
Syntax and Parsing II
Dependency Parsing

Slav Petrov – Google

Thanks to:

Dan Klein, Ryan McDonald, Alexander Rush, Joakim Nivre,  
Greg Durrett, David Weiss

Lisbon Machine Learning School 2016

PRON VERB DET NOUN ADP NOUN

nsubj

det

dobj

prep

pobjROOT

Dependency Parsing

They solved the problem with statistics

CoNLL Format

 * Cathy zag hen wild zwaaien .
 0 1 2 3 4 5 6

su

ROOT

obj1

vc

mod punct

http://ilk.uvt.nl/conll/

http://ilk.uvt.nl/conll/

(Non-)Projectivity

• Crossing Arcs needed to account for non-
projective constructions

• Fairly rare in English but can be common
in other languages (e.g. Czech):

Formal Conditions

Styles of Dependency Parsing
• Transition-Based (tr)

• Fast, greedy, linear time
inference algorithms

• Trained for greedy search
• Beam search

• Graph-Based (gr)
• Slower, exhaustive, dynamic

programming inference
algorithms

• Higher-order factorizations

Time

Ac
cu

ra
cy

O(n)

greedy tr

O(n3)

1st-order gr
O(n3)

2nd-order gr O(n4)

3rd-order gr

O(
k · n

)
k-best tr

[Nivre et al. ’03-’11] [McDonald et al. ’05-’06]

Arc-Factored Models

Graph-based Parsing

• Assumes that scores factor over the tree
• Arc-factored models

• Score(tree) = ∑ edges

I washed dishes with detergent = I washed

 washed dishes

 washed with

 with detergent

+
+
+

Representation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Heads

Modifiers

Dependency Representation

Representation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Heads

Modifiers

Dependency Representation

Representation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Heads

Modifiers

Dependency Representation

Representation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Heads

Modifiers

Dependency Representation

Representation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Heads

Modifiers

Dependency Representation

Representation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Heads

Modifiers

Dependency Representation

Representation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Heads

Modifiers

Dependency Representation

Representation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Heads

Modifiers

Dependency Representation

Graph-Based Parsing

Arc-factored Projective Parsing

Arc-factored Projective Parsing

Eisner Algorithm

Eisner First-Order Rules

h m

h r

+

mr + 1

h e

h m

+

m e

Eisner First-Order Parsing

In practice also left arc version

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

Eisner Algorithm Pseudo Code

Maximum Spanning Trees (MSTs)

Can use MST algorithms for nonprojective parsing!

Chu-Liu-Edmonds

Chu-Liu-Edmonds

Find Cycle and Contract

Recalculate Edge Weights

Theorem

Final MST

Chu-Liu-Edmonds PseudoCode

Chu-Liu-Edmonds PseudoCode

Arc Weights

Arc Feature Ideas for f(i,j,k)

• Identities of the words wi and wj and the label lk
• Part-of-speech tags of the words wi and wj and the label lk
• Part-of-speech of words surrounding and between wi and wj
• Number of words between wi and wj , and their orientation
• Combinations of the above

First-Order Feature Calculation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

[went] [VBD] [As] [ADP] [went]

[VERB] [As] [IN] [went, VBD] [As, ADP]

[went, As] [VBD, ADP] [went, VERB] [As, IN] [went, As]

[VERB, IN] [VBD, As, ADP] [went, As, ADP] [went, VBD, ADP] [went, VBD, As]

[ADJ, *, ADP] [VBD, *, ADP] [VBD, ADJ, ADP] [VBD, ADJ, *] [NNS, *, ADP]

[NNS, VBD, ADP] [NNS, VBD, *] [ADJ, ADP, NNP] [VBD, ADP, NNP] [VBD, ADJ, NNP]

[NNS, ADP, NNP] [NNS, VBD, NNP] [went, left, 5] [VBD, left, 5] [As, left, 5]

[ADP, left, 5] [VERB, As, IN] [went, As, IN] [went, VERB, IN] [went, VERB, As]

[JJ, *, IN] [VERB, *, IN] [VERB, JJ, IN] [VERB, JJ, *] [NOUN, *, IN]

[NOUN, VERB, IN] [NOUN, VERB, *] [JJ, IN, NOUN] [VERB, IN, NOUN] [VERB, JJ, NOUN]

[NOUN, IN, NOUN] [NOUN, VERB, NOUN] [went, left, 5] [VERB, left, 5] [As, left, 5]

[IN, left, 5] [went, VBD, As, ADP] [VBD, ADJ, *, ADP] [NNS, VBD, *, ADP] [VBD, ADJ, ADP, NNP]

[NNS, VBD, ADP, NNP] [went, VBD, left, 5] [As, ADP, left, 5] [went, As, left, 5] [VBD, ADP, left, 5]

[went, VERB, As, IN] [VERB, JJ, *, IN] [NOUN, VERB, *, IN] [VERB, JJ, IN, NOUN] [NOUN, VERB, IN, NOUN]

[went, VERB, left, 5] [As, IN, left, 5] [went, As, left, 5] [VERB, IN, left, 5] [VBD, As, ADP, left, 5]

[went, As, ADP, left, 5] [went, VBD, ADP, left, 5] [went, VBD, As, left, 5] [ADJ, *, ADP, left, 5] [VBD, *, ADP, left, 5]

[VBD, ADJ, ADP, left, 5] [VBD, ADJ, *, left, 5] [NNS, *, ADP, left, 5] [NNS, VBD, ADP, left, 5] [NNS, VBD, *, left, 5]

[ADJ, ADP, NNP, left, 5] [VBD, ADP, NNP, left, 5] [VBD, ADJ, NNP, left, 5] [NNS, ADP, NNP, left, 5] [NNS, VBD, NNP, left, 5]

[VERB, As, IN, left, 5] [went, As, IN, left, 5] [went, VERB, IN, left, 5] [went, VERB, As, left, 5] [JJ, *, IN, left, 5]

[VERB, *, IN, left, 5] [VERB, JJ, IN, left, 5] [VERB, JJ, *, left, 5] [NOUN, *, IN, left, 5] [NOUN, VERB, IN, left, 5]

[NOUN, VERB, *, left, 5] [JJ, IN, NOUN, left, 5] [VERB, IN, NOUN, left, 5] [VERB, JJ, NOUN, left, 5] [NOUN, IN, NOUN, left, 5]

[NOUN, VERB, NOUN, left, 5] [went, VBD, As, ADP, left, 5] [VBD, ADJ, *, ADP, left, 5] [NNS, VBD, *, ADP, left, 5] [VBD, ADJ, ADP, NNP, left, 5]

[NNS, VBD, ADP, NNP, left, 5] [went, VERB, As, IN, left, 5] [VERB, JJ, *, IN, left, 5] [NOUN, VERB, *, IN, left, 5] [VERB, JJ, IN, NOUN, left, 5]

[NOUN, VERB, IN, NOUN, left, 5]

First-Order Feature Computation

(Structured) Perceptron

Transition Based Dependency Parsing

• Process sentence left to right
• Different transition strategies available
• Delay decisions by pushing on stack  

• Arc-Standard Transition Strategy [Nivre ’03]

 Initial configuration: ([],[0,…,n],[])
 Terminal configuration: ([0],[],A)

 shift: (σ,[i|β],A) ⇒ ([σ|i],β,A)

 left-arc (label): ([σ|i|j],B,A) ⇒ ([σ|j],B,A∪{j,l,i})

 right-arc (label): ([σ|i|j],B,A) ⇒ ([σ|i],B,A∪{i,l,j})

↑ Stack ← Buffer

Arc-Standard Example

I booked a flight to Lisbon

SHIFT

I booked a flight to Lisbon

↑ Stack ← Buffer

Arc-Standard Example

I booked a flight to Lisbon

SHIFT

I booked a flight to Lisbon

↑ Stack ← Buffer

Arc-Standard Example

I

booked a flight to Lisbon

LEFT-ARC  
nsubj

I booked a flight to Lisbon

↑ Stack ← Buffer

Arc-Standard Example

a flight to Lisbon

SHIFT

 I booked

I booked a flight to Lisbon

nsubj

↑ Stack ← Buffer

Arc-Standard Example

a flight to Lisbon

SHIFT
 I booked

I booked a flight to Lisbon

nsubj

↑ Stack ← Buffer

Arc-Standard Example

a

flight to Lisbon

LEFT-ARC  
det I booked

I booked a flight to Lisbon

nsubj

↑ Stack ← Buffer

Arc-Standard Example

to Lisbon

SHIFT
 I booked

 a flight

I booked a flight to Lisbon

nsubj det

↑ Stack ← Buffer

Arc-Standard Example

to Lisbon

SHIFT
 I booked

 a flight

I booked a flight to Lisbon

nsubj det

↑ Stack ← Buffer

Arc-Standard Example

to

Lisbon

RIGHT-ARC  
pobj

 I booked

 a flight

I booked a flight to Lisbon

nsubj det

↑ Stack

Arc-Standard Example

RIGHT-ARC  
prep

 I booked

 a flight

 to Lisbon

← Buffer

I booked a flight to Lisbon

nsubj det pobj

↑ Stack

Arc-Standard Example

RIGHT-ARC  
dobj

 I booked

a flight to Lisbon

← Buffer

I booked a flight to Lisbon

nsubj det pobjprep

↑ Stack

Arc-Standard Example

I booked a flight to Lisbon

← Buffer

dobj

nsubj pobjprepdet

I booked a flight to Lisbon

↑ Stack ← Buffer

Features

to Lisbon

 I booked

 a flight

Stack top word = “flight”
Stack top POS tag = “NOUN”
Buffer front word = “to”
Child of stack top word = “a”
....

RIGHT-ARC?

LEFT-ARC?

SHIFT

Features ZPar Parser
From Single Words
pair { stack.tag stack.word }
stack { word tag }
pair { input.tag input.word }
input { word tag }
pair { input(1).tag input(1).word }
input(1) { word tag }
pair { input(2).tag input(2).word }
input(2) { word tag }

From word pairs
quad { stack.tag stack.word input.tag input.word }
triple { stack.tag stack.word input.word }
triple { stack.word input.tag input.word }
triple { stack.tag stack.word input.tag }
triple { stack.tag input.tag input.word }
pair { stack.word input.word }
pair { stack.tag input.tag }
pair { input.tag input(1).tag }

From word triples
triple { input.tag input(1).tag input(2).tag }
triple { stack.tag input.tag input(1).tag }
triple { stack.head(1).tag stack.tag input.tag }
triple { stack.tag stack.child(-1).tag input.tag }
triple { stack.tag stack.child(1).tag input.tag }
triple { stack.tag input.tag input.child(-1).tag }

Distance
pair { stack.distance stack.word }
pair { stack.distance stack.tag }
pair { stack.distance input.word }
pair { stack.distance input.tag }
triple { stack.distance stack.word input.word }
triple { stack.distance stack.tag input.tag }

valency
pair { stack.word stack.valence(-1) }
pair { stack.word stack.valence(1) }
pair { stack.tag stack.valence(-1) }
pair { stack.tag stack.valence(1) }
pair { input.word input.valence(-1) }
pair { input.tag input.valence(-1) }

unigrams
stack.head(1) {word tag}
stack.label
stack.child(-1) {word tag label}
stack.child(1) {word tag label}
input.child(-1) {word tag label}

third order
stack.head(1).head(1) {word tag}
stack.head(1).label
stack.child(-1).sibling(1) {word tag label}
stack.child(1).sibling(-1) {word tag label}
input.child(-1).sibling(1) {word tag label}
triple { stack.tag stack.child(-1).tag stack.child(-1).sibling(1).tag }
triple { stack.tag stack.child(1).tag stack.child(1).sibling(-1).tag }
triple { stack.tag stack.head(1).tag stack.head(1).head(1).tag }
triple { input.tag input.child(-1).tag input.child(-1).sibling(1).tag }

label set
pair { stack.tag stack.child(-1).label }
triple { stack.tag stack.child(-1).label stack.child(-1).sibling(1).label }
quad { stack.tag stack.child(-1).label stack.child(-1).sibling(1).label stack.child(-1).sibling(2).label }
pair { stack.tag stack.child(1).label }
triple { stack.tag stack.child(1).label stack.child(1).sibling(-1).label }
quad { stack.tag stack.child(1).label stack.child(1).sibling(-1).label stack.child(1).sibling(-2).label }
pair { input.tag input.child(-1).label }
triple { input.tag input.child(-1).label input.child(-1).sibling(1).label }
quad { input.tag input.child(-1).label input.child(-1).sibling(1).label input.child(-1).sibling(2).label }

SVM / Structured Perceptron Hyperparameters

• Regularization
• Loss function
• Hand-crafted features

……

Neural Network Transition Based Parser

f0 = 1 [buffer0-word = “to”]

f1 = 1 [buffer1-word = “Bilbao”]

f3 = 1 [stack0-label = “pobj”]
f2 = 1 [buffer0-POS = “IN”]

… Embedding Layer

Hidden Layer

Softmax

Atomic Inputs

words labelspos

[Chen & Manning ’14] and [Weiss et al. ’15]

……

f0 = 1 [buffer0-word = “to”]

f1 = 1 [buffer1-word = “Bilbao”]

f3 = 1 [stack0-label = “pobj”]
f2 = 1 [buffer0-POS = “IN”]

… Embedding Layer

Hidden Layer

Softmax

Atomic Inputs

words labelspos

Neural Network Transition Based Parser
 [Weiss et al. ’15]

……

f0 = 1 [buffer0-word = “to”]

f1 = 1 [buffer1-word = “Bilbao”]

f3 = 1 [stack0-label = “pobj”]
f2 = 1 [buffer0-POS = “IN”]

… Embedding Layer

Hidden Layer

Softmax

Atomic Inputs

words labelspos

 [Weiss et al. ’15]

Neural Network Transition Based Parser

……

f0 = 1 [buffer0-word = “to”]

f1 = 1 [buffer1-word = “Bilbao”]

f3 = 1 [stack0-label = “pobj”]
f2 = 1 [buffer0-POS = “IN”]

… Embedding Layer

Hidden Layer

Softmax

Atomic Inputs

words labelspos

Hidden Layer 2

1

Neural Network Transition Based Parser
 [Weiss et al. ’15]

……

f0 = 1 [buffer0-word = “to”]

f1 = 1 [buffer1-word = “Bilbao”]

f3 = 1 [stack0-label = “pobj”]
f2 = 1 [buffer0-POS = “IN”]

…

words labelspos

. wfs

structured
perceptron

Neural Network Transition Based Parser
 [Weiss et al. ’15]

English Results (WSJ 23)

Method UAS LAS Beam
3rd-order Graph-based (ZM2014) 93.22 91.02 -

Transition-based Linear (ZN2011) 93.00 90.95 32

NN Baseline (Chen & Manning, 2014) 91.80 89.60 1

NN Better SGD (Weiss et al., 2015) 92.58 90.54 1

NN Deeper Network (Weiss et al., 2015) 93.19 91.18 1

NN Hyperparameters
• Regularization

• Loss function

NN Hyperparameters

• Dimensions

• Activation function

• Initialization

• Adagrad

• Dropout

• Regularization

• Loss function

NN Hyperparameters

• Dimensions

• Activation function

• Initialization

• Adagrad

• Dropout

• Mini-batch size

• Initial learning rate

• Learning rate schedule

• Momentum
• Stopping time

• Parameter averaging

• Regularization

• Loss function

NN Hyperparameters

Optimization matters!
Use random restarts, grid

Pick best using holdout data

Tune: WSJ S24
Dev: WSJ S22
Test: WSJ S23

Random Restarts: How much Variance?

91.2 91.4 91.6 91.8 92
92

92.1

92.2

92.3

92.4

92.5

92.6

92.7

UAS (%) on WSJ Tune Set

U
AS

 (%
) o

n
W

SJ
 D

ev
 S

et
Variance of Networks on Tuning/Dev Set

Pretrained 200x200
Pretrained 200
200x200
200

2nd hidden layer +  
pre training increases

correlation

Effect of Embedding Dimensions

1 2 4 8 16 32 64 128
89.5

90

90.5

91

91.5

92

Word Embedding Dimension (Dwords)

U
AS

 (%
)

Word Tuning on WSJ (Tune Set, Dpos,Dlabels=32)

Pretrained 200x200
Pretrained 200
200x200
200

1 2 4 8 16 32
90.5

91

91.5

92

POS/Label Embedding Dimension (Dpos,Dlabels)

U
AS

 (%
)

POS/Label Tuning on WSJ (Tune Set, Dwords=64)

Pretrained 200x200
Pretrained 200
200x200
200

Effect of Embedding Dimensions

The Importance of Search
 [Weiss et al. ’15, Andor et al. ’16]

Globally Normalized Models

• CRF Objective
• Full Backpropagation Training

• Novel Proof (Label Bias):
• Globally Normalized Models are strictly more

expressing than Locally Normalized Models

[Andor et al. ’16]

E[]
E[]

No Lookahead Parsing

↑ Stack ← Buffer

U
AS

 (
%

)

75.0

80.0

85.0

90.0

95.0

Local Local Global

93.6

81.4

77.0

(Beam=1) (Beam=16) (Beam=16)

94.0 with 3 token lookahead

English Results (WSJ 23)

Method UAS LAS Beam
3rd-order Graph-based (ZM2014) 93.22 91.02 -

Transition-based Linear (ZN2011) 93.00 90.95 32

NN Baseline (Chen & Manning, 2014) 91.80 89.60 1

NN Better SGD (Weiss et al., 2015) 92.58 90.54 1

NN Deeper Network (Weiss et al., 2015) 93.19 91.18 1

NN Perceptron (Weiss et al., 2015) 93.99 92.05 8

NN CRF (Andor et al., 2016) 94.61 92.79 32

NN CRF Semi-Supervised (Andor et al.) 95.01 92.97 32

S-LSTM (Dyer et al., 2015) 93.20 90.90 1

Contrastive NN (Zhou et al., 2015) 92.83 — 100

Tri-Training
[Zhou et al. ’05, Li et al. ’14]

Berkeley

Parser

ZPar

Parser
UAS 96.35
LAS 95.02

UAS 89.84
LAS 87.21

UAS 89.96
LAS 87.26

~40%  
agreement

English Out-of-Domain Results
U

AS
 (%

)

87

87.75

88.5

89.25

90

Supervised Semi-Supervised

3rd Order Graph (ZM2014) Transition-based Linear (ZN 2011, B=32)
Transition-based NN (B=1) Transition-based NN (B=8)

• Train on WSJ + Web Treebank + QuestionBank

• Evaluate on Web

Multilingual Results
U

AS
 (

%
)

80.0

85.0

90.0

95.0

Catalan Chinese Czech English German Japanese Spanish

Tensor-Based Graph (Lei et al. '14 3rd-Order Graph (Zhang & McDonald '14)
Transition-based NN (Weiss et al. '15) Transition-based CRF (Andor et al. 16)

With morph featuresNo tri-training data

SyntaxNet and Parsey McParseface

SyntaxNet and Parsey

• Add screenshots once released

LSTMs vs SyntaxNet

LSTMs SyntaxNet

Accuracy + ++
Efficiency - +

End-to-End ++ -
Recurrence + -

(yet)

(yet)

Universal Dependencies
Stanford Universal++ Dependencies

Google Universal++ POS Tags

Interset++ Morphological Features

http://universaldependencies.github.io/docs/

http://universaldependencies.github.io/docs/

Universal Dependencies

Summary
• Constituency Parsing

• CKY Algorithm
• Lexicalized Grammars
• Latent Variable Grammars
• Conditional Random Field Parsing
• Neural Network Representations

• Dependency Parsing
• Eisner Algorithm
• Maximum Spanning Tree Algorithm
• Transition Based Parsing
• Neural Network Representations

