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Structured Prediction and NLP

Structured prediction: a machine learning framework for predicting
structured, constrained, and interdependent outputs

NLP deals with structured and ambiguous textual data:

machine translation

speech recognition

syntactic parsing

semantic parsing

information extraction

...
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Constituent/Phrase-Structure Parsing

S --> NP VP

NP --> Det Adj N

VP --> V NP Adv

Adj --> minimal

Adv --> here

Det --> a

N --> logic

N --> role

V --> plays

S

NP

N

Logic

VP

V

plays

NP

Det

a

Adj

minimal

N

role

Adv

here

Example extracted from the Penn Treebank.

(Magerman, 1995; Charniak, 1996; Johnson, 1998; Collins, 1999; Klein and Manning, 2003)
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Dependency Parsing

Map sentences to their syntactic structure.

* Logic plays a minimal role here

A lexicalized syntactic formalism

Grammar functions represented as lexical relationships (dependencies)

(Eisner, 1996; McDonald et al., 2005; Nivre et al., 2006; Koo et al., 2007)
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What is a Turbo Parser?

A parser that runs inference in factor graphs, ignoring global
effects caused by loops (Martins et al., 2010)

name inspired from turbo decoders (Berrou et al., 1993)
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Examples of Turbo Parsers

Exponential-sized ILP formulation (Riedel and Clarke, 2006)

Polynomial-sized ILP formulation with multi-commodity flows
(Martins et al., 2009)

Belief propagation decoder (Smith and Eisner, 2008; Martins et al.,
2010)

Dual decomposition decoder (Koo et al., 2010)

AD3 decoder (Martins et al., 2011, 2013)
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An Important Distinction

A projective tree:

* Logic plays a minimal role here

A non-projective tree:

* We learned a lesson in 1987 about volatility

Non-projective trees are suitable for languages with flexible word
order (Dutch, German, Czech,...).
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First-Order Scores for Arcs

* We learned a lesson in 1987 about volatility
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Second-Order Scores for Consecutive Siblings

* We learned a lesson in 1987 about volatility
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Second-Order Scores for Grandparents

* We learned a lesson in 1987 about volatility
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Scores for Arbitrary Siblings

* We learned a lesson in 1987 about volatility
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Scores for Head Bigrams

* We learned a lesson in 1987 about volatility
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Third-Order Scores for Grand-siblings

* We learned a lesson in 1987 about volatility
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Third-Order Scores for Tri-siblings

* We learned a lesson in 1987 about volatility
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Decoding

arc consecutive siblings grandparent all siblings directed path
head bigram nonprojective arc

grand-siblings tri-siblings

How to deal with all these parts?

Beyond arc-factored models, non-projective parsing is NP-hard
(McDonald and Satta, 2007)

—need to embrace approximations!

parser AF CS G AS DP HB NPA GS TS
McDonald et al. (2006) projective + greedy X X

Smith et al. (2008) loopy BP X X X X
Martins et al. (2010) LP solver X X X X

Koo et al. (2010) dual decomp. X X
Martins et al. (2011) AD3 X X X X X X X
Martins et al. (2013) AD3 & active set X X X X X X X
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Factor Graph Representations

For each input x ∈ X: a large set of candidate outputs Y(x)

Decoding problem:

ŷ = arg max
y∈Y(x)

Fw(x , y)

Key assumption: Fw decomposes into (overlapping) parts

Fw(x , y) :=
∑

s

fs(ys)

Examples: HMMs, CRFs, PCFGs, general graphical models
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ŷ = arg max
y∈Y(x)

Fw(x , y)

Key assumption: Fw decomposes into (overlapping) parts

Fw(x , y) :=
∑

s

fs(ys)

Examples: HMMs, CRFs, PCFGs, general graphical models
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Factors as Machines
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Factors as Machines
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Alternating Directions Dual Decomposition (AD3)

A general purpose algorithm, suitable for many scenarios in NLP and IR.

Problems with factor graph representations

Statements in FOL

Budget/knapsack constraints

Combination of structured models

High level idea:

Decompose a complex problem into local subproblems (factors),
constrained to be globally consistent

Iterate between solving the local subproblems and penalizing the
global disagreements (via Lagrange multipliers)

FOL/knapsack constraints: the local subproblems correspond to
projections onto “hard constraint” polytopes
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Projecting onto Hard Constraint Polytopes

XOR OR OR-OUT
KNAPSACK

All projections can be computed in linear time (Martins et al., 2015)

Applications: Markov logic networks (Richardson and Domingos,
2006), constrained conditional models (Roth and Yih, 2004),
summarization (Almeida and Martins, 2013), ...
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Some Problems in Which AD3 Have Been Applied

Dependency parsing (Martins et al., 2011, 2013)

Frame semantics (Das et al., 2012)

Broad-coverage semantic parsing (Martins and Almeida, 2014)

Compressive summarization (Almeida and Martins, 2013)

Coreference resolution (Almeida et al., 2014)

Could be a great fit to many other applications!!
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Literature Pointers

André F. T. Martins.
“AD3: A Fast Decoder for Structured Prediction.”
Book chapter of Advanced Structured Prediction,
Sebastian Nowozin, Peter V. Gehler, Jeremy
Jancsary, and Christoph H. Lampert (Editors),
MIT Press, 2014.

A. Martins, M. Figueiredo, P. Aguiar, N. Smith, E. Xing.
“AD3: Alternating Directions Dual Decomposition for MAP Inference
in Graphical Models.”
JMLR 2015.

More details: EMNLP 2014 tutorial on “LP Decoders for NLP.”

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 16 / 55



Parsing Accuracies/Runtimes

SOTA accuracies for the largest non-projective datasets (CoNLL-2006 and
CoNLL-2008):
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Extension: Broad-Coverage Semantic Parsing

Same idea applied to semantic role labeling.

Best results in the SemEval 2014 shared task:

André F. T. Martins and Mariana S. C. Almeida.
“Priberam: A Turbo Semantic Parser with Second Order Features.”
SemEval 2014.
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Try It Yourself: AD3 Toolkit

Freely available at: http://www.ark.cs.cmu.edu/AD3

Implemented in C++, includes a Python wrapper (thanks to Andy
Mueller)

Many built-in factors: logic, knapsack, dense, and some structured
factors

You can implement your own factor (only need to write a local MAP
decoder!)

Toy examples included (parsing, coreference, Potts models)

André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 19 / 55



Try It Yourself: TurboParser

Freely available at: http://www.ark.cs.cmu.edu/TurboParser

Implemented in C++, includes a Python wrapper

Not just parsing, but a full NLP pipeline now!

Includes multilingual POS tagging, dependency parsing, semantic role
labeling, entity recognition, coreference resolution (all trainable on
any dataset).
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In a Nutshell (Fernández-González and Martins, 2015, ACL)

Constituent parsers are slow (heavy grammar constant)

Dependency parsers are faster, but their output is less informative

How to get the best of both worlds?

Our proposal: a reduction of constituent parsing to dependency parsing

Rooted in a novel formalism: head-ordered dependency trees

Works for any out-of-the-box dependency parser

Competitive for English and morphologically rich languages

Results above the state of the art for discontinuous parsing
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André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 22 / 55



In a Nutshell (Fernández-González and Martins, 2015, ACL)
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Continuous and Discontinuous C-Trees

CFG generate continuous trees, LCFRS generate discontinuous
trees (Vijay-Shanker et al., 1987)

... but existing discontinuous parsers are too slow and inaccurate!
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Projective and Non-Projective D-Trees

Continuous and discontinuous c-trees “project” respectively to
projective and non-projective d-trees (Gaifman, 1965)

Non-projectiveness is suitable for languages with flexible word order
(Dutch, German, Czech, etc.)
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Projecting C-Trees onto D-Trees...

This paper: formal equivalence results to “invert” this projection.
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Related Work

Store structural information in the dependency labels (Hall and Nivre,
2008)

Manual transformation rules toward multi-representational treebanks
(Xia and Palmer, 2001; De Marneffe et al., 2006; Xia et al., 2008)

Apply second-stage constituent parser (Kong et al., 2015)

Joint dependency and constituent parsing (Carreras et al., 2008; Rush
et al., 2010)
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Strictly Ordered D-Trees

Key idea: endow d-trees with additional structure, by making each head
attach its modifiers in a particular order

Proposition

Binary c-trees = strictly ordered d-trees

Same number of symbols (dependency alphabet = phrasal alphabet)
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André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 30 / 55



Strictly Ordered D-Trees

Key idea: endow d-trees with additional structure, by making each head
attach its modifiers in a particular order

Proposition

Binary c-trees = strictly ordered d-trees

Same number of symbols (dependency alphabet = phrasal alphabet)
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The Spinal View

The order is given by the attachment position in the spine (Carreras
et al., 2008)
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Weakly Ordered D-Trees

Same, but allow simultaneous events (as long as the d-label is consistent)

Can every c-tree be represented like this?

No: unaries are lost.

Proposition

Unaryless c-trees = weakly ordered d-trees
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André Martins (Unbabel/IT) Turbo Parser Redux LxMLS, Lisboa, 26/07/16 32 / 55



Weakly Ordered D-Trees

Same, but allow simultaneous events (as long as the d-label is consistent)

Can every c-tree be represented like this?

No: unaries are lost.

Proposition

Unaryless c-trees = weakly ordered d-trees
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What About Projective Trees?

A head-ordered d-tree has the nesting property if, on each side of every
head, closer modifiers are attached first.

Proposition

Unaryless continuous c-trees = nested-weakly ordered projective d-trees
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The Spinal View for Discontinuities

Projective, but not nested:

Nested, but not projective:
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Reduction-Based Constituent Parsers

1 Convert c-treebank to head-ordered d-treebank.

2 Encode head-orders in the d-labels, yielding a d-treebank.

3 Train a d-parser on the d-treebank.

4 Run the d-parser on new sentences.

5 Convert the predicted d-trees into unaryless c-trees.

6 Recover unary nodes.
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Label Encoding Strategies
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Impact of Label Encoding

Evaluated on the English PTB §22 (Marcus et al., 1993).

# labels dep (LAS) const (F1)

H&N encoding 731 87.86 89.39
Direct encoding 75 91.99 90.89
Delta encoding 69 92.00 90.94

H&N encoding overgenerates labels, leading to a loss in accuracy

Delta encoding performs consistently better than direct encoding on
other datasets (see paper)
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Choice of Dependency Parser

Evaluated on the English PTB §22 (Marcus et al., 1993).

Dependency Parser Dep (LAS) Const (F1) # toks/s.

MaltParser 88.95 86.87 5,392
MSTParser 89.86 87.93 363
ZPar 91.28 89.50 1,022
TurboParser-Basic 90.23 87.63 2,585
TurboParser-Standard 91.58 90.41 1,658
TurboParser-Full 91.70 90.53 959
TurboParser-Full + Labeler 92.00 90.94 912

Best results: separate stages for d-parser and d-labeler

The d-labeler is a simple sequence model for each head (see paper)
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Recovery of Unary Nodes

We run independent classifiers at each c-node

Each class is either NULL (no unary node pre-appended) or a
concatenation of labels (e.g., S->ADJP for a node JJ)

To speed-up: only observed classes are considered (9.9 classes per
node in PTB §22)

A tiny fraction of the time is spent on this post-processing (<2%),
with F1-score of 99.43% in PTB §22
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Experiments: English PTB

Results on the English PTB §23 (Marcus et al., 1993).

Parser LR LP F1 #Toks/s.

Klein and Manning (2003) 85.3 86.5 85.9 143
Hall et al. (2014) 88.4 88.8 88.6 12
Socher et al. (2013) 89.1 89.7 89.4 70
Charniak (2000) 89.5 89.9 89.5 –
Stanford Shift-Reduce (2014) 89.1 89.1 89.1 655
Petrov and Klein (2007) 90.0 90.3 90.1 169
This work 89.9 90.4 90.2 957
Zhu et al. (2013) 90.3 90.6 90.4 1,290
Carreras et al. (2008) 90.7 91.4 91.1 –
Zhu et al. (2013) 91.1 91.5 91.3 –
Charniak and Johnson (2005) 91.2 91.8 91.5 84

Grayed parsers are ensemble/reranking/semi-supervised systems.
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Experiments: Morphologically Rich Languages

Results on SPMRL14 shared task datasets (Seddah et al., 2014).

Parser Bas Fre Ger Heb Hun Kor Pol Swe Avg.

Berkeley 70.50 80.38 78.30 86.96 81.62 71.42 79.23 79.19 78.45
Berkeley Tagged 74.74 79.76 78.28 85.42 85.22 78.56 86.75 80.64 81.17
Crabbé and Seddah (2014) 85.35 79.68 77.15 86.19 87.51 79.35 91.60 82.72 83.69
Hall et al. (2014) 83.39 79.70 78.43 87.18 88.25 80.18 90.66 82.00 83.72
This work 85.90 78.75 78.66 88.97 88.16 79.28 91.20 82.80 84.22
Björkelund et al. (2014) 88.24 82.53 81.66 89.80 91.72 83.81 90.50 85.50 86.72
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Experiments: Discontinuous Parsing

Results on the discontinuous TIGER treebank (Brants et al., 2002).

TIGER-SPMRL, L ≤ 70 F1 EX

gold tags Versley (2014b) 76.46 41.05
This work 80.98 43.44

pred. tags Versley (2014b) 73.90 37.00
This work 77.72 38.75

TIGER-H&N, L ≤ 40 F1 EX

gold tags Hall and Nivre (2008) 79.93 37.78
Versley (2014a) 74.23 37.32
This work 85.53 51.21

pred. tags Hall and Nivre (2008) 75.33 32.63
van Cranenburgh and Bod (2013) 78.8– 40.8–
This work 82.57 45.93
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Experiments: Discontinuous Parsing

Results on the discontinuous NEGRA treebank (Skut et al., 1997).

NEGRA, L ≤ 40 F1 EX

gold tags van Cranenburgh (2012) 72.33 33.16
van Cranenburgh and Bod (2013) 76.8– 40.5–
This work 81.08 48.04

pred. tags van Cranenburgh and Bod (2013) 74.8– 38.7–
This work 77.93 44.83

We parse all sentences (regardless of length) in 27.1 seconds in a
single core (618 toks/sec)

Orders of magnitude faster than van Cranenburgh and Bod (2013)

Similar speed as the easy-first system of Versley (2014a), but much
higher accuracy
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Conclusions

We proposed a reduction technique that allows to implement a
constituent parser when only a dependency parser is available.

The technique is very simple and flexible: applicable to any
dependency parser, regardless of its nature or kind.

If the dependency parser is non-projective, we can predict
discontinuous constituent trees.

We showed empirically that the reduction leads to highly-competitive
constituent parsers for English and 8 morphologically rich languages.

We surpassed the state of the art in discontinuous parsing of German
by a wide margin.
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