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Outline: Part I
• Neural networks as feature inducers 

• Recurrent neural networks 

• Application: language models 

• Learning challenges and solutions 

• Vanishing gradients 

• Long short-term memories 

• Gated recurrent units 

• Break



Outline: Part II
• RNN performance tuning and implementation tricks 

• Bidirectional RNNs 

• Application: better word representations 

• Sequence to Sequence transduction with RNNs 

• Applications: machine translation & image caption generation 

• Sequences as matrices and attention 

• Application: machine translation



Feature Induction

In linear regression, the goal is to learn W and b such that  
F is minimized for a dataset D consisting of M training 
instances. An engineer must select/design x carefully.

ŷ = Wx+ b

F =
1

M

MX

i=1

||ŷi � yi||22
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Use “naive features” x and learn their transformations 
(conjunctions, nonlinear transformation, etc.) into h.

h = g(Vx+ c)

ŷ = Wh+ b

“nonlinear regression”



Feature Induction

• What functions can this parametric form compute? 

• If h is big enough (i.e., enough dimensions), it can 
represent any vector-valued function to any degree of 
precision 

• This is a much more powerful regression model! 

• You can think of h as “induced features” in a linear classifier 

• The network did the job of a feature engineer

h = g(Vx+ c)

ŷ = Wh+ b
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Recurrent Neural Networks
• Lots of interesting data is sequential in nature 

• Words in sentences 

• DNA 

• Stock market returns 

• … 

• How do we represent an arbitrarily long history?

• we will train neural networks to build a representation of these 
arbitrarily big sequences
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ŷ3

x2

h2
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F

Recurrent Neural Networks

• The unrolled graph is a well-formed (DAG) 
computation graph—we can run backprop 

• Parameters are tied across time, derivatives are 
aggregated across all time steps  

• This is historically called “backpropagation 
through time” (BPTT)
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ŷt = Wht + b



Parameter Tying

x1

h1

x4

h4

ŷ4
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Parameter tying also came up when learning the filters  
in convolutional networks (and in the transition matrices  
for HMMs!).



Parameter Tying
• Why do we want to tie parameters? 

• Reduce the number of parameters to be learned  

• Deal with arbitrarily long sequences 

• What if we always have short sequences? 

• Maybe you might untie parameters, then. But you 
wouldn’t have an RNN anymore!



What else can we do?
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“Read and summarize”

x1

h1

x4

h4

x3

h3

x2

h2

h0

F

ŷ
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Summarize a sequence into a single vector.  
(This will be useful later…)



View 2: Recursive Definition
• Recall how to construct a list recursively: 

base case 
     [] is a list (the empty list) 
     
induction 
     [t | h] where t is a list and h is an atom is a list 

• RNNs define functions that compute representations recursively according 
to this definition of a list. 

• Define (learn) a representation of the base cases 

• Learn a representation of the inductive step 

• Anything you can construct recursively, you can obtain an “embedding” of 
with neural networks using this general strategy
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RNN Language Models
• Unlike Markov (n-gram) models, RNNs never forget 

• However we will see they might have trouble learning to 
use their memories (more soon…) 

• Algorithms 

• Sample a sequence from the probability distribution 
defined by the RNN 

• Train the RNN to minimize cross entropy (aka MLE) 

• What about: what is the most probable sequence?



Questions?



Training Challenges

x1

h1

x4

h4

x3

h3

x2

h2

h0

F

ŷ
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@ŷ

@h4

@F
@ŷ
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@h|x|

@F
@ŷ
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@ŷ

@F
@F



Training Challenges
ht = g(

ztz }| {
Vxt +Uht�1 + c)
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Three cases: largest eigenvalue is  
exactly 1; gradient propagation is stable  
<1; gradient vanishes (exponential decay) 
>1; gradient explodes (exponential growth)



Vanishing Gradients
• In practice, the spectral radius of U is small, and gradients vanish 

• In practice, this means that long-range dependencies are difficult to learn 
(although in theory they are learnable) 

• Solutions 

• Better optimizers (second order methods, approximate second order 
methods) 

• Normalization to keep the gradient norms stable across time 

• Clever initialization so that you at least start with good spectra (e.g., 
start with random orthonormal matrices) 

• Alternative parameterizations: LSTMs and GRUs



Alternative RNNs
• Long short-term memories (LSTMs; Hochreiter and 

Schmidthuber, 1997) 

• Gated recurrent units (GRUs; Cho et al., 2014) 

• Intuition instead of multiplying across time (which 
leads to exponential growth), we want the error to 
be constant. 

• What is a function whose Jacobian has a 
spectral radius of exactly I: the identity function
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Gated Recurrent Units 
(GRUs)

zt = �(fz([ht�1;xt]))

ht = (1� zt)� ht�1 + zt � h̃t

rt = �(fr([ht�1;xt]))

h̃t = f([rt � ht�1;xt]))
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Summary
• Better gradient propagation is possible when you use 

additive rather than multiplicative/highly non-linear 
recurrent dynamics 

• Recurrent architectures are an active area of research, 
requires a mix of mathematical analysis, creativity, 
problem-specific knowledge 

• (LSTMs are hard to beat though!)
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Questions?

Break?



A Few Tricks of the Trade

• Depth 

• Dropout 

• Implementation tricks
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Does Depth Matter?
• Yes, it helps 

• It seems to play a less significant role in text than in audio/visual processing 

• H1: More transformation of the input is required for ASR, image recognition, etc., 
than for common text applications (word vectors become customized to be “good 
inputs” to RNNs whereas you’re stuck with what nature gives you for speech/vision) 

• H2: less effort has been made to find good architectures (RNNs are expensive to 
train; have been widely used for less long) 

• H3: back prop through time + depth is hard and we need better optimizers 

• Many other possibilities… 

• 2-8 layers seems to be standard 

• Input “skip” connections are used often but by no means universally



Dropout and Deep LSTMs
• Applying dropout layers requires some care

x1 x4x3x2

ŷ



Dropout and Deep LSTMs
• Apply dropout between layers, but not on the 

recurrent connections

x1 x4x3x2
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dropout
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dropout
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dropout

dropout

dropout

dropout

dropout

dropout



Implementation Details
• For speed

• Use diagonal matrices instead of full matrices (esp. for gates) 

• Concatenate parameter matrices for all gates and do a single matrix-
vector(/matrix) multiplication 

• Use optimized implementations (from NVIDIA) 

• Use GRUs or reduced-gate variant of LSTMs 

• For learning speed and performance

• Initialize so that the bias on the forget gate is large (intuitively: at the 
beginning of training, the signal from the past is unreliable) 

• Use random orthogonal matrices to initialize the square matrices



Implementation Details: 
Minibatching

• GPU hardware is 

• pretty fast for elementwise operations (IO bound- can’t get enough data 
through the GPU) 

• very fast for matrix-matrix multiplication (usually compute bound - the 
GPU will work at 100% capacity, and GPU cores are fast) 

• RNNs, LSTMs, GRUs all consist of 

• lots of elementwise operations (addition, multiplication, nonlinearities, …) 

• lots of matrix-vector products 

• Minibatching: convert many matrix-vector products into a single matrix-
matrix multiplication
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Minibatching
ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Single-instance RNN

Ht = g(VXt +UHt�1 + c)

Ŷt = WHt + b

Minibatch RNN

We batch across instances,  
not across time.

z }| {

x1 x1 x1 X1

anything wrong here?



Minibatching
• The challenge with working with mini batches of 

sequences is … sequences are of different lengths 

• This usually means you bucket training instances 
based on similar lengths, and pad with 0’s 

• Be careful when padding not to back propagate a 
non-zero value! 

• Manual minibatching convinces me that this is the era 
of assembly language programming for neural 
networks. Make the future an easier place to program!



Questions?



Bidirectional RNNs

• We can read a sequence from left to right to obtain 
a representation 

• Or we can read it from right to left 

• Or we can read it from both and combine the 
representations
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Sutskever et al. (2014)



Ensembles of NNs

• Sutskever noticed that their single models 
did not work well

• But by combining N independently trained 
models and obtaining a “consensus”, the 
performance could be improved a lot

• This is called ensembling.
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Limitations

• A possible conceptual problem

• Sentences have unbounded lengths

• Vectors have finite capacity

• A possible practical problem

• Distance between “translations” and their 
sources are distant- can LSTMs learn 
this?



Two Goals
• Represent a source sentence as a matrix 

• Generate a target sentence from a matrix 

• These two steps are: 

• An algorithm for neural MT 

• A way of introducing attention



Sentences as Matrices
• Problem with the fixed-size vector model in translation 

(maybe in images?) 

• Sentences are of different sizes but vectors are of 
the same size 

• Solution: use matrices instead 

• Fixed number of rows, but number of columns 
depends on the number of words 

• Usually |f| = #cols
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Mach’s gut Die Wahrheiten der Menschen sind die unwiderlegbaren Irrtümer

Question: How do we build these matrices?



With Concatenation
• Each word type is represented by an n-dimensional 

vector 

• Take all of the vectors for the sentence and 
concatenate them into a matrix 

• Simplest possible model 

• So simple, no one has bothered to publish how 
well/badly it works!
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With Convolutional Nets
• Apply convolutional networks to transform the naive 

concatenated matrix to obtain a context-dependent matrix 

• Closely related to the first “modern” neural translation 
model proposed (Kalchbrenner et al., 2013) 

• No one has been using convnets lately in MT (including 
Kalchbrenner et al, who are using BiLSTMs these days) 

• Note: convnets usually have a “pooling” operation at the 
top level that results in a fixed-sized representation. For 
sentences, it is probably good to leave this out.
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With Bidirectional RNNs
• By far the most widely used matrix representation, due to 

Bahdanau et al (2015)  

• One column per word 

• Each column (word) has two halves concatenated together: 

• a “forward representation”, i.e., a word and its left context 

• a “reverse representation”, i.e., a word and its right context 

• Implementation: bidirectional RNNs (GRUs or LSTMs) to read f 
from left to right and right to left, concatenate representations
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Where are we in 2016?
• There are lots of ways to construct F 

• Very little (published?) work comparing them 

• There are many more undiscovered things out there 

• convolutions are particularly interesting and under-explored 

• syntactic information could help 

• My intuition is simpler/faster models will work well for the 
matrix encoding part—context dependencies are limited in 
language. 

• try something with phrase types instead of word types?



Generation from Matrices
• We have a matrix F representing the input, now we need to generate from it 

• Bahdanau et al. (2015) were the first to propose using attention for translating from matrix-
encoded sentences 

• High-level idea 

• Generate the output sentence word by word using an RNN 

• At each output position t, the RNN receives two inputs (in addition to any recurrent inputs) 

• a fixed-size vector embedding of the previously generated output symbol et-1 

• a fixed-size vector encoding a “view” of the input matrix 

• How do we get a fixed-size vector from a matrix that changes over time? 

• Bahdanau et al: do a weighted sum of the columns of F (i.e., words) based on how 
important they are at the current time step. (i.e., just a matrix-vector product Fat) 

• The weighting of the input columns at each time-step (at) is called attention
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Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5



I'd

I'd →

like

like

a

a

beer

0
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Attention

• How do we know what to attend to at each time-
step? 

• That is, how do we compute     ?at



Computing Attention
• At each time step (one time step = one output word), we want to be able to 

“attend” to different words in the source sentence 

• We need a weight for every word: this is an |f|-length vector at  

• Here is a simplified version of Bahdanau et al.’s solution 

• Use an RNN to predict model output, call the hidden states 

• At time t compute the expected input embedding 

• Take the dot product with every column in the source matrix to compute 
the attention energy. 

• Exponentiate and normalize to 1: 

• Finally, the input source vector for time t is

at = softmax(ut)

ct = Fat

(called     in the paper)

(called      in the paper)

st

ut = F>rt

rt = Vst�1
(     is a learned parameter)V

et

↵t

(Since F has |f| columns,     has |f| rows)ut

(st has a fixed dimensionality, call it m)
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Nonlinear Attention-Energy 
Model

• In the actual model, Bahdanau et al. replace the dot 
product between the columns of F and rt with an MLP: 

• Here, W and v are learned parameters of appropriate 
dimension and + “broadcasts” over the |f| columns in WF 

• This can learn more complex interactions 

• It is unclear if the added complexity is necessary for 
good performance

ut = F>rt

ut = tanh (WF+ rt)v

(simple model)
(Bahdanau et al)
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Putting it all together
e0 = hsi

while et 6= h/si :

F = EncodeAsMatrix(f)

rt = Vst�1

s0 = w (Learned initial state; Bahdanau uses           )U
 �
h 1

at = softmax(ut)

ct = Fat
st = RNN(st�1, [et�1; ct])

yt = softmax(Pst + b)

et | e<t ⇠ Categorical(yt)

}(Compute attention)

t = 0

t = t+ 1

(        is a learned embedding of    )et�1 et

(    and    are learned parameters)P b

ut = v> tanh(WF+ rt)
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doesn’t depend on output decisions
ut = v> tanh(WF+ rt)
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Summary
• Attention is closely related to “pooling” operations in convnets (and other 

architectures) 

• Bahdanau’s attention model seems to only cares about “content” 

• No obvious bias in favor of diagonals, short jumps, fertility, etc. 

• Some work has begun to add other “structural” biases (Luong et al., 2015; 
Cohn et al., 2016), but there are lots more opportunities 

• Attention is similar to alignment, but there are important differences  

• alignment makes stochastic but hard decisions. Even if the alignment 
probability distribution is “flat”, the model picks one word or phrase at a time 

• attention is “soft” (you add together all the words). Big difference between 
“flat” and “peaked” attention weights



Attention and Translation
• Cho’s question: does a translator read and memorize 

the input sentence/document and then generate the 
output? 

• Compressing the entire input sentence into a vector 
basically says “memorize the sentence” 

• Common sense experience says translators refer 
back and forth to the input. (also backed up by eye-
tracking studies) 

• Should humans be a model for machines?



Questions?


