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Probability theory

The study of probability has roots in games of chance

Great names of science: Cardano, Fermat, Pascal, Laplace,
Kolmogorov, Bernoulli, Poisson, Cauchy, Boltzman, de Finetti, ...

Natural tool to model uncertainty, information, knowledge, belief,
observations, ...

...thus also learning, decision making, inference, science,...
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What is probability?

Classical definition: P(A) =
NA

N

...with N mutually exclusive equally likely outcomes,

NA of which result in the occurrence of A. Laplace, 1814

Example: P(randomly drawn card is ♣) = 13/52.

Example: P(getting 1 in throwing a fair die) = 1/6.

Frequentist definition: P(A) = lim
N→∞

NA

N

...relative frequency of occurrence of A in infinite number of trials.

Subjective probability: P(A) is a degree of belief. de Finetti, 1930s

...gives meaning to P(“it will rain tomorrow”).

Mário A. T. Figueiredo (IST & IT) LxMLS 2016: Probability Theory July 21, 2016 3 / 40



What is probability?

Classical definition: P(A) =
NA

N

...with N mutually exclusive equally likely outcomes,

NA of which result in the occurrence of A. Laplace, 1814

Example: P(randomly drawn card is ♣) = 13/52.

Example: P(getting 1 in throwing a fair die) = 1/6.

Frequentist definition: P(A) = lim
N→∞

NA

N

...relative frequency of occurrence of A in infinite number of trials.

Subjective probability: P(A) is a degree of belief. de Finetti, 1930s

...gives meaning to P(“it will rain tomorrow”).

Mário A. T. Figueiredo (IST & IT) LxMLS 2016: Probability Theory July 21, 2016 3 / 40



What is probability?

Classical definition: P(A) =
NA

N

...with N mutually exclusive equally likely outcomes,

NA of which result in the occurrence of A. Laplace, 1814

Example: P(randomly drawn card is ♣) = 13/52.

Example: P(getting 1 in throwing a fair die) = 1/6.

Frequentist definition: P(A) = lim
N→∞

NA

N

...relative frequency of occurrence of A in infinite number of trials.

Subjective probability: P(A) is a degree of belief. de Finetti, 1930s

...gives meaning to P(“it will rain tomorrow”).

Mário A. T. Figueiredo (IST & IT) LxMLS 2016: Probability Theory July 21, 2016 3 / 40



Key concepts: Sample space and events

Sample space X = set of possible outcomes of a random experiment.

Examples:
I Tossing two coins: X = {HH,TH,HT, TT}
I Roulette: X = {1, 2, ..., 36}
I Draw a card from a shuffled deck: X = {A♣, 2♣, ..., Q♦,K♦}.

An event A is a subset of X : A ⊆ X (also written A ∈ 2X ).

Examples:
I “exactly one H in 2-coin toss”:
A = {TH,HT} ⊂ {HH,TH,HT, TT}.

I “odd number in the roulette”: B = {1, 3, ..., 35} ⊂ {1, 2, ..., 36}.

I “drawn a ♥ card”: C = {A♥, 2♥, ...,K♥} ⊂ {A♣, ...,K♦}
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Key concepts: Sample space and events

Sample space X = set of possible outcomes of a random experiment.

(More delicate) examples:
I Distance travelled by tossed die: X = R+

I Location of the next rain drop on a given square tile: X = R2

Properly handling the continuous case requires deeper concepts:

I Let Σ be collection of subsets of X : Σ ⊆ 2X

I Σ is a σ−algebra if

F A ∈ Σ ⇒ Ac ∈ Σ

F A1, A2, ... ∈ Σ ⇒
∞⋃
i=1

Ai ∈ Σ

I Corollary: if Σ ⊂ 2X is a σ-algebra, ∅ ∈ Σ and X ∈ Σ

I Example in Rn: collection of Lebesgue-measurable sets is a σ−algebra.
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Kolmogorov’s Axioms for Probability

Probability is a function that maps events A into the interval [0, 1].

Kolmogorov’s axioms (1933) for probability P : Σ→ [0, 1]

I For any A, P(A) ≥ 0

I P(X ) = 1

I If A1, A2 ... ⊆ X are disjoint events, then P
(⋃
i

Ai

)
=
∑
i

P(Ai)

From these axioms, many results can be derived. Examples:

I P(∅) = 0

I C ⊂ D ⇒ P(C) ≤ P(D)

I P(A ∪B) = P(A) + P(B)− P(A ∩B)

I P(A ∪B) ≤ P(A) + P(B) (union bound)

Mário A. T. Figueiredo (IST & IT) LxMLS 2016: Probability Theory July 21, 2016 6 / 40



Kolmogorov’s Axioms for Probability

Probability is a function that maps events A into the interval [0, 1].

Kolmogorov’s axioms (1933) for probability P : Σ→ [0, 1]

I For any A, P(A) ≥ 0

I P(X ) = 1

I If A1, A2 ... ⊆ X are disjoint events, then P
(⋃
i

Ai

)
=
∑
i

P(Ai)

From these axioms, many results can be derived. Examples:

I P(∅) = 0

I C ⊂ D ⇒ P(C) ≤ P(D)

I P(A ∪B) = P(A) + P(B)− P(A ∩B)

I P(A ∪B) ≤ P(A) + P(B) (union bound)

Mário A. T. Figueiredo (IST & IT) LxMLS 2016: Probability Theory July 21, 2016 6 / 40



Kolmogorov’s Axioms for Probability

Probability is a function that maps events A into the interval [0, 1].

Kolmogorov’s axioms (1933) for probability P : Σ→ [0, 1]

I For any A, P(A) ≥ 0

I P(X ) = 1

I If A1, A2 ... ⊆ X are disjoint events, then P
(⋃
i

Ai

)
=
∑
i

P(Ai)

From these axioms, many results can be derived. Examples:

I P(∅) = 0

I C ⊂ D ⇒ P(C) ≤ P(D)

I P(A ∪B) = P(A) + P(B)− P(A ∩B)

I P(A ∪B) ≤ P(A) + P(B) (union bound)

Mário A. T. Figueiredo (IST & IT) LxMLS 2016: Probability Theory July 21, 2016 6 / 40



Kolmogorov’s Axioms for Probability

Probability is a function that maps events A into the interval [0, 1].

Kolmogorov’s axioms (1933) for probability P : Σ→ [0, 1]

I For any A, P(A) ≥ 0

I P(X ) = 1

I If A1, A2 ... ⊆ X are disjoint events, then P
(⋃
i

Ai

)
=
∑
i

P(Ai)

From these axioms, many results can be derived. Examples:

I P(∅) = 0

I C ⊂ D ⇒ P(C) ≤ P(D)

I P(A ∪B) = P(A) + P(B)− P(A ∩B)

I P(A ∪B) ≤ P(A) + P(B) (union bound)

Mário A. T. Figueiredo (IST & IT) LxMLS 2016: Probability Theory July 21, 2016 6 / 40



Kolmogorov’s Axioms for Probability

Probability is a function that maps events A into the interval [0, 1].

Kolmogorov’s axioms (1933) for probability P : Σ→ [0, 1]

I For any A, P(A) ≥ 0

I P(X ) = 1

I If A1, A2 ... ⊆ X are disjoint events, then P
(⋃
i

Ai

)
=
∑
i

P(Ai)

From these axioms, many results can be derived. Examples:

I P(∅) = 0

I C ⊂ D ⇒ P(C) ≤ P(D)

I P(A ∪B) = P(A) + P(B)− P(A ∩B)

I P(A ∪B) ≤ P(A) + P(B) (union bound)

Mário A. T. Figueiredo (IST & IT) LxMLS 2016: Probability Theory July 21, 2016 6 / 40



Conditional Probability and Independence

If P(B) > 0, P(A|B) =
P(A ∩B)

P(B)
(conditional prob. of A, given B)

...satisfies all of Kolmogorov’s axioms:

I For any A ⊆ X , P(A|B) ≥ 0

I P(X|B) = 1

I If A1, A2, ... ⊆ X are disjoint, then

P
(⋃
i

Ai

∣∣∣B) =
∑
i

P(Ai|B)

Independence: A, B are independent (denoted A ⊥⊥ B) if and only if

P(A ∩B) = P(A)P(B).
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Conditional Probability and Independence

If P(B) > 0, P(A|B) =
P(A ∩B)

P(B)

Events A, B are independent (A ⊥⊥ B) ⇔ P(A ∩B) = P(A)P(B).

Relationship with conditional probabilities:

A ⊥⊥ B ⇔ P(A|B) = P(A)

Example: X = “52 cards”, A = {3♥, 3♣, 3♦, 3♣}, and
B = {A♥, 2♥, ...,K♥}; then, P(A) = 1/13, P(B) = 1/4

P(A ∩B) = P({3♥}) =
1

52

P(A)P(B) =
1

13

1

4
=

1

52

P(A|B) = P(“3”|“♥”) =
1

13
= P(A)
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Bayes Theorem

Law of total probability: if A1, ..., An are a partition of X

P(B) =
∑
i

P(B|Ai)P(Ai)

=
∑
i

P(B ∩Ai)

Bayes’ theorem: if {A1, ..., An} is a partition of X

P(Ai|B) =
P(B ∩Ai)

P(B)
=

P(B|Ai) P(Ai)∑
i

P(B|Ai)P(Ai)
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Random Variables

A (real) random variable (RV) is a function: X : X → R

I Discrete RV: range of X is countable (e.g., N or {0, 1})
I Continuous RV: range of X is uncountable (e.g., R or [0, 1])

I Example: number of head in tossing two coins,
X = {HH,HT, TH, TT},
X(HH) = 2, X(HT ) = X(TH) = 1, X(TT ) = 0.
Range of X = {0, 1, 2}.

I Example: distance traveled by a tossed coin; range of X = R+.
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Random Variables: Distribution Function
Distribution function: FX(x) = P({ω ∈ X : X(ω) ≤ x})

Example: number of heads in tossing 2 coins; range(X) = {0, 1, 2}.

Probability mass function (discrete RV): fX(x) = P(X = x),

FX(x) =
∑
xi≤x

fX(xi).
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Properties of Distribution Functions

FX : R→ [0, 1] is the distribution function of some r.v. X iff:

it is non-decreasing: x1 < x2 ⇒ FX(x1) ≤ FX(x2);

lim
x→−∞

FX(x) = 0;

lim
x→+∞

FX(x) = 1;

it is right semi-continuous: lim
x→z+

FX(x) = FX(z)

Further properties:

P(X = x) = fX(x) = FX(x)− lim
z→x−

FX(z);

P(z < X ≤ y) = FX(y)− FX(z);

P(X > x) = 1− FX(x).
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Important Discrete Random Variables
Uniform: X ∈ {x1, ..., xK}, pmf fX(xi) = 1/K.

Bernoulli RV: X ∈ {0, 1}, pmf fX(x) =

{
p ⇐ x = 1

1− p ⇐ x = 0

Can be written compactly as fX(x) = px(1− p)1−x.

Binomial RV: X ∈ {0, 1, ..., n} (sum of n Bernoulli RVs)

fX(x) = Binomial(x;n, p) =

(
n

x

)
px (1− p)(n−x)

Binomial coefficients
(“n choose x”):(

n

x

)
=

n!

(n− x)!x!
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Other Important Discrete Random Variables
Geometric(p): X ∈ N, pmf fX(x) = p(1− p)x−1.
(e.g., number of trials until the first success).

Poisson(λ): X ∈ N ∪ {0}, pmf fX(x) =
e−λλx

x!

Notice that
∑∞

x=0
λx

x! = eλ, thus
∑∞

x=0 fX(x) = 1.

“...probability of the number of independent occurrences in a fixed
(time/space) interval if these occurrences have known average rate”
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Random Variables: Distribution Function

Distribution function: FX(x) = P({ω ∈ X : X(ω) ≤ x})

Example: continuous RV with uniform distribution on [a, b].

Probability density function (pdf, continuous RV): fX(x)

FX(x) =

∫ x

−∞
fX(u) du, P(X ∈ [c, d]) =

∫ d

c

fX(x) dx, P(X=x) = 0
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Important Continuous Random Variables

Uniform: fX(x) = Uniform(x; a, b) =

{
1
b−a ⇐ x ∈ [a, b]

0 ⇐ x 6∈ [a, b]
(previous slide).

Gaussian: fX(x) = N (x;µ, σ2) =
1√

2π σ2
e−

(x−µ)2

2σ2

Exponential: fX(x) = Exp(x;λ) =

{
λe−λx ⇐ x ≥ 0

0 ⇐ x < 0

Mário A. T. Figueiredo (IST & IT) LxMLS 2016: Probability Theory July 21, 2016 16 / 40



Important Continuous Random Variables

Uniform: fX(x) = Uniform(x; a, b) =

{
1
b−a ⇐ x ∈ [a, b]

0 ⇐ x 6∈ [a, b]
(previous slide).

Gaussian: fX(x) = N (x;µ, σ2) =
1√

2π σ2
e−

(x−µ)2

2σ2

Exponential: fX(x) = Exp(x;λ) =

{
λe−λx ⇐ x ≥ 0

0 ⇐ x < 0

Mário A. T. Figueiredo (IST & IT) LxMLS 2016: Probability Theory July 21, 2016 16 / 40



Important Continuous Random Variables

Uniform: fX(x) = Uniform(x; a, b) =

{
1
b−a ⇐ x ∈ [a, b]

0 ⇐ x 6∈ [a, b]
(previous slide).

Gaussian: fX(x) = N (x;µ, σ2) =
1√

2π σ2
e−

(x−µ)2

2σ2

Exponential: fX(x) = Exp(x;λ) =

{
λe−λx ⇐ x ≥ 0

0 ⇐ x < 0

Mário A. T. Figueiredo (IST & IT) LxMLS 2016: Probability Theory July 21, 2016 16 / 40



Expectation of Random Variables

Expectation: E(X) =


∑
i

xi fX(xi) X ∈ {x1, ...xK} ⊂ R∫ ∞
−∞

x fX(x) dx X continuous

Example: Bernoulli, fX(x) = px (1− p)1−x, for x ∈ {0, 1}.

E(X) = 0 (1− p) + 1 p = p.

Example: Binomial, fX(x) =
(
n
x

)
px (1− p)n−x, for x ∈ {0, ..., n}.

E(X) = n p.

Example: Gaussian, fX(x) = N (x;µ, σ2). E(X) = µ.

Linearity of expectation:
E(X + Y ) = E(X) + E(Y ); E(αX) = αE(X), α ∈ R
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Expectation of Functions of Random Variables

E(g(X)) =


∑
i

g(xi)fX(xi) X discrete, g(xi) ∈ R∫ ∞
−∞

g(x) fX(x) dx X continuous

Example: variance, var(X) = E
((
X − E(X)

)2)

= E(X2)− E(X)2

Example: Bernoulli variance, E(X2) = E(X) = p

, thus var(X) = p(1− p).

Example: Gaussian variance, E
(
(X − µ)2

)
= σ2.

Probability as expectation of indicator, 1A(x) =

{
1 ⇐ x ∈ A
0 ⇐ x 6∈ A

P(X ∈ A) =

∫
A
fX(x) dx =

∫
1A(x) fX(x) dx = E(1A(X))
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Example: Bernoulli variance, E(X2) = E(X) = p , thus var(X) = p(1− p).

Example: Gaussian variance, E
(
(X − µ)2

)
= σ2.

Probability as expectation of indicator, 1A(x) =

{
1 ⇐ x ∈ A
0 ⇐ x 6∈ A

P(X ∈ A) =

∫
A
fX(x) dx =

∫
1A(x) fX(x) dx = E(1A(X))
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Two (or More) Random Variables
Joint pmf of two discrete RVs: fX,Y (x, y) = P(X = x ∧ Y = y).

Extends trivially to more than two RVs.

Joint pdf of two continuous RVs: fX,Y (x, y), such that

P
(
(X,Y ) ∈ A

)
=

∫ ∫
A
fX,Y (x, y) dx dy, A ∈ σ(R2)

Extends trivially to more than two RVs.

Marginalization: fY (y) =


∑
x

fX,Y (x, y), if X is discrete∫ ∞
−∞

fX,Y (x, y) dx, if X continuous

Independence:

X ⊥⊥ Y ⇔ fX,Y (x, y) = fX(x) fY (y)

⇒
6⇐ E(X Y ) = E(X)E(Y )

.
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Conditionals and Bayes’ Theorem

Conditional pmf (discrete RVs):

fX|Y (x|y) = P(X = x|Y = y) =
P(X = x ∧ Y = y)

P(Y = y)
=
fX,Y (x, y)

fY (y)
.

Conditional pdf (continuous RVs): fX|Y (x|y) =
fX,Y (x, y)

fY (y)
...the meaning is technically delicate.

Bayes’ theorem: fX|Y (x|y) =
fY |X(y|x) fX(x)

fY (y)
(pdf or pmf).

Also valid in the mixed case (e.g., X continuous, Y discrete).
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Joint, Marginal, and Conditional Probabilities: An Example

A pair of binary variables X,Y ∈ {0, 1}, with joint pmf:

Marginals: fX(0) = 1
5 + 2

5 = 3
5 , fX(1) = 1

10 + 3
10 = 4

10 ,

fY (0) = 1
5 + 1

10 = 3
10 , fY (1) = 2

5 + 3
10 = 7

10 .

Conditional probabilities:
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An Important Multivariate RV: Multinomial

Multinomial: X = (X1, ..., XK), Xi ∈ {0, ..., n}, such that∑
iXi = n,

fX(x1, ..., xK) =

{ (
n

x1 x2 ··· xK

)
px11 px22 · · · p

xK
k ⇐

∑
i xi = n

0 ⇐
∑

i xi 6= n(
n

x1 x2 · · · xK

)
=

n!

x1!x2! · · · xK !

Parameters: p1, ..., pK ≥ 0, such that
∑

i pi = 1.

Generalizes the binomial from binary to K-classes.

Example: tossing n independent fair dice, p1 = · · · = p6 = 1/6.
xi = number of outcomes with i dots. Of course,

∑
i xi = n.
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An Important Multivariate RV: Gaussian

Multivariate Gaussian: X ∈ Rn,

fX(x) = N (x;µ,C) =
1√

det(2π C)
exp

(
−1

2
(x− µ)TC−1(x− µ)

)

Parameters: vector µ ∈ Rn and matrix C ∈ Rn×n.
Expected value: E(X) = µ. Meaning of C: next slide.
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Covariance, Correlation, and all that...

Covariance between two RVs:

cov(X,Y ) = E
[(
X − E(X)

) (
Y − E(Y )

)]
= E(X Y )− E(X)E(Y )

Relationship with variance: var(X) = cov(X,X).

Correlation: corr(X,Y ) = ρ(X,Y ) = cov(X,Y )√
var(X)

√
var(Y )

∈ [−1, 1]

X ⊥⊥ Y ⇔ fX,Y (x, y) = fX(x) fY (y)

⇒
6⇐ cov(X, Y ) = 0.

Covariance matrix of multivariate RV, X ∈ Rn:

cov(X) = E
[(
X − E(X)

)(
X − E(X)

)T ]
= E(XXT )− E(X)E(X)T

Covariance of Gaussian RV, fX(x) = N (x;µ,C) ⇒ cov(X) = C
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More on Expectations and Covariances

Let A ∈ Rn×n be a matrix and a ∈ Rn a vector.

If E(X) = µ and Y = AX, then E(Y ) = Aµ;

If E(X) = µ and Y = X − µ, then E(Y ) = 0;

If cov(X) = C and Y = AX, then cov(Y ) = ACAT ;

If cov(X) = C and Y = aTX ∈ R, then var(Y ) = aTCa ≥ 0;

If cov(X) = C and Y = C−1/2X, then cov(Y ) = I;

Combining the 2-nd and the 4-th facts is called standardization
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Statistical Inference
Scenario: observed RV Y , depends on unknown variable(s) X.
Goal: given an observation Y = y, infer X.

Two main philosophies:
Frequentist: X = x is fixed, but unknown;

Bayesian: X is a RV with pdf/pmf fX(x) (the prior)
prior ⇔ knowledge about X

In both philosophies, a central object is fY |X(y|x)
several names: likelihood function, observation model,...

This in not machine learning! fY,X(y, x) is assumed known.

In the Bayesian philosophy, all the knowledge about X is carried by

fX|Y (x|y) =
fY |X(y|x) fX(x)

fY (y)
=
fY,X(y, x)

fY (y)

...the posterior (or a posteriori) pdf/pmf.
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Statistical Inference

The posterior pdf/pmf fX|Y (x|y) has all the information/knowledge
about X, given Y = y (conditionality principle).

How to make an optimal “guess” x̂ about X, given this information?

Need to define “optimal”: loss function: L(x̂, x) ≥ 0 measures
“loss”/“cost” incurred by “guessing” x̂ if truth is x.

The optimal Bayesian decision minimizes the expected loss:

x̂Bayes = arg min
x̂

E[L(x̂, X)|Y = y]

where

E[L(x̂, X)|Y = y] =


∫
L(x̂, x) fX|Y (x|y) dx, continuous (estimation)∑

x

L(x̂, x) fX|Y (x|y), discrete (classification)
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Classical Statistical Inference Criteria

Consider that X ∈ {1, ...,K} (discrete/classification problem).

Adopt the 0/1 loss: L(x̂, x) = 0, if x̂ = x, and 1 otherwise.

Optimal Bayesian decision:

x̂Bayes = arg min
x̂

K∑
x=1

L(x̂, x) fX|Y (x|y)

= arg min
x̂

(
1− fX|Y (x̂|y)

)
= arg max

x̂
fX|Y (x̂|y) ≡ x̂MAP

MAP = maximum a posteriori criterion.

Same criterion can be derived for continuous X
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Classical Statistical Inference Criteria

Consider the MAP criterion x̂MAP = arg maxx fX|Y (x|y)

From Bayes law:

x̂MAP = arg max
x

fY |X(y|x) fX(x)

fY (y)
= arg max

x
fY |X(y|x) fX(x)

...only need to know posterior fX|Y (x|y) up to a normalization factor.

Also common to write:
x̂MAP = arg maxx

(
log fY |X(y|x) + log fX(x)

)
If the prior if flat, fX(x) = C, then,

x̂MAP = arg max
x

fY |X(y|x) ≡ x̂ML

ML = maximum likelihood criterion.
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Statistical Inference: Example

Observed n i.i.d. (independent identically distributed) Bernoulli RVs:

Y = (Y1, ..., Yn), with Yi ∈ {0, 1}.
Common pmf fYi|X(y|x) = xy(1− x)1−y, where x ∈ [0, 1].

Likelihood function: fY |X
(
y1, ..., yn|x

)
=

n∏
i=1

xyi(1− x)1−yi

Log-likelihood function:

log fY |X
(
y1, ..., yn|x

)
= n log(1− x) + log

x

1− x

n∑
i=1

yi

Maximum likelihood: x̂ML = arg maxx fY |X(y|x) =
1

n

n∑
i=1

yi

Example: n = 10, observed y = (1, 1, 1, 0, 1, 0, 0, 1, 1, 1), x̂ML = 7/10.
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Statistical Inference: Example (Continuation)
Observed n i.i.d. (independent identically distributed) Bernoulli RVs.

Likelihood:

fY |X
(
y1, ..., yn|x

)
=

n∏
i=1

xyi(1− x)1−yi = x
∑

i yi (1− x)n−
∑

i yi

How to express knowledge that (e.g.) X is around 1/2? Convenient
choice: conjugate prior. Form of the posterior = form of the prior.

I In our case, the Beta pdf
fX(x) ∝ xα−1(1− x)β−1, α, β > 0

I Posterior: fX|Y (x|y) =

xα−1+
∑

i yi(1− x)β−1+n−
∑

i yi

I MAP: x̂MAP =
α+

∑
i yi−1

α+β+n−2

I Example: α = 4, β = 4, n = 10,
y = (1, 1, 1, 0, 1, 0, 0, 1, 1, 1),

x̂MAP = 0.625
(
recall x̂ML = 0.7

)
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Another Classical Statistical Inference Criterion

Consider that X ∈ R (continuous/estimation problem).

Adopt the squared error loss: L(x̂, x) = (x̂− x)2

Optimal Bayesian decision:

x̂Bayes = arg min
x̂

E[(x̂−X)2|Y = y]

= arg min
x̂

x̂2 − 2 x̂E[X|Y = y]

= E[X|Y = y] ≡ x̂MMSE

MMSE = minimum mean squared error criterion.

Does not apply to classification problems.
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Back to the Bernoulli Example

Observed n i.i.d. (independent identically distributed) Bernoulli RVs.

Likelihood:

fY |X
(
y1, ..., yn|x

)
=

n∏
i=1

xyi(1− x)1−yi = x
∑

i yi (1− x)n−
∑

i yi

I In our case, the Beta pdf
fX(x) ∝ xα−1(1− x)β−1, α, β > 0

I Posterior: fX|Y (x|y) =

xα−1+
∑

i yi(1− x)β−1+n−
∑

i yi

I MMSE: x̂MMSE =
α+

∑
i yi

α+β+n

I Example: α = 4, β = 4, n = 10,
y = (1, 1, 1, 0, 1, 0, 0, 1, 1, 1),

x̂MMSE ' 0.611
(
recall that x̂MAP = 0.625, x̂ML = 0.7

)

Conjugate prior equivalent to “virtual” counts;
often called smoothing in NLP and ML.
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The Bernstein-Von Mises Theorem

In the previous example, we had
n = 10, y = (1, 1, 1, 0, 1, 0, 0, 1, 1, 1), thus

∑
i yi = 7.

With a Beta prior with α = 4 and β = 4, we had

x̂ML = 0.7, x̂MAP =
3 +

∑
i yi

6 + n
= 0.625, x̂MMSE =

4 +
∑

i yi
8 + n

' 0.611

Consider n = 100, and
∑

i yi = 70, with the same Beta(4,4) prior

x̂ML = 0.7, x̂MAP =
73

106
' 0.689, x̂MMSE =

74

108
' 0.685

... both Bayesian estimates are much closer to the ML.

This illustrates an important result in Bayesian inference: the
Bernstein-Von Mises theorem; under (mild) conditions,

lim
n→∞

x̂MAP = lim
n→∞

x̂MMSE = x̂ML

message: if you have a lot of data, priors don’t matter much.
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Important Inequalities

Cauchy-Schwartz’s inequality for RVs:

E(|X Y |) ≤
√

E(X2)E(Y 2)

Recall that a real function g is convex if, for any x, y, and α ∈ [0, 1]

g(αx+ (1− α)y) ≤ αg(x) + (1− α)g(y)

Jensen’s inequality: if g is a real convex function, then

E(g(X)) ≥ g(E(X))

Examples: E(X)2 ≤ E(X2) ⇒ var(X) = E(X2)− E(X)2 ≥ 0.
E(logX) ≤ logE(X), for X a positive RV.
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Entropy and all that...

Entropy of a discrete RV X ∈ {1, ...,K}: H(X) = −
K∑
x=1

fX(x) log fX(x)

Positivity: H(X) ≥ 0 ;
H(X) = 0 ⇔ fX(i) = 1, for exactly one i ∈ {1, ...,K}.

Upper bound: H(X) ≤ logK ;
H(X) = logK ⇔ fX(x) = 1/k, for all x ∈ {1, ...,K}

Measure of uncertainty/randomness of X

Continuous RV X, differential entropy: h(X) = −
∫
fX(x) log fX(x) dx

h(X) can be positive or negative. Example, if
fX(x) = Uniform(x; a, b), h(X) = log(b− a).

If fX(x) = N (x;µ, σ2), then h(X) = 1
2 log(2πeσ2).

If var(Y ) = σ2, then h(Y ) ≤ 1
2 log(2πeσ2)
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Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

D(fX‖gX) =

K∑
x=1

fX(x) log
fX(x)

gX(x)

Positivity: D(fX‖gX) ≥ 0
D(fX‖gX) = 0 ⇔ fX(x) = gX(x), for x ∈ {1, ...,K}

KLD between two pdf:

D(fX‖gX) =

∫
fX(x) log

fX(x)

gX(x)
dx

Positivity: D(fX‖gX) ≥ 0
D(fX‖gX) = 0 ⇔ fX(x) = gX(x), almost everywhere
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Mutual information

Mutual information (MI) between two random variables:

I(X;Y ) = D
(
fX,Y ‖fX fY

)

Positivity: I(X;Y ) ≥ 0
I(X;Y ) = 0 ⇔ X,Y are independent.

MI is a measure of dependency between two random variables
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Other Stuff

Note covered, but also very important for machine learning:

Exponential families,

Basic inequalities (Markov, Chebyshev, etc...)

Stochastic processes (Markov chains, hidden Markov models,...)
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Recommended Reading (Probability and Statistics)

K. Murphy, “Machine Learning: A Probabilistic Perspective”, MIT
Press, 2012 (Chapter 2).

L. Wasserman, “All of Statistics: A Concise Course in Statistical
Inference”, Springer, 2004.
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