
Slav Petrov – Google 

Thanks to: 

Dan Klein, Ryan McDonald, Alexander Rush, Joakim Nivre,  
Greg Durrett, David Weiss 

Lisbon Machine Learning School 2016

Syntax and Parsing I 
Constituency Parsing



XVP

Analyzing Natural Language

[ ][ ]

X X

X

XS

VP

PPNPXVX

NP

P

They     solved     the   problem     with    statistics



NP

VP

S

V

NP

P PPNP

Syntax and Semantics

They     solved     the   problem     with    statistics



PRON VERB DET NOUN ADP NOUN

nsubj

det

dobj

prep

pobjROOT

Constituency and Dependency

They     solved     the   problem     with    statistics



prep

PRON VERB DET NOUN ADP NOUN

nsubj

det

dobj
pobjROOT

Constituency and Dependency

They     solved     the   problem     with    statistics



A “real” Sentence

Influential members of the House Ways and Means Committee introduced 
legislation that would restrict how the new  

savings-and-loan bailout agency can raise capital, creating another potential 
obstacle to the government's sale of sick thrifts.



Phrase Structure Parsing

• Phrase structure parsing 
organizes syntax into 
constituents or brackets 

• In general, this involves 
nested trees 

• Linguists can, and do, 
argue about details 

• Lots of ambiguity 

• Not the only kind of 
syntax… 

• First part of today’s 
lecture

new art critics write reviews with computers



Dependency Parsing

• Directed edges between pairs 
of word (head, dependent) 

• Can handle free word-order 
languages 

• Very efficient decoding 
algorithms exist 

• Second part of today’s lecture



Classical NLP: Parsing
• Write symbolic or logical rules: 

• Use deduction systems to prove parses from words 
• Minimal grammar on “Fed raises” sentence: 36 parses 
• Real-size grammar: many millions of parses 

• This scaled very badly, didn’t yield broad-coverage tools

Grammar (CFG) Lexicon
ROOT → S 
S → NP VP 
NP → DT NN 
NP → NN NNS

NN → interest 
NNS → raises 
VBP → interest 
VBZ → raises 

NP → NP PP 
VP → VBP NP 
VP → VBP NP PP 
PP → IN NP

Fed raises interest rates 0.5 percent
NNP    NNS        NN         NNS    CD      NN
VBN    VBZ        VBP        VBZ
VBD                    VB            



Attachments

• I cleaned the dishes from dinner 

• I cleaned the dishes with detergent 

• I cleaned the dishes in my pajamas 

• I cleaned the dishes in the sink



Probabilistic Context-Free Grammars

• A context-free grammar is a tuple <N, T, S, R> 
• N : the set of non-terminals 

• Phrasal categories: S, NP, VP, ADJP, etc. 

• Parts-of-speech (pre-terminals): NN, JJ, DT, VB 

• T : the set of terminals (the words) 
• S : the start symbol 

• Often written as ROOT or TOP 

• Not usually the sentence non-terminal S 

• R : the set of rules 
• Of the form X → Y1 Y2 … Yk, with X, Yi ∈ N 

• Examples: S → NP VP, VP → VP CC VP 
• Also called rewrites, productions, or local trees 

• A PCFG adds: 
• A top-down production probability per rule P(Y1 Y2 … Yk | X)



Treebank Grammars
• Need a PCFG for broad coverage parsing. 
• Can take a grammar right off the trees (doesn’t work well): 

• Better results by enriching the grammar (e.g., lexicalization). 
• Can also get reasonable parsers without lexicalization.

S → NP VP .	 	 1.0 
NP → PRP 	 	 0.5

NP → DT NN	 	 0.5

VP → VBD NP	 	 1.0

PRP → She	 	 1.0

…



PLURAL NOUN

NOUNDET
DET

ADJ
NOUN

NP NP

CONJ

NP PP

Treebank Grammar Scale
• Treebank grammars can be enormous 

• As FSAs, the raw grammar has ~10K states, excluding the lexicon 
• Better parsers usually make the grammars larger, not smaller

NP



Chomsky Normal Form
• Chomsky normal form: 

• All rules of the form X → Y Z or X → w 
• In principle, this is no limitation on the space of (P)CFGs 

• N-ary rules introduce new non-terminals 

• Unaries / empties are “promoted” 

• In practice it’s kind of a pain: 
• Reconstructing n-aries is easy 
• Reconstructing unaries is trickier 
• The straightforward transformations don’t preserve tree scores 

• Makes parsing algorithms simpler!

VP

[VP → VBD NP •]

VBD              NP PP PP

[VP → VBD NP PP •]

VBD   NP    PP    PP

VP



A Recursive Parser

• Will this parser work? 
• Why or why not? 
• Memory requirements?

 bestScore(X,i,j,s) 
	 if (j = i+1) 
	  return tagScore(X,s[i]) 
	 else 
	  return max score(X->YZ) * 

bestScore(Y,i,k) * 
bestScore(Z,k,j)



A Memoized Parser

• One small change:

 bestScore(X,i,j,s) 
if (scores[X][i][j] == null) 

	  if (j = i+1) 
	     score = tagScore(X,s[i]) 
	  else 
	     score = max  score(X->YZ) * 

       bestScore(Y,i,k) * 
       bestScore(Z,k,j) 

	  scores[X][i][j] = score 
return scores[X][i][j] 



• Can also organize things bottom-up

A Bottom-Up Parser (CKY)

 bestScore(s) 
for (i : [0,n-1]) 

	  for (X : tags[s[i]]) 
	  score[X][i][i+1] =  

    tagScore(X,s[i]) 
for (diff : [2,n]) 

for (i : [0,n-diff]) 
	  j = i + diff 
	  for (X->YZ : rule) 

for (k : [i+1, j-1]) 
	   score[X][i][j] = max score[X][i][j], 

         score(X->YZ) * 
         score[Y][i][k] *  
         score[Z][k][j] 

          
         

Y Z

X

i                     k                     j



Time: Theory
• How much time will it take to parse? 

• For each diff (<= n) 
• For each i (<= n) 

• For each rule X → Y Z  
• For each split point k 

 Do constant work 

• Total time: |rules|*n3 
• Something like 5 sec for an unoptimized parse of a 

20-word sentences, or 0.2sec for an optimized 
parser

Y Z

X

i                       k                     j



Unary Rules

• Unary rules?

 bestScore(X,i,j,s) 
	 if (j = i+1) 
	  return tagScore(X,s[i]) 
	 else 
	  return max max score(X->YZ) * 
       bestScore(Y,i,k) * 
       bestScore(Z,k,j) 
	 	   max score(X->Y) * 
	 	 	   bestScore(Y,i,j) 



CNF + Unary Closure
• We need unaries to be non-cyclic 

• Can address by pre-calculating the unary closure 
• Rather than having zero or more unaries, always have 

exactly one 

• Alternate unary and binary layers 
• Reconstruct unary chains afterwards

NP

DT NN

VP

VBD
NP

DT NN

VP

VBD NP

VP

S

SBAR

VP

SBAR



Alternating Layers

 bestScoreU(X,i,j,s) 
	 if (j = i+1) 
	  return tagScore(X,s[i]) 
	 else 
	  return max max score(X->Y) * 
	 	 	   bestScoreB(Y,i,j) 

 bestScoreB(X,i,j,s) 
	  return max max score(X->YZ) * 
       bestScoreU(Y,i,k) * 
       bestScoreU(Z,k,j) 

	 	



Treebank Grammars
• Need a PCFG for broad coverage parsing. 
• Can take a grammar right off the trees (doesn’t work well): 

• Better results by enriching the grammar (e.g., lexicalization). 
• Can also get reasonable parsers without lexicalization.

S → NP VP .	 	 1.0 
NP → PRP 	 	 0.5

NP → DT NN	 	 0.5

VP → VBD NP	 	 1.0

PRP → She	 	 1.0

…

[Charniak ‘96]

Model F1
Charniak ’96 72.0



Conditional Independence?
• Not every NP expansion can fill every NP slot 

• A grammar with symbols like “NP” won’t be 
context-free 

• Statistically, conditional independence too 
strong



Non-Independence
• Independence assumptions are often too strong. 

• Example: the expansion of an NP is highly dependent on 
the parent of the NP (i.e., subjects vs. objects). 

• Also: the subject and object expansions are correlated!

NP PP DT NN PRP

6%
9%

11%

NP PP DT NN PRP

21%

9%9%

NP PP DT NN PRP

4%
7%

23%
All NPs NPs under S NPs under VP



• Structure Annotation [Johnson ’98, Klein & Manning ’03] 
• Lexicalization [Collins ’99, Charniak ’00] 
• Latent Variables [Matsuzaki et al. 05, Petrov et al. ’06] 
• (Neural) CRF Parsing [Hall et al. ’14, Durrett & Klein ’15]

The Game of Designing a Grammar

NP

NP



A Fully Annotated (Unlexicalized) Tree

[Klein & Manning ‘03]

Model F1
Charniak ’96 72.0
Klein&Manning ’03 86.3



• Annotation refines base treebank symbols to 
improve statistical fit of the grammar 
• Head lexicalization [Collins ’99, Charniak ’00]

The Game of Designing a Grammar



Problems with PCFGs

• If we do no annotation, these trees differ only in one rule: 
• VP → VP PP 
• NP → NP PP 

• Parse will go one way or the other, regardless of words 
• We addressed this in one way with unlexicalized grammars (how?) 
• Lexicalization allows us to be sensitive to specific words



Problems with PCFGs

• What’s different between basic PCFG scores here? 
• What (lexical) correlations need to be scored?



Lexicalized Trees [Charniak ’97, 
Collins ’97]

• Add “headwords” to each 
phrasal node 
• Syntactic vs. semantic heads 
• Headship not in (most) 

treebanks 
• Usually use head rules, e.g.: 

• NP: 
• Take leftmost NP 
• Take rightmost N* 
• Take rightmost JJ 
• Take right child 

• VP: 
• Take leftmost VB* 
• Take leftmost VP 
• Take left child



Lexicalized PCFGs?
• Problem: we now have to estimate probabilities like 

• Never going to get these atomically off of a treebank 

• Solution: break up derivation into smaller steps



Lexical Derivation Steps
• A derivation of a local tree [Collins ‘99]

Choose a head tag and word

Choose a complement bag

Generate children (incl. adjuncts)

Recursively derive children



Lexicalized Grammars

• Challenges: 
• Many parameters to 

estimate: requires 
sophisticated smoothing 
techniques 

• Exact inference is too 
slow: requires pruning 
heuristics 

• Difficult to adapt to new 
languages: At least head 
rules need to be 
specified, typically more 
changes needed Model F1

Klein&Manning ’03 86.3
Charniak ’00 90.1



Lexicalized CKY

bestScore(X,i,j,h) 
  if (j = i+1) 
    return tagScore(X,s[i]) 
  else 
    return  
      max max score(X[h]->Y[h] Z[h’]) * 
              bestScore(Y,i,k,h) * 
              bestScore(Z,k,j,h’) 
          max score(X[h]->Y[h’] Z[h]) * 
              bestScore(Y,i,k,h’) * 
              bestScore(Z,k,j,h)

Y[h] Z[h’]

X[h]

i           h          k         h’          j

k,h’,X->YZ

(VP->VBD •)[saw] NP[her]

(VP->VBD...NP •)[saw]

k,h’,X->YZ



• Annotation refines base treebank symbols to 
improve statistical fit of the grammar 
• Automatic clustering

The Game of Designing a Grammar



Latent Variable Grammars

Parse Tree  
Sentence Parameters 

...

Derivations

[Matsuzaki et al. ’05, Petrov et al. ‘06]



Forward

Learning Latent Annotations

EM algorithm: 
	

X1

X2 X7X4

X5 X6X3

He was right

.

• Brackets are known 
• Base categories are known 
• Only induce subcategories

Just like Forward-Backward 
for HMMs. Backward

Model F1
Charniak ’00 90.1
Petrov et al. ’06 90.6



• Annotation refines base treebank symbols to 
improve statistical fit of the grammar 
• CRF Parsing (+Neural Network Representations)

The Game of Designing a Grammar

NP

NP



Generative vs. Discriminative

Gradient-based  
algorithm

Generative Discriminative

EM-algorithm

EASY: expectations over 
observed trees 

[Matsuzaki et al. ’05, Petrov et al. ’06]

HARD: expectations  
over all trees 

[Petrov & Klein ’07, ’08]

Maximize joint likelihood 
of gold tree and sentence

w1 w2 ... wn

w1 w2 ... wn

w1 w2 ... wn

Maximize conditional likelihood 
of gold tree given sentence

w1 w2 ... wnw1 w2 ... wn



Objective Functions

Generative Objective Function:

w1... wn( )
�Lmax

�
, [Petrov, Barrett, .... ... 

Thibaux & Klein ’06]

Discriminative Objective Function:

w1... wn( )
�Lmax

�
[Petrov & Klein ’08, 

Finkel et. al ’08]

,
Bayesian Objective Function:

w1... wn( )
�Lmax

�
)P(�

[Liang, Petrov, Jordan & Klein ’07]



He gave a speech

NNP VBD DT NN

NP

VP

S

Be a
tree

(Neural) CRF Parsing
[Taskar et al. ’04, Petrov & Klein ’07, Hall et al. ’14, Durrett et al. ’15]

Score of VP over
this span

.w fs

sp
ar

se
 lo

g-
lin

ea
r m

od
el

w

dense neural network

fs.



score(2NP7 → 2NP4 4PP7) = w>f (2NP7 → 2NP4 4PP7)

FirstWord = a

AfterSplit = on
PrevWord = gave

FirstWord = a
…

& NP → NP PP
& NP → NP PP

& NP → NP PP
& NP

CRF Parsing Sparse Features

P (T |x) / I[T is a tree]

Y

r2T

exp (score(r))

NP PP

NP

0 1 2 3 4 5 6 7 8
He  gave a  speech on  foreign  policy  .



Neural CRF Model

0 1 2 3 4 5 6 7 8

fs

(arbitrary neural network)fs = g(Hv)

v

score(2NP7 → 2NP4 4PP7) = 
2X7 → 2X4 4X7 (NP → NP PP)( )W� f

s

( )f>
o

fs

Sparse

He  gave a  speech  on  foreign  policy  .Model F1
Petrov et al. ’06 90.6
Durrett et al. ’16 91.3



LSTM Parsing
• Treat parsing as a sequence-to-sequence prediction 

problem 
• Completely ignores tree structure, uses LSTMs as 

black boxes

[Vinyals et al. ’15]



Detailed English Results

92.6
92.4

92.0
92.4

91.8

92.3

91.7
91.591.6

91.491.3
91.1

89.2

91.0

90.1
89.7

Single Parser Reranker Product Combination

[C
ha

rn
ia

k 
’0

0]

[P
et

ro
v 

et
 a

l. 
’0

6]

[C
ar

re
ra

s 
et

 a
l. 

’0
8]

[H
ua

ng
 &

 H
ar

pe
r 

’0
8]

[P
et

ro
v 

’1
0]

[C
ha

rn
ia

k 
&

 J
oh

ns
on

 ’0
5]

[H
ua

ng
 ’0

8]

[M
cC

lo
sk

y 
et

 a
l. 

’0
6]

[S
ag

ae
 &

 L
av

ie
 ’0

6]

[F
os

su
m

 &
 K

ni
gh

t 
’0

9]

[Z
ha

ng
 e

t 
al

. ’
09

]

[H
ua

ng
 &

 H
ar

pe
r, 

Pe
tr

ov
 ’1

0]

[H
ua

ng
 &

 H
ar

pe
r, 

Pe
tr

ov
 ’1

0]

Self-Trained

[H
al

l ’
12

]

[D
ur

re
tt

 e
t 

al
. ’

15
]

[Z
hu

 e
t 

al
. ’

13
]



70

75

80

85

90

95

Ar
ab

ic

Ba
sq

ue

Fre
nc

h

Ger
man

Heb
rew

Hun
ga

ria
n

Ko
rea

n
Po

lis
h

Sw
ed

ish

Av
era

ge

85.1
83.5

93.0

82.2

90.7
88.6

81.081.3

85.4

80.2

83.2
82.0

90.7

80.2

88.3
87.2

78.4
79.7

83.4

78.8

80.980.6

86.8

78.6

85.285.4

78.3
79.8

74.7

78.7

Petrov et al. '06* Hall et al. ’14 Durrett et al. ’15

Te
st

 s
et

 F
1 a

ll 
le

ng
th

s
Multi-Lingual Results


