
Modeling Sequential Data
with Recurrent Networks

Chris Dyer
DeepMind

Carnegie Mellon University

July 28, 2016LxMLS 2016

Outline: Part I
• Neural networks as feature inducers

• Recurrent neural networks

• Application: language models

• Learning challenges and solutions

• Vanishing gradients

• Long short-term memories

• Gated recurrent units

• Break

Outline: Part II
• RNN performance tuning and implementation tricks

• Bidirectional RNNs

• Application: better word representations

• Sequence to Sequence transduction with RNNs

• Applications: machine translation & image caption generation

• Sequences as matrices and attention

• Application: machine translation

Feature Induction

In linear regression, the goal is to learn W and b such that  
F is minimized for a dataset D consisting of M training
instances. An engineer must select/design x carefully.

ŷ = Wx+ b

F =
1

M

MX

i=1

||ŷi � yi||22

Feature Induction

In linear regression, the goal is to learn W and b such that  
F is minimized for a dataset D consisting of M training
instances. An engineer must select/design x carefully.

ŷ = Wx+ b

F =
1

M

MX

i=1

||ŷi � yi||22

Use “naive features” x and learn their transformations
(conjunctions, nonlinear transformation, etc.) into h.

h = g(Vx+ c)

ŷ = Wh+ b

“nonlinear regression”

Feature Induction

• What functions can this parametric form compute?

• If h is big enough (i.e., enough dimensions), it can
represent any vector-valued function to any degree of
precision

• This is a much more powerful regression model!

• You can think of h as “induced features” in a linear classifier

• The network did the job of a feature engineer

h = g(Vx+ c)

ŷ = Wh+ b

Feature Induction

• What functions can this parametric form compute?

• If h is big enough (i.e., enough dimensions), it can
represent any vector-valued function to any degree of
precision

• This is a much more powerful regression model!

• You can think of h as “induced features” in a linear classifier

• The network did the job of a feature engineer

h = g(Vx+ c)

ŷ = Wh+ b

Recurrent Neural Networks
• Lots of interesting data is sequential in nature

• Words in sentences

• DNA

• Stock market returns

• …

• How do we represent an arbitrarily long history?

• we will train neural networks to build a representation of these
arbitrarily big sequences

Recurrent Neural Networks
• Lots of interesting data is sequential in nature

• Words in sentences

• DNA

• Stock market returns

• …

• How do we represent an arbitrarily long history?

• we will train neural networks to build a representation of these
arbitrarily big sequences

Recurrent Neural Networks

h = g(Vx+ c)

ŷ = Wh+ b

Feed-forward NN

ŷ

h

x

Recurrent Neural Networks

h = g(Vx+ c)

ŷ = Wh+ b

Feed-forward NN Recurrent NN
ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

ŷ

h

x

xt

ht

ŷt

Recurrent Neural Networks

h = g(Vx+ c)

ŷ = Wh+ b

Feed-forward NN Recurrent NN

ŷ

h

x

xt

ht

ŷt

ht = g(Vxt +Uht�1 + c)

ht = g(V[xt;ht�1] + c)

ŷt = Wht + b

Recurrent Neural Networks

h = g(Vx+ c)

ŷ = Wh+ b

Feed-forward NN Recurrent NN

ŷ

h

x

xt

ht

ŷt

ht = g(Vxt +Uht�1 + c)

ht = g(V[xt;ht�1] + c)

ŷt = Wht + b

ht�1

Recurrent Neural Networks

x1

h1

ŷ1

ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Recurrent Neural Networks

x1

h1

ŷ1

h0

ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Recurrent Neural Networks

x1

h1

x2

h2

ŷ2ŷ1

h0

ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Recurrent Neural Networks

x1

h1

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Recurrent Neural Networks

x1

h1

x4

h4

ŷ4

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Recurrent Neural Networks

x1

h1

x4

h4

ŷ4

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

How do we train the RNN’s parameters?

ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Recurrent Neural Networks

x1

h1

x4

h4

ŷ4

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Recurrent Neural Networks

x1

h1

x4

h4

ŷ4

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

cost1

y1

ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Recurrent Neural Networks

x1

h1

x4

h4

ŷ4

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

cost1

y1

cost2

y2

cost3

y3

cost4

y4

ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Recurrent Neural Networks

x1

h1

x4

h4

ŷ4

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

cost1

y1

cost2

y2

cost3

y3

cost4

y4

F

ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

F

Recurrent Neural Networks

• The unrolled graph is a well-formed (DAG)
computation graph—we can run backprop

• Parameters are tied across time, derivatives are
aggregated across all time steps

• This is historically called “backpropagation
through time” (BPTT)

Parameter Tying

x1

h1

x4

h4

ŷ4

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

cost1

y1

cost2

y2

cost3

y3

cost4

y4

F

ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Parameter Tying

x1

h1

x4

h4

ŷ4

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

cost1

y1

cost2

y2

cost3

y3

cost4

y4

F

ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

U

Parameter Tying

x1

h1

x4

h4

ŷ4

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

U

Parameter Tying

x1

h1

x4

h4

ŷ4

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

U

@F
@U

=
4X

t=1

@ht

@U

@F
@ht

Parameter Tying

x1

h1

x4

h4

ŷ4

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

U

@F
@U

=
4X

t=1

@ht

@U

@F
@ht

Parameter tying also came up when learning the filters  
in convolutional networks (and in the transition matrices  
for HMMs!).

Parameter Tying
• Why do we want to tie parameters?

• Reduce the number of parameters to be learned

• Deal with arbitrarily long sequences

• What if we always have short sequences?

• Maybe you might untie parameters, then. But you
wouldn’t have an RNN anymore!

What else can we do?

x1

h1

x4

h4

ŷ4

x3

h3

ŷ3

x2

h2

ŷ2ŷ1

h0

cost1

y1

cost2

y2

cost3

y3

cost4

y4

F

ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

“Read and summarize”

x1

h1

x4

h4

x3

h3

x2

h2

h0

F

ŷ

y

ht = g(Vxt +Uht�1 + c)

ŷ = Wh|x| + b

Summarize a sequence into a single vector.  
(This will be useful later…)

View 2: Recursive Definition
• Recall how to construct a list recursively: 

base case 
 [] is a list (the empty list) 
  
induction 
 [t | h] where t is a list and h is an atom is a list

• RNNs define functions that compute representations recursively according
to this definition of a list.

• Define (learn) a representation of the base cases

• Learn a representation of the inductive step

• Anything you can construct recursively, you can obtain an “embedding” of
with neural networks using this general strategy

View 2: Recursive Definition
• Recall how to construct a list recursively: 

base case 
 [] is a list (the empty list) 
  
induction 
 [t | h] where t is a list and h is an atom is a list

• RNNs define functions that compute representations recursively according
to this definition of a list.

• Define (learn) a representation of the base cases

• Learn a representation of the inductive step

• Anything you can construct recursively, you can obtain an “embedding” of
with neural networks using this general strategy

View 2: Recursive Definition
• Recall how to construct a list recursively: 

base case  
 [] is a list (the empty list) 
  
induction 
 [t | h] where t is a list and h is an atom is a list

• RNNs define functions that compute representations recursively according
to this definition of a list.

• Define (learn) a representation of the base case

• Learn a representation of the inductive step

• Anything you can construct recursively, you can obtain an
“embedding” of with neural networks using this general strategy

Example: Language Model

softmax

h

the
a
and
cat
dog
horse
runs
says
walked
walks
walking
pig
Lisbon
sardines
…

u = Wh+ b

pi =
expuiP
j expuj

h 2 Rd

|V | = 100, 000

What are the  
dimensions of ?W

Example: Language Model

softmax

h

the
a
and
cat
dog
horse
runs
says
walked
walks
walking
pig
Lisbon
sardines
…

u = Wh+ b

pi =
expuiP
j expuj

h 2 Rd

|V | = 100, 000

What are the  
dimensions of ?b

Example: Language Model

softmax

h

the
a
and
cat
dog
horse
runs
says
walked
walks
walking
pig
Lisbon
sardines
…

u = Wh+ b

pi =
expuiP
j expuj

h 2 Rd

|V | = 100, 000

What are the  
dimensions of ?b

p(e) =p(e1)⇥
p(e2 | e1)⇥
p(e3 | e1, e2)⇥
p(e4 | e1, e2, e3)⇥
· · ·

Example: Language Model

softmax

h

the
a
and
cat
dog
horse
runs
says
walked
walks
walking
pig
Lisbon
sardines
…

u = Wh+ b

pi =
expuiP
j expuj

h 2 Rd

|V | = 100, 000

What are the  
dimensions of ?b

p(e) =p(e1)⇥
p(e2 | e1)⇥
p(e3 | e1, e2)⇥
p(e4 | e1, e2, e3)⇥
· · ·

 istories are sequences of words…h

Example: Language Model

Example: Language Model

h1

h0 x1

<s>

Example: Language Model

softmax

p̂1

h1

h0 x1

<s>

Example: Language Model

softmax

p̂1

h1

h0 x1

<s>

⇠

tom

p(tom | hsi)

Example: Language Model

softmax

p̂1

h1

h0 x1

<s>

x2

⇠

tom

p(tom | hsi)

Example: Language Model

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

⇠

tom

p(tom | hsi)

Example: Language Model

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

⇠

tom

p(tom | hsi)

⇠
likes

⇥p(likes | hsi, tom)

Example: Language Model

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

⇠

tom

p(tom | hsi)

⇠
likes

⇥p(likes | hsi, tom)

x3

h3

softmax

⇠

beer

⇥p(beer | hsi, tom, likes)

Example: Language Model

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

⇠

tom

p(tom | hsi)

⇠
likes

⇥p(likes | hsi, tom)

x3

h3

softmax

⇠

beer

⇥p(beer | hsi, tom, likes)

x4

h4

softmax

⇠

</s>

⇥p(h/si | hsi, tom, likes, beer)

Language Model Training

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

⇠

tom
⇠

likes

x3

h3

softmax

⇠

beer

x4

h4

softmax

⇠

</s>

Language Model Training

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

tom likes

x3

h3

softmax

beer

x4

h4

softmax

</s>

cost1 cost2 cost3 cost4

Language Model Training

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

tom likes

x3

h3

softmax

beer

x4

h4

softmax

</s>

cost1 cost2 cost3 cost4{log
 lo

ss/
 

cro
ss

en
tro

py

Language Model Training

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

tom likes

x3

h3

softmax

beer

x4

h4

softmax

</s>

cost1 cost2 cost3 cost4

F

{log
 lo

ss/
 

cro
ss

en
tro

py

Language Model Training

h2

softmaxsoftmax

p̂1

h1

h0 x1

<s>

x2

tom likes

x3

h3

softmax

beer

x4

h4

softmax

</s>

cost1 cost2 cost3 cost4

F

{log
 lo

ss/
 

cro
ss

en
tro

py

RNN Language Models
• Unlike Markov (n-gram) models, RNNs never forget

• However we will see they might have trouble learning to
use their memories (more soon…)

• Algorithms

• Sample a sequence from the probability distribution
defined by the RNN

• Train the RNN to minimize cross entropy (aka MLE)

• What about: what is the most probable sequence?

Questions?

Training Challenges

x1

h1

x4

h4

x3

h3

x2

h2

h0

F

ŷ

y

What happens to gradients as you go back  
in time?

ht = g(Vxt +Uht�1 + c)

ŷ = Wh|x| + b

@F
@h1

=
@h2

@h1

@h3

@h2

@h4

@h3| {z }
Qi=t

i=2
@hi

@hi�1

@ŷ

@h4

@F
@ŷ

@F
@F

Training Challenges

x1

h1

x4

h4

x3

h3

x2

h2

h0

F

ŷ

y

What happens to gradients as you go back  
in time?

ht = g(Vxt +Uht�1 + c)

ŷ = Wh|x| + b

@F
@h1

=
@h2

@h1

@h3

@h2

@h4

@h3| {z }
Qi=t

i=2
@hi

@hi�1

@ŷ

@h4

@F
@ŷ

@F
@F

Training Challenges

x1

h1

x4

h4

x3

h3

x2

h2

h0

F

ŷ

y

What happens to gradients as you go back  
in time?

ht = g(Vxt +Uht�1 + c)

ŷ = Wh|x| + b

@F
@h1

=
@h2

@h1

@h3

@h2

@h4

@h3| {z }
Qi=t

i=2
@hi

@hi�1

@ŷ

@h4

@F
@ŷ

@F
@F

Training Challenges

x1

h1

x4

h4

x3

h3

x2

h2

h0

F

ŷ

y

What happens to gradients as you go back  
in time?

ht = g(Vxt +Uht�1 + c)

ŷ = Wh|x| + b

@F
@h1

=
@h2

@h1

@h3

@h2

@h4

@h3| {z }
Qi=t

i=2
@hi

@hi�1

@ŷ

@h4

@F
@ŷ

@F
@F

Training Challenges

x1

h1

x4

h4

x3

h3

x2

h2

h0

F

ŷ

y

What happens to gradients as you go back  
in time?

ht = g(Vxt +Uht�1 + c)

ŷ = Wh|x| + b

@F
@h1

=
@h2

@h1

@h3

@h2

@h4

@h3| {z }
Qi=t

i=2
@hi

@hi�1

@ŷ

@h4

@F
@ŷ

@F
@F

Training Challenges

x1

h1

x4

h4

x3

h3

x2

h2

h0

F

ŷ

y

What happens to gradients as you go back  
in time?

ht = g(Vxt +Uht�1 + c)

ŷ = Wh|x| + b

@F
@h1

=
@h2

@h1

@h3

@h2

@h4

@h3| {z }
Qi=t

i=2
@hi

@hi�1

@ŷ

@h4

@F
@ŷ

@F
@F

Training Challenges

x1

h1

x4

h4

x3

h3

x2

h2

h0

F

ŷ

y

What happens to gradients as you go back  
in time?

ht = g(Vxt +Uht�1 + c)

ŷ = Wh|x| + b

@F
@h1

=
@h2

@h1

@h3

@h2

@h4

@h3| {z }
Q4

t=2
@ht

@ht�1

@ŷ

@h4

@F
@ŷ

@F
@F

Training Challenges

x1

h1

x4

h4

x3

h3

x2

h2

h0

F

ŷ

y

What happens to gradients as you go back  
in time?

ht = g(Vxt +Uht�1 + c)

ŷ = Wh|x| + b

@F
@h1

=

0

@
|x|Y

t=2

@ht

@ht�1

1

A @ŷ

@h|x|

@F
@ŷ

@F
@F

Training Challenges

x1

h1

x4

h4

x3

h3

x2

h2

h0

F

ŷ

y

What happens to gradients as you go back  
in time?

@F
@h1

=

0

@
|x|Y

t=2

@ht

@ht�1

1

A @ŷ

@h|x|

@F
@ŷ

@F
@F

ht = g(

ztz }| {
Vxt +Uht�1 + c)

ŷ = Wh|x| + b

Training Challenges

x1

h1

x4

h4

x3

h3

x2

h2

h0

F

ŷ

y

ht = g(

ztz }| {
Vxt +Uht�1 + c)

ŷ = Wh|x| + b

@F
@h1

=

0

@
|x|Y

t=2

@ht

@zt

@zt
@ht�1

1

A @ŷ

@h|x|

@F
@ŷ

@F
@F

What happens to gradients as you go back  
in time?

Training Challenges
ht = g(

ztz }| {
Vxt +Uht�1 + c)

ŷ = Wh|x| + b

@F
@h1

=

0

@
|x|Y

t=2

@ht

@zt

@zt
@ht�1

1

A @ŷ

@h|x|

@F
@ŷ

@F
@F

Training Challenges
ht = g(

ztz }| {
Vxt +Uht�1 + c)

ŷ = Wh|x| + b

@F
@h1

=

0

@
|x|Y

t=2

@ht

@zt

@zt
@ht�1

1

A @ŷ

@h|x|

@F
@ŷ

@F
@F

@ht

@zt
= diag(g0(zt))

Training Challenges
ht = g(

ztz }| {
Vxt +Uht�1 + c)

ŷ = Wh|x| + b

@F
@h1

=

0

@
|x|Y

t=2

@ht

@zt

@zt
@ht�1

1

A @ŷ

@h|x|

@F
@ŷ

@F
@F

@zt
@ht�1

= U

@ht

@zt
= diag(g0(zt))

?

Training Challenges
ht = g(

ztz }| {
Vxt +Uht�1 + c)

ŷ = Wh|x| + b

@F
@h1

=

0

@
|x|Y

t=2

@ht

@zt

@zt
@ht�1

1

A @ŷ

@h|x|

@F
@ŷ

@F
@F

@zt
@ht�1

= U

@ht

@zt
= diag(g0(zt))

Training Challenges
ht = g(

ztz }| {
Vxt +Uht�1 + c)

ŷ = Wh|x| + b

@F
@h1

=

0

@
|x|Y

t=2

@ht

@zt

@zt
@ht�1

1

A @ŷ

@h|x|

@F
@ŷ

@F
@F

@zt
@ht�1

= U

@ht

@zt
= diag(g0(zt))

@ht

@ht�1
=

@ht

@zt

@zt
@ht�1

= diag(g0(zt))U

Training Challenges
ht = g(

ztz }| {
Vxt +Uht�1 + c)

ŷ = Wh|x| + b

@F
@h1

=

0

@
|x|Y

t=2

@ht

@zt

@zt
@ht�1

1

A @ŷ

@h|x|

@F
@ŷ

@F
@F

@F
@h1

=

0

@
|x|Y

t=2

diag(g0(zt))U

1

A @ŷ

@h|x|

@F
@ŷ

@F
@F

Training Challenges
ht = g(

ztz }| {
Vxt +Uht�1 + c)

ŷ = Wh|x| + b

@F
@h1

=

0

@
|x|Y

t=2

@ht

@zt

@zt
@ht�1

1

A @ŷ

@h|x|

@F
@ŷ

@F
@F

@F
@h1

=

0

@
|x|Y

t=2

diag(g0(zt))U

1

A @ŷ

@h|x|

@F
@ŷ

@F
@F

Three cases: largest eigenvalue is  
exactly 1; gradient propagation is stable  
<1; gradient vanishes (exponential decay)
>1; gradient explodes (exponential growth)

Vanishing Gradients
• In practice, the spectral radius of U is small, and gradients vanish

• In practice, this means that long-range dependencies are difficult to learn
(although in theory they are learnable)

• Solutions

• Better optimizers (second order methods, approximate second order
methods)

• Normalization to keep the gradient norms stable across time

• Clever initialization so that you at least start with good spectra (e.g.,
start with random orthonormal matrices)

• Alternative parameterizations: LSTMs and GRUs

Alternative RNNs
• Long short-term memories (LSTMs; Hochreiter and

Schmidthuber, 1997)

• Gated recurrent units (GRUs; Cho et al., 2014)

• Intuition instead of multiplying across time (which
leads to exponential growth), we want the error to
be constant.

• What is a function whose Jacobian has a
spectral radius of exactly I: the identity function

Memory cells
ct = ct�1 + f(xt)

x1 x4x3x2h0

I I I
c3 c4c2c1

Memory cells
ct = ct�1 + f(xt)

x1 x4x3x2h0

I I I
c3 c4c2c1

f(v) = tanh(Wv + b)

Memory cells
ct = ct�1 + f(xt)

x1 x4x3x2h0

I I I
c3 c4c2c1

ht = g(ct)

h1 h4h3h2

f(v) = tanh(Wv + b)

Memory cells
ct = ct�1 + f(xt)

x1 x4x3x2h0

I I I

F

ŷ

y

c3 c4c2c1

ht = g(ct)

h1 h4h3h2

f(v) = tanh(Wv + b)

Memory cells
ct = ct�1 + f(xt)

x1 x4x3x2h0

I I I

F

ŷ

y

c3 c4c2c1

ht = g(ct)

h1 h4h3h2

Note:
@ct

@ct�1
= I

f(v) = tanh(Wv + b)

Memory cells

x1 x4x3x2h0

I I I

F

ŷ

y

c3 c4c2c1

ht = g(ct)

h1 h4h3h2

ct = ct�1 + f([xt;ht�1])

@ct
@ct�1

= I+ "

Memory cells

x1 x4x3x2h0

I I I

F

ŷ

y

c3 c4c2c1

ht = g(ct)

h1 h4h3h2

ct = ct�1 + f([xt;ht�1])

“Almost constant”
@ct

@ct�1
= I+ "

Memory cells

x1 x4x3x2h0

F

ŷ

y

c3 c4c2c1

ht = g(ct)

h1 h4h3h2

ct = ft � ct�1 + it � f([xt;ht�1])

ft = �(ff ([xt;ht�1]))

it = �(fi([xt;ht�1]))

“forget gate”
“input gate”

Memory cells

x1 x4x3x2h0

F

ŷ

y

c3 c4c2c1

ht = g(ct)

h1 h4h3h2

ct = ft � ct�1 + it � f([xt;ht�1])

ft = �(ff ([xt;ht�1]))

it = �(fi([xt;ht�1]))

“forget gate”
“input gate”

Memory cells

x1 x4x3x2h0

F

ŷ

y

c3 c4c2c1

ht = g(ct)

h1 h4h3h2

ct = ft � ct�1 + it � f([xt;ht�1])

ft = �(ff ([xt;ht�1]))

it = �(fi([xt;ht�1]))

“forget gate”
“input gate”

LSTM

x1 x4x3x2h0

F

ŷ

y

c3 c4c2c1

h1 h4h3h2

ct = ft � ct�1 + it � f([xt;ht�1])

ft = �(ff ([xt;ht�1]))

it = �(fi([xt;ht�1]))

o

t

= �(f
o

([x
t

;h
t�1]))

ht = ot � g(ct)

“forget gate”
“input gate”
“output gate”

LSTM

x1 x4x3x2h0

F

ŷ

y

c3 c4c2c1

h1 h4h3h2

ct = ft � ct�1 + it � f([xt;ht�1])

ft = �(ff ([xt;ht�1]))

it = �(fi([xt;ht�1]))

o

t

= �(f
o

([x
t

;h
t�1]))

ht = ot � g(ct)

“forget gate”
“input gate”
“output gate”

LSTM Variant

x1 x4x3x2h0

F

ŷ

y

c3 c4c2c1

h1 h4h3h2

ft = �(ff ([xt;ht�1]))

it = �(fi([xt;ht�1]))

o

t

= �(f
o

([x
t

;h
t�1]))

ht = ot � g(ct)

ct = (1� it)� ct�1 + it � f([xt;ht�1])

“input gate”
“output gate”

ft = 1� it

LSTM Variant

x1 x4x3x2h0

F

ŷ

y

c3 c4c2c1

h1 h4h3h2

ft = �(ff ([xt;ht�1]))

it = �(fi([xt;ht�1]))

o

t

= �(f
o

([x
t

;h
t�1]))

ht = ot � g(ct)

ct = (1� it)� ct�1 + it � f([xt;ht�1])

“input gate”
“output gate”

ft = 1� it

Another Visualization

Figure credit: Christopher Olah

Another Visualization

Figure credit: Christopher Olah

Another Visualization

Figure credit: Christopher Olah

Forget some of the past

Another Visualization

Figure credit: Christopher Olah

Forget some of the past Add new memories

Gated Recurrent Units
(GRUs)

zt = �(fz([ht�1;xt]))

ht = (1� zt)� ht�1 + zt � h̃t

rt = �(fr([ht�1;xt]))

h̃t = f([rt � ht�1;xt]))

x1

h1

x4

h4

x3

h3

x2

h2

h0

F

ŷ

⌦ ⌦ ⌦

Summary
• Better gradient propagation is possible when you use

additive rather than multiplicative/highly non-linear
recurrent dynamics

• Recurrent architectures are an active area of research,
requires a mix of mathematical analysis, creativity,
problem-specific knowledge

• (LSTMs are hard to beat though!)

ct = ft � ct�1 + it � f([xt;ht�1])

RNN

LSTM

GRU ht = (1� zt)� ht�1 + zt � f([xt; rt � ht�1])

ht = f([xt;ht�1])

Summary
• Better gradient propagation is possible when you use

additive rather than multiplicative/highly non-linear
recurrent dynamics

• Recurrent architectures are an active area of research,
requires a mix of mathematical analysis, creativity,
problem-specific knowledge

• (LSTMs are hard to beat though!)

ct = ft � ct�1 + it � f([xt;ht�1])

RNN

LSTM

GRU ht = (1� zt)� ht�1 + zt � f([xt; rt � ht�1])

ht = f([xt;ht�1])

Summary
• Better gradient propagation is possible when you use

additive rather than multiplicative/highly non-linear
recurrent dynamics

• Recurrent architectures are an active area of research,
requires a mix of mathematical analysis, creativity,
problem-specific knowledge

• (LSTMs are hard to beat though!)

ct = ft � ct�1 + it � f([xt;ht�1])

RNN

LSTM

GRU ht = (1� zt)� ht�1 + zt � f([xt; rt � ht�1])

ht = f([xt;ht�1])

Questions?

Break?

A Few Tricks of the Trade

• Depth

• Dropout

• Implementation tricks

“Deep” LSTMs
• This term has been defined several times, but the

following is the most standard convention

x1 x4x3x2

“Deep” LSTMs
• This term has been defined several times, but the

following is the most standard convention

x1 x4x3x2

“Deep” LSTMs
• This term has been defined several times, but the

following is the most standard convention

x1 x4x3x2

“Deep” LSTMs
• This term has been defined several times, but the

following is the most standard convention

x1 x4x3x2

ŷ

“Deep” LSTMs
• This term has been defined several times, but the

following is the most standard convention

x1 x4x3x2

ŷ

Does Depth Matter?
• Yes, it helps

• It seems to play a less significant role in text than in audio/visual processing

• H1: More transformation of the input is required for ASR, image recognition, etc.,
than for common text applications (word vectors become customized to be “good
inputs” to RNNs whereas you’re stuck with what nature gives you for speech/vision)

• H2: less effort has been made to find good architectures (RNNs are expensive to
train; have been widely used for less long)

• H3: back prop through time + depth is hard and we need better optimizers

• Many other possibilities…

• 2-8 layers seems to be standard

• Input “skip” connections are used often but by no means universally

Dropout and Deep LSTMs
• Applying dropout layers requires some care

x1 x4x3x2

ŷ

Dropout and Deep LSTMs
• Apply dropout between layers, but not on the

recurrent connections

x1 x4x3x2

ŷ

dropout

dropout

dropout

dropout

dropout

dropout

dropout

dropout

dropout

dropout

dropout

dropout

dropout

Implementation Details
• For speed

• Use diagonal matrices instead of full matrices (esp. for gates)

• Concatenate parameter matrices for all gates and do a single matrix-
vector(/matrix) multiplication

• Use optimized implementations (from NVIDIA)

• Use GRUs or reduced-gate variant of LSTMs

• For learning speed and performance

• Initialize so that the bias on the forget gate is large (intuitively: at the
beginning of training, the signal from the past is unreliable)

• Use random orthogonal matrices to initialize the square matrices

Implementation Details:
Minibatching

• GPU hardware is

• pretty fast for elementwise operations (IO bound- can’t get enough data
through the GPU)

• very fast for matrix-matrix multiplication (usually compute bound - the
GPU will work at 100% capacity, and GPU cores are fast)

• RNNs, LSTMs, GRUs all consist of

• lots of elementwise operations (addition, multiplication, nonlinearities, …)

• lots of matrix-vector products

• Minibatching: convert many matrix-vector products into a single matrix-
matrix multiplication

Minibatching
ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Single-instance RNN

Minibatching
ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Single-instance RNN

Ht = g(VXt +UHt�1 + c)

Ŷt = WHt + b

Minibatch RNN

We batch across instances,  
not across time.

z }| {

x1 x1 x1 X1

Minibatching
ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Single-instance RNN

Ht = g(VXt +UHt�1 + c)

Ŷt = WHt + b

Minibatch RNN

We batch across instances,  
not across time.

z }| {

x1 x1 x1 X1

Minibatching
ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Single-instance RNN

Ht = g(VXt +UHt�1 + c)

Ŷt = WHt + b

Minibatch RNN

We batch across instances,  
not across time.

z }| {

x1 x1 x1 X1

Minibatching
ht = g(Vxt +Uht�1 + c)

ŷt = Wht + b

Single-instance RNN

Ht = g(VXt +UHt�1 + c)

Ŷt = WHt + b

Minibatch RNN

We batch across instances,  
not across time.

z }| {

x1 x1 x1 X1

anything wrong here?

Minibatching
• The challenge with working with mini batches of

sequences is … sequences are of different lengths

• This usually means you bucket training instances
based on similar lengths, and pad with 0’s

• Be careful when padding not to back propagate a
non-zero value!

• Manual minibatching convinces me that this is the era
of assembly language programming for neural
networks. Make the future an easier place to program!

Questions?

Bidirectional RNNs

• We can read a sequence from left to right to obtain
a representation

• Or we can read it from right to left

• Or we can read it from both and combine the
representations

Word Embedding Models

car

Memorize Generalize

Word Embedding Models

car

00 0 1 0 · · ·· · ·· · ·· · ·

Memorize Generalize

Word Embedding Models

car

00 0 1 0 · · ·· · ·· · ·· · ·

Memorize Generalize

Word Embedding Models

c a rcar

00 0 1 0 · · ·· · ·· · ·· · ·

Memorize Generalize

Word Embedding Models

c a r STOPSTARTcar

00 0 1 0 · · ·· · ·· · ·· · ·

Memorize Generalize

Word Embedding Models

c a r STOPSTARTcar

00 0 1 0 · · ·· · ·· · ·· · ·

Memorize Generalize

Word Embedding Models

c a r STOPSTARTcar

00 0 1 0 · · ·· · ·· · ·· · ·

Memorize Generalize

Word Embedding Models

c a r STOPSTARTcar

00 0 1 0 · · ·· · ·· · ·· · ·

Memorize Generalize

Word Embedding Models

c a r STOPSTARTcar

00 0 1 0 · · ·· · ·· · ·· · ·

Memorize Generalize

Word Embedding Models

c a r STOPSTARTcar

00 0 1 0 · · ·· · ·· · ·· · ·

Memorize Generalize

Language modeling 
CharLSTM > Word Lookup

ppl 
Words

ppl 
Chars Δ |θ| 

Words
|θ| 

Chars

English 59.4 57.4 -2.0 4.3M 0.18M

Turkish 44.0 32.9 -11.1 5.7M 0.17M

German 59.1 43.0 -16.1 6.3M 0.18M

Portuguese 46.2 40.9 -5.3 4.2M 0.18M

Catalan 35.3 34.9 -0.4 4.3M 0.18M

Analytic

Agglutinative

Fusional

(

(

Language modeling 
CharLSTM > Word Lookup

ppl 
Words

ppl 
Chars Δ |θ| 

Words
|θ| 

Chars

English 59.4 57.4 -2.0 4.3M 0.18M

Turkish 44.0 32.9 -11.1 5.7M 0.17M

German 59.1 43.0 -16.1 6.3M 0.18M

Portuguese 46.2 40.9 -5.3 4.2M 0.18M

Catalan 35.3 34.9 -0.4 4.3M 0.18M

Analytic

Agglutinative

Fusional

(

(

Language modeling 
CharLSTM > Word Lookup

ppl 
Words

ppl 
Chars Δ |θ| 

Words
|θ| 

Chars

English 59.4 57.4 -2.0 4.3M 0.18M

Turkish 44.0 32.9 -11.1 5.7M 0.17M

German 59.1 43.0 -16.1 6.3M 0.18M

Portuguese 46.2 40.9 -5.3 4.2M 0.18M

Catalan 35.3 34.9 -0.4 4.3M 0.18M

Analytic

Agglutinative

Fusional

(

(

Language modeling 
CharLSTM > Word Lookup

ppl 
Words

ppl 
Chars Δ |θ| 

Words
|θ| 

Chars

English 59.4 57.4 -2.0 4.3M 0.18M

Turkish 44.0 32.9 -11.1 5.7M 0.17M

German 59.1 43.0 -16.1 6.3M 0.18M

Portuguese 46.2 40.9 -5.3 4.2M 0.18M

Catalan 35.3 34.9 -0.4 4.3M 0.18M

Analytic

Agglutinative

Fusional

(

(

Language modeling 
Word similarities

increased John Noahshire phding

reduced Richard Nottinghamshire mixing

improved George Bucharest modelling

expected James Saxony styling

decreased Robert Johannesburg blaming

targeted Edward Gloucestershire christening

Language modeling 
Word similarities

increased John Noahshire phding

reduced Richard Nottinghamshire mixing

improved George Bucharest modelling

expected James Saxony styling

decreased Robert Johannesburg blaming

targeted Edward Gloucestershire christening

Questions?

x1

Recurrent Neural Networks (RNNs)

x2 x3startSTART

0

What is a vector representation of a sequence ?

x4

x

ht = f(ht�1,xt)

c = RNN(x)

x =

x1

Recurrent Neural Networks (RNNs)

x2 x3startSTART

0

What is a vector representation of a sequence ?

x4

x

ht = f(ht�1,xt)

c = RNN(x)

x =

x1

Recurrent Neural Networks (RNNs)

x2 x3startSTART

0

What is a vector representation of a sequence ?

x4

x

ht = f(ht�1,xt)

c = RNN(x)

x =

x1

Recurrent Neural Networks (RNNs)

x2 x3startSTART

0

What is a vector representation of a sequence ?

x4

x

ht = f(ht�1,xt)

c = RNN(x)

x =

x1

Recurrent Neural Networks (RNNs)

x2 x3startSTART

0

What is a vector representation of a sequence ?

x4

x

ht = f(ht�1,xt)

c = RNN(x)

x =

x1

Recurrent Neural Networks (RNNs)

x2 x3startSTART

0

What is a vector representation of a sequence ?

x4

c

x

ht = f(ht�1,xt)

c = RNN(x)

x =

Aller Anfang

RNN Encoder-Decoders

ist schwer STOP

Cho et al. (2014); Sutskever et al. (2014)

c = RNN(x)

y | c ⇠ RNNLM(c)

What is the probability of a sequence ?y | x

Aller Anfang

RNN Encoder-Decoders

ist schwer STOP

Cho et al. (2014); Sutskever et al. (2014)

c = RNN(x)

y | c ⇠ RNNLM(c)

What is the probability of a sequence ?y | x

Aller Anfang

RNN Encoder-Decoders

ist schwer STOP

Cho et al. (2014); Sutskever et al. (2014)

c = RNN(x)

y | c ⇠ RNNLM(c)

What is the probability of a sequence ?y | x

Aller Anfang

RNN Encoder-Decoders

ist schwer STOP

Cho et al. (2014); Sutskever et al. (2014)

c = RNN(x)

y | c ⇠ RNNLM(c)

What is the probability of a sequence ?y | x

Aller Anfang

RNN Encoder-Decoders

ist schwer STOP

Cho et al. (2014); Sutskever et al. (2014)

c = RNN(x)

y | c ⇠ RNNLM(c)

What is the probability of a sequence ?y | x

Aller Anfang

RNN Encoder-Decoders

ist schwer STOP

c

Cho et al. (2014); Sutskever et al. (2014)

c = RNN(x)

y | c ⇠ RNNLM(c)

What is the probability of a sequence ?y | x

Aller Anfang

RNN Encoder-Decoders

ist schwer STOP

 START

c

Cho et al. (2014); Sutskever et al. (2014)

c = RNN(x)

y | c ⇠ RNNLM(c)

What is the probability of a sequence ?y | x

Aller Anfang

RNN Encoder-Decoders

ist schwer STOP

 START

Beginnings

c

Cho et al. (2014); Sutskever et al. (2014)

c = RNN(x)

y | c ⇠ RNNLM(c)

What is the probability of a sequence ?y | x

Aller Anfang

RNN Encoder-Decoders

ist schwer

are

 STOP

 START

Beginnings

c

Cho et al. (2014); Sutskever et al. (2014)

c = RNN(x)

y | c ⇠ RNNLM(c)

What is the probability of a sequence ?y | x

Aller Anfang

RNN Encoder-Decoders

ist schwer

are

 STOP

 START

difficultBeginnings

c

Cho et al. (2014); Sutskever et al. (2014)

c = RNN(x)

y | c ⇠ RNNLM(c)

What is the probability of a sequence ?y | x

Aller Anfang

RNN Encoder-Decoders

ist schwer

are

 STOP

 START

difficult STOPBeginnings

c

Cho et al. (2014); Sutskever et al. (2014)

c = RNN(x)

y | c ⇠ RNNLM(c)

What is the probability of a sequence ?y | x

habeich Hunger </s> <s>

I’m

I’m

hungry

hungry

</s>

habeich Hunger </s> <s>

I’m

I’m

hungry

hungry

</s>

Sutskever et al. (2014)

Ensembles of NNs

• Sutskever noticed that their single models
did not work well

• But by combining N independently trained
models and obtaining a “consensus”, the
performance could be improved a lot

• This is called ensembling.

Encode anything as a
vector!

Encode anything as a
vector!

Encode anything as a
vector!

h1

x1 x2

⇠ ⇠

x3

h3

⇠ ⇠

h2

softmaxsoftmax

p̂1
softmax

x4

h4

softmax

<s>

a spooky old house

Limitations

• A possible conceptual problem

• Sentences have unbounded lengths

• Vectors have finite capacity

• A possible practical problem

• Distance between “translations” and their
sources are distant- can LSTMs learn
this?

Two Goals
• Represent a source sentence as a matrix

• Generate a target sentence from a matrix

• These two steps are:

• An algorithm for neural MT

• A way of introducing attention

Sentences as Matrices
• Problem with the fixed-size vector model in translation

(maybe in images?)

• Sentences are of different sizes but vectors are of
the same size

• Solution: use matrices instead

• Fixed number of rows, but number of columns
depends on the number of words

• Usually |f| = #cols

Sentences as Matrices

Ich möchte ein Bier

Sentences as Matrices

Ich möchte ein Bier

Mach’s gut

Sentences as Matrices

Ich möchte ein Bier

Mach’s gut Die Wahrheiten der Menschen sind die unwiderlegbaren Irrtümer

Sentences as Matrices

Ich möchte ein Bier

Mach’s gut Die Wahrheiten der Menschen sind die unwiderlegbaren Irrtümer

Question: How do we build these matrices?

With Concatenation
• Each word type is represented by an n-dimensional

vector

• Take all of the vectors for the sentence and
concatenate them into a matrix

• Simplest possible model

• So simple, no one has bothered to publish how
well/badly it works!

Ich möchte ein Bier

x1 x2 x3 x4

fi = xi

Ich möchte ein Bier

x1 x2 x3 x4

Ich möchte ein Bier

fi = xi

F 2 Rn⇥|f |

Ich möchte ein Bier

x1 x2 x3 x4

With Convolutional Nets
• Apply convolutional networks to transform the naive

concatenated matrix to obtain a context-dependent matrix

• Closely related to the first “modern” neural translation
model proposed (Kalchbrenner et al., 2013)

• No one has been using convnets lately in MT (including
Kalchbrenner et al, who are using BiLSTMs these days)

• Note: convnets usually have a “pooling” operation at the
top level that results in a fixed-sized representation. For
sentences, it is probably good to leave this out.

Ich möchte ein Bier

x1 x2 x3 x4

Ich möchte ein Bier

x1 x2 x3 x4

Ich möchte ein Bier

x1 x2 x3 x4

⇤

Filter 1

Ich möchte ein Bier

x1 x2 x3 x4

⇤ ⇤

Filter 1 Filter 2

Ich möchte ein Bier

x1 x2 x3 x4

⇤ ⇤

Ich möchte ein Bier

F 2 Rf(n)⇥g(|f |)

Filter 1 Filter 2

With Bidirectional RNNs
• By far the most widely used matrix representation, due to

Bahdanau et al (2015)

• One column per word

• Each column (word) has two halves concatenated together:

• a “forward representation”, i.e., a word and its left context

• a “reverse representation”, i.e., a word and its right context

• Implementation: bidirectional RNNs (GRUs or LSTMs) to read f
from left to right and right to left, concatenate representations

Ich möchte ein Bier

x1 x2 x3 x4

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

fi = [
 �
h i;
�!
h i]

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

fi = [
 �
h i;
�!
h i]

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

fi = [
 �
h i;
�!
h i]

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

fi = [
 �
h i;
�!
h i]

Ich möchte ein Bier

x1 x2 x3 x4

�!
h 1

�!
h 2

�!
h 3

�!
h 4

 �
h 1

 �
h 2

 �
h 3

 �
h 4

Ich möchte ein Bier

F 2 R2n⇥|f |

fi = [
 �
h i;
�!
h i]

Where are we in 2016?
• There are lots of ways to construct F

• Very little (published?) work comparing them

• There are many more undiscovered things out there

• convolutions are particularly interesting and under-explored

• syntactic information could help

• My intuition is simpler/faster models will work well for the
matrix encoding part—context dependencies are limited in
language.

• try something with phrase types instead of word types?

Generation from Matrices
• We have a matrix F representing the input, now we need to generate from it

• Bahdanau et al. (2015) were the first to propose using attention for translating from matrix-
encoded sentences

• High-level idea

• Generate the output sentence word by word using an RNN

• At each output position t, the RNN receives two inputs (in addition to any recurrent inputs)

• a fixed-size vector embedding of the previously generated output symbol et-1

• a fixed-size vector encoding a “view” of the input matrix

• How do we get a fixed-size vector from a matrix that changes over time?

• Bahdanau et al: do a weighted sum of the columns of F (i.e., words) based on how
important they are at the current time step. (i.e., just a matrix-vector product Fat)

• The weighting of the input columns at each time-step (at) is called attention

0

Recall RNNs…

0

 →

Recall RNNs…

0

 →

Recall RNNs…

I'd

0

 →

Recall RNNs…

I'd

0

 → I'd

Recall RNNs…

I'd

0

 →

like

I'd

Recall RNNs…

 →

0

 →

0

Ich möchte ein Bier

 →

0

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

 →

0

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

I'd

 →

0

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

I'd

I'd →

like

0

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

I'd

I'd →

like

like

a

0

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

I'd

I'd →

like

like

a

a

beer

0

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

I'd

I'd →

like

like

a

a

beer

beer

stopSTOP

0

Ich möchte ein Bier

z }| {
Attention history:

a>1

a>2

a>3

a>4

a>5

Attention

• How do we know what to attend to at each time-
step?

• That is, how do we compute ?at

Computing Attention
• At each time step (one time step = one output word), we want to be able to

“attend” to different words in the source sentence

• We need a weight for every word: this is an |f|-length vector at

• Here is a simplified version of Bahdanau et al.’s solution

• Use an RNN to predict model output, call the hidden states

• At time t compute the expected input embedding

• Take the dot product with every column in the source matrix to compute
the attention energy.

• Exponentiate and normalize to 1:

• Finally, the input source vector for time t is

at = softmax(ut)

ct = Fat

(called in the paper)

(called in the paper)

st

ut = F>rt

rt = Vst�1
(is a learned parameter)V

et

↵t

(Since F has |f| columns, has |f| rows)ut

(st has a fixed dimensionality, call it m)

Computing Attention
• At each time step (one time step = one output word), we want to be able to

“attend” to different words in the source sentence

• We need a weight for every word: this is an |f|-length vector at

• Here is a simplified version of Bahdanau et al.’s solution

• Use an RNN to predict model output, call the hidden states

• At time t compute the expected input embedding

• Take the dot product with every column in the source matrix to compute
the attention energy.

• Exponentiate and normalize to 1:

• Finally, the input source vector for time t is

at = softmax(ut)

ct = Fat

(called in the paper)

(called in the paper)

st

ut = F>rt

rt = Vst�1
(is a learned parameter)V

et

↵t

(Since F has |f| columns, has |f| rows)ut

(st has a fixed dimensionality, call it m)

Computing Attention
• At each time step (one time step = one output word), we want to be able to

“attend” to different words in the source sentence

• We need a weight for every word: this is an |f|-length vector at

• Here is a simplified version of Bahdanau et al.’s solution

• Use an RNN to predict model output, call the hidden states

• At time t compute the expected input embedding

• Take the dot product with every column in the source matrix to compute
the attention energy.

• Exponentiate and normalize to 1:

• Finally, the input source vector for time t is

at = softmax(ut)

ct = Fat

(called in the paper)

(called in the paper)

st

ut = F>rt

rt = Vst�1
(is a learned parameter)V

et

↵t

(Since F has |f| columns, has |f| rows)ut

(st has a fixed dimensionality, call it m)

Computing Attention
• At each time step (one time step = one output word), we want to be able to

“attend” to different words in the source sentence

• We need a weight for every word: this is an |f|-length vector at

• Here is a simplified version of Bahdanau et al.’s solution

• Use an RNN to predict model output, call the hidden states

• At time t compute the expected input embedding

• Take the dot product with every column in the source matrix to compute
the attention energy.

• Exponentiate and normalize to 1:

• Finally, the input source vector for time t is

at = softmax(ut)

ct = Fat

(called in the paper)

(called in the paper)

st

ut = F>rt

rt = Vst�1
(is a learned parameter)V

et

↵t

(Since F has |f| columns, has |f| rows)ut

(st has a fixed dimensionality, call it m)

Computing Attention
• At each time step (one time step = one output word), we want to be able to

“attend” to different words in the source sentence

• We need a weight for every word: this is an |f|-length vector at

• Here is a simplified version of Bahdanau et al.’s solution

• Use an RNN to predict model output, call the hidden states

• At time t compute the expected input embedding

• Take the dot product with every column in the source matrix to compute
the attention energy.

• Exponentiate and normalize to 1:

• Finally, the input source vector for time t is

at = softmax(ut)

ct = Fat

(called in the paper)

(called in the paper)

st

ut = F>rt

rt = Vst�1
(is a learned parameter)V

et

↵t

(Since F has |f| columns, has |f| rows)ut

(st has a fixed dimensionality, call it m)

Nonlinear Attention-Energy
Model

• In the actual model, Bahdanau et al. replace the dot
product between the columns of F and rt with an MLP:

• Here, W and v are learned parameters of appropriate
dimension and + “broadcasts” over the |f| columns in WF

• This can learn more complex interactions

• It is unclear if the added complexity is necessary for
good performance

ut = F>rt

ut = tanh (WF+ rt)v

(simple model)
(Bahdanau et al)

Nonlinear Attention-Energy
Model

• In the actual model, Bahdanau et al. replace the dot
product between the columns of F and rt with an MLP:

• Here, W and v are learned parameters of appropriate
dimension and + “broadcasts” over the |f| columns in WF

• This can learn more complex interactions

• It is unclear if the added complexity is necessary for
good performance

ut = F>rt (simple model)
(Bahdanau et al)ut = v> tanh(WF+ rt)

Nonlinear Attention-Energy
Model

• In the actual model, Bahdanau et al. replace the dot
product between the columns of F and rt with an MLP:

• Here, W and v are learned parameters of appropriate
dimension and + “broadcasts” over the |f| columns in WF

• This can learn more complex interactions

• It is unclear if the added complexity is necessary for
good performance

ut = F>rt (simple model)
(Bahdanau et al)ut = v> tanh(WF+ rt)

Putting it all together
e0 = hsi

while et 6= h/si :

F = EncodeAsMatrix(f)

rt = Vst�1

s0 = w (Learned initial state; Bahdanau uses)U
 �
h 1

at = softmax(ut)

ct = Fat
st = RNN(st�1, [et�1; ct])

yt = softmax(Pst + b)

et | e<t ⇠ Categorical(yt)

}(Compute attention)

t = 0

t = t+ 1

(is a learned embedding of)et�1 et

(and are learned parameters)P b

ut = v> tanh(WF+ rt)

Putting it all together
e0 = hsi

while et 6= h/si :

F = EncodeAsMatrix(f)

rt = Vst�1

s0 = w (Learned initial state; Bahdanau uses)U
 �
h 1

at = softmax(ut)

ct = Fat
st = RNN(st�1, [et�1; ct])

yt = softmax(Pst + b)

et | e<t ⇠ Categorical(yt)

}(Compute attention)

t = 0

t = t+ 1

(is a learned embedding of)et�1 et

(and are learned parameters)P b

doesn’t depend on output decisions
ut = v> tanh(WF+ rt)

Putting it all together
e0 = hsi

while et 6= h/si :

F = EncodeAsMatrix(f) (Part 1 of lecture)

rt = Vst�1

s0 = w (Learned initial state; Bahdanau uses)U
 �
h 1

at = softmax(ut)

ct = Fat
st = RNN(st�1, [et�1; ct])

yt = softmax(Pst + b)

et | e<t ⇠ Categorical(yt)

}(Compute attention)

t = 0

t = t+ 1

(is a learned embedding of)et�1 et

(and are learned parameters)P b

X = WF

X
ut = v> tanh(WF+ rt)

Putting it all together
e0 = hsi

while et 6= h/si :

F = EncodeAsMatrix(f) (Part 1 of lecture)

rt = Vst�1

s0 = w (Learned initial state; Bahdanau uses)U
 �
h 1

at = softmax(ut)

ct = Fat
st = RNN(st�1, [et�1; ct])

yt = softmax(Pst + b)

et | e<t ⇠ Categorical(yt)

}(Compute attention)

t = 0

t = t+ 1

(is a learned embedding of)et�1 et

(and are learned parameters)P b

X = WF

ut = v> tanh(X+ rt)

Summary
• Attention is closely related to “pooling” operations in convnets (and other

architectures)

• Bahdanau’s attention model seems to only cares about “content”

• No obvious bias in favor of diagonals, short jumps, fertility, etc.

• Some work has begun to add other “structural” biases (Luong et al., 2015;
Cohn et al., 2016), but there are lots more opportunities

• Attention is similar to alignment, but there are important differences

• alignment makes stochastic but hard decisions. Even if the alignment
probability distribution is “flat”, the model picks one word or phrase at a time

• attention is “soft” (you add together all the words). Big difference between
“flat” and “peaked” attention weights

Attention and Translation
• Cho’s question: does a translator read and memorize

the input sentence/document and then generate the
output?

• Compressing the entire input sentence into a vector
basically says “memorize the sentence”

• Common sense experience says translators refer
back and forth to the input. (also backed up by eye-
tracking studies)

• Should humans be a model for machines?

Questions?

