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@ The study of probability has roots in games of chance %

@ Great names of science: Cardano, Fermat, Pascal, Laplace,
Kolmogorov, Bernoulli, Poisson, Cauchy, Boltzman, de Finetti, ...

@ Natural tool to model uncertainty, information, knowledge, belief,
observations, ...

@ ...thus also learning, decision making, inference, science,...
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What is probability?

o Classical definition: P(A) = %

...with N mutually exclusive equally likely outcomes,
N4 of which result in the occurrence of A. Laplace, 1814

Example: P(randomly drawn card is &) = 13/52.
Example: P(getting 1 in throwing a fair die) = 1/6.
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What is probability?

o Classical definition: P(A) = %

...with N mutually exclusive equally likely outcomes,

N4 of which result in the occurrence of A. Laplace, 1814
Example: P(randomly drawn card is &) = 13/52.

Example: P(getting 1 in throwing a fair die) = 1/6.

N
e Frequentist definition: P(A) = lim —4

N—oo

...relative frequency of occurrence of A in infinite number of trials.

@ Subjective probability: P(A) is a degree of belief. de Finetti, 1930s

...gives meaning to P(“it will rain tomorrow" ).
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Key concepts: Sample space and events

@ Sample space X = set of possible outcomes of a random experiment.

Examples:
» Tossing two coins: X = {HH,TH,HT,TT?}

» Roulette: X ={1,2,...,36}
» Draw a card from a shuffled deck: X = {Ad, 2, ...,QO, KO}
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Key concepts: Sample space and events

@ Sample space X = set of possible outcomes of a random experiment.

Examples:
» Tossing two coins: X = {HH,TH,HT,TT?}
» Roulette: X ={1,2,...,36}
» Draw a card from a shuffled deck: X = {Ad, 2, ...,QO, KO}

@ An event A is a subset of X: A C X (also written A € 2%).

Examples:

» ‘“exactly one H in 2-coin toss":
A={TH,HT} C{HH,TH,HT,TT}.

» “odd number in the roulette”: B ={1,3,...,35} C {1,2,...,36}.
» “drawn a © card”: C' = {49,20,.., K0} C {Ad,.., KO}
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Key concepts: Sample space and events

@ Sample space X = set of possible outcomes of a random experiment.

(More delicate) examples:
» Distance travelled by tossed die: X =R,

» Location of the next rain drop on a given square tile: X = R?
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@ Sample space X = set of possible outcomes of a random experiment.

(More delicate) examples:
» Distance travelled by tossed die: X =R,

» Location of the next rain drop on a given square tile: X = R?

@ Properly handling the continuous case requires deeper concepts:
» Let ¥ be collection of subsets of X: ¥ C 2%

» X is a o—algebra if

* AeX = A°eX

* A1,A2,...€2:>UA1'€2

=1
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» Location of the next rain drop on a given square tile: X = R?

@ Properly handling the continuous case requires deeper concepts:
» Let ¥ be collection of subsets of X: ¥ C 2%

» X is a o—algebra if
* AcY=>A€X

* A1,A2,...€2:>UAiEE
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Key concepts: Sample space and events

@ Sample space X = set of possible outcomes of a random experiment.

(More delicate) examples:
» Distance travelled by tossed die: X =R,

» Location of the next rain drop on a given square tile: X = R?

@ Properly handling the continuous case requires deeper concepts:
» Let ¥ be collection of subsets of X: ¥ C 2%

» X is a o—algebra if
* Ae¥X=A€eX

* A1,A2,...€E:>UAiEE

i=1
» Corollary: if ¥ € 2% is a o-algebra, ) € ¥ and X € &

» Example in R™: collection of Lebesgue-measurable sets is a o—algebra.
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Kolmogorov's Axioms for Probability
@ Probability is a function that maps events A into the interval [0, 1].

Kolmogorov's axioms (1933) for probability P : ¥ — [0, 1]
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@ Probability is a function that maps events A into the interval [0, 1].

Kolmogorov's axioms (1933) for probability P : ¥ — [0, 1]
» Forany A, P(A) >0
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Kolmogorov's Axioms for Probability

@ Probability is a function that maps events A into the interval [0, 1].

Kolmogorov's axioms (1933) for probability P : ¥ — [0, 1]
» Forany A, P(A) >0
» P(X)=1
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Kolmogorov's Axioms for Probability
@ Probability is a function that maps events A into the interval [0, 1].
Kolmogorov's axioms (1933) for probability P : ¥ — [0, 1]
» Forany A, P(A) >0
» P(X)=1
> If Ay, Ay ... C X are disjoint events, then ]P’(U Ai) =Y P4y
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Kolmogorov's Axioms for Probability
@ Probability is a function that maps events A into the interval [0, 1].
Kolmogorov's axioms (1933) for probability P : ¥ — [0, 1]
» Forany A, P(A) >0
» P(X)=1
> If Ay, Ay ... C X are disjoint events, then ]P’(U Ai) =Y P4y

@ From these axioms, many results can be derived. Examples:

» P(0) =0 X

» CCcD = P(C)<P(D)

» P(AUB) =P(A) +P(B) —P(ANB) A

» P(AUB) <P(A)+P(B) (union bound) ‘
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Conditional Probability and Independence
P(AN B)

o If P(B) >0, P(A|B) = B(E)

(conditional prob. of A, given B)
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Conditional Probability and Independence
P(AN B)

o If P(B) >0, P(A|B) = B(E)

(conditional prob. of A, given B)

@ ...satisfies all of Kolmogorov's axioms:

» Forany AC X, P(A|B) >0

» P(X|B) =1

> If Ay, As, ... C X are disjoint, then

P(U A

B) = > P(4B)
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Conditional Probability and Independence
P(AN B)

o If P(B) >0, P(A|B) = B(E)

(conditional prob. of A, given B)

@ ...satisfies all of Kolmogorov's axioms:

» Forany AC X, P(A|B) >0

» P(X|B) =1
» If Ay, A, ... C X are disjoint, then ‘
P(U A B) = P(4,|B)

@ Independence: A, B are independent (denoted A Il B) if and only if

P(AN B) = P(A)P(B).
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Conditional Probability and Independence

o IfP(B)>0, P(A|B)= %

Mario A. T. Figueiredo (IST & IT) LxMLS 2016: Probability Theory



Conditional Probability and Independence

o IFP(B)>0, P(AB)= %

o Events A, B are independent (A 1L B) & P(ANB)=P(A)P(B).
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Conditional Probability and Independence

o IFP(B) >0, PW&:%%?J

o Events A, B are independent (A 1L B) & P(ANB)=P(A)P(B).

@ Relationship with conditional probabilities:

AL B & P(A|B) = P(A)
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Conditional Probability and Independence

o IFP(B)>0, P(AB)= %

o Events A, B are independent (A 1L B) & P(ANB)=P(A)P(B).

@ Relationship with conditional probabilities:

AL B & P(A|B) = P(A)

e Example: X = “52 cards”, A = {30, 3&,3{,3&}, and
B ={A49,20,..., KO}, then, P(A) =1/13, P(B) = 1/4

PANB) — P({30}) = 5i2
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Conditional Probability and Independence

o IFP(B)>0, P(AB)= %

o Events A, B are independent (A 1L B) & P(ANB)=P(A)P(B).

@ Relationship with conditional probabilities:
Al B & P(A|B)=P(A)

e Example: X = “52 cards”, A = {30, 3&,3{,3&}, and
B ={A49,20,..., KO}, then, P(A) =1/13, P(B) = 1/4
1

P(ANB) = P({39)) =

P(A)P(B) =

A~ =
o)
o

1
13
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Conditional Probability and Independence
P(AN B)

o IFP(B)>0, P(AB)= B(E)

o Events A, B are independent (A 1L B) & P(ANB)=P(A)P(B).

@ Relationship with conditional probabilities:
Al B & P(A|B)=P(A)

e Example: X = “52 cards”, A = {30, 3&,3{,3&}, and
B ={A49,20,..., KO}, then, P(A) =1/13, P(B) = 1/4

PANB) — P({30}) = 5i2
11 1
PAVE(B) = =5
PAIB) = E(9|0) = o =P(4)

Mario A. T. Figueiredo (IST & IT) LxMLS 2016: Probability Theory July 21, 2016

8 /40



Bayes Theorem

o Law of total probability: if Ay, ..., A, are a partition of X

P(B) = > P(BIA)P(4))

=> P(BNA))
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Bayes Theorem

o Law of total probability: if Ay, ..., A, are a partition of X

P(B) = > P(BIA)P(4))

=> P(BNA))

o Bayes' theorem: if {41, ..., A,,} is a partition of X

P(A;|B) = P(BNAi) _ P(B|Ai) P(Ai)
Z P(B) S P(BIA)E(A)
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Random Variables

@ A (real) random variable (RV) is a function: X : X - R
X

X .
w X(w) &
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Random Variables

@ A (real) random variable (RV) is a function: X : X - R
X

X

& Xw) F

» Discrete RV: range of X is countable (e.g., N or {0,1})
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Random Variables

@ A (real) random variable (RV) is a function: X : X - R
X

X

w Xw) R

» Discrete RV: range of X is countable (e.g., N or {0,1})
» Continuous RV: range of X is uncountable (e.g., R or [0, 1])
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Random Variables

@ A (real) random variable (RV) is a function: X : X - R
X

X

w Xw) R

» Discrete RV: range of X is countable (e.g., N or {0,1})
» Continuous RV: range of X is uncountable (e.g., R or [0, 1])

» Example: number of head in tossing two coins,
X={HH,HT,TH,TT},
X(HH)=2, X(HT)=X(TH)=1, X(TT) =0.
Range of X = {0, 1, 2}.
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Random Variables

@ A (real) random variable (RV) is a function: X : X - R
X

X

w Xw) R

» Discrete RV: range of X is countable (e.g., N or {0,1})
» Continuous RV: range of X is uncountable (e.g., R or [0, 1])

» Example: number of head in tossing two coins,
X={HH,HT,TH,TT},
X(HH)=2, X(HT)=X(TH)=1, X(TT) =0.
Range of X = {0, 1, 2}.

» Example: distance traveled by a tossed coin; range of X = R,.
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Random Variables: Distribution Function
@ Distribution function: Fx(z) =P{w e X : X(w) < z})
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Random Variables: Distribution Function
@ Distribution function: Fx(z) =P{w e X : X(w) < z})

L Fx(x)
1 ....................................... Pr— fX(,’E)
2y E—
1/2 ...................
1/4 B B I
0 1 2 z 0 1 2

Madrio A. T. Figueiredo

(IST & IT)
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Random Variables: Distribution Function
@ Distribution function: Fx(z) =P{w e X : X(w) < z})

A Fx(z)

T P . .
EY2] — -
1/4
: 1 i : 0 1 2 =
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Properties of Distribution Functions

Fx : R — [0, 1] is the distribution function of some r.v. X iff:
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Properties of Distribution Functions

Fx : R — [0, 1] is the distribution function of some r.v. X iff:

@ it is non-decreasing: z1 < x3 = Fx(x1) < Fx(z2);

Mario A. T. Figueiredo (IST & IT) LxMLS 2016: Probability Theory July 21, 2016 12 / 40



Properties of Distribution Functions

Fx : R — [0, 1] is the distribution function of some r.v. X iff:

@ it is non-decreasing: z1 < x3 = Fx(x1) < Fx(z2);

o lim Fx(z)=0;

T—r—00
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Properties of Distribution Functions

Fx : R — [0, 1] is the distribution function of some r.v. X iff:
@ it is non-decreasing: z1 < x3 = Fx(x1) < Fx(z2);

o lim Fx(z)=0;

T—r—00

o lim Fx(z)=1,

T—r—+00
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Properties of Distribution Functions

Fx : R — [0, 1] is the distribution function of some r.v. X iff:
@ it is non-decreasing: z1 < x3 = Fx(x1) < Fx(z2);

o lim Fx(z)=0;

T—r—00

o lim Fx(z)=1,
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@ it is right semi-continuous: lim Fx(z) = Fx(z)
z—zt
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Properties of Distribution Functions

Fx : R — [0, 1] is the distribution function of some r.v. X iff:
@ it is non-decreasing: z1 < x3 = Fx(x1) < Fx(z2);

o lim Fx(z)=0;

T—r—00

o lim Fx(z)=1,

T—r—+00

@ it is right semi-continuous: lim Fx(z) = Fx(z)
z—zt

Further properties:
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Properties of Distribution Functions

Fx : R — [0, 1] is the distribution function of some r.v. X iff:
@ it is non-decreasing: z1 < x3 = Fx(x1) < Fx(z2);

o lim Fx(z)=0;

T—r—00

o lim Fx(z)=1,

T—r—+00

@ it is right semi-continuous: lim Fx(z) = Fx(z)
z—zt

Further properties:

o P(X =2)=fx(z)=Fx(z) — lim Fx(z);

zZ—x
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Properties of Distribution Functions

Fx : R — [0, 1] is the distribution function of some r.v. X iff:
@ it is non-decreasing: z1 < x3 = Fx(x1) < Fx(z2);

o lim Fx(z)=0;

T—r—00

o lim Fx(z)=1,

T—r—+00

@ it is right semi-continuous: lim Fx(z) = Fx(z)
z—zt

Further properties:

o P(X =2)=fx(z)=Fx(z) — lim Fx(z);

zZ—x

o P(z < X <y)=Fx(y) — Fx(2);
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Properties of Distribution Functions

Fx : R — [0, 1] is the distribution function of some r.v. X iff:
@ it is non-decreasing: z1 < x3 = Fx(x1) < Fx(z2);

o lim Fx(z)=0;

T—r—00

o lim Fx(z)=1,

T—r—+00

@ it is right semi-continuous: lim Fx(z) = Fx(z)
z—zt

Further properties:

o P(X =2)=fx(z)=Fx(z) — lim Fx(z);

zZ—x

o P(z < X <y)=Fx(y) — Fx(2);

o P(X >z)=1- Fx(x).
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Important Discrete Random Variables
e Uniform: X € {z1,...,zx}, pmf fx(z;) =1/K.
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Important Discrete Random Variables
e Uniform: X € {z1,...,zx}, pmf fx(z;) =1/K.

e Bernoulli RV: X € {0,1}, pmf fx(z) = { 1 ﬁp z ii(l)

11—z

Can be written compactly as fx(z) = p*(1 — p)
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Important Discrete Random Variables
e Uniform: X € {z1,...,zx}, pmf fx(z;) =1/K.

e Bernoulli RV: X € {0,1}, pmf fx(z) = { 1 ﬁp z ii(l)

11—z

Can be written compactly as fx(z) = p*(1 — p)

e Binomial RV: X € {0,1,...,n} (sum of n Bernoulli RVs)

fx(x) = Binomial(z; n,p) = (Z)Z)x (1 _p)(n—x)
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Important Discrete Random Variables
e Uniform: X € {z1,...,zx}, pmf fx(z;) =1/K.

e Bernoulli RV: X € {0,1}, pmf fx(z) = { 1 gp z ii(l)

11—z

Can be written compactly as fx(z) = p*(1 — p)

e Binomial RV: X € {0,1,...,n} (sum of n Bernoulli RVs)

fx(x) = Binomial(z; n,p) = (Z)Z)x (1 _p)(n—x)

* p=0.5 andn=20
= p=0.7 and n=20
* p=0.5 and n=d0

Binomial coefficients
(“n choose z"):
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Other Important Discrete Random Variables

e Geometric(p): X € N, pmf fx(z) = p(1 —p)*~L.
(e.g., number of trials until the first success).
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Other Important Discrete Random Variables
e Geometric(p): X € N, pmf fx(z) = p(1 —p)*~L.
(e.g., number of trials until the first success).
eTANT
x!

Notice that 350 &+ = e, thus 320 fx(z) = L.

e Poisson(\): X € NU {0}, pmf fx(x) =

“...probability of the number of independent occurrences in a fixed
(time/space) interval if these occurrences have known average rate”

0.40—
0.35f
0.30f

0 5 10 15 20
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Random Variables: Distribution Function
e Distribution function: Fx(z) =P({w € X : X(w) < z})
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Random Variables: Distribution Function
e Distribution function: Fx(z) =P({w € X : X(w) < z})

fX(xi)

IS
S
=N
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Random Variables: Distribution Function
e Distribution function: Fx(z) =P({w € X : X(w) < z})

Fx(@) fx ()

@ Probability density function (pdf, continuous RV): fx(z)
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Random Variables: Distribution Function
e Distribution function: Fx(z) =P({w € X : X(w) < z})

Fx(@) fx ()

° Probability density function (pdf, continuous RV): fx(z)

/fX du,
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Random Variables: Distribution Function
e Distribution function: Fx(z) =P({w € X : X(w) < z})

Fx(@) fx ()

° Probability density function (pdf, continuous RV): fx(z)
d
/ fx(u)du, P(X € e, d]) :/ fx(x)dz,
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Random Variables: Distribution Function
e Distribution function: Fx(z) =P({w € X : X(w) < z})

° Probability density function (pdf, continuous RV): fx(x)
d
/ Fx(w)du, B(X € [c,d)) :/ fx(@)dz, P(X=1)=0
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Important Continuous Random Variables

ﬁ < z€a, ]

o Uniform: fx(x) = Uniform(z; a,b) = { 0 <« zd]a,b]

(previous slide).
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Important Continuous Random Variables

<= zcla,l
. . — i : = b—a ’
e Uniform: fx(x) = Uniform(z;a,b) { 0 <« z¢la, b
(previous slide).

1 (w—p)?
o Gaussian: fx(z) = N(z;p,0?) = ———=c 242
V2mo?
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Important Continuous Random Variables
A < z€la,b]

e Uniform: fx(x) = Uniform(z;a,b) = { 0 <« zda, b

(previous slide).

1 _(@-w?

o Gaussian: fx(z) = N(z;u,0?) = ﬁe 202
o

1.6

14 —— A=05

02— ]
T 12 A=1
oo — 1 A=15

{IREYAV /AR I\

1588
segs

==T=
oo |

ol

ol =\ ] 0

0.0

e M = >0
0 <= <0

e Exponential: fx(z) = Exp(z;\) = {
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Expectation of Random Variables

szfX(l'z) X e {ml,...xK} CcR
@ Expectation: E(X) = =
/ x fx(x)dx X continuous

—00
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Expectation of Random Variables

Zl‘i fx(:vl) X € {xl,...xK} CcR
@ Expectation: E(X) = -
/ x fx(x)dx X continuous

—00

e Example: Bernoulli, fx(x) = p* (1 — p)'==, for x € {0, 1}.
E(X)=0(1-p)+1p=p.
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Expectation of Random Variables
Zl‘zfx(:vl) X € {l‘l,...wK}CR
@ Expectation: E(X) = /olo

x fx(x)dx X continuous
—00

e Example: Bernoulli, fx(x) = p* (1 — p)'==, for x € {0, 1}.
E(X)=0(1-p)+1p=p.

e Example: Binomial, fx(z) = (7)p* (1 — p)" %, for z € {0,...,n}.
E(X)=np.
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Expectation of Random Variables
Zl‘zfx(:vl) X € {l‘l,...wK}CR
@ Expectation: E(X) = /olo

x fx(x)dx X continuous
—00

e Example: Bernoulli, fx(x) = p* (1 — p)'==, for x € {0, 1}.
E(X)=0(1-p) +1p=np.

e Example: Binomial, fx(z) = (7)p* (1 — p)" %, for z € {0,...,n}.
E(X)=np.

e Example: Gaussian, fx(z) = N(z;pu,0%). E(X) = p.
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Expectation of Random Variables
Zl‘i fx(:vl) X € {l‘l,...xK} CcR

@ Expectation: E(X) = 00
/ x fx(x)dx X continuous
—00

e Example: Bernoulli, fx(x) = p* (1 — p)'==, for x € {0, 1}.
E(X)=0(1-p) +1p=np.

e Example: Binomial, fx(z) = (7)p* (1 — p)" %, for z € {0,...,n}.
E(X)=np.

e Example: Gaussian, fx(z) = N(z;pu,0%). E(X) = p.

@ Linearity of expectation:

E(X +Y) =E(X)+E(Y); E@X)=aEX), aeR
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Expectation of Functions of Random Variables
Zg(:ci)fx(xi) X discrete, g(x;) € R
o E(y(X)) = /oi

g(x) fx(x)dx X continuous

—0o0
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Expectation of Functions of Random Variables
Zg(:ci)fx(xi) X discrete, g(x;) € R
o E(y(X)) = /oi

g(x) fx(x)dx X continuous

—0o0

@ Example: variance, var(X) = IE((X - ]E(X))2>
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Expectation of Functions of Random Variables
Zg(:ci)fx(xi) X discrete, g(x;) € R
o E(y(X)) = /oi

g(x) fx(x)dx X continuous

—0o0

@ Example: variance, var(X) = E((X - ]E(X))2> =E(X?) - E(X)?

@ Example: Bernoulli variance, E(X?) = E(X) =p
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Expectation of Functions of Random Variables
Zg(:ci)fx(xi) X discrete, g(x;) € R
o E(y(X)) = /oi

g(x) fx(x)dx X continuous

@ Example: variance, var(X) = E((X - ]E(X))2> =E(X?) - E(X)?

@ Example: Bernoulli variance, E(X?) = E(X) = p, thus var(X) = p(1 — p).
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Expectation of Functions of Random Variables
Zg(:ci)fx(a?i) X discrete, g(x;) € R
o E(y(X)) = /oi

g(x) fx(x)dx X continuous

@ Example: variance, var(X) = E((X - ]E(X))2> =E(X?) - E(X)?

@ Example: Bernoulli variance, E(X?) = E(X) = p, thus var(X) = p(1 — p).

e Example: Gaussian variance, E((X — p)?) = o2

Mario A. T. Figueiredo (IST & IT) LxMLS 2016: Probability Theory July 21, 2016 18 / 40



Expectation of Functions of Random Variables
Zg(:ci)fx(a?i) X discrete, g(x;) € R
o E(y(X)) = /oi

g(x) fx(x)dx X continuous

—0o0

Example: variance, var(X) = E((X - ]E(X))2> =E(X?) - E(X)?

Example: Bernoulli variance, E(X?) = E(X) = p, thus var(X) = p(1 — p).

Example: Gaussian variance, E((X — p)?) = o2

Probability as expectation of indicator, 14(z) = { é z i ;j

P(X €A = /Afx(ac) dx = /lA(az) fx(x)de =E(14(X))

Mario A. T. Figueiredo (IST & IT) LxMLS 2016: Probability Theory July 21, 2016 18 / 40



Two (or More) Random Variables
e Joint pmf of two discrete RVs:  fxy(z,y) =P(X =2 A Y =y).

Extends trivially to more than two RVs.
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Extends trivially to more than two RVs.

e Joint pdf of two continuous RVs: fx y(z,y), such that

P((X,Y) € A) = //A Ixy(x,y)dz dy, A€ o(R?)
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Two (or More) Random Variables
e Joint pmf of two discrete RVs:  fxy(z,y) =P(X =2 A Y =y).

Extends trivially to more than two RVs.

e Joint pdf of two continuous RVs: fx y(z,y), such that

P((X,Y) € A) = //A Ixy(x,y)dz dy, A € o(R?)

Extends trivially to more than two RVs.

Z Ixy(z,y), if X is discrete

e Marginalization: fy(y) =

/ fxy(x,y)dz, if X continuous
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Two (or More) Random Variables

e Joint pmf of two discrete RVs:  fxy(z,y) =P(X =2 A Y =y).

Extends trivially to more than two RVs.

e Joint pdf of two continuous RVs: fx y(z,y), such that

P(XY)ed) = [ [ frylpdedy,  Aeo(®)
A
Extends trivially to more than two RVs.
Z Ixy(z,y), if X is discrete

e Marginalization: fy(y) = ¢
/ fxy(x,y)dz, if X continuous
—0o0

@ Independence:

XLY & fxy(z,y) = fx(@) fy(y)
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Two (or More) Random Variables
e Joint pmf of two discrete RVs:  fxy(z,y) =P(X =2 A Y =y).

Extends trivially to more than two RVs.

e Joint pdf of two continuous RVs: fx y(z,y), such that

P((X,Y) € A) = //A Ixy(x,y)dz dy, A € o(R?)

Extends trivially to more than two RVs.

Z Ixy(z,y), if X is discrete
e Marginalization: fy(y) = ¢
/ fxy(x,y)dz, if X continuous

—0o0

@ Independence:

X LY & fry(ey) = fx(@) frl) [ E(XY)=EX)EY).
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Conditionals and Bayes' Theorem

e Conditional pmf (discrete RVs):

fxy(rly) =P(X =z|Y =y) = PX =2 NY =y) _ fX,Y(way).

P(Y =y)  fr(y)
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Conditionals and Bayes' Theorem

e Conditional pmf (discrete RVs):

fxy (@ly) =P(X =z|Y =y) = PX =2 AY=y) fxy(zy)

P(Y =y) ()

fX,Y(fl?,y)
fr(y)

e Conditional pdf (continuous RVs): fxy(z]y) =

...the meaning is technically delicate.
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Conditionals and Bayes' Theorem

e Conditional pmf (discrete RVs):

fxy (@ly) =P(X =z|Y =y) = PX =2 AY=y) fxy(zy)

P(Y =y) ()

fX,Y(fl?,y)
fr(y)

e Conditional pdf (continuous RVs): fxy(z]y) =

...the meaning is technically delicate.

. fyix () fx ()

e Bayes’ theorem: fxy(zly) =

(pdf or pmf).

fy(y)
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Conditionals and Bayes' Theorem

e Conditional pmf (discrete RVs):

fxyy (@ly) =P(X =z|Y =y) = PX =2 AY=y) fxy(zy)

P(Y =y) ()

fX,Y(fl?,y)

e Conditional pdf (continuous RVs): fxy(z]y) = e ()
vy

...the meaning is technically delicate.

o Bayes’ theorem: fx|y(z|y) = fYX(;/laE;)fX(x)

(pdf or pmf).

@ Also valid in the mixed case (e.g., X continuous, Y discrete).
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Joint, Marginal, and Conditional Probabilities: An Example
@ A pair of binary variables X,Y € {0, 1}, with joint pmf:

Ixy(z,y) Y=0 T=1
X=0 1/5 2/5
X=1 1/10 3/10
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Joint, Marginal, and Conditional Probabilities: An
@ A pair of binary variables X,Y € {0, 1}, with joint pmf:

Ixy (@) r=0 r=1
X=0 1/5 2/5
X=1 1/10 3/10
e Marginals: fX(O):%-i—%:%, fX(l):%.q_%:%’
RO =t k=8 KO =2+h=4
July 21, 2016

LxMLS 2016: Probability Theory
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Joint, Marginal, and Conditional Probabilities: An Example

@ A pair of binary variables X,Y € {0, 1}, with joint pmf:

Mario A. T. Figueiredo (IST & IT)

LxMLS 2016: Probability Theory

fxy(z,y) r=0 r=1
X=0 1/5 2/5
X=1 1/10 3/10
e 1,2 1 4
e Marginals: fx(0)=1+2=2, fx()=%+3 =24,
1,1 3 2, 3 7
frO)=z+5=17 MO =5+7=1
o Conditional probabilities:
Ixy(zly) r=0 r=1 fyix (y|a) =0 r=1
X=0 2/3 4/7 Y=0 1/3 2/3
X=1I 1/3 3/7 X=1 1/4 3/4
July 21, 2016 21 / 40



An Important Multivariate RV: Multinomial
e Multinomial: X = (X1,..., Xg), X; € {0,...,n}, such that
> Xi=n,

X
" K)p:flpgz'”pkK = izi=n

fX(xla---axK):{ (a:lxz e O - le#n

n n!
Xr1 X9 " TK 1'1!:62!'“%}(!

Parameters: p1,...,px > 0, such that >, p; = 1.
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An Important Multivariate RV: Multinomial

e Multinomial: X = (X1,...,Xk), X; € {0, ...,n}, such that
>iXi=n,

n T o T K L —
K)pl Py’ et = YTmi=n

fX(xla---axK):{ (a)lacz e 0 - le?én

n B n!
Xr1 X9 " TK CUl!ZUQ!"‘.TK!

Parameters: p1,...,px > 0, such that >, p; = 1.

@ Generalizes the binomial from binary to K-classes.
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An Important Multivariate RV: Multinomial

e Multinomial: X = (X1,...,Xk), X; € {0, ...,n}, such that
) PUPS S & Ymi=n

fX(xla---axK):{ (acla:Q e O - le#n

n B n!
Xr1 X9 " TK l'l!iUQ!"‘.TK!

Parameters: p1,...,px > 0, such that >, p; = 1.

@ Generalizes the binomial from binary to K-classes.

e Example: tossing n independent fair dice, p; = -+ = pg = 1/6.
x; = number of outcomes with i dots. Of course, ZZ T; =n.
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An Important Multivariate RV: Gaussian
@ Multivariate Gaussian: X € R"™,

3@ )

1
fx(x) =N(z;p,C) = mexp ( 5
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An Important Multivariate RV: Gaussian

@ Multivariate Gaussian: X € R"™,

Sy W - )

1
fx(x) =N(z;p,C) = mexp ( 5

@ Parameters: vector u € R™ and matrix C € R™*",
Expected value: E(X) = . Meaning of C: next slide.
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An Important Multivariate RV: Gaussian

@ Multivariate Gaussian: X € R"™,

Sy W - )

1
fx(x) =N(z;p,C) = mexp ( 5

@ Parameters: vector u € R™ and matrix C € R™*",
Expected value: E(X) = . Meaning of C: next slide.

Probability Density
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Covariance, Correlation, and all that...

@ Covariance between two RVs:

cov(X,Y) =E [(X ~E(X)) (Y - E(Y))} = E(XY) - E(X)E(®Y)
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Covariance, Correlation, and all that...

@ Covariance between two RVs:

cov(X,Y) = E[(X ~E(X)) (Y - E(Y))} — E(XY) - E(X)E(Y)

@ Relationship with variance: var(X) = cov(X, X).
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Covariance, Correlation, and all that...

@ Covariance between two RVs:

cov(X,Y) = E[(X ~E(X)) (Y - E(Y))} — E(XY) - E(X)E(Y)

@ Relationship with variance: var(X) = cov(X, X).

e Correlation: corr(X,Y) = p(X,Y) = \/VB‘I:’(())\;())\(}}\:;I’(Y) €[-1, 1]
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Covariance, Correlation, and all that...

@ Covariance between two RVs:

wWXJj:E“X—EMw(Y—MYM — E(XY) - E(X)E(Y)

@ Relationship with variance: var(X) = cov(X, X).

e Correlation: corr(X,Y) = p(X,Y) = Cov(X.Y) €[-1, 1]

—yvar(x)/var(y)

o X LY & fxy(zy) = fx(2) fr(y)
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Covariance, Correlation, and all that...

@ Covariance between two RVs:

cov(X,Y) = E[(X ~E(X)) (Y - E(Y))} — E(XY) - E(X)E(Y)

@ Relationship with variance: var(X) = cov(X, X).

e Correlation: corr(X,Y) = p(X,Y) = \/vai?)\;()i(/’}\:a)nr()/) €[-1, 1]

e X LY & fry(r.y)=fx() fr(y) [ cov(X,¥)=0.
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Covariance, Correlation, and all that...

@ Covariance between two RVs:

cov(X,Y) = E[(X ~E(X)) (Y - E(Y))} — E(XY) - E(X)E(Y)

@ Relationship with variance: var(X) = cov(X, X).
e Correlation: corr(X,Y) = p(X,Y) = \/vai?)\;())\(/’}\:a)lr(Y) €[-1, 1]
=

e X 1Y & fxy(z,y) = fx(z) fr(y) & cov(X,Y) =0.

Covariance matrix of multivariate RV, X € R™:

cov(X) = E[(X —E(X)) (X — E(X))T] — E(X X7) — E(X)E(X)T
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Covariance, Correlation, and all that...

@ Covariance between two RVs:

cov(X,Y) = E[(X ~E(X)) (Y - E(Y))} — E(XY) - E(X)E(Y)

Relationship with variance: var(X) = cov(X, X).

Correlation: corr(X,Y) = p(X,Y) = \/vai?)\;()i(/’}\:a)nr(}/) €[-1, 1]

e X LY & fry(r.y)=fx() fr(y) [ cov(X,¥)=0.

Covariance matrix of multivariate RV, X € R™:

cov(X) = E[(X —E(X)) (X — E(X))T] — E(X X7) — E(X)E(X)T

e Covariance of Gaussian RV, fx(z) = N(z;p,C) = cov(X)=C

Mario A. T. Figueiredo (IST & IT) LxMLS 2016: Probability Theory July 21, 2016 24 / 40




More on Expectations and Covariances

Let A € R* "™ be a matrix and a € R™ a vector.
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More on Expectations and Covariances

Let A € R™ "™ be a matrix and a € R" a vector.

o fE(X)=pand Y = AX, then E(Y) = Ap;
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More on Expectations and Covariances

Let A € R™ "™ be a matrix and a € R" a vector.
o IfE(X)=pandY = AX, then E(Y) = Ay;

o fE(X)=pandY =X — p, then E(Y) =0;
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More on Expectations and Covariances

Let A € R™ "™ be a matrix and a € R™ a vector.
o fE(X)=pand Y = AX, then E(Y) = Ap;
o fE(X)=pandY =X — p, then E(Y) =0;

o If cov(X)=C and Y = AX, then cov(Y) = ACAT;
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More on Expectations and Covariances

Let A € R™*™ be a matrix and a € R™ a vector.
o IfE(X)=pandY = AX, then E(Y) = Ay;
o fE(X)=pandY =X — p, then E(Y) =0;
o If cov(X)=C and Y = AX, then cov(Y) = ACAT;

o If cov(X)=C and Y = a’ X € R, then var(Y) = a’Ca > 0;
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More on Expectations and Covariances

Let A € R " be a matrix and a € R" a vector.
o fE(X)=pand Y = AX, then E(Y) = Ap;
o fE(X)=pand Y =X — pu, then E(Y) = 0;
o If cov(X)=C and Y = AX, then cov(Y) = ACAT;
o If cov(X)=C and Y = a’ X € R, then var(Y) = a’Ca > 0;

o Ifcov(X)=CandY = C~Y2X  then cov(Y) =1;
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More on Expectations and Covariances

Let A € R " be a matrix and a € R" a vector.
o fE(X)=pand Y = AX, then E(Y) = Ay,
o fE(X)=pand Y =X — pu, then E(Y) = 0;
o If cov(X)=C and Y = AX, then cov(Y) = ACAT;
o If cov(X)=C and Y = a’ X € R, then var(Y) = a’Ca > 0;

o Ifcov(X)=CandY = C~Y2X  then cov(Y) =1;

Combining the 2-nd and the 4-th facts is called standardization
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Statistical Inference

@ Scenario: observed RV Y, depends on unknown variable(s) X.
Goal: given an observation Y =y, infer X.
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Statistical Inference

@ Scenario: observed RV Y, depends on unknown variable(s) X.
Goal: given an observation Y =y, infer X.

@ Two main philosophies:
Frequentist: X = x is fixed, but unknown;
Bayesian: X is a RV with pdf/pmf fx(x) (the prior)
prior < knowledge about X
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Statistical Inference

@ Scenario: observed RV Y, depends on unknown variable(s) X.
Goal: given an observation Y =y, infer X.

@ Two main philosophies:
Frequentist: X = x is fixed, but unknown;
Bayesian: X is a RV with pdf/pmf fx(x) (the prior)
prior < knowledge about X

@ In both philosophies, a central object is fy|x (y|x)
several names: likelihood function, observation model,...
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Statistical Inference

@ Scenario: observed RV Y, depends on unknown variable(s) X.
Goal: given an observation Y =y, infer X.

@ Two main philosophies:
Frequentist: X = x is fixed, but unknown;
Bayesian: X is a RV with pdf/pmf fx(x) (the prior)
prior < knowledge about X

@ In both philosophies, a central object is fy|x (y|x)
several names: likelihood function, observation model,...

@ This in not machine learning! fy x(y,x) is assumed known.
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Statistical Inference

@ Scenario: observed RV Y, depends on unknown variable(s) X.
Goal: given an observation Y =y, infer X.

@ Two main philosophies:
Frequentist: X = x is fixed, but unknown;
Bayesian: X is a RV with pdf/pmf fx(x) (the prior)
prior < knowledge about X

In both philosophies, a central object is fy|x (y|z)
several names: likelihood function, observation model,...

@ This in not machine learning! fy x(y,x) is assumed known.

In the Bayesian philosophy, all the knowledge about X is carried by

fX|Y(1'|y) _ fY|X(y’$) fx(m) B fY,X(y,SC)

fr(y)  fr(y)

...the posterior (or a posteriori) pdf/pmf.
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Statistical Inference

@ The posterior pdf/pmf fx|y(z|y) has all the information/knowledge
about X, given Y = y (conditionality principle).
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Statistical Inference

@ The posterior pdf/pmf fx|y(z|y) has all the information/knowledge
about X, given Y = y (conditionality principle).

@ How to make an optimal “guess” Z about X, given this information?
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Statistical Inference

@ The posterior pdf/pmf fx|y(z|y) has all the information/knowledge
about X, given Y = y (conditionality principle).

@ How to make an optimal “guess” Z about X, given this information?

@ Need to define “optimal”: loss function: L(Z,z) > 0 measures

"o~

“loss” / "cost” incurred by “guessing” T if truth is .
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Statistical Inference

@ The posterior pdf/pmf fx|y(z|y) has all the information/knowledge
about X, given Y = y (conditionality principle).

@ How to make an optimal “guess” Z about X, given this information?

@ Need to define “optimal”: loss function: L(Z,z) > 0 measures
“loss” / “cost” incurred by “guessing” T if truth is x.

@ The optimal Bayesian decision minimizes the expected loss:
EBayes = arg m,inE[L('/fa X)’Y = y]
x

where

/L(f, ) fx|v(z|y) dz, continuous (estimation)

Z L(z,x) fxy(xly), discrete (classification)
x

E[L(z, X)|Y =y] =
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Classical Statistical Inference Criteria

e Consider that X € {1, ..., K} (discrete/classification problem).
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Classical Statistical Inference Criteria
e Consider that X € {1, ..., K} (discrete/classification problem).

e Adopt the 0/1 loss: L(Z,z) =0, if ¥ = z, and 1 otherwise.
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Classical Statistical Inference Criteria
e Consider that X € {1, ..., K} (discrete/classification problem).
o Adopt the 0/1 loss: L(z,z) =0, if = x, and 1 otherwise.

@ Optimal Bayesian decision:

K
EU\Bayes = arg rna:in Z L(§7 x) fX\Y(ka)

r=1

= arg mgin (1 - fxv(@ly))

Zargm,xélexw(ﬂy) = TmaP

MAP = maximum a posteriori criterion.
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Classical Statistical Inference Criteria
e Consider that X € {1, ..., K} (discrete/classification problem).
o Adopt the 0/1 loss: L(z,z) =0, if = x, and 1 otherwise.

@ Optimal Bayesian decision:

K
EU\Bayes = arg rna:in Z L(/i? l’) fX\Y(xky)
r=1

= arg m%n (1 - fxv(@ly))

= argmax fx|y (Z|y) = Tmap
T
MAP = maximum a posteriori criterion.

@ Same criterion can be derived for continuous X
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Classical Statistical Inference Criteria

o Consider the MAP criterion Zyap = argmax, fx|y (z|y)
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Classical Statistical Inference Criteria
o Consider the MAP criterion Zyap = argmax, fx|y (z|y)
o From Bayes law:

o Frix(le) fx (@)
IMAP = arg max

x Iy (y)

...only need to know posterior fx|y(z|y) up to a normalization factor.

= arg max fy\X(Z/|x) fx ()
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Classical Statistical Inference Criteria

o Consider the MAP criterion Zyap = argmax, fx|y (z|y)

o From Bayes law:

o Frix(le) fx (@)
IMAP = arg max

x Iy ()

...only need to know posterior fx|y(z|y) up to a normalization factor.

= arg max fy\X(Z/|CU) fx ()

@ Also common to write:
Imap = arg max, (log fy|x (y|z) + log fx (x))
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Classical Statistical Inference Criteria

o Consider the MAP criterion Zyap = argmax, fx|y (z|y)

o From Bayes law:

o Frix(le) fx (@)
IMAP = arg max

x Iy (y)

...only need to know posterior fx|y(z|y) up to a normalization factor.

= arg max fy\X(Z/|CC) fx ()

@ Also common to write:
Imap = arg max, (log fy|x (y|z) + log fx (x))

o If the prior if flat, fx(z) = C, then,

Tmap = arg max fyix(ylz) = Zme

ML = maximum likelihood criterion.
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Statistical Inference: Example

@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs:
Y = (W,...,Y,), with V; € {0, 1}.

Common pmf fy; x(ylz) = z¥(1 — )Y, where z € [0, 1].
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Statistical Inference: Example

@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs:
Y = (W,...,Y,), with V; € {0, 1}.

Common pmf fy; x(ylz) = z¥(1 — )Y, where z € [0, 1].

o Likelihood function: fy|x (Y1, ynlz) = H:Uy"(l — )l 7%

Log-likelihood function:

Zyz

10g fy|x (Y1, - yn|x) = nlog(l — ) + log -
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Statistical Inference: Example

@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs:

Y = (Y1,..,Y,), with V; € {0,1}.

Common pmf fy; x(ylz) = z¥(1 — )Y, where z € [0, 1].

o Likelihood function: fy|x (Y1, ynlz) = H:Uy"(l — )l 7%

Log-likelihood function:

Zyz

10g fy|x (Y1, - yn|x) = nlog(l — ) + log -

@ Maximum likelihood: Zp = arg max, fy|x (ylx) = Zy@
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Statistical Inference: Example

@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs:
Y = (W,...,Y,), with V; € {0, 1}.

Common pmf fy; x(ylz) = z¥(1 — )Y, where z € [0, 1].

o Likelihood function: fy|x (Y1, ynlz) = H:Uy"(l — )l 7%

Log-likelihood function:

Zyz

10g fy|x (Y1, - yn|x) = nlog(l — ) + log -

@ Maximum likelihood: Zp = arg max, fy|x (ylx) = Zy@

e Example: n = 10, observed y = (1,1,1,0,1,0,0,1,1,1), Zm. = 7/10.
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Statistical Inference: Example (Continuation)
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
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Statistical Inference: Example (Continuation)
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
o Likelihood: .
P (s spnle) = [[ (1 = )17 =2 (1= )T
=1
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Statistical Inference: Example (Continuation)
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
o Likelihood: .
Frix (91, e gale) = [[2% (1 —2)' =% = 2500 (1 = g)»=Siw
=1

@ How to express knowledge that (e.g.) X is around 1/27 Convenient
choice: conjugate prior. Form of the posterior = form of the prior.

8.0 0.2 0.4 0.6 0.8 1.0
x
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Statistical Inference: Example (Continuation)
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
o Likelihood: .
Frix (91, e gale) = [[2% (1 —2)' =% = 2500 (1 = g)»=Siw
=1

@ How to express knowledge that (e.g.) X is around 1/27 Convenient
choice: conjugate prior. Form of the posterior = form of the prior.

> In our case, the Beta pdf
fx(@) cx® (1 —2)f~ L a,8>0

8.0 0.2 0.4 0.6 0.8 1.0
x
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Statistical Inference: Example (Continuation)
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
o Likelihood: .
Py (s o ymle) = [ 2% (1 —a)! =0 = 2a%ev (1 — g)=Zow

@ How to express knowledge that (e.g.) X is around 1/27 Convenient
choice: conjugate prior. Form of the posterior = form of the prior.

> In our case, the Beta pdf
fx(@) cx® (1 —2)f~ L a,8>0

» Posterior: fX|y(x|y)
xo‘71+zi yl(]_ _ :I}') —14n— Z Yi 15 -

8.0 0.2 0.4 0.6 0.8 10
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Statistical Inference: Example (Continuation)
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
o Likelihood: .
Py (s o ymle) = [ 2% (1 —a)! =0 = 2a%ev (1 — g)=Zow

@ How to express knowledge that (e.g.) X is around 1/27 Convenient
choice: conjugate prior. Form of the posterior = form of the prior.

> In our case, the Beta pdf
fx(@) cx® (1 —2)f~ L a,8>0

» Posterior: fX|y(x|y)
xo‘71+zi yl(]_ _ :I}') —14n— Z Yi 15 -

» MAP: i“\MAp = atd vl v

a+pB+n—2

8.0 0.2 0.4 0.6 0.8 10
x
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Statistical Inference: Example (Continuation)
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
o Likelihood: .
Py (s o ymle) = [ 2% (1 —a)! =0 = 2a%ev (1 — g)=Zow

@ How to express knowledge that (e.g.) X is around 1/27 Convenient
choice: conjugate prior. Form of the posterior = form of the prior.

> In our case, the Beta pdf
fx(@) cx® (1 —2)f~ L a,8>0

» Posterior: fX|y(x|y)
xo‘71+zi yl(]_ _ :I}') —14n— Z Yi 15 -

~ at+)d  yi—1 1.0
» MAP: IMAP = a+%+i_2
» Example: o =4, 8 =4, n =10, o / \\
Y= (171717031)070713131)1 °m;/ 02 04 06 08 \1\.0

EEMAP = 0.625 (recall EEML = 0.7)
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Another Classical Statistical Inference Criterion

o Consider that X € R (continuous/estimation problem).
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Another Classical Statistical Inference Criterion

o Consider that X € R (continuous/estimation problem).

e Adopt the squared error loss: L(Z,x) = (z — x)?
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Another Classical Statistical Inference Criterion

o Consider that X € R (continuous/estimation problem).
e Adopt the squared error loss: L(Z,x) = (z — x)?
@ Optimal Bayesian decision:
TBayes = argmin E[(Z — X)*Y =y
= argm%n 22 - 2ZE[X|Y =y
=E[X[Y =y] = Zvmse

MMSE = minimum mean squared error criterion.
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Another Classical Statistical Inference Criterion

o Consider that X € R (continuous/estimation problem).

e Adopt the squared error loss: L(Z,x) = (z — x)?

@ Optimal Bayesian decision:
§Bayes = arg nl}nIE[(f - X)2|Y = y]
T
= argmin 72 — 27 E[X|Y = 9]
T
=E[X|Y =y] = ZTmmse

MMSE = minimum mean squared error criterion.

@ Does not apply to classification problems.
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Back to the Bernoulli Example
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
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Back to the Bernoulli Example
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
o Likelihood: .
Frix (1o ynla) = 2% (1= 2) =% = 2w (1 a)r=Zow
i=1
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Back to the Bernoulli Example
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
o Likelihood: .
Frix (1o ynla) = 2% (1= 2) =% = 2w (1 a)r=Zow
i=1

> In our case, the Beta pdf
fx(@) cx® (1 —2)f~ L a,8>0

2.5
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Back to the Bernoulli Example
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
o Likelihood: .
Py (W1 e pal) = [ 2% (1= @)= = 2B (1 — )= Zom

i=1

> In our case, the Beta pdf
fx(@) cx® (1 —2)f~ L a,8>0 )

» Posterior: fX|Y($|2/)
pa—145, yi(l _ m) —14+n—>", vi 15
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Back to the Bernoulli Example
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.

@ Likelihood: .

Fyrix (U1, o nle) = [T 2% (1 — )70 = 22wt (1 — ) 2w
i=1
> In our case, the Beta pdf
fx(@) cx® (1 —2)f~ L a,8>0

» Posterior: fX|Y($|2/)
o145, vi(1 — m) —14n—3", i

~ +>, vi
» MMSE: TMMSE = o;+%+z
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Back to the Bernoulli Example
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
o Likelihood: .
Frix s ceynle) = [[ 2% (1 —2)' ¥ = oZev (1 — )= Towe

> In our case, the Beta pdf
fx(@) cx® (1 —2)f~ L a,8>0

» Posterior: fX|Y($|2/)
o145, vi(1 — m) —14n—3", i

~ +>, vi
» MMSE: TMMSE = o;+%+z

» Example: a =4, § =4, n =10,
y=(1,1,10,1,0,0,1,1,1),

Tmmse ~ 0.611 (recall that Zyap = 0.625, Zy = 0.7)
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Back to the Bernoulli Example
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
o Likelihood: .
Frix s ceynle) = [[ 2% (1 —2)' ¥ = oZev (1 — )= Towe

> In our case, the Beta pdf
fx(@) cx® (1 —2)f~ L a,8>0

» Posterior: fX|Y($|2/)
xa71+zi yz(]_ _ :IZ) —14+n—=>", v:

~ +>, vi
» MMSE: TMMSE = 0;+%+Z

» Example: a =4, § =4, n =10,
y=(1,1,10,1,0,0,1,1,1),

Tmmse ~ 0.611 (recall that Zyap = 0.625, Zy = 0.7)

o Conjugate prior equivalent to “virtual” counts;
often called smoothing in NLP and ML.
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The Bernstein-Von Mises Theorem

@ In the previous example, we had
n=10, y=(1,1,1,0,1,0,0,1,1,1), thus >, v; =T7.
With a Beta prior with « = 4 and 8 = 4, we had

. . 3+ . 443y
=0.7 = —=% = (0.625 = =7 ~(.61]
ML ,  TMAP 6n ,  TMMSE Sr
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The Bernstein-Von Mises Theorem

@ In the previous example, we had
n=10, y=(1,1,1,0,1,0,0,1,1,1), thus >, v; =T7.
With a Beta prior with « = 4 and 8 = 4, we had

~ ~ 3+ ~
—0.7 =22V _ g go5 -
ML ; TMAP 6+ n ; TMMSE S+n
e Consider n =100, and ), y; = 70, with the same Beta(4,4) prior
L =0.7, = —E~0689 z = — ~0.685
me = 0.7, Zmap = 750 = 0689, Immse = 752 = -

... both Bayesian estimates are much closer to the ML.
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The Bernstein-Von Mises Theorem

@ In the previous example, we had
n=10, y=(1,1,1,0,1,0,0,1,1,1), thus >, v; =T7.
With a Beta prior with « = 4 and 8 = 4, we had

. . 3+2:Yi . 44> v
=0.7 = —"==10.625 = —=t" ~ (.61
ML ; TMAP 6+ n ; TMMSE S+n
e Consider n =100, and ), y; = 70, with the same Beta(4,4) prior
~ ~ 73 . 74
IML = 0.7, ~ 0.689, IMMSE = ———= X 0.685

TMAP = 106 108

... both Bayesian estimates are much closer to the ML.

@ This illustrates an important result in Bayesian inference: the
Bernstein-Von Mises theorem; under (mild) conditions,

lim Zyap = lim ZTmmse = Tm

message: if you have a lot of data, priors don’t matter much.
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Important Inequalities
o Cauchy-Schwartz's inequality for RVs:

E(XY]) < VE(X?)E(Y?)
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Important Inequalities
o Cauchy-Schwartz's inequality for RVs:

E(XY]) < VE(X?)E(Y?)

@ Recall that a real function g is convex if, for any z,y, and a € [0, 1]

glaz+ (1 —a)y) < ag(z) + (1 — a)g(y)

I I
non-convex convex
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Important Inequalities
o Cauchy-Schwartz's inequality for RVs:

E(XY]) < VE(X?)E(Y?)

@ Recall that a real function g is convex if, for any z,y, and a € [0, 1]

glaz+ (1 —a)y) < ag(z) + (1 — a)g(y)

I I
non-convex convex

Jensen’s inequality: if g is a real convex function, then

E(g9(X)) = g(E(X))
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Important Inequalities
o Cauchy-Schwartz's inequality for RVs:

E(XY]) < VE(X?)E(Y?)

@ Recall that a real function g is convex if, for any z,y, and a € [0, 1]

glaz+ (1 —a)y) < ag(z) + (1 — a)g(y)

non-convex convex

Jensen’s inequality: if g is a real convex function, then

E(g9(X)) = g(E(X))

Examples: E(X)? < E(X?) = var(X) =E(X?) -E(X)2>0.
E(log X) <logE(X), for X a positive RV.
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Entropy and all that...

Entropy of a discrete RV X € {1,...,K}: |H(X) = —fo(w) log fx ()
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Entropy and all that...

Entropy of a discrete RV X € {1, ..., K}: | H(X)

@ Positivity: H(X)
H(X)

Mario A. T. Figueiredo (IST & IT)

K

S fo(x) log fx ()

r=1

>0;
=0 & fx(i) =1, for exactly one i € {1,..., K'}.
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Entropy and all that...

K
Entropy of a discrete RV X € {1,...,K}: |H(X) = —fo(:r,) log fx(z)

r=1

@ Positivity: H(X) >
H(X)=

e Upper bound: H(X

0;
0 & fx(i) =1, for exactly one i € {1, ..., K'}.
)
)

log K < fx(z)=1/k, forallz e {1,.., K}
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Entropy and all that...

Entropy of a discrete RV X € {1, ..., K}: | H(X)

e Positivity: H(X)
H(X)

e Upper bound: H(X
H(X

>

0;
0 & fx(i) =1, for exactly one i € {1, ...,
)

<log K ;

)=log K < fx(z)=1/k, forall z € {1,...,

@ Measure of uncertainty/randomness of X

Mario A. T. Figueiredo (IST & IT)
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Entropy and all that...

K
Entropy of a discrete RV X € {1,...,K}: | H(X) = —fo(w) log fx(z)

r=1

@ Positivity: H(X) >0;
H(X)=0 < fx(i) =1, for exactly one i € {1, ..., K'}.
)

e Upper bound: H(X) <logK ;
H(X)=logK < fx(z)=1/k, forallze{1,..,K}

@ Measure of uncertainty/randomness of X

Continuous RV X, differential entropy: | A(X) = —/fX(ac) log fx(z)dx
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Entropy and all that...

Entropy of a discrete RV X € {1, ..., K}: | H(X)

K

= fx(x)log fx(x)

r=1

@ Positivity: H(X) >
H(X)=

e Upper bound: H(X) <logK ;

H(X)=logK & fx(z)=1/k, forall x € {1,...,

@ Measure of uncertainty/randomness of X

0;
0 & fx(i) =1, for exactly one i € {1, ...,
)

K}.

K}

Continuous RV X, differential entropy:

- / fx () log fx (x) dx

@ h(X) can be positive or negative. Example,
fx () = Uniform(z;a,b), h(X) = log(b —
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Entropy and all that...

Entropy of a discrete RV X € {1, ..., K}: | H(X)

K

= fx(x)log fx(x)

r=1

@ Positivity: H(X) >
H(X)=

e Upper bound: H(X) <logK ;

H(X)=logK & fx(z)=1/k, forall x € {1,...,

@ Measure of uncertainty/randomness of X

0;
0 & fx(i) =1, for exactly one i € {1, ...,
)

K}.

K}

Continuous RV X, differential entropy:

—/fX(ac)long(x)da:

@ h(X) can be positive or negative. Example,
fx () = Uniform(z;a,b), h(X) = log(b —

if

a).

o If fx(z) = N(z;p,0?), then h(X) = }log(2mea?).
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Entropy and all that...

Entropy of a discrete RV X € {1,..., K}: ZfX Vlog fx (x

e Positivity: H(X) >0;
H(X)=0 < fx(i) =1, for exactly one i € {1, ..., K'}.
)

e Upper bound: H(X) <logK ;
H(X)=logK & fx(z)=1/k, forallz e {l,..,K}

@ Measure of uncertainty/randomness of X

Continuous RV X, differential entropy: | A(X) = —/fX(a:) log fx(z)dx

@ h(X) can be positive or negative. Example, if
fx () = Uniform(z;a,b), h(X) =log(b — a).

o If fx(x) = N(z; 1,02), then h(X) = L log(2mea?).
o If var(Y) = o2, then h(Y) < 1log(2meo?)
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Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

D(fxllgx) = fo Eg
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Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

D(fxllgx) = fo 8

Positivity: D(fx|lgx) >
D(fxllgx) =

0
0 & fx(z)=gx(z), forxe{l,.., K}
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Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

D(fxllgx) = fo 83

Positivity: D(fx|lgx) >

0
D(fx|lgx) =0 & fx(z) =gx(z), forx € {1,...,K}

KLD between two pdf:

D(fxllgx) = / fx (@) log ggg i
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Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

D(fxllgx) = fo 83

Positivity: D(fx|lgx) >

0
D(fx|lgx) =0 & fx(z) =gx(z), forx € {1,...,K}

KLD between two pdf:

D(fxllgx) = / fx (@) log ggg i

Positivity: D(fx|lgx) >0
D(fxllgx) =0

< fx(z) = gx(x), almost everywhere
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Mutual information

Mutual information (MI) between two random variables:

I(X;Y) =D(fxyllfx fr)
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Mutual information

Mutual information (MI) between two random variables:

I(X;Y) =D(fxyllfx fr)

Positivity: 1(X;Y)
I(X;Y)

v

0
0 < X,Y are independent.
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Mutual information

Mutual information (MI) between two random variables:

I(X;Y) =D(fxyllfx fr)

Positivity: 1(X;Y)
I(X;Y)

v

0
0 < X,Y are independent.

Ml is a measure of dependency between two random variables
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Other Stuff

Note covered, but also very important for machine learning:

@ Exponential families,
@ Basic inequalities (Markov, Chebyshev, etc...)

@ Stochastic processes (Markov chains, hidden Markov models,...)
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Recommended Reading (Probability and Statistics)

o K. Murphy, “Machine Learning: A Probabilistic Perspective”, MIT
Press, 2012 (Chapter 2).

@ L. Wasserman, “All of Statistics: A Concise Course in Statistical
Inference”, Springer, 2004.
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