Syntax and Parsing II Dependency Parsing

Slav Petrov - Google

Thanks to:
Dan Klein, Ryan McDonald, Alexander Rush, Joakim Nivre, Greg Durrett, David Weiss

Lisbon Machine Learning School 2016

Dependency Parsing

CoNLL Format

Cathy	Cathy	N	N	eigen\|ev	neut	2	su	
zag	zie	V	V	trans\|ovt	lof2of3	ev	0	ROOT
hen	hen	Pron	Pron	per\|3	mv	datofacc	2	objl
wild	wild	Adj	Adj	attr\|stell	onverv	5	mod	
zwaaien	zwaai	N	N	soort\|mv	neut	2	vc	
-	-	Punc	Punc	punt	5	punct		

01
2
3
4
5
6

(Non-)Projectivity

- Crossing Arcs needed to account for nonprojective constructions
- Fairly rare in English but can be common in other languages (e.g. Czech):

He is mostly not even interested in the new things and in most cases, he has no money for it either.

Formal Conditions

- For a dependency graph $G=(V, A)$
- With label set $L=\left\{I_{1}, \ldots, l_{|L|}\right\}$
- G is (weakly) connected:
- If $i, j \in V, i \leftrightarrow^{*} j$.
- G is acyclic:
- If $i \rightarrow j$, then not $j \rightarrow{ }^{*} i$.
- G obeys the single-head constraint:
- If $i \rightarrow j$, then not $i^{\prime} \rightarrow j$, for any $i^{\prime} \neq i$.
- G is projective:
- If $i \rightarrow j$, then $i \rightarrow^{*} i^{\prime}$, for any i^{\prime} such that $i<i^{\prime}<j$ or $j<i^{\prime}<i$.

Styles of Dependency Parsing

- Transition-Based (tr)
- Fast, greedy, linear time inference algorithms
- Trained for greedy search
- Beam search
- Graph-Based (gr)
- Slower, exhaustive, dynamic programming inference algorithms
- Higher-order factorizations

$$
3 r d \text {-order gr }
$$

2nd-order gr

$$
O\left(n^{3}\right)
$$

greedy tr
$O \stackrel{\bullet}{(n)}$

1st-order gr
$\left.O \stackrel{\bullet}{n^{3}}\right)$

Arc-Factored Models

- Assumes that the score / probability / weight of a dependency graph factors by its arcs

$$
w(G)=\prod_{(i, j, k) \in G} w_{i j}^{k} \quad \text { look familiar? }
$$

- $w_{i j}^{k}$ is the weight of creating a dependency from word w_{i} to w_{j} with label I_{k}
- Thus there is an assumption that each dependency decision is independent
- Strong assumption! Will address this later.

Graph-based Parsing

- Assumes that scores factor over the tree
- Arc-factored models
- Score(tree) = Σ edges

 $+$ washed dishes + washed with with detergent

Dependency Representation

Graph-Based Parsing

Searching

Scoring

Arc-factored Projective Parsing

- All projective graphs can be written as the combination of two smaller adjacent graphs

Arc-factored Projective Parsing

- Chart item filled in a bottom-up manner
- First do all strings of length 1, then 2, etc. just like CKY

- Weight of new item: $\max _{l, j, k} w(A) \times w(B) \times w_{h h^{\prime}}^{k}$
- Algorithm runs in $O\left(|L| n^{5}\right)$
- Use back-pointers to extract best parse (like CKY)

Eisner Algorithm

- $O\left(|L| n^{5}\right)$ is not that good
- [Eisner 1996] showed how this can be reduced to $O\left(|L| n^{3}\right)$
- Key: split items so that sub-roots are always on periphery

Eisner First-Order Parsing

In practice also left arc version

Eisner First-Order Parsing

Eisner First-Order Parsing

Eisner First-Order Parsing

Eisner First-Order Parsing

Eisner First-Order Parsing

Eisner First-Order Parsing

Eisner First-Order Parsing

Eisner First-Order Parsing

Eisner First-Order Parsing

Eisner Algorithm Pseudo Code

Initialization: $C[s][s][d][c]=0.0 \quad \forall s, d, c$
for $k: 1 . . n$
for $s: 1 . . n$

$$
t=s+k
$$

if $t>n$ then break
\% First: create incomplete items

$$
\begin{aligned}
& C[s][t][\leftarrow][0]=\max _{s \leq r<t}(C[s][r][\rightarrow][1]+C[r+1][t][\leftarrow][1]+s(t, s)) \\
& C[s][t][\rightarrow][0]=\max _{s \leq r<t}(C[s][r][\rightarrow][1]+C[r+1][t][\leftarrow][1]+s(s, t))
\end{aligned}
$$

\% Second: create complete items

$$
\begin{aligned}
& C[s][t][\leftarrow][1]=\max _{s \leq r<t}(C[s][r][\leftarrow][1]+C[r][t][\leftarrow][0]) \\
& C[s][t][\rightarrow][1]=\max _{s<r \leq t}(C[s][r][\rightarrow][0]+C[r][t][\rightarrow][1])
\end{aligned}
$$

end for
end for

Maximum Spanning Trees (MSTs)

- A directed spanning tree of a (multi-)digraph $G=(V, A)$, is a subgraph $G^{\prime}=\left(V^{\prime}, A^{\prime}\right)$ such that:
- $V^{\prime}=V$
- $A^{\prime} \subseteq A$, and $\left|A^{\prime}\right|=\left|V^{\prime}\right|-1$
- G^{\prime} is a tree (acyclic)
- A spanning tree of the following (multi-)digraphs

Can use MST algorithms for nonprojective parsing!

Chu-Liu-Edmonds

- $x=$ root John saw Mary

Chu-Liu-Edmonds

- Find highest scoring incoming arc for each vertex

- If this is a tree, then we have found MST!!

Find Cycle and Contract

- If not a tree, identify cycle and contract
- Recalculate arc weights into and out-of cycle

Recalculate Edge Weights

- Incoming arc weights
- Equal to the weight of best spanning tree that includes head of incoming arc, and all nodes in cycle
- root \rightarrow saw \rightarrow John is $40\left({ }^{* *}\right)$
- root \rightarrow John \rightarrow saw is 29

Theorem

The weight of the MST of this contracted graph is equal to the weight of the MST for the original graph

- Therefore, recursively call algorithm on new graph

Final MST

- This is a tree and the MST for the contracted graph!!

- Go back up recursive call and reconstruct final graph

Chu-Liu-Edmonds PseudoCode

Chu-Liu-Edmonds($\left.G_{x}, w\right)$

1. Let $M=\left\{\left(i^{*}, j\right): j \in V_{x}, i^{*}=\arg \max _{i^{\prime}} w_{i j}\right\}$
2. Let $G_{M}=\left(V_{x}, M\right)$
3. If G_{M} has no cycles, then it is an MST: return G_{M}
4. Otherwise, find a cycle C in G_{M}
5. Let $\left\langle G_{C}, c\right.$, ma $\rangle=\operatorname{contract}(G, C, w)$
6. Let $G=$ Chu-Liu-Edmonds $\left(G_{C}, w\right)$
7. Find vertex $i \in C$ such that $\left(i^{\prime}, c\right) \in G$ and $m a\left(i^{\prime}, c\right)=i$
8. Find arc $\left(i^{\prime \prime}, i\right) \in C$
9. Find all arc $\left(c, i^{\prime \prime \prime}\right) \in G$
10. $G=G \cup\left\{\left(\operatorname{ma}\left(c, i^{\prime \prime \prime}\right), i^{\prime \prime \prime}\right)\right\}_{\forall\left(c, i^{\prime \prime \prime}\right) \in G} \cup C \cup\left\{\left(i^{\prime}, i\right)\right\}-\left\{\left(i^{\prime \prime}, i\right)\right\}$
11. Remove all vertices and arcs in G containing c
12. return G

- Reminder: $w_{i j}=\arg \max _{k} w_{i j}^{k}$

Chu-Liu-Edmonds PseudoCode

contract $(G=(V, A), C, w)$

1. Let G_{C} be the subgraph of G excluding nodes in C
2. Add a node c to G_{C} representing cycle C
3. For $i \in V-C: \exists_{i^{\prime} \in C}\left(i^{\prime}, i\right) \in A$

Add arc (c, i) to G_{C} with

```
\(\operatorname{ma}(c, i)=\arg \max _{i^{\prime} \in C} \operatorname{score}\left(i^{\prime}, i\right)\)
\(i^{\prime}=m a(c, i)\)
score \((c, i)=\operatorname{score}\left(i^{\prime}, i\right)\)
```

4. For $i \in V-C: \exists_{i^{\prime} \in C}\left(i, i^{\prime}\right) \in A$

Add edge (i, c) to G_{C} with
$m a(i, c)=\arg \max _{i^{\prime} \in C}\left[\operatorname{score}\left(i, i^{\prime}\right)-\operatorname{score}\left(a\left(i^{\prime}\right), i^{\prime}\right)\right]$
$i^{\prime}=m a(i, c)$
score $(i, c)=\left[\operatorname{score}\left(i, i^{\prime}\right)-\operatorname{score}\left(a\left(i^{\prime}\right), i^{\prime}\right)+\operatorname{score}(C)\right]$
where $a(v)$ is the predecessor of v in C and score $(C)=\sum_{v \in C} \operatorname{score}(a(v), v)$
5. return $\left\langle G_{C}, c, m a\right\rangle$

Arc Weights

$$
w_{i j}^{k}=e^{\mathbf{w} \cdot \mathbf{f}(i, j, k)}
$$

- Arc weights are a linear combination of features of the arc, \mathbf{f}, and a corresponding weight vector \mathbf{w}
- Raised to an exponent (simplifies some math ...)
- What arc features?
- [McDonald et al. 2005] discuss a number of binary features

Arc Feature Ideas for $f(i, j, k)$

- Identities of the words wi and wj and the label lk
- Part-of-speech tags of the words wi and wj and the label Ik
- Part-of-speech of words surrounding and between wi and wj
- Number of words between wi and wj, and their orientation
- Combinations of the above

First-Order Feature Computation

* As McGwire neared , fans went wild
[went]
[VERB
[went, As]
[VERB, IN]
[ADJ, *, ADP]
[NNS, VBD, ADP]
[NNS, ADP, NNP]

> [ADP, left, 5]
[JJ, *, IN]
[NOUN, VERB, IN]
[NOUN, IN, NOUN]
[IN, left, 5]
[NNS, VBD, ADP, NNP]
[went, VERB, As, IN]
[went, VERB, left, 5]
[went, As, ADP, left, 5] [VBD, ADJ, ADP, left, 5] [ADJ, ADP, NNP, left, 5] [VERB, As, IN, left, 5]
[VERB ${ }^{*}$, IN, left, 5]
[VBD]
[As]
[VBD, ADP]
[VBD, As, ADP]
[VBD, *, ADP]
[NNS, VBD, *]
[NNS, VBD, NNP]
[VERB, As, IN]
[VERB, *, IN]
[NOUN, VERB, *]
[NOUN, VERB, NOUN]
[went, VBD, As, ADP]
[went, VBD, left, 5]
[VERB, JJ, *, IN]
[As, IN, left, 5]
[went, VBD, ADP, left, 5]
[VBD, ADJ, *, left, 5]
[VBD, ADP, NNP, left, 5]
[went, As, IN, left, 5]
[VERB, JJ, IN, left, 5]
$[A s]$
$[I N]$
[went, VERB]
[went, As, ADP]
[VBD, ADJ, ADP]
[ADJ, ADP, NNP]
[went, left, 5]
[went, As, IN]
[VERB, JJ, IN]
[JJ, in, NOUN]
[went, left, 5]
[VBD, ADJ, *, ADP]
[As, ADP, left, 5]
[NOUN, VERB, *, IN]
[went, As, left, 5]
[went, VBD, As, left, 5]
[NNS, *, ADP, left, 5]
[VBD, ADJ, NNP, left, 5]
[went, VERB, IN, left, 5]
[VERB, JJ, *, left, 5]

> [ADP]
[went, VBD]

$$
[A s, I N]
$$

[went, VBD, ADP]
[VBD, ADJ, *]
[VBD, ADP, NNP]
[VBD, left, 5]
[went, VERB, IN]
[VERB, JJ, *]
[VERB, IN, NOUN]
[VERB, left, 5]
[NNS, VBD, *, ADP]
[went, As, left, 5]
[VERB, JJ, IN, NOUN]
[VERB, IN, left, 5]
[ADJ, *, ADP, left, 5] [NNS, VBD, ADP, left, 5] [NNS, ADP, NNP, left, 5]
[went, VERB, As, left, 5]
[NOUN, *, IN, left, 5]
[went]
[As, ADP]
[went, As]
[went, VBD, As]
[NNS, *, ADP]
[VBD, ADJ, NNP]
[As, left, 5]
[went, VERB, As]
[NOUN, *, IN]
[VERB, JJ, NOUN]
[As, left, 5]
[VBD, ADJ, ADP, NNP]
[VBD, ADP, left, 5]
[NOUN, VERB, IN, NOUN]
[VBD, As, ADP, left, 5]
[VBD, *, ADP, left, 5]
[NNS, VBD, *, left, 5]
[NNS, VBD, NNP, left, 5]
[JJ, *, IN, left, 5] [NOUN, VERB, IN, left, 5]

(Structured) Perceptron

Training data: $\mathcal{T}=\left\{\left(x_{t}, G_{t}\right)\right\}_{t=1}^{|\mathcal{T}|}$

1. $\mathbf{w}^{(0)}=0 ; i=0$
2. for $n: 1 . . N$
3. for $t: 1 . . T$
4. Let $G^{\prime}=\arg \max _{G^{\prime}} \mathbf{w}^{(i)} \cdot \mathbf{f}\left(G^{\prime}\right)$
5. if $G^{\prime} \neq G_{t}$
6. $\quad \mathbf{w}^{(i+1)}=\mathbf{w}^{(i)}+\mathbf{f}\left(G_{t}\right)-\mathbf{f}\left(G^{\prime}\right)$
7. $i=i+1$
8. return \mathbf{w}^{i}

Transition Based Dependency Parsing

- Process sentence left to right
- Different transition strategies available
- Delay decisions by pushing on stack
- Arc-Standard Transition Strategy [Nivre '03]

Initial configuration: ([],[0,..,n],[])
Terminal configuration: ([0],[],A)
shift: $(\sigma,[i \mid \beta], A) \Rightarrow([\sigma \mid i], \beta, A)$
left-arc (label): ([б|i|j],B,A) $\Rightarrow([\sigma \mid j], B, A \cup\{j, I, i\})$
right-arc (label): ([б|i|j],B,A) $\Rightarrow([\sigma \mid i], B, A \cup\{i, l, j\})$

Arc-Standard Example

\uparrow Stack
\leftarrow Buffer

I	booked	a	flight	to	Lisbon

SHIFT

I booked a flight to Lisbon

Arc-Standard Example

\uparrow Stack
\square
\leftarrow Buffer

SHIFT

I booked a flight to Lisbon

Arc-Standard Example

\uparrow Stack
booked
\leftarrow Buffer

LEFT-ARC nsubj

I booked a flight to Lisbon

Arc-Standard Example

\leftarrow Buffer

SHIFT

Arc-Standard Example

\leftarrow Buffer
flight to Lisbon

SHIFT

Arc-Standard Example

\leftarrow Buffer
to Lisbon

LEFT-ARC det

Arc-Standard Example

\leftarrow Buffer
to Lisbon

SHIFT

Arc-Standard Example

SHIFT

I booked a flight to Lisbon

Arc-Standard Example

I booked a flight to Lisbon

Arc-Standard Example

Arc-Standard Example

RIGHT-ARC dobj

Arc-Standard Example

Features

\leftarrow Buffer

SHIFT

RIGHT-ARC?

LEFT-ARC?

Stack top word = "flight"
Stack top POS tag = "NOUN"
Buffer front word = "to"
Child of stack top word = "a"
-••••

Features ZPar Parser

\# From Single Words

pair \{ stack.tag stack.word \}
stack \{ word tag \}
pair \{ input.tag input.word \}
input \{ word tag \}
pair \{ input(1).tag input(1).word \}
input(1) \{ word tag \}
pair \{ input(2).tag input(2).word \}
input(2) \{ word tag \}
\# From word pairs
quad \{ stack.tag stack.word input.tag input.word \}
triple \{ stack.tag stack.word input.word \}
triple \{ stack.word input.tag input.word \}
triple \{ stack.tag stack.word input.tag \}
triple \{ stack.tag input.tag input.word \}
pair \{ stack.word input.word \}
pair \{ stack.tag input.tag \}
pair \{ input.tag input(1).tag \}
\# From word triples
triple \{ input.tag input(1).tag input(2).tag \}
triple \{ stack.tag input.tag input(1).tag \}
triple \{ stack.head(1).tag stack.tag input.tag \}
triple \{ stack.tag stack.child(-1).tag input.tag \}
triple \{ stack.tag stack.child(1).tag input.tag \}
triple \{ stack.tag input.tag input.child(-1).tag \}

\# Distance

pair \{ stack.distance stack.word \}
pair \{ stack.distance stack.tag \}
pair \{ stack.distance input.word \}
pair \{ stack.distance input.tag \}
triple \{ stack.distance stack.word input.word \}
triple \{ stack.distance stack.tag input.tag \}

\# valency

pair \{ stack.word stack.valence(-1) \}
pair \{ stack.word stack.valence(1) \}
pair \{ stack.tag stack.valence(-1) \}
pair \{ stack.tag stack.valence(1) \}
pair \{ input.word input.valence(-1) \}
pair \{ input.tag input.valence(-1) \}
\# unigrams
stack.head(1) \{word tag\}
stack.label
stack.child(-1) \{word tag label\}
stack.child(1) \{word tag label\}
input.child(-1) \{word tag label\}
\# third order
stack.head(1).head(1) \{word tag\}
stack.head(1).label
stack.child(-1).sibling(1) \{word tag label\}
stack.child(1).sibling(-1) \{word tag label\}
input.child(-1).sibling(1) \{word tag label\}
triple \{ stack.tag stack.child(-1).tag stack.child(-1).sibling(1).tag \}
triple \{ stack.tag stack.child(1).tag stack.child(1).sibling(-1).tag \}
triple \{ stack.tag stack.head(1).tag stack.head(1).head(1).tag \}
triple \{ input.tag input.child(-1).tag input.child(-1).sibling(1).tag
\# label set
pair \{ stack.tag stack.child(-1).label \}
triple \{ stack.tag stack.child(-1).label stack.child(-1).sibling(1).lab quad \{ stack.tag stack.child(-1).label stack.child(-1).sibling(1).label pair \{ stack.tag stack.child(1).label \}
triple \{ stack.tag stack.child(1).label stack.child(1).sibling(-1).labe quad \{ stack.tag stack.child(1).label stack.child(1).sibling(-1).label pair \{ input.tag input.child(-1).label \}
triple \{ input.tag input.child(-1).label input.child(-1).sibling(1).lab quad \{ input.tag input.child(-1).label input.child(-1).sibling(1).label

SVM / Structured Perceptron Hyperparameters

- Regularization
- Loss function
- Hand-crafted features

Neural Network Transition Based Parser

[Chen \& Manning '14] and [Weiss et al. '15]

Neural Network Transition Based Parser

Neural Network Transition Based Parser

Neural Network Transition Based Parser

[Weiss et al. '15]
Softmax

Hidden Layer 2

Hidden Layer 1

Embedding Layer

Atomic Inputs

Neural Network Transition Based Parser

English Results (WSJ 23)

Method	UAS	LAS	Beam
3rd-order Graph-based (ZM2014)	93.22	91.02	-
Transition-based Linear (ZN2011)	93.00	90.95	32
NN Baseline (Chen \& Manning, 2014)	91.80	89.60	1
NN Better SGD (Weiss et al., 2015)	92.58	90.54	1
NN Deeper Network (Weiss et al., 2015)	93.19	91.18	1

NN Hyperparameters

- Regularization
- Loss function

NN Hyperparameters

- Regularization
- Loss function
- Dimensions
- Activation function
- Initialization
- Adagrad
- Dropout

NN Hyperparameters

- Regularization
- Loss function
- Dimensions
- Activation function

- Initialization
- Adagrad
- Dropout
- Mini-batch size

- Initial learning rate
- Learning rate schedule
- Momentum
- Stopping time
- Parameter averaging

NN Hyperparameters

Optimization matters!
Use random restarts, grid Pick best using holdout data

Tune: WSJ S24
Dev: WSJ S22
Test: WSJ S23

Random Restarts: How much Variance?

Effect of Embedding Dimensions

Word Tuning on WSJ (Tune Set, $\mathrm{D}_{\text {pos }}, \mathrm{D}_{\text {labels }}=32$)

Effect of Embedding Dimensions

POS/Label Tuning on WSJ (Tune Set, $\mathrm{D}_{\text {words }}=64$)

The Importance of Search

[Weiss et al. '15, Andor et al. '16]

The horse raced
past the barn
fell

Globally Normalized Models

[Andor et al. '16]

- CRF Objective
- Full Backpropagation Training
- Novel Proof (Label Bias):
- Globally Normalized Models are strictly more expressing than Locally Normalized Models

No Lookahead Parsing

English Results (WSJ 23)

Method	UAS	LAS	Beam
3rd-order Graph-based (ZM2014)	93.22	91.02	-
Transition-based Linear (ZN2011)	93.00	90.95	32
NN Baseline (Chen \& Manning, 2014)	91.80	89.60	1
NN Better SGD (Weiss et al., 2015)	92.58	90.54	1
NN Deeper Network (Weiss et al., 2015)	93.19	91.18	1
NN Perceptron (Weiss et al., 2015)	93.99	92.05	8
NN CRF (Andor et al., 2016)	94.61	92.79	32
NN CRF Semi-Supervised (Andor et al.)	95.01	92.97	32
S-LSTM (Dyer et al., 2015)	93.20	90.90	1
Contrastive NN (Zhou et al., 2015)	92.83	-	100

Tri-Training

[Zhou et al. '05, Li et al. '14]

English Out-of-Domain Results

- Train on WSJ + Web Treebank + QuestionBank
- Evaluate on Web

3rd Order Graph (ZM2014) \quad Transition-based Linear (ZN 2011, B=32)
Transition-based NN (B=1) \quad Transition-based NN (B=8)

Multilingual Results

Tensor-Based Graph (Lei et al. '14 Transition-based NN (Weiss et al. '15)

3rd-Order Graph (Zhang \& McDonald '14)
Transition-based CRF (Andor et al. 16)

No tri-training data

SyntaxNet and Parsey McParseface

WIRED

Google Has Open Sourced Its AI for Understanding Language

Google open-sources
SyntaxNet, a natural-
language understanding library for TensorFlow

MIT
 Technology Review

THE WALL STREET JOURNAL.

 Google's Artificial-Intelligence Tool Is Offered for FreeAlphabet subsidiary is making code freely available for anyone to distribute or modify

SyntaxNet and Parsey

LSTMs vs SyntaxNet

	LSTMs	SyntaxNet
Accuracy	+	++
Efficiency	-	+
End-to-End	++	- (yet)
Recurrence	+	- (yet)

Universal Dependencies

Stanford Universal++ Dependencies

Interset++ Morphological Features

Google Universal++ POS Tags

1.1	1.2	2 Restaurant	3 isst	4 Maria	5 den	6 Imsch	7

http://universaldependencies.github.io/docs/

Universal Dependencies

UD Treebanks

，	EFMmharic	－		－	$?$	－		D
＊	\＃－Ancient Greek	244x	（10）	D	06	\checkmark	Exes	e
＊	Ancient Creek－ PROIEL	206x	（1）0	＊	0	\checkmark	Dres	$\boldsymbol{\Delta \theta}$
．	｜［8．Arabic	242x	（0）	－	0	\checkmark	Eves	E
，	EEbasque	121K	（0）	D	0	\checkmark	Exess	［18
＊	EBulgarian	156x	（1）	D	0%	\checkmark	Dres	\＃k＠口
＊	Suryat	3x	（i）	－	0	E	Dusu	D
，	Catalan	530x	（0）	D	0\％／	\checkmark	Q	［
，	I Colnese	123x	（1）	D	06\％	\checkmark	Ergs	W
，	18 Coptic	4K	（1）	［	A	［	Pr	＊e9
，	EFroatian	87\％	（0）	－	0¢	\checkmark	D－T．	Enw
，	W Czech	1，503K	（1）0	0	0\％\％	\checkmark	Dres	［
，	1merech－CAC	493x	（1） 0	0	$0 \cdot$	\checkmark	Dus	E0＊0\％
，	W Crech－CLTT	35K	（0）	8	0%	\checkmark	Euser	4
，	EE Danish	100x	（0）	D	0\％	\checkmark	6	Eepo
＊	三 Dutch	200x	（1）	－	0	\checkmark	©	\pm
＊	Dutch－ Lassy5mall	98x	（0）	－	0	\checkmark	D－	W
．	English	254x	（1）0	0	4	\checkmark	D－9\％	H30
＋	\＃nglish－ESL	976	（5）	D	4	\checkmark	D－TI	D
＊	English－LinES	82K		D	0\％／	\checkmark	Ereas	00－
，	E Estonian	234X	（1） 0	＊	O\％／	\checkmark	Press	emb
，	FFinnish	1818	（00）	B	$0 ¢$	\checkmark	PL－7	
，	FFinnish－FTE	1598	（0）	－	06	\checkmark	D－	7
＊	［1］French	390x	（1）	0	$0 \cdot$	\checkmark	Prem	\＃mbw
．	18Calician	138x	（1）	D	0 or	\checkmark	Dres	\％＊，
，	ECerman	293x		－	0	\checkmark	Eres	Enow
＊	1 寱 Cothic	56K	（10）	＊	0	\checkmark	Dres	＊
＋	IT Creek	53x	（b）	D	0	\checkmark	Pres	EW0
，	［ Hebrew	115x	（b）	－	of	\checkmark	Dess	E
－	－L Hindi	351X	（1）	＊	0	\checkmark	Ereas	［
＊	Hungarian	42K	（1）	0	A	\checkmark	Dres	E
，	EIndonesian	121x		－	06	\checkmark	Eres	파븡
．	1／Drish	23K	（00）	D	0t\％	\checkmark	E－Ex	［18040
．	IIIItalian	252x	（1）	D	0%	\checkmark	Desen	＊
＋	－Japanese－KTC	267x	（b）	D	0	\checkmark	Dusis	E
，	－Kazakh	4X	（1）	D	4	\checkmark	D．ar	W^{*}
，	［＊：Kerean	－		－	－	$=$		D
＋	［ Latin	47x	（6）	－	0 ¢	\checkmark	Exes	00．
，	\square Latin－ITTB	291x	（00）	－	06	\checkmark	Dess	0
＊	\square Latin－PRCIEL	165x	（D）	＊	0	\checkmark	Drest	－ 0
，	－atvian	20K	（1）	－	0	\checkmark	Dres	E
，	Efer Norwegian	3118	（0）	D	06	\checkmark	Eres	표er
Old Chwrch								

Summary

- Constituency Parsing
- CKY Algorithm
- Lexicalized Grammars
- Latent Variable Grammars
- Conditional Random Field Parsing
- Neural Network Representations
- Dependency Parsing
- Eisner Algorithm
- Maximum Spanning Tree Algorithm
- Transition Based Parsing
- Neural Network Representations

