Syntax and Parsing I

Constituency Parsing

Slav Petrov – Google

Thanks to:

Dan Klein, Ryan McDonald, Alexander Rush, Joakim Nivre, Greg Durrett, David Weiss

Lisbon Machine Learning School 2016

Analyzing Natural Language

Syntax and Semantics

Constituency and Dependency

Constituency and Dependency

A "real" Sentence

Influential members of the House Ways and Means Committee introduced legislation that would restrict how the new savings-and-loan bailout agency can raise capital, creating another potential obstacle to the government's sale of sick thrifts.

Phrase Structure Parsing

- Phrase structure parsing organizes syntax into *constituents* or *brackets*
- In general, this involves nested trees
- Linguists can, and do, argue about details
- Lots of ambiguity
- Not the only kind of syntax...
- First part of today's lecture

new art critics write reviews with computers

Dependency Parsing

- Very efficient decoding algorithms exist
- Second part of today's lecture

Classical NLP: Parsing

• Write symbolic or logical rules:

VBD		VB			
VBN	VBZ	VBP	VBZ		
NNP	NNS	NN	NNS	CD	NN
Fed	raises	interest	rates	0.5	percent

Gramm	Lexicon	
$ROOT \rightarrow S$	$NP \rightarrow NP PP$	NN → interest
$S \rightarrow NP VP$	$VP \rightarrow VBP NP$	NNS → raises
$NP \rightarrow DT NN$	$VP \rightarrow VBP NP PP$	VBP → interest
$NP \rightarrow NN NNS$	$PP \rightarrow IN NP$	VBZ → raises

- Use deduction systems to prove parses from words
 - Minimal grammar on "Fed raises" sentence: 36 parses
 - Real-size grammar: many millions of parses
- This scaled very badly, didn't yield broad-coverage tools

Attachments

• I cleaned the dishes from dinner

• I cleaned the dishes with detergent

• I cleaned the dishes in my pajamas

• I cleaned the dishes in the sink

Probabilistic Context-Free Grammars

• A context-free grammar is a tuple <N, T, S, R>

- N : the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
- T : the set of terminals (the words)
- S : the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
- R : the set of rules
 - Of the form X \rightarrow Y1 Y2 ... Yk, with X, Yi \in N
 - Examples: S \rightarrow NP VP, VP \rightarrow VP CC VP
 - Also called rewrites, productions, or local trees
- A PCFG adds:
 - A top-down production probability per rule P(Y1 Y2 ... Yk | X)

Treebank Grammars

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn't work well):

- Better results by enriching the grammar (e.g., lexicalization).
- Can also get reasonable parsers without lexicalization.

Treebank Grammar Scale

- Treebank grammars can be enormous
 - As FSAs, the raw grammar has \sim 10K states, excluding the lexicon
 - Better parsers usually make the grammars larger, not smaller

Chomsky Normal Form

- Chomsky normal form:
 - All rules of the form $X \rightarrow Y Z$ or $X \rightarrow w$
 - In principle, this is no limitation on the space of (P)CFGs
 - N-ary rules introduce new non-terminals

- Unaries / empties are "promoted"
- In practice it's kind of a pain:
 - Reconstructing n-aries is easy
 - Reconstructing unaries is trickier
 - The straightforward transformations don't preserve tree scores
- Makes parsing algorithms simpler!

A Recursive Parser

- Will this parser work?
- Why or why not?
- Memory requirements?

A Memoized Parser

• One small change:

```
bestScore(X,i,j,s)
if (scores[X][i][j] == null)
if (j = i+1)
    score = tagScore(X,s[i])
else
    score = max score(X->YZ) *
        bestScore(Y,i,k) *
        bestScore(Z,k,j)
    scores[X][i][j] = score
return scores[X][i][j]
```

A Bottom-Up Parser (CKY)

Can also organize things bottom-up

```
bestScore(s)
 for (i : [0, n-1])
      for (X : tags[s[i]])
      score[X][i][i+1] =
           taqScore(X,s[i])
 for (diff : [2,n])
                                                  k
    for (i : [0,n-diff])
      j = i + diff
      for (X->YZ : rule)
         for (k : [i+1, j-1])
       score[X][i][j] = max score[X][i][j],
                             score(X->YZ) *
                             score[Y][i][k] *
                             score[Z][k][j]
```

Time: Theory

- How much time will it take to parse?
 - For each diff (<= n)
 - For each i (<= n)
 - For each rule $X \rightarrow Y Z$
 - For each split point k Do constant work

- Total time: |rules|*n3
- Something like 5 sec for an unoptimized parse of a 20-word sentences, or 0.2sec for an optimized parser

Unary Rules

• Unary rules?

```
bestScore(X,i,j,s)
if (j = i+1)
return tagScore(X,s[i])
else
return max max score(X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k,j)
max score(X->Y) *
bestScore(Y,i,j)
```

CNF + Unary Closure

- We need unaries to be non-cyclic
 - Can address by pre-calculating the unary closure
 - Rather than having zero or more unaries, always have exactly one

- Alternate unary and binary layers
- Reconstruct unary chains afterwards

Alternating Layers

```
bestScoreB(X,i,j,s)
    return max max score(X->YZ) *
    bestScoreU(Y,i,k) *
    bestScoreU(Z,k,j)
```

```
bestScoreU(X,i,j,s)
if (j = i+1)
  return tagScore(X,s[i])
  else
  return max max score(X->Y) *
        bestScoreB(Y,i,j)
```

Treebank Grammars

- Need a PCFG for broad coverage parsing. [Charniak '96]
- Can take a grammar right off the trees (doesn't work well):

• Better results by enriching the grammar (e.g., lexicalization).

Charniak '96

Can also get reasonable parsers
 Model

F1
72.0

Conditional Independence?

• Not every NP expansion can fill every NP slot

- A grammar with symbols like "NP" won't be context-free
- Statistically, conditional independence too strong

Non-Independence

• Independence assumptions are often too strong.

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

The Game of Designing a Grammar

- Structure Annotation [Johnson '98, Klein & Manning '03]
- Lexicalization [Collins '99, Charniak '00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]
- (Neural) CRF Parsing [Hall et al. '14, Durrett & Klein '15]

A Fully Annotated (Unlexicalized) Tree

[Klein & Manning '03]

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Head lexicalization [Collins '99, Charniak '00]

Problems with PCFGs

- If we do no annotation, these trees differ only in one rule:
 - $VP \rightarrow VP PP$
 - NP \rightarrow NP PP
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words

Problems with PCFGs

- What's different between basic PCFG scores here?
- What (lexical) correlations need to be scored?

Lexicalized Trees

[Charniak '97, Collins '97]

- Add "headwords" to each phrasal node
 - Syntactic vs. semantic heads
 - Headship not in (most) treebanks
 - Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N*
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VB*
 - Take leftmost VP
 - Take left child

Lexicalized PCFGs?

• Problem: we now have to estimate probabilities like

VP(saw) -> VBD(saw) NP-C(her) NP(today)

- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps

Lexical Derivation Steps

• A derivation of a local tree [Collins '99]

Lexicalized Grammars

- Challenges:
 - Many parameters to estimate: requires sophisticated smoothing techniques
 - Exact inference is too slow: requires pruning heuristics
 - Difficult to adapt to new languages: At least head rules need to be specified, typically more changes needed

Lexicalized CKY

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Automatic clustering

Latent Variable Grammars

[Matsuzaki et al. '05, Petrov et al. '06]

Learning Latent Annotations

Forward

EM algorithm:

- Brackets are known
- Base categories are known
- Only induce subcategories

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - CRF Parsing (+Neural Network Representations)

Generative vs. Discriminative

Generative

Maximize joint likelihood

of gold tree and sentence

→ EM-algorithm

W1 W2 ... Wn

Ý

W1 W2 ... Wn

EASY: expectations over observed trees

[Matsuzaki et al. '05, Petrov et al. '06]

Discriminative

Maximize conditional likelihood

of gold tree given sentence

Gradient-based algorithm

 $W_1 \, W_2 \ldots \, W_n$

HARD: expectations over all trees [Petrov & Klein '07, '08]

Objective Functions

Generative Objective Function:

$$\max_{\theta} \mathcal{L}_{\theta}(\widetilde{Y}, w_{1...}, w_{n})$$

[Petrov, Barrett, Thibaux & Klein '06]

Discriminative Objective Function: $\max_{\theta} \mathcal{L}_{\theta}(\widetilde{|}^{w_{1...w_{n}}}) \qquad [Petrov \& Klein '08, Finkel et. al '08]$

Bayesian Objective Function:

$$\max_{\theta} \mathcal{P}(\theta | \mathcal{V}) \mathcal{L}_{\theta}(\mathcal{V}, w_{1...}, w_{n})$$

[Liang, Petrov, Jordan & Klein '07]

(Neural) CRF Parsing

[Taskar et al. '04, Petrov & Klein '07, Hall et al. '14, Durrett et al. '15]

CRF Parsing Sparse Features

$$P(T|x) \propto \prod_{r \in T} \exp(\operatorname{score}(r))$$

score($_{2}NP_{7} \rightarrow _{2}NP_{4} _{4}PP_{7}$) = $w^{\top}f(_{2}NP_{7} \rightarrow _{2}NP_{4} _{4}PP_{7})$

Neural CRF Model

 $score(_2NP_7 \rightarrow _2NP_4 _4PP_7) =$

LSTM Parsing [Vinyals et al. '15]

- Treat parsing as a sequence-to-sequence prediction problem
- Completely ignores tree structure, uses LSTMs as black boxes

Detailed English Results

Multi-Lingual Results

