, 1995; Charniak, 1996; Johnson, 1998; Collins, 1999; Klein and Manning, 2003)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 3 / 55

Dependency Parsing

Map sentences to their syntactic structure.

* Logic plays a minimal role here

A lexicalized syntactic formalism

Grammar functions represented as lexical relationships (dependencies)

(Eisner, 1996; McDonald et al., 2005; Nivre et al., 2006; Koo et al., 2007)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 4 / 55

Outline

1 Turbo Parsers

2 Parsing as Reduction

Dependencies and Constituents

Head-Ordered Dependency Trees

Reduction-Based Constituent Parsers

Experiments

Conclusions

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 5 / 55

What is a Turbo Parser?

A parser that runs inference in factor graphs, ignoring global
effects caused by loops (Martins et al., 2010)

name inspired from turbo decoders (Berrou et al., 1993)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 6 / 55

What is a Turbo Parser?

A parser that runs inference in factor graphs, ignoring global
effects caused by loops (Martins et al., 2010)

name inspired from turbo decoders (Berrou et al., 1993)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 6 / 55

Examples of Turbo Parsers

Exponential-sized ILP formulation (Riedel and Clarke, 2006)

Polynomial-sized ILP formulation with multi-commodity flows
(Martins et al., 2009)

Belief propagation decoder (Smith and Eisner, 2008; Martins et al.,
2010)

Dual decomposition decoder (Koo et al., 2010)

AD3 decoder (Martins et al., 2011, 2013)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 7 / 55

An Important Distinction

A projective tree:

* Logic plays a minimal role here

A non-projective tree:

* We learned a lesson in 1987 about volatility

Non-projective trees are suitable for languages with flexible word
order (Dutch, German, Czech,...).

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 8 / 55

An Important Distinction

A projective tree:

* Logic plays a minimal role here

A non-projective tree:

* We learned a lesson in 1987 about volatility

Non-projective trees are suitable for languages with flexible word
order (Dutch, German, Czech,...).

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 8 / 55

First-Order Scores for Arcs

* We learned a lesson in 1987 about volatility

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 9 / 55

Second-Order Scores for Consecutive Siblings

* We learned a lesson in 1987 about volatility

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 9 / 55

Second-Order Scores for Grandparents

* We learned a lesson in 1987 about volatility

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 9 / 55

Scores for Arbitrary Siblings

* We learned a lesson in 1987 about volatility

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 9 / 55

Scores for Head Bigrams

* We learned a lesson in 1987 about volatility

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 9 / 55

Third-Order Scores for Grand-siblings

* We learned a lesson in 1987 about volatility

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 9 / 55

Third-Order Scores for Tri-siblings

* We learned a lesson in 1987 about volatility

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 9 / 55

Decoding

arc consecutive siblings grandparent all siblings directed path
head bigram nonprojective arc

grand-siblings tri-siblings

How to deal with all these parts?

Beyond arc-factored models, non-projective parsing is NP-hard
(McDonald and Satta, 2007)

—need to embrace approximations!

parser AF CS G AS DP HB NPA GS TS
McDonald et al. (2006) projective + greedy X X

Smith et al. (2008) loopy BP X X X X
Martins et al. (2010) LP solver X X X X

Koo et al. (2010) dual decomp. X X
Martins et al. (2011) AD3 X X X X X X X
Martins et al. (2013) AD3 & active set X X X X X X X

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 10 / 55

Decoding

arc consecutive siblings grandparent all siblings directed path
head bigram nonprojective arc

grand-siblings tri-siblings

How to deal with all these parts?

Beyond arc-factored models, non-projective parsing is NP-hard
(McDonald and Satta, 2007)—need to embrace approximations!

parser AF CS G AS DP HB NPA GS TS
McDonald et al. (2006) projective + greedy X X

Smith et al. (2008) loopy BP X X X X
Martins et al. (2010) LP solver X X X X

Koo et al. (2010) dual decomp. X X
Martins et al. (2011) AD3 X X X X X X X
Martins et al. (2013) AD3 & active set X X X X X X X

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 10 / 55

Decoding

arc consecutive siblings grandparent all siblings directed path
head bigram nonprojective arc

grand-siblings tri-siblings

How to deal with all these parts?

Beyond arc-factored models, non-projective parsing is NP-hard
(McDonald and Satta, 2007)—need to embrace approximations!

parser AF CS G AS DP HB NPA GS TS
McDonald et al. (2006) projective + greedy X X

Smith et al. (2008) loopy BP X X X X
Martins et al. (2010) LP solver X X X X

Koo et al. (2010) dual decomp. X X
Martins et al. (2011) AD3 X X X X X X X
Martins et al. (2013) AD3 & active set X X X X X X X

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 10 / 55

Factor Graph Representations

For each input x ∈ X: a large set of candidate outputs Y(x)

Decoding problem:

ŷ = arg max
y∈Y(x)

Fw(x , y)

Key assumption: Fw decomposes into (overlapping) parts

Fw(x , y) :=
∑

s

fs(ys)

Examples: HMMs, CRFs, PCFGs, general graphical models

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 11 / 55

Factor Graph Representations

For each input x ∈ X: a large set of candidate outputs Y(x)

Decoding problem:

ŷ = arg max
y∈Y(x)

Fw(x , y)

Key assumption: Fw decomposes into (overlapping) parts

Fw(x , y) :=
∑

s

fs(ys)

Examples: HMMs, CRFs, PCFGs, general graphical models

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 11 / 55

Factor Graph Representations

For each input x ∈ X: a large set of candidate outputs Y(x)

Decoding problem:

ŷ = arg max
y∈Y(x)

Fw(x , y)

Key assumption: Fw decomposes into (overlapping) parts

Fw(x , y) :=
∑

s

fs(ys)

Examples: HMMs, CRFs, PCFGs, general graphical models

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 11 / 55

Factors as Machines

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 12 / 55

Factors as Machines

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 12 / 55

Alternating Directions Dual Decomposition (AD3)

A general purpose algorithm, suitable for many scenarios in NLP and IR.

Problems with factor graph representations

Statements in FOL

Budget/knapsack constraints

Combination of structured models

High level idea:

Decompose a complex problem into local subproblems (factors),
constrained to be globally consistent

Iterate between solving the local subproblems and penalizing the
global disagreements (via Lagrange multipliers)

FOL/knapsack constraints: the local subproblems correspond to
projections onto “hard constraint” polytopes

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 13 / 55

Alternating Directions Dual Decomposition (AD3)

A general purpose algorithm, suitable for many scenarios in NLP and IR.

Problems with factor graph representations

Statements in FOL

Budget/knapsack constraints

Combination of structured models

High level idea:

Decompose a complex problem into local subproblems (factors),
constrained to be globally consistent

Iterate between solving the local subproblems and penalizing the
global disagreements (via Lagrange multipliers)

FOL/knapsack constraints: the local subproblems correspond to
projections onto “hard constraint” polytopes

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 13 / 55

Alternating Directions Dual Decomposition (AD3)

A general purpose algorithm, suitable for many scenarios in NLP and IR.

Problems with factor graph representations

Statements in FOL

Budget/knapsack constraints

Combination of structured models

High level idea:

Decompose a complex problem into local subproblems (factors),
constrained to be globally consistent

Iterate between solving the local subproblems and penalizing the
global disagreements (via Lagrange multipliers)

FOL/knapsack constraints: the local subproblems correspond to
projections onto “hard constraint” polytopes

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 13 / 55

Alternating Directions Dual Decomposition (AD3)

A general purpose algorithm, suitable for many scenarios in NLP and IR.

Problems with factor graph representations

Statements in FOL

Budget/knapsack constraints

Combination of structured models

High level idea:

Decompose a complex problem into local subproblems (factors),
constrained to be globally consistent

Iterate between solving the local subproblems and penalizing the
global disagreements (via Lagrange multipliers)

FOL/knapsack constraints: the local subproblems correspond to
projections onto “hard constraint” polytopes

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 13 / 55

Alternating Directions Dual Decomposition (AD3)

A general purpose algorithm, suitable for many scenarios in NLP and IR.

Problems with factor graph representations

Statements in FOL

Budget/knapsack constraints

Combination of structured models

High level idea:

Decompose a complex problem into local subproblems (factors),
constrained to be globally consistent

Iterate between solving the local subproblems and penalizing the
global disagreements (via Lagrange multipliers)

FOL/knapsack constraints: the local subproblems correspond to
projections onto “hard constraint” polytopes

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 13 / 55

Alternating Directions Dual Decomposition (AD3)

A general purpose algorithm, suitable for many scenarios in NLP and IR.

Problems with factor graph representations

Statements in FOL

Budget/knapsack constraints

Combination of structured models

High level idea:

Decompose a complex problem into local subproblems (factors),
constrained to be globally consistent

Iterate between solving the local subproblems and penalizing the
global disagreements (via Lagrange multipliers)

FOL/knapsack constraints: the local subproblems correspond to
projections onto “hard constraint” polytopes

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 13 / 55

Projecting onto Hard Constraint Polytopes

XOR OR OR-OUT
KNAPSACK

All projections can be computed in linear time (Martins et al., 2015)

Applications: Markov logic networks (Richardson and Domingos,
2006), constrained conditional models (Roth and Yih, 2004),
summarization (Almeida and Martins, 2013), ...

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 14 / 55

Some Problems in Which AD3 Have Been Applied

Dependency parsing (Martins et al., 2011, 2013)

Frame semantics (Das et al., 2012)

Broad-coverage semantic parsing (Martins and Almeida, 2014)

Compressive summarization (Almeida and Martins, 2013)

Coreference resolution (Almeida et al., 2014)

Could be a great fit to many other applications!!

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 15 / 55

Literature Pointers

André F. T. Martins.
“AD3: A Fast Decoder for Structured Prediction.”
Book chapter of Advanced Structured Prediction,
Sebastian Nowozin, Peter V. Gehler, Jeremy
Jancsary, and Christoph H. Lampert (Editors),
MIT Press, 2014.

A. Martins, M. Figueiredo, P. Aguiar, N. Smith, E. Xing.
“AD3: Alternating Directions Dual Decomposition for MAP Inference
in Graphical Models.”
JMLR 2015.

More details: EMNLP 2014 tutorial on “LP Decoders for NLP.”

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 16 / 55

Parsing Accuracies/Runtimes

SOTA accuracies for the largest non-projective datasets (CoNLL-2006 and
CoNLL-2008):

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 17 / 55

Extension: Broad-Coverage Semantic Parsing

Same idea applied to semantic role labeling.

Best results in the SemEval 2014 shared task:

André F. T. Martins and Mariana S. C. Almeida.
“Priberam: A Turbo Semantic Parser with Second Order Features.”
SemEval 2014.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 18 / 55

Try It Yourself: AD3 Toolkit

Freely available at: http://www.ark.cs.cmu.edu/AD3

Implemented in C++, includes a Python wrapper (thanks to Andy
Mueller)

Many built-in factors: logic, knapsack, dense, and some structured
factors

You can implement your own factor (only need to write a local MAP
decoder!)

Toy examples included (parsing, coreference, Potts models)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 19 / 55

Try It Yourself: TurboParser

Freely available at: http://www.ark.cs.cmu.edu/TurboParser

Implemented in C++, includes a Python wrapper

Not just parsing, but a full NLP pipeline now!

Includes multilingual POS tagging, dependency parsing, semantic role
labeling, entity recognition, coreference resolution (all trainable on
any dataset).

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 20 / 55

Outline

1 Turbo Parsers

2 Parsing as Reduction

Dependencies and Constituents

Head-Ordered Dependency Trees

Reduction-Based Constituent Parsers

Experiments

Conclusions

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 21 / 55

In a Nutshell (Fernández-González and Martins, 2015, ACL)

Constituent parsers are slow (heavy grammar constant)

Dependency parsers are faster, but their output is less informative

How to get the best of both worlds?

Our proposal: a reduction of constituent parsing to dependency parsing

Rooted in a novel formalism: head-ordered dependency trees

Works for any out-of-the-box dependency parser

Competitive for English and morphologically rich languages

Results above the state of the art for discontinuous parsing

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 22 / 55

In a Nutshell (Fernández-González and Martins, 2015, ACL)

Constituent parsers are slow (heavy grammar constant)

Dependency parsers are faster, but their output is less informative

How to get the best of both worlds?

Our proposal: a reduction of constituent parsing to dependency parsing

Rooted in a novel formalism: head-ordered dependency trees

Works for any out-of-the-box dependency parser

Competitive for English and morphologically rich languages

Results above the state of the art for discontinuous parsing

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 22 / 55

In a Nutshell (Fernández-González and Martins, 2015, ACL)

Constituent parsers are slow (heavy grammar constant)

Dependency parsers are faster, but their output is less informative

How to get the best of both worlds?

Our proposal: a reduction of constituent parsing to dependency parsing

Rooted in a novel formalism: head-ordered dependency trees

Works for any out-of-the-box dependency parser

Competitive for English and morphologically rich languages

Results above the state of the art for discontinuous parsing

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 22 / 55

Outline

1 Turbo Parsers

2 Parsing as Reduction

Dependencies and Constituents

Head-Ordered Dependency Trees

Reduction-Based Constituent Parsers

Experiments

Conclusions

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 23 / 55

Outline

1 Turbo Parsers

2 Parsing as Reduction

Dependencies and Constituents

Head-Ordered Dependency Trees

Reduction-Based Constituent Parsers

Experiments

Conclusions

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 24 / 55

Continuous and Discontinuous C-Trees

CFG generate continuous trees, LCFRS generate discontinuous
trees (Vijay-Shanker et al., 1987)

... but existing discontinuous parsers are too slow and inaccurate!

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 25 / 55

Projective and Non-Projective D-Trees

Continuous and discontinuous c-trees “project” respectively to
projective and non-projective d-trees (Gaifman, 1965)

Non-projectiveness is suitable for languages with flexible word order
(Dutch, German, Czech, etc.)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 26 / 55

Projecting C-Trees onto D-Trees...

This paper: formal equivalence results to “invert” this projection.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 27 / 55

Projecting C-Trees onto D-Trees...

This paper: formal equivalence results to “invert” this projection.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 27 / 55

Projecting C-Trees onto D-Trees...

This paper: formal equivalence results to “invert” this projection.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 27 / 55

Projecting C-Trees onto D-Trees...

This paper: formal equivalence results to “invert” this projection.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 27 / 55

Projecting C-Trees onto D-Trees...

This paper: formal equivalence results to “invert” this projection.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 27 / 55

... And Back?

This paper: formal equivalence results to “invert” this projection.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 27 / 55

... And Back?

This paper: formal equivalence results to “invert” this projection.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 27 / 55

... And Back?

This paper: formal equivalence results to “invert” this projection.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 27 / 55

... And Back?

This paper: formal equivalence results to “invert” this projection.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 27 / 55

Related Work

Store structural information in the dependency labels (Hall and Nivre,
2008)

Manual transformation rules toward multi-representational treebanks
(Xia and Palmer, 2001; De Marneffe et al., 2006; Xia et al., 2008)

Apply second-stage constituent parser (Kong et al., 2015)

Joint dependency and constituent parsing (Carreras et al., 2008; Rush
et al., 2010)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 28 / 55

Outline

1 Turbo Parsers

2 Parsing as Reduction

Dependencies and Constituents

Head-Ordered Dependency Trees

Reduction-Based Constituent Parsers

Experiments

Conclusions

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 29 / 55

Strictly Ordered D-Trees

Key idea: endow d-trees with additional structure, by making each head
attach its modifiers in a particular order

Proposition

Binary c-trees = strictly ordered d-trees

Same number of symbols (dependency alphabet = phrasal alphabet)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 30 / 55

Strictly Ordered D-Trees

Key idea: endow d-trees with additional structure, by making each head
attach its modifiers in a particular order

Proposition

Binary c-trees = strictly ordered d-trees

Same number of symbols (dependency alphabet = phrasal alphabet)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 30 / 55

Strictly Ordered D-Trees

Key idea: endow d-trees with additional structure, by making each head
attach its modifiers in a particular order

Proposition

Binary c-trees = strictly ordered d-trees

Same number of symbols (dependency alphabet = phrasal alphabet)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 30 / 55

Strictly Ordered D-Trees

Key idea: endow d-trees with additional structure, by making each head
attach its modifiers in a particular order

Proposition

Binary c-trees = strictly ordered d-trees

Same number of symbols (dependency alphabet = phrasal alphabet)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 30 / 55

Strictly Ordered D-Trees

Key idea: endow d-trees with additional structure, by making each head
attach its modifiers in a particular order

Proposition

Binary c-trees = strictly ordered d-trees

Same number of symbols (dependency alphabet = phrasal alphabet)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 30 / 55

Strictly Ordered D-Trees

Key idea: endow d-trees with additional structure, by making each head
attach its modifiers in a particular order

Proposition

Binary c-trees = strictly ordered d-trees

Same number of symbols (dependency alphabet = phrasal alphabet)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 30 / 55

The Spinal View

The order is given by the attachment position in the spine (Carreras
et al., 2008)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 31 / 55

Weakly Ordered D-Trees

Same, but allow simultaneous events (as long as the d-label is consistent)

Can every c-tree be represented like this?

No: unaries are lost.

Proposition

Unaryless c-trees = weakly ordered d-trees

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 32 / 55

Weakly Ordered D-Trees

Same, but allow simultaneous events (as long as the d-label is consistent)

Can every c-tree be represented like this?

No: unaries are lost.

Proposition

Unaryless c-trees = weakly ordered d-trees

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 32 / 55

Weakly Ordered D-Trees

Same, but allow simultaneous events (as long as the d-label is consistent)

Can every c-tree be represented like this?

No: unaries are lost.

Proposition

Unaryless c-trees = weakly ordered d-trees

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 32 / 55

Weakly Ordered D-Trees

Same, but allow simultaneous events (as long as the d-label is consistent)

Can every c-tree be represented like this?

No: unaries are lost.

Proposition

Unaryless c-trees = weakly ordered d-trees

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 32 / 55

Weakly Ordered D-Trees

Same, but allow simultaneous events (as long as the d-label is consistent)

Can every c-tree be represented like this? No: unaries are lost.

Proposition

Unaryless c-trees = weakly ordered d-trees

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 32 / 55

Weakly Ordered D-Trees

Same, but allow simultaneous events (as long as the d-label is consistent)

Can every c-tree be represented like this? No: unaries are lost.

Proposition

Unaryless c-trees = weakly ordered d-trees

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 32 / 55

Weakly Ordered D-Trees

Same, but allow simultaneous events (as long as the d-label is consistent)

Can every c-tree be represented like this? No: unaries are lost.

Proposition

Unaryless c-trees = weakly ordered d-trees

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 32 / 55

What About Projective Trees?

A head-ordered d-tree has the nesting property if, on each side of every
head, closer modifiers are attached first.

Proposition

Unaryless continuous c-trees = nested-weakly ordered projective d-trees

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 33 / 55

What About Projective Trees?

A head-ordered d-tree has the nesting property if, on each side of every
head, closer modifiers are attached first.

Proposition

Unaryless continuous c-trees = nested-weakly ordered projective d-trees

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 33 / 55

What About Projective Trees?

A head-ordered d-tree has the nesting property if, on each side of every
head, closer modifiers are attached first.

Proposition

Unaryless continuous c-trees = nested-weakly ordered projective d-trees

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 33 / 55

The Spinal View for Discontinuities

Projective, but not nested:

Nested, but not projective:

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 34 / 55

Outline

1 Turbo Parsers

2 Parsing as Reduction

Dependencies and Constituents

Head-Ordered Dependency Trees

Reduction-Based Constituent Parsers

Experiments

Conclusions

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 35 / 55

Reduction-Based Constituent Parsers

1 Convert c-treebank to head-ordered d-treebank.

2 Encode head-orders in the d-labels, yielding a d-treebank.

3 Train a d-parser on the d-treebank.

4 Run the d-parser on new sentences.

5 Convert the predicted d-trees into unaryless c-trees.

6 Recover unary nodes.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 36 / 55

Reduction-Based Constituent Parsers

1 Convert c-treebank to head-ordered d-treebank.

2 Encode head-orders in the d-labels, yielding a d-treebank.

3 Train a d-parser on the d-treebank.

4 Run the d-parser on new sentences.

5 Convert the predicted d-trees into unaryless c-trees.

6 Recover unary nodes.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 36 / 55

Label Encoding Strategies

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 37 / 55

Label Encoding Strategies

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 37 / 55

Label Encoding Strategies

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 37 / 55

Impact of Label Encoding

Evaluated on the English PTB §22 (Marcus et al., 1993).

labels dep (LAS) const (F1)

H&N encoding 731 87.86 89.39
Direct encoding 75 91.99 90.89
Delta encoding 69 92.00 90.94

H&N encoding overgenerates labels, leading to a loss in accuracy

Delta encoding performs consistently better than direct encoding on
other datasets (see paper)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 38 / 55

Reduction-Based Constituent Parsers

1 Convert c-treebank to head-ordered d-treebank.

2 Encode head-orders in the d-labels, yielding a d-treebank.

3 Train a d-parser on the d-treebank.

4 Run the d-parser on new sentences.

5 Convert the predicted d-trees into unaryless c-trees.

6 Recover unary nodes.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 39 / 55

Choice of Dependency Parser

Evaluated on the English PTB §22 (Marcus et al., 1993).

Dependency Parser Dep (LAS) Const (F1) # toks/s.

MaltParser 88.95 86.87 5,392
MSTParser 89.86 87.93 363
ZPar 91.28 89.50 1,022
TurboParser-Basic 90.23 87.63 2,585
TurboParser-Standard 91.58 90.41 1,658
TurboParser-Full 91.70 90.53 959
TurboParser-Full + Labeler 92.00 90.94 912

Best results: separate stages for d-parser and d-labeler

The d-labeler is a simple sequence model for each head (see paper)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 40 / 55

Reduction-Based Constituent Parsers

1 Convert c-treebank to head-ordered d-treebank.

2 Encode head-orders in the d-labels, yielding a d-treebank.

3 Train a d-parser on the d-treebank.

4 Run the d-parser on new sentences.

5 Convert the predicted d-trees into unaryless c-trees.

6 Recover unary nodes.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 41 / 55

Recovery of Unary Nodes

We run independent classifiers at each c-node

Each class is either NULL (no unary node pre-appended) or a
concatenation of labels (e.g., S->ADJP for a node JJ)

To speed-up: only observed classes are considered (9.9 classes per
node in PTB §22)

A tiny fraction of the time is spent on this post-processing (<2%),
with F1-score of 99.43% in PTB §22

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 42 / 55

Outline

1 Turbo Parsers

2 Parsing as Reduction

Dependencies and Constituents

Head-Ordered Dependency Trees

Reduction-Based Constituent Parsers

Experiments

Conclusions

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 43 / 55

Experiments: English PTB

Results on the English PTB §23 (Marcus et al., 1993).

Parser LR LP F1 #Toks/s.

Klein and Manning (2003) 85.3 86.5 85.9 143
Hall et al. (2014) 88.4 88.8 88.6 12
Socher et al. (2013) 89.1 89.7 89.4 70
Charniak (2000) 89.5 89.9 89.5 –
Stanford Shift-Reduce (2014) 89.1 89.1 89.1 655
Petrov and Klein (2007) 90.0 90.3 90.1 169
This work 89.9 90.4 90.2 957
Zhu et al. (2013) 90.3 90.6 90.4 1,290
Carreras et al. (2008) 90.7 91.4 91.1 –
Zhu et al. (2013) 91.1 91.5 91.3 –
Charniak and Johnson (2005) 91.2 91.8 91.5 84

Grayed parsers are ensemble/reranking/semi-supervised systems.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 44 / 55

Experiments: Morphologically Rich Languages

Results on SPMRL14 shared task datasets (Seddah et al., 2014).

Parser Bas Fre Ger Heb Hun Kor Pol Swe Avg.

Berkeley 70.50 80.38 78.30 86.96 81.62 71.42 79.23 79.19 78.45
Berkeley Tagged 74.74 79.76 78.28 85.42 85.22 78.56 86.75 80.64 81.17
Crabbé and Seddah (2014) 85.35 79.68 77.15 86.19 87.51 79.35 91.60 82.72 83.69
Hall et al. (2014) 83.39 79.70 78.43 87.18 88.25 80.18 90.66 82.00 83.72
This work 85.90 78.75 78.66 88.97 88.16 79.28 91.20 82.80 84.22
Björkelund et al. (2014) 88.24 82.53 81.66 89.80 91.72 83.81 90.50 85.50 86.72

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 45 / 55

Experiments: Discontinuous Parsing

Results on the discontinuous TIGER treebank (Brants et al., 2002).

TIGER-SPMRL, L ≤ 70 F1 EX

gold tags Versley (2014b) 76.46 41.05
This work 80.98 43.44

pred. tags Versley (2014b) 73.90 37.00
This work 77.72 38.75

TIGER-H&N, L ≤ 40 F1 EX

gold tags Hall and Nivre (2008) 79.93 37.78
Versley (2014a) 74.23 37.32
This work 85.53 51.21

pred. tags Hall and Nivre (2008) 75.33 32.63
van Cranenburgh and Bod (2013) 78.8– 40.8–
This work 82.57 45.93

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 46 / 55

Experiments: Discontinuous Parsing

Results on the discontinuous NEGRA treebank (Skut et al., 1997).

NEGRA, L ≤ 40 F1 EX

gold tags van Cranenburgh (2012) 72.33 33.16
van Cranenburgh and Bod (2013) 76.8– 40.5–
This work 81.08 48.04

pred. tags van Cranenburgh and Bod (2013) 74.8– 38.7–
This work 77.93 44.83

We parse all sentences (regardless of length) in 27.1 seconds in a
single core (618 toks/sec)

Orders of magnitude faster than van Cranenburgh and Bod (2013)

Similar speed as the easy-first system of Versley (2014a), but much
higher accuracy

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 47 / 55

Outline

1 Turbo Parsers

2 Parsing as Reduction

Dependencies and Constituents

Head-Ordered Dependency Trees

Reduction-Based Constituent Parsers

Experiments

Conclusions

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 48 / 55

Conclusions

We proposed a reduction technique that allows to implement a
constituent parser when only a dependency parser is available.

The technique is very simple and flexible: applicable to any
dependency parser, regardless of its nature or kind.

If the dependency parser is non-projective, we can predict
discontinuous constituent trees.

We showed empirically that the reduction leads to highly-competitive
constituent parsers for English and 8 morphologically rich languages.

We surpassed the state of the art in discontinuous parsing of German
by a wide margin.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 49 / 55

We’re Hiring!

Excited about MT, crowdsourcing and Lisbon? ⇒ jobs@unbabel.com.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 50 / 55

Acknowledgments

Spanish Ministry of Economy and Competitiveness and FEDER (project
TIN2010-18552-C03-01)

Ministry of Education (FPU Grant Program) and Xunta de Galicia (projects
R2014/029 and R2014/034)

Fundação para a Ciência e Tecnologia, grants UID/EEA/50008/2013 and
PTDC/EEI-SII/2312/2012.

Priberam: QREN/POR Lisboa (Portugal), EU/FEDER programme, Intelligo
project, contract 2012/24803.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 51 / 55

References I
Almeida, M. B. and Martins, A. F. T. (2013). Fast and robust compressive summarization with dual decomposition and

multi-task learning. In Proc. of the Annual Meeting of the Association for Computational Linguistics.

Almeida, M. S. C., Almeida, M. B., and Martins, A. F. T. (2014). A joint model for quotation attribution and coreference
resolution. In Proc. of the Annual Meeting of the European Chapter of the Association for Computational Linguistics.

Berrou, C., Glavieux, A., and Thitimajshima, P. (1993). Near Shannon limit error-correcting coding and decoding. In Proc. of
International Conference on Communications, volume 93, pages 1064–1070.

Björkelund, A., Çetinoğlu, O., Faleńska, A., Farkas, R., Mueller, T., Seeker, W., and Szántó, Z. (2014). Introducing the
ims-wroc law-szeged-cis entry at the spmrl 2014 shared task: Reranking and morpho-syntax meet unlabeled data. In Proc. of
the First Joint Workshop on Statistical Parsing of Morphologically Rich Languages and Syntactic Analysis of Non-Canonical
Languages.

Brants, S., Dipper, S., Hansen, S., Lezius, W., and Smith, G. (2002). The TIGER treebank. In Proc. of the workshop on
treebanks and linguistic theories.

Carreras, X., Collins, M., and Koo, T. (2008). TAG, Dynamic Programming, and the Perceptron for Efficient, Feature-rich
Parsing. In Proc. of the International Conference on Natural Language Learning.

Charniak, E. (1996). Tree-bank grammars. In Proc. of the National Conference on Artificial Intelligence.

Charniak, E. (2000). A maximum-entropy-inspired parser. In Proc. of the North American Chapter of the Association for
Computational Linguistics Conference.

Charniak, E. and Johnson, M. (2005). Coarse-to-fine n-best parsing and maxent discriminative reranking. In Proc. of Annual
Meeting of the Association for Computational Linguistics.

Collins, M. (1999). Head-driven statistical models for natural language parsing. PhD thesis, University of Pennsylvania.

Crabbé, B. and Seddah, D. (2014). Multilingual discriminative shift reduce phrase structure parsing for the SPMRL 2014 shared
task. In Proc. of the First Joint Workshop on Statistical Parsing of Morphologically Rich Languages and Syntactic Analysis
of Non-Canonical Languages.

Das, D., Martins, A. F. T., and Smith, N. A. (2012). An Exact Dual Decomposition Algorithm for Shallow Semantic Parsing
with Constraints. In Proc. of First Joint Conference on Lexical and Computational Semantics (*SEM).

De Marneffe, M.-C., MacCartney, B., Manning, C. D., et al. (2006). Generating typed dependency parses from phrase structure
parses. In Proc. of the Meeting of the Language Resources and Evaluation Conference.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 52 / 55

References II
Eisner, J. (1996). Three new probabilistic models for dependency parsing: An exploration. In Proc. of International Conference

on Computational Linguistics.

Fernández-González, D. and Martins, A. F. T. (2015). Parsing as reduction. In Proc. of the Conference of the Association for
Computational Linguistics.

Gaifman, H. (1965). Dependency systems and phrase-structure systems. Information and control.

Hall, D., Durrett, G., and Klein, D. (2014). Less grammar, more features. In Proc. of the Annual Meeting of the Association for
Computational Linguistics.

Hall, J. and Nivre, J. (2008). A dependency-driven parser for german dependency and constituency representations. In Proc. of
the Workshop on Parsing German.

Johnson, M. (1998). PCFG models of linguistic tree representations. Computational Linguistics.

Klein, D. and Manning, C. D. (2003). Accurate unlexicalized parsing. In Proc. of Annual Meeting on Association for
Computational Linguistics.

Kong, L., Rush, A. M., and Smith, N. A. (2015). Transforming dependencies into phrase structures. In Proc. of the Conference
of the North American Chapter of the Association for Computational Linguistics.

Koo, T., Globerson, A., Carreras, X., and Collins, M. (2007). Structured prediction models via the matrix-tree theorem. In
Empirical Methods for Natural Language Processing.

Koo, T., Rush, A. M., Collins, M., Jaakkola, T., and Sontag, D. (2010). Dual decomposition for parsing with non-projective
head automata. In Proc. of Empirical Methods for Natural Language Processing.

Magerman, D. (1995). Statistical decision-tree models for parsing. In Proc. of Annual Meeting on Association for
Computational Linguistics, pages 276–283.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large annotated corpus of english: The penn
treebank. Computational Linguistics.

Martins, A. F. T., Almeida, M. B., and Smith, N. A. (2013). Turning on the turbo: Fast third-order non-projective turbo
parsers. In Proc. of the Annual Meeting of the Association for Computational Linguistics.

Martins, A. F. T. and Almeida, M. S. C. (2014). Priberam: A turbo semantic parser with second order features. In Proc. of the
International Workshop on Semantic Evaluations (SemEval); task 8: Broad-Coverage Semantic Dependency Parsing.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 53 / 55

References III
Martins, A. F. T., Figueiredo, M. A. T., Aguiar, P. M. Q., Smith, N. A., and Xing, E. P. (2015). AD3: Alternating Directions

Dual Decomposition for MAP Inference in Graphical Models. Journal of Machine Learning Research (to appear).

Martins, A. F. T., Smith, N. A., Aguiar, P. M. Q., and Figueiredo, M. A. T. (2011). Dual Decomposition with Many
Overlapping Components. In Proc. of Empirical Methods for Natural Language Processing.

Martins, A. F. T., Smith, N. A., and Xing, E. P. (2009). Concise Integer Linear Programming Formulations for Dependency
Parsing. In Proc. of Annual Meeting of the Association for Computational Linguistics.

Martins, A. F. T., Smith, N. A., Xing, E. P., Figueiredo, M. A. T., and Aguiar, P. M. Q. (2010). Turbo Parsers: Dependency
Parsing by Approximate Variational Inference. In Proc. of Empirical Methods for Natural Language Processing.

McDonald, R., Pereira, F., Ribarov, K., and Hajic, J. (2005). Non-projective dependency parsing using spanning tree algorithms.
In Proc. of Empirical Methods for Natural Language Processing.

McDonald, R. and Satta, G. (2007). On the complexity of non-projective data-driven dependency parsing. In Proc. of
International Conference on Parsing Technologies.

Nivre, J., Hall, J., Nilsson, J., Eryiǧit, G., and Marinov, S. (2006). Labeled pseudo-projective dependency parsing with support
vector machines. In Proc. of International Conference on Natural Language Learning.

Petrov, S. and Klein, D. (2007). Improved inference for unlexicalized parsing. In Proc. of the North American Chapter of the
Association for Computational Linguistics.

Richardson, M. and Domingos, P. (2006). Markov logic networks. Machine Learning, 62(1):107–136.

Riedel, S. and Clarke, J. (2006). Incremental integer linear programming for non-projective dependency parsing. In Proc. of
Empirical Methods for Natural Language Processing.

Roth, D. and Yih, W. (2004). A linear programming formulation for global inference in natural language tasks. In International
Conference on Natural Language Learning.

Rush, A., Sontag, D., Collins, M., and Jaakkola, T. (2010). On dual decomposition and linear programming relaxations for
natural language processing. In Proc. of Empirical Methods for Natural Language Processing.

Seddah, D., Kübler, S., and Tsarfaty, R. (2014). Introducing the spmrl 2014 shared task on parsing morphologically-rich
languages. In Proc. of the First Joint Workshop on Statistical Parsing of Morphologically Rich Languages and Syntactic
Analysis of Non-Canonical Languages.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 54 / 55

References IV

Skut, W., Krenn, B., Brants, T., and Uszkoreit, H. (1997). An annotation scheme for free word order languages. In Proc. of the
Fifth Conference on Applied Natural Language Processing ANLP-97.

Smith, D. and Eisner, J. (2008). Dependency parsing by belief propagation. In Proc. of Empirical Methods for Natural Language
Processing.

Socher, R., Bauer, J., Manning, C. D., and Ng, A. Y. (2013). Parsing with compositional vector grammars. In Proc. of Annual
Meeting of the Association for Computational Linguistics.

van Cranenburgh, A. (2012). Efficient parsing with linear context-free rewriting systems. In Proc. of the Conference of the
European Chapter of the Association for Computational Linguistics.

van Cranenburgh, A. and Bod, R. (2013). Discontinuous parsing with an efficient and accurate dop model. Proc. of
International Conference on Parsing Technologies.

Versley, Y. (2014a). Experiments with easy-first nonprojective constituent parsing. In Proc. of the First Joint Workshop on
Statistical Parsing of Morphologically Rich Languages and Syntactic Analysis of Non-Canonical Languages.

Versley, Y. (2014b). Incorporating semi-supervised features into discontinuous easy-first constituent parsing. CoRR,
abs/1409.3813.

Vijay-Shanker, K., Weir, D. J., and Joshi, A. K. (1987). Characterizing structural descriptions produced by various grammatical
formalisms. In Proc. of the Annual Meeting on Association for Computational Linguistics.

Xia, F. and Palmer, M. (2001). Converting dependency structures to phrase structures. In Proc. of the First International
Conference on Human Language Technology Research.

Xia, F., Rambow, O., Bhatt, R., Palmer, M., and Misra Sharma, D. (2008). Towards a multi-representational treebank. LOT
Occasional Series.

Zhu, M., Zhang, Y., Chen, W., Zhang, M., and Zhu, J. (2013). Fast and accurate shift-reduce constituent parsing. In Proc. of
Annual Meeting of the Association for Computational Linguistics.

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 55 / 55

	Turbo Parsers
	Parsing as Reduction
	Dependencies and Constituents
	Head-Ordered Dependency Trees
	Reduction-Based Constituent Parsers
	Experiments
	Conclusions

