Learning Structured Predictors

Xavier Carreras

Supervised (Structured) Prediction

Learning to predict: given training data

$$\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$$

learn a predictor $\mathbf{x} \to \mathbf{y}$ that works well on unseen inputs \mathbf{x}

- Non-Structured Prediction: outputs y are atomic
 - ▶ Binary prediction: $y \in \{-1, +1\}$
 - ▶ Multiclass prediction: $\mathbf{y} \in \{1, 2, \dots, L\}$
- Structured Prediction: outputs y are structured
 - Sequence prediction: y are sequences
 - ▶ Parsing: y are trees
 - **.** . . .

Named Entity Recognition

\mathbf{y}	PER	-	QNT	-	-	ORG	ORG	-	TIME
\mathbf{x}	Jim	bought	300	shares	of	Acme	Corp.	in	2006

Named Entity Recognition

PER

 \mathbf{y}

 \mathbf{x}

```
PER
                  QNT
                      - - ORG
                                           ORG
                                                      TIME
\mathbf{y}
         bought 300 shares of Acme
   Jim
                                           Corp.
                                                  in
                                                      2006
\mathbf{x}
                PER
                        PER
                                          LOC
            \mathbf{y}
                Jack London went
                                          Paris
                                      to
```

PER

 $f{y}$ PER - - LOC $f{x}$ Jackie went to Lisdon

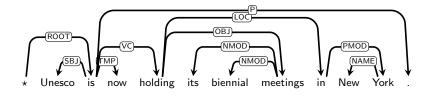
Paris Hilton went to London

LOC

Part-of-speech Tagging

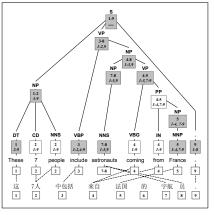
 $f{y}$ NNP NNP VBZ NNP . $f{x}$ Ms. Haag plays Elianti .

Syntactic Parsing



x are sentencesy are syntactic dependency trees

Machine Translation



(Galley et al 2006)

 ${\bf x}$ are sentences in Chinese ${\bf y}$ are sentences in English aligned to ${\bf x}$

Object Detection

(Kumar and Hebert 2003)

 $\label{eq:continuous} \mathbf{x} \text{ are images} \\ \mathbf{y} \text{ are grids labeled with object types}$

Object Detection

(Kumar and Hebert 2003)

 ${\bf x}$ are images ${\bf y}$ are grids labeled with object types

Today's Goals

- Introduce basic concepts for structured prediction
 - We will restrict to sequence prediction
- ▶ What can we can borrow from standard classification?
 - Learning paradigms and algorithms, in essence, work here too
 - However, computations behind algorithms are prohibitive
- ▶ What can we borrow from HMM and other structured formalisms?
 - Representations of structured data into feature spaces
 - ▶ linference/search algorithms for tractable computations
 - E.g., algorithms for HMMs (Viterbi, forward-backward) will play a major role in today's methods

Today's Goals

- Introduce basic concepts for structured prediction
 - We will restrict to sequence prediction
- ▶ What can we can borrow from standard classification?
 - Learning paradigms and algorithms, in essence, work here too
 - However, computations behind algorithms are prohibitive
- ▶ What can we borrow from HMM and other structured formalisms?
 - Representations of structured data into feature spaces
 - ► linference/search algorithms for tractable computations
 - E.g., algorithms for HMMs (Viterbi, forward-backward) will play a major role in today's methods

Sequence Prediction

 $f{y}$ PER PER - - LOC $f{x}$ Jack London went to Paris

Sequence Prediction

- $\mathbf{x} = x_1 x_2 \dots x_n$ are input sequences, $x_i \in \mathcal{X}$
- $ightharpoonup \mathbf{y} = y_1 y_2 \dots y_n$ are output sequences, $y_i \in \{1, \dots, L\}$
- ► Goal: given training data

$$\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$$

learn a predictor $\mathbf{x} \to \mathbf{y}$ that works well on unseen inputs \mathbf{x}

What is the form of our prediction model?

Exponentially-many Solutions

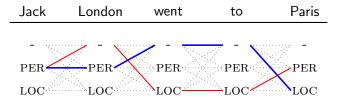
- ▶ Let $\mathcal{Y} = \{\text{-}, \text{PER}, \text{LOC}\}$
- ► The solution space (all output sequences):

Jack	London	went	to	Paris
- · _{****}				
PER	PER	PER	PER	PER
LOC	LOC	LOC	LOC	LOC

- Each path is a possible solution
- ▶ For an input sequence of size n, there are $|\mathcal{Y}|^n$ possible outputs

Exponentially-many Solutions

- ▶ Let $\mathcal{Y} = \{\text{-}, \text{PER}, \text{LOC}\}$
- ► The solution space (all output sequences):



- Each path is a possible solution
- ▶ For an input sequence of size n, there are $|\mathcal{Y}|^n$ possible outputs

Approach 1: Local Classifiers

?

Jack London went to Paris

Decompose the sequence into n classification problems:

► A classifier predicts individual labels at each position

$$\hat{y_i} = \underset{l \in \{\text{Loc, per, -}\}}{\operatorname{argmax}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, l)$$

- ▶ $\mathbf{f}(\mathbf{x}, i, l)$ represents an assignment of label l for x_i
- lacktriangle f w is a vector of parameters, has a weight for each feature of f f
 - ▶ Use standard classification methods to learn w
- At test time, predict the best sequence by a simple concatenation of the best label for each position

Approach 1: Local Classifiers

?

Jack London went to Paris

Decompose the sequence into n classification problems:

► A classifier predicts individual labels at each position

$$\hat{y_i} = \mathop{\mathrm{argmax}}_{l \; \in \; \{ ext{loc, per, -} \}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, l)$$

- ▶ $\mathbf{f}(\mathbf{x}, i, l)$ represents an assignment of label l for x_i
- lacktriangle f w is a vector of parameters, has a weight for each feature of f f
 - Use standard classification methods to learn w
- At test time, predict the best sequence by a simple concatenation of the best label for each position

Indicator Features

▶ $\mathbf{f}(\mathbf{x}, i, l)$ is a vector of d features representing label l for x_i

[
$$\mathbf{f}_1(\mathbf{x},i,l),\ldots,\mathbf{f}_j(\mathbf{x},i,l),\ldots,\mathbf{f}_d(\mathbf{x},i,l)$$
]

- ▶ What's in a feature $\mathbf{f}_j(\mathbf{x}, i, l)$?
 - ightharpoonup Anything we can compute using ${f x}$ and i and l
 - ightharpoonup Anything that indicates whether l is (not) a good label for x_i
 - ▶ Indicator features: binary-valued features looking at:
 - ightharpoonup a simple pattern of ${f x}$ and target position i
 - \triangleright and the candidate label l for position i

$$\begin{aligned} \mathbf{f}_j(\mathbf{x},i,l) &= \left\{ \begin{array}{ll} 1 & \text{if } x_i = \text{London and } l = \text{LOC} \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_k(\mathbf{x},i,l) &= \left\{ \begin{array}{ll} 1 & \text{if } x_{i+1} = \text{went and } l = \text{LOC} \\ 0 & \text{otherwise} \end{array} \right. \end{aligned}$$

Feature Templates

- ► Feature templates generate many indicator features mechanically
- ▶ A feature template is identified by a type, and a number of values
 - Example: template WORD extracts the current word

$$\mathbf{f}_{\langle \mathrm{WORD}, a, w \rangle}(\mathbf{x}, i, l) = \left\{ \begin{array}{ll} 1 & \text{if } x_i = w \text{ and } l = a \\ 0 & \text{otherwise} \end{array} \right.$$

- lacktriangle A feature of this type is identified by the tuple $\langle \mathrm{WORD}, a, w \rangle$
- lacktriangle Generates a feature for every label $a \in \mathcal{Y}$ and every word w

e.g.:
$$a = \text{LOC}$$
 $w = \text{London}$, $a = w = \text{London}$ $a = \text{LOC}$ $w = \text{Paris}$ $a = \text{PER}$ $w = \text{John}$ $a = w = \text{the}$

Feature Templates

- ► Feature templates generate many indicator features mechanically
- ▶ A feature template is identified by a type, and a number of values
 - Example: template WORD extracts the current word

$$\mathbf{f}_{\langle \mathrm{WORD}, a, w \rangle}(\mathbf{x}, i, l) = \left\{ \begin{array}{ll} 1 & \text{if } x_i = w \text{ and } l = a \\ 0 & \text{otherwise} \end{array} \right.$$

- A feature of this type is identified by the tuple $\langle WORD, a, w \rangle$
- lacktriangle Generates a feature for every label $a \in \mathcal{Y}$ and every word w

e.g.:
$$a = \text{LOC}$$
 $w = \text{London}$, $a = w = \text{London}$
 $a = \text{LOC}$ $w = \text{Paris}$ $a = \text{PER}$ $w = \text{John}$ $a = w = \text{the}$

- ▶ In feature-based models:
 - ▶ Define feature templates manually
 - ► Instantiate the templates on every set of values in the training data

 → generates a very high-dimensional feature space
 - ▶ Define parameter vector w indexed by such feature tuples
 - ▶ Let the learning algorithm choose the relevant features

More Features for NE Recognition

Jack London went to Paris

In practice, construct $\mathbf{f}(\mathbf{x},i,l)$ by . . .

- ightharpoonup Define a number of simple patterns of ${f x}$ and i
 - ightharpoonup current word x_i
 - ▶ is x_i capitalized?
 - $ightharpoonup x_i$ has digits?
 - ▶ prefixes/suffixes of size 1, 2, 3, ...
 - ightharpoonup is x_i a known location?
 - ightharpoonup is x_i a known person?

- next word
- previous word
- current and next words together
- other combinations
- ightharpoonup Define feature templates by combining patterns with labels l
- Generate actual features by instantiating templates on training data

More Features for NE Recognition

```
PER PER -
Jack London went to Paris
```

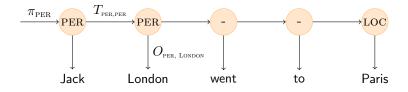
In practice, construct $\mathbf{f}(\mathbf{x}, i, l)$ by . . .

- lacktriangle Define a number of simple patterns of ${f x}$ and i
 - ightharpoonup current word x_i
 - ▶ is x_i capitalized?
 - $ightharpoonup x_i$ has digits?
 - ▶ prefixes/suffixes of size 1, 2, 3, ...
 - ightharpoonup is x_i a known location?
 - is x_i a known person?

- next word
- previous word
- current and next words together
- other combinations
- ightharpoonup Define feature templates by combining patterns with labels l
- ► Generate actual features by instantiating templates on training data

Main limitation: features can't capture interactions between labels!

Approach 2: HMM for Sequence Prediction

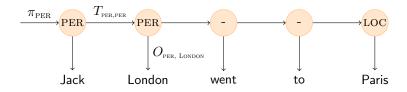


- Define an HMM were each label is a state
- Model parameters:
 - $ightharpoonup \pi_l$: probability of starting with label l
 - $T_{l,l'}$: probability of transitioning from l to l'
 - $ightharpoonup O_{l,x}$: probability of generating symbol x given label l
- ▶ Predictions:

$$p(\mathbf{x}, \mathbf{y}) = \pi_{y_1} O_{y_1, x_1} \prod_{i>1} T_{y_{i-1}, y_i} O_{y_i, x_i}$$

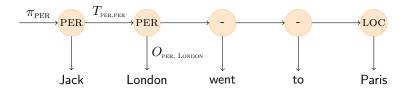
- ▶ Learning: relative counts + smoothing
- ▶ Prediction: Viterbi algorithm

Approach 2: Representation in HMM



- ► Label interactions are captured in the transition parameters
- But interactions between labels and input symbols are quite limited!
 - $\bullet \ \, \mathsf{Only} \,\, O_{y_i,x_i} = p(x_i \mid y_i)$
 - Not clear how to exploit patterns such as:
 - ► Capitalization, digits
 - Prefixes and suffixes
 - ► Next word, previous word
 - ► Combinations of these with label transitions
- Mhy? HMM independence assumptions: given label y_i , token x_i is independent of anything else

Approach 2: Representation in HMM



- ► Label interactions are captured in the transition parameters
- But interactions between labels and input symbols are quite limited!
 - $\bullet \ \, \mathsf{Only} \,\, O_{y_i,x_i} = p(x_i \mid y_i)$
 - Not clear how to exploit patterns such as:
 - Capitalization, digits
 - Prefixes and suffixes
 - ► Next word, previous word
 - ► Combinations of these with label transitions
- ▶ Why? HMM independence assumptions: given label y_i , token x_i is independent of anything else

Local Classifiers vs. HMM

Local Classifiers

► Form:

$$\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, l)$$

- ► Learning: standard classifiers
- ▶ Prediction: independent for each x_i
- Advantage: feature-rich
- Drawback: no label interactions

HMM

► Form:

$$\pi_{y_1} O_{y_1, x_1} \prod_{i>1} T_{y_{i-1}, y_i} O_{y_i, x_i}$$

- ► Learning: relative counts
- ► Prediction: Viterbi
- Advantage: label interactions
- Drawback: no fine-grained features

Approach 3: Global Sequence Predictors

Learn a single classifier from $\mathbf{x} \to \mathbf{y}$

$$\operatorname{predict}(\mathbf{x}_{1:n}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$$

Next questions: . . .

- ▶ How do we represent entire sequences in f(x, y)?
- ► There are exponentially-many sequences y for a given x, how do we solve the argmax problem?

Approach 3: Global Sequence Predictors

y: PER PER - - LOC x: Jack London went to Paris

Learn a single classifier from $\mathbf{x} \to \mathbf{y}$

$$\operatorname{predict}(\mathbf{x}_{1:n}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$$

Next questions: ...

- ▶ How do we represent entire sequences in f(x, y)?
- ► There are exponentially-many sequences y for a given x, how do we solve the argmax problem?

- ▶ How do we represent entire sequences in f(x, y)?
 - ▶ Look at individual assignments y_i (standard classification)
 - ▶ Look at bigrams of outputs labels $\langle y_{i-1}, y_i \rangle$
 - ▶ Look at trigrams of outputs labels $\langle y_{i-2}, y_{i-1}, y_i \rangle$
 - ▶ Look at *n*-grams of outputs labels $\langle y_{i-n+1}, \dots, y_{i-1}, y_i \rangle$
 - ▶ Look at the full label sequence y (intractable
- ▶ A factored representation will lead to a tractable model

```
y: PER PER - - LOC x: Jack London went to Paris
```

- ▶ How do we represent entire sequences in f(x, y)?
 - ightharpoonup Look at individual assignments y_i (standard classification)
 - ▶ Look at bigrams of outputs labels $\langle y_{i-1}, y_i \rangle$
 - ▶ Look at trigrams of outputs labels $\langle y_{i-2}, y_{i-1}, y_i \rangle$
 - ▶ Look at *n*-grams of outputs labels $\langle y_{i-n+1}, \dots, y_{i-1}, y_i \rangle$
 - ▶ Look at the full label sequence y (intractable)
- ▶ A factored representation will lead to a tractable model

```
y: PER PER - - LOC x: Jack London went to Paris
```

- ▶ How do we represent entire sequences in f(x, y)?
 - ▶ Look at individual assignments y_i (standard classification)
 - ▶ Look at bigrams of outputs labels $\langle y_{i-1}, y_i \rangle$
 - Look at trigrams of outputs labels $\langle y_{i-2}, y_{i-1}, y_i \rangle$
 - ▶ Look at *n*-grams of outputs labels $\langle y_{i-n+1}, \dots, y_{i-1}, y_i \rangle$
 - Look at the full label sequence y (intractable)
- ► A factored representation will lead to a tractable model

```
y: PER PER - - LOC x: Jack London went to Paris
```

- ▶ How do we represent entire sequences in f(x, y)?
 - ightharpoonup Look at individual assignments y_i (standard classification)
 - ▶ Look at bigrams of outputs labels $\langle y_{i-1}, y_i \rangle$
 - ▶ Look at trigrams of outputs labels $\langle y_{i-2}, y_{i-1}, y_i \rangle$
 - ▶ Look at n-grams of outputs labels $\langle y_{i-n+1}, \dots, y_{i-1}, y_i \rangle$
 - ► Look at the full label sequence y (intractable)
- ▶ A factored representation will lead to a tractable model

Bigram Feature Templates

► A template for word + bigram:

$$\mathbf{f}_{\langle \mathrm{WB}, a, b, w \rangle}(\mathbf{x}, i, y_{i-1}, y_i) = \left\{ \begin{array}{ll} 1 & \text{if } x_i = w \text{ and} \\ & y_{i-1} = a \text{ and } y_i = b \\ 0 & \text{otherwise} \end{array} \right.$$

$$\begin{aligned} & \text{e.g., } \mathbf{f}_{\langle \text{WB}, \text{PER}, \text{PER}, \text{London} \rangle}(\mathbf{x}, 2, \text{PER}, \text{PER}) = 1 \\ & \mathbf{f}_{\langle \text{WB}, \text{PER}, \text{PER}, \text{London} \rangle}(\mathbf{x}, 3, \text{PER}, \text{-}) = 0 \\ & \mathbf{f}_{\langle \text{WB}, \text{PER}, \text{-}, \text{went} \rangle}(\mathbf{x}, 3, \text{PER}, \text{-}) = 1 \end{aligned}$$

More Templates for NER

	1	2	3	4	5
\mathbf{x}	Jack	London	went	to	Paris
$\overline{\mathbf{y}}$	PER	PER	-	-	LOC
\mathbf{y}'	PER	LOC	-	-	LOC
\mathbf{y}''	-	-	-	LOC	-
\mathbf{x}'	Му	trip	to	London	

```
\mathbf{f}_{\langle \mathrm{W}, \mathrm{PER}, \mathrm{PER}, \mathsf{London} 
angle}(\ldots) = 1 iff x_i = "London" and y_{i-1} = \mathrm{PER} and y_i = \mathrm{PER}
```

$$\mathbf{f}_{\langle \mathrm{W}, \mathrm{PER, LOC}, \mathsf{London}
angle}(\ldots) = 1$$
 iff $x_i =$ "London" and $y_{i-1} = \mathrm{PER}$ and $y_i = \mathrm{LOC}$

$$\mathbf{f}_{\langle \text{PREP,LOC}, \text{to} \rangle}(\ldots) = 1 \ \text{ iff } x_{i-1} = \text{"to" and } x_i \sim /[\text{A-Z}]/ \text{ and } y_i = \text{LOC}$$

$$\mathbf{f}_{\langle ext{CITY,LOC}
angle}(\ldots) = 1 \;\; ext{iff} \; y_i = ext{LOC} \; ext{and} \; ext{WORLD-CITIES}(x_i) = 1$$

$$\mathbf{f}_{\langle ext{FNAME}, ext{PER}
angle}(\ldots) = 1$$
 iff $y_i = ext{PER}$ and $ext{FIRST-NAMES}(x_i) = 1$

More Templates for NER

	1	2	3	4	5
\mathbf{x}	Jack	London	went	to	Paris
\mathbf{y}	PER	PER	-	-	LOC
\mathbf{y}'	PER	LOC	-	-	LOC
\mathbf{y}''	-	-	-	LOC	-
\mathbf{x}'	Му	trip	to	London	

$$\mathbf{f}_{\langle \mathrm{W}, \mathrm{PER}, \mathrm{PER}, \mathsf{London} \rangle}(\ldots) = 1 \ \text{ iff } x_i = \text{``London''} \ \text{and} \ y_{i-1} = \mathrm{PER} \ \text{and} \ y_i = \mathrm{PER}$$

$$\mathbf{f}_{\langle \mathrm{W,PER,LOC},\mathsf{London}
angle}(\ldots) = 1$$
 iff $x_i =$ "London" and $y_{i-1} =$ PER and $y_i =$ LOC

$$\mathbf{f}_{\langle ext{PREP,LOC}, ext{to}
angle}(\ldots) = 1 \;\; ext{iff} \; x_{i-1} = ext{"to"} \;\; ext{and} \;\; x_i \sim /[ext{A-Z}]/ \;\; ext{and} \;\; y_i = ext{LOC}$$

$$\mathbf{f}_{\langle ext{CITY,LOC}
angle}(\ldots) = 1$$
 iff $y_i = ext{LOC}$ and $ext{WORLD-CITIES}(x_i) = 1$

$$\mathbf{f}_{\langle ext{FNAME}, ext{PER}
angle}(\ldots) = 1$$
 iff $y_i = ext{PER}$ and $ext{FIRST-NAMES}(x_i) = 1$

More Templates for NER

	1	2	3	4	5
\mathbf{x}	Jack	London	went	to	Paris
\mathbf{y}	PER	PER	-	-	LOC
\mathbf{y}'	PER	LOC	-	-	LOC
\mathbf{y}''	-	-	-	LOC	-
\mathbf{x}'	Му	trip	to	London	

```
\mathbf{f}_{\langle \mathrm{W}, \mathrm{PER}, \mathrm{PER}, \mathsf{London} \rangle}(\ldots) = 1 \ \text{ iff } x_i = \text{"London" and } y_{i-1} = \mathrm{PER} \text{ and } y_i = \mathrm{PER}
```

$$\mathbf{f}_{\langle \mathrm{W,PER,LOC},\mathsf{London}
angle}(\ldots) = 1$$
 iff $x_i =$ "London" and $y_{i-1} =$ PER and $y_i =$ LOC

$$\mathbf{f}_{\langle ext{PREP,LOC}, ext{to}
angle}(\ldots) = 1$$
 iff $x_{i-1} =$ "to" and $x_i \sim / ext{[A-Z]} /$ and $y_i = ext{LOC}$

$$\mathbf{f}_{\langle ext{CITY,LOC}
angle}(\ldots) = 1 \; \; ext{iff} \; y_i = ext{LOC} \; ext{and} \; ext{WORLD-CITIES}(x_i) = 1$$

$$\mathbf{f}_{\langle ext{FNAME}, ext{PER}
angle}(\ldots) = 1$$
 iff $y_i = ext{PER}$ and $ext{FIRST-NAMES}(x_i) = 1$

More Templates for NER

	1	2	3	4	5
\mathbf{x}	Jack	London	went	to	Paris
\mathbf{y}	PER	PER	-	-	LOC
\mathbf{y}'	PER	LOC	-	-	LOC
\mathbf{y}''	-	-	-	LOC	-
\mathbf{x}'	Му	trip	to	London	

```
\mathbf{f}_{\langle \mathrm{W,PER,PER,London}\rangle}(\ldots) = 1 \ \text{ iff } x_i = \text{``London''} \ \text{and} \ y_{i-1} = \text{PER and } y_i = \text{PER}
```

$$\mathbf{f}_{\langle \mathrm{W,PER,LOC},\mathsf{London}
angle}(\ldots) = 1$$
 iff $x_i =$ "London" and $y_{i-1} =$ PER and $y_i =$ LOC

$$\mathbf{f}_{\langle ext{PREP,LOC}, ext{to}
angle}(\ldots) = 1 \; \; ext{iff} \; x_{i-1} = ext{"to"} \; ext{and} \; x_i \sim /[ext{A-Z}]/ \; ext{and} \; y_i = ext{LOC}$$

$$\mathbf{f}_{\langle ext{CITY,LOC}
angle}(\ldots) = 1$$
 iff $y_i = ext{LOC}$ and $ext{WORLD-CITIES}(x_i) = 1$

$$\mathbf{f}_{\langle ext{FNAME}, ext{PER}
angle}(\ldots) = 1$$
 iff $y_i = ext{PER}$ and $ext{FIRST-NAMES}(x_i) = 1$

More Templates for NER

	1	2	3	4	5
\mathbf{x}	Jack	London	went	to	Paris
\mathbf{y}	PER	PER	-	-	LOC
\mathbf{y}'	PER	LOC	-	-	LOC
\mathbf{y}''	-	-	-	LOC	-
\mathbf{x}'	Му	trip	to	London	

```
\mathbf{f}_{\langle \mathrm{W}, \mathrm{PER}, \mathrm{PER}, \mathsf{London} \rangle}(\ldots) = 1 \ \text{ iff } x_i = \text{``London''} \ \text{and} \ y_{i-1} = \mathrm{PER} \ \text{and} \ y_i = \mathrm{PER}
```

$$\mathbf{f}_{\langle \mathrm{W}, \mathrm{PER, LOC}, \mathsf{London} \rangle}(\ldots) = 1 \ \text{ iff } x_i = \text{"London" and } y_{i-1} = \mathrm{PER} \text{ and } y_i = \mathrm{LOC}$$

$$\mathbf{f}_{\langle ext{PREP,LOC,to}
angle}(\ldots) = 1$$
 iff $x_{i-1} =$ "to" and $x_i \sim$ /[A-Z]/ and $y_i = ext{LOC}$

$$\mathbf{f}_{\langle ext{CITY,LOC}
angle}(\ldots) = 1$$
 iff $y_i = ext{LOC}$ and $ext{WORLD-CITIES}(x_i) = 1$

$$\mathbf{f}_{\langle ext{FNAME}, ext{PER}
angle}(\ldots) = 1$$
 iff $y_i = ext{PER}$ and $ext{FIRST-NAMES}(x_i) = 1$

Representations Factored at Bigrams

- ▶ $\mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$
 - ▶ A *d*-dimensional feature vector of a label bigram at *i*
 - ► Each dimension is typically a boolean indicator (0 or 1)
- $\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$
 - ► A *d*-dimensional feature vector of the entire **y**
 - Aggregated representation by summing bigram feature vectors
 - ► Each dimension is now a count of a feature pattern

Linear Sequence Prediction

$$\operatorname{predict}(\mathbf{x}_{1:n}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$$
$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

where

▶ Note the linearity of the expression:

$$\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{w} \cdot \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$
$$= \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

- Next questions:
 - ▶ How do we solve the argmax problem?
 - ► How do we learn w?

Linear Sequence Prediction

$$\operatorname{predict}(\mathbf{x}_{1:n}) = \underset{\mathbf{y} \in \mathcal{Y}^n}{\operatorname{argmax}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$$
$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

where

Note the linearity of the expression:

$$\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{w} \cdot \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$
$$= \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

- Next questions:
 - ▶ How do we solve the argmax problem?
 - ► How do we learn w?

Linear Sequence Prediction

$$\operatorname{predict}(\mathbf{x}_{1:n}) = \underset{\mathbf{y} \in \mathcal{Y}^n}{\operatorname{argmax}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$$
$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

▶ Note the linearity of the expression:

$$\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{w} \cdot \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$
$$= \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

Next questions:

where

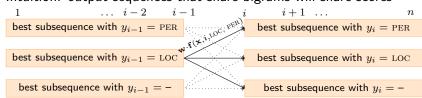
- ▶ How do we solve the argmax problem?
- ▶ How do we learn w?

Predicting with Factored Sequence Models

▶ Consider a fixed w. Given $\mathbf{x}_{1:n}$ find:

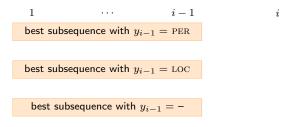
$$\underset{\mathbf{y} \in \mathcal{Y}^n}{\operatorname{argmax}} \sum_{i=1}^n \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

- We can use the Viterbi algorithm, takes $O(n|\mathcal{Y}|^2)$
- ▶ Intuition: output sequences that share bigrams will share scores



Intuition for Viterbi

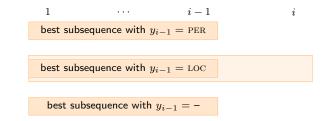
- Consider a fixed x_{1:n}
- \blacktriangleright Assume we have the best sub-sequences up to position i-1



▶ What is the best sequence up to position i with $y_i = LOC$?

Intuition for Viterbi

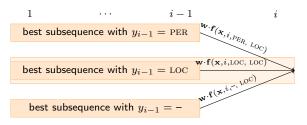
- ightharpoonup Consider a fixed $\mathbf{x}_{1:n}$
- lacktriangle Assume we have the best sub-sequences up to position i-1



▶ What is the best sequence up to position i with $y_i = LOC$?

Intuition for Viterbi

- ightharpoonup Consider a fixed $\mathbf{x}_{1:n}$
- \blacktriangleright Assume we have the best sub-sequences up to position i-1



▶ What is the best sequence up to position i with $y_i = LOC$?

Viterbi for Linear Factored Predictors

$$\hat{\mathbf{y}} = \underset{\mathbf{y} \in \mathcal{Y}^n}{\operatorname{argmax}} \sum_{i=1}^n \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

▶ **Definition:** score of optimal sequence for $\mathbf{x}_{1:i}$ ending with $a \in \mathcal{Y}$

$$\delta(i, a) = \max_{\mathbf{y} \in \mathcal{Y}^i : y_i = a} \sum_{j=1}^{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, j, y_{j-1}, y_j)$$

▶ Use the following recursions, for all $a \in \mathcal{Y}$:

$$\begin{array}{lcl} \delta(1,a) & = & \mathbf{w} \cdot \mathbf{f}(\mathbf{x},1,y_0 = \text{NULL},a) \\ \delta(i,a) & = & \max_{b \in \mathcal{Y}} \delta(i-1,b) + \mathbf{w} \cdot \mathbf{f}(\mathbf{x},i,b,a) \end{array}$$

- ▶ The optimal score for \mathbf{x} is $\max_{a \in \mathcal{Y}} \delta(n, a)$
- lacktriangle The optimal sequence $\hat{\mathbf{y}}$ can be recovered through back-pointers

Linear Factored Sequence Prediction

$$\operatorname{predict}(\mathbf{x}_{1:n}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$$

- ► Factored representation, e.g. based on bigrams
- Flexible, arbitrary features of full x and the factors
- Efficient prediction using Viterbi
- ► Next, learning w:
 - Probabilistic log-linear models:
 - Local learning, a.k.a. Maximum-Entropy Markov Models
 - Global learning, a.k.a. Conditional Random Fields
 - Margin-based methods:
 - Structured Perceptron
 - Structured SVM

Training Data PER Maria is beautiful LOC Lisbon is beautiful PER LOC Jack went to Lisbon LOC Argentina is nice PER PER LOC LOC Jack London went to South **Paris** ORG ORG Argentina played against Germany

Training Data

- PER
 Maria is beautiful
- LOC Lisbon is beautiful
- PER - LOC

 Jack went to Lisbon
- LOC Argentina is nice
- PER PER - LOC LOC Jack London went to South Paris
- ORG - ORG
 Argentina played against Germany

Weight Vector w

 $\mathbf{w}_{\langle \text{Lower}, -\rangle} = +1$

Training Data

- PER - Maria is beautiful
- LOC - Lisbon is beautiful
- PER - LOC

 Jack went to Lisbon
- LOC Argentina is nice
- PER PER - LOC LOC Jack London went to South Paris
- ORG - ORG
 Argentina played against Germany

$$\mathbf{w}_{\langle \text{Lower}, -\rangle} = +1$$

 $\mathbf{w}_{\langle \text{Upper}, \text{per} \rangle} = +1$

Training Data

- PER - Maria is beautiful
- LOC - Lisbon is beautiful
- PER - LOC

 Jack went to Lisbon
- LOC Argentina is nice
- PER PER - LOC LOC Jack London went to South Paris
- ORG - ORG
 Argentina played against Germany

$$\mathbf{w}_{\langle \text{Lower}, -\rangle} = +1$$
 $\mathbf{w}_{\langle \text{Upper}, \text{PER} \rangle} = +1$
 $\mathbf{w}_{\langle \text{Upper}, \text{Loc} \rangle} = +1$

Training Data

- ► PER - Maria is beautiful
- LOC -Lisbon is beautiful
- PER - LOC

 Jack went to Lisbon
- LOC Argentina is nice
- PER PER - LOC LOC

 Jack London went to South Paris
- ORG - ORG
 Argentina played against Germany

```
\mathbf{w}_{\langle \text{LOWER},-\rangle} = +1
\mathbf{w}_{\langle \text{UPPER},\text{LOC}\rangle} = +1
\mathbf{w}_{\langle \text{UPPER},\text{LOC}\rangle} = +1
\mathbf{w}_{\langle \text{WORD},\text{PER},\text{Maria}\rangle} = +2
```

Training Data

- PER - Maria is beautiful
- LOC -Lisbon is beautiful
- PER - LOC

 Jack went to Lisbon
- LOC Argentina is nice
- PER PER - LOC LOC Jack London went to South Paris
- ORG - ORG
 Argentina played against Germany

```
\mathbf{w}_{\langle \mathrm{Lower}, - \rangle} = +1
\mathbf{w}_{\langle \mathrm{Uppper}, \mathrm{PER} \rangle} = +1
\mathbf{w}_{\langle \mathrm{Uppper}, \mathrm{Loc} \rangle} = +1
\mathbf{w}_{\langle \mathrm{Word}, \mathrm{PER}, \mathrm{Maria} \rangle} = +2
\mathbf{w}_{\langle \mathrm{Word}, \mathrm{PER}, \mathrm{Jack} \rangle} = +2
```

Training Data

- PER - Maria is beautiful
- LOC Lisbon is beautiful
- PER - LOC

 Jack went to Lisbon
- Argentina is nice
- PER PER - LOC LOC Jack London went to South Paris
- ORG - ORG
 Argentina played against Germany

```
\mathbf{w}_{\langle \mathrm{LOWER},-\rangle} = +1
\mathbf{w}_{\langle \mathrm{UPPER},\mathrm{PER}\rangle} = +1
\mathbf{w}_{\langle \mathrm{UPPER},\mathrm{LOC}\rangle} = +1
\mathbf{w}_{\langle \mathrm{WORD},\mathrm{PER},\mathrm{Maria}\rangle} = +2
\mathbf{w}_{\langle \mathrm{WORD},\mathrm{PER},\mathrm{Jack}\rangle} = +2
\mathbf{w}_{\langle \mathrm{NEXTW},\mathrm{PER},\mathrm{went}\rangle} = +2
```

Training Data

- PER - Maria is beautiful
- LOC -Lisbon is beautiful
- PER - LOC

 Jack went to Lisbon
- LOC Argentina is nice
- PER PER - LOC LOC Jack London went to South Paris
- ORG - ORG
 Argentina played against Germany

```
\begin{array}{l} \mathbf{w}_{\langle \text{LOWER},-\rangle} = +1 \\ \mathbf{w}_{\langle \text{UPPER},\text{PER}\rangle} = +1 \\ \mathbf{w}_{\langle \text{UPPER},\text{LOC}\rangle} = +1 \\ \mathbf{w}_{\langle \text{WORD},\text{PER},\text{Maria}\rangle} = +2 \\ \mathbf{w}_{\langle \text{WORD},\text{PER},\text{Jack}\rangle} = +2 \\ \mathbf{w}_{\langle \text{NEXTW},\text{PER},\text{went}\rangle} = +2 \\ \mathbf{w}_{\langle \text{NEXTW},\text{ORG},\text{played}\rangle} = +2 \end{array}
```

Training Data

- PER - Maria is beautiful
- LOC Lisbon is beautiful
- PER - LOC

 Jack went to Lisbon
- LOC Argentina is nice
- PER PER - LOC LOC Jack London went to South Paris
- ORG - ORG
 Argentina played against Germany

```
\mathbf{w}_{\langle \text{LOWER},-\rangle} = +1
\mathbf{w}_{\langle \text{UPPER},\text{PER}\rangle} = +1
\mathbf{w}_{\langle \text{UPPER},\text{LOC}\rangle} = +1
\mathbf{w}_{\langle \text{UPPER},\text{LOC}\rangle} = +2
\mathbf{w}_{\langle \text{WORD},\text{PER},\text{Maria}\rangle} = +2
\mathbf{w}_{\langle \text{WORD},\text{PER},\text{Jack}\rangle} = +2
\mathbf{w}_{\langle \text{NEXTW},\text{PER},\text{went}\rangle} = +2
\mathbf{w}_{\langle \text{NEXTW},\text{ORG},\text{played}\rangle} = +2
\mathbf{w}_{\langle \text{PREVW},\text{ORG},\text{against}\rangle} = +2
```

Training Data

- PER - Maria is beautiful
- LOC -Lisbon is beautiful
- PER - LOC

 Jack went to Lisbon
- LOC Argentina is nice
- PER PER - LOC LOC Jack London went to South Paris
- ORG - ORG
 Argentina played against Germany

```
\begin{aligned} \mathbf{w}_{\langle \text{Lower}, -\rangle} &= +1 \\ \mathbf{w}_{\langle \text{Upper}, \text{per}\rangle} &= +1 \\ \mathbf{w}_{\langle \text{Upper}, \text{Loc}\rangle} &= +1 \\ \mathbf{w}_{\langle \text{Word}, \text{Per}, \text{Maria}\rangle} &= +2 \\ \mathbf{w}_{\langle \text{Word}, \text{Per}, \text{Jack}\rangle} &= +2 \\ \mathbf{w}_{\langle \text{NextW}, \text{Per}, \text{went}\rangle} &= +2 \\ \mathbf{w}_{\langle \text{NextW}, \text{org}, \text{played}\rangle} &= +2 \\ \mathbf{w}_{\langle \text{PrevW}, \text{org}, \text{against}\rangle} &= +2 \\ \cdots \end{aligned}
```

- $\mathbf{w}_{\langle \text{UPPERBIGRAM}, \text{PER}, \text{PER} \rangle} = +2$ $\mathbf{w}_{\langle \text{UPPERBIGRAM}, \text{LOC}, \text{LOC} \rangle} = +2$
- $\mathbf{w}_{\langle \mathrm{NEXTW,LOC},\mathsf{played} \rangle} = -1000$

Log-linear Models

for Sequence Prediction

```
f{y} PER PER - - LOC f{x} Jack London went to Paris
```

Log-linear Models for Sequence Prediction

Model the conditional distribution:

$$\Pr(\mathbf{y} \mid \mathbf{x}; \mathbf{w}) = \frac{\exp \{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})\}}{Z(\mathbf{x}; \mathbf{w})}$$

where

- $\mathbf{x} = x_1 x_2 \dots x_n \in \mathcal{X}^*$
- $\mathbf{y} = y_1 y_2 \dots y_n \in \mathcal{Y}^*$ and $\mathcal{Y} = \{1, \dots, L\}$
- f(x, y) represents x and y with d features
- $\mathbf{w} \in \mathbb{R}^d$ are the parameters of the model
- $ightharpoonup Z(\mathbf{x}; \mathbf{w})$ is a normalizer called the partition function

$$Z(\mathbf{x}; \mathbf{w}) = \sum_{\mathbf{z} \in \mathcal{V}^*} \exp \left\{ \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{z}) \right\}$$

► To predict the best sequence

$$\operatorname{predict}(\mathbf{x}_{1:n}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \Pr(\mathbf{y}|\mathbf{x})$$

Log-linear Models: Name

▶ Let's take the log of the conditional probability:

$$\log \Pr(\mathbf{y} \mid \mathbf{x}; \mathbf{w}) = \log \frac{\exp\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})\}}{Z(\mathbf{x}; \mathbf{w})}$$
$$= \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) - \log \sum_{y} \exp\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})\}$$
$$= \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) - \log Z(\mathbf{x}; \mathbf{w})$$

- ▶ Partition function: $Z(\mathbf{x}; \mathbf{w}) = \sum_{\mathbf{v}} \exp{\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})\}}$
- $ightharpoonup \log Z(\mathbf{x}; \mathbf{w})$ is a constant for a fixed \mathbf{x}
- In the log space, computations are linear,
 i.e., we model log-probabilities using a linear predictor

Making Predictions with Log-Linear Models

For tractability, assume f(x, y) decomposes into bigrams:

$$\mathbf{f}(\mathbf{x}_{1:n}, \mathbf{y}_{1:n}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

▶ Given \mathbf{w} , given $\mathbf{x}_{1:n}$, find:

$$\underset{\mathbf{y}_{1:n}}{\operatorname{argmax}} \Pr(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}; \mathbf{w}) = \underset{\mathbf{y}}{\operatorname{amax}} \frac{\exp\left\{\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_{i})\right\}}{Z(\mathbf{x}; \mathbf{w})}$$

$$= \underset{\mathbf{y}}{\operatorname{amax}} \exp\left\{\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_{i})\right\}$$

$$= \underset{\mathbf{y}}{\operatorname{amax}} \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_{i})$$

▶ We can use the Viterbi algorithm

Making Predictions with Log-Linear Models

▶ For tractability, assume f(x, y) decomposes into bigrams:

$$\mathbf{f}(\mathbf{x}_{1:n}, \mathbf{y}_{1:n}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

▶ Given \mathbf{w} , given $\mathbf{x}_{1:n}$, find:

$$\underset{\mathbf{y}_{1:n}}{\operatorname{argmax}} \Pr(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}; \mathbf{w}) = \underset{\mathbf{y}}{\operatorname{amax}} \frac{\exp\left\{\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_{i})\right\}}{Z(\mathbf{x}; \mathbf{w})}$$

$$= \underset{\mathbf{y}}{\operatorname{amax}} \exp\left\{\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_{i})\right\}$$

$$= \underset{\mathbf{y}}{\operatorname{amax}} \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_{i})$$

We can use the Viterbi algorithm

Parameter Estimation in Log-Linear Models

$$\Pr(\mathbf{y} \mid \mathbf{x}; \mathbf{w}) = \frac{\exp \{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})\}}{Z(\mathbf{x}; \mathbf{w})}$$

How to estimate w given training data?

Two approaches:

- ightharpoonup MEMMs: assume that $\Pr(\mathbf{y} \mid \mathbf{x}; \mathbf{w})$ decomposes
- ightharpoonup CRFs: assume that f(x, y) decomposes

Parameter Estimation in Log-Linear Models

$$\Pr(\mathbf{y} \mid \mathbf{x}; \mathbf{w}) = \frac{\exp \{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})\}}{Z(\mathbf{x}; \mathbf{w})}$$

How to estimate w given training data?

Two approaches:

- ▶ MEMMs: assume that $Pr(y \mid x; w)$ decomposes
- ightharpoonup CRFs: assume that f(x, y) decomposes

Maximum Entropy Markov Models (MEMMs)

(McCallum, Freitag, Pereira '00)

Similarly to HMMs:

$$Pr(\mathbf{y}_{1:n} \mid \mathbf{x}_{1:n}) = Pr(y_1 \mid \mathbf{x}_{1:n}) \times Pr(\mathbf{y}_{2:n} \mid \mathbf{x}_{1:n}, y_1)$$

$$= Pr(y_1 \mid \mathbf{x}_{1:n}) \times \prod_{i=2}^{n} Pr(y_i | \mathbf{x}_{1:n}, \mathbf{y}_{1:i-1})$$

$$= Pr(y_1 | \mathbf{x}_{1:n}) \times \prod_{i=2}^{n} Pr(y_i | \mathbf{x}_{1:n}, \mathbf{y}_{i-1})$$

Assumption under MEMMs:

$$\Pr(y_i|\mathbf{x}_{1:n},\mathbf{y}_{1:i-1}) = \Pr(y_i|\mathbf{x}_{1:n},y_{i-1})$$

Parameter Estimation in MEMMs

Decompose sequential problem:

$$\Pr(y_{1:n} \mid \mathbf{x}_{1:n}) = \Pr(y_1 \mid \mathbf{x}_{1:n}) \times \prod_{i=2}^{n} \Pr(y_i | \mathbf{x}_{1:n}, i, y_{i-1})$$

Learn local log-linear distributions (i.e. MaxEnt)

$$\Pr(y \mid \mathbf{x}, i, y') = \frac{\exp\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y', y)\}}{Z(\mathbf{x}, i, y')}$$

where

- x is an input sequence
- ightharpoonup y and y' are tags
- f(x, i, y', y) is a feature vector of x, the position to be tagged, the previous tag and the current tag
- Sequence learning reduced to multi-class logistic regression

Conditional Random Fields

(Lafferty, McCallum, Pereira 2001)

Log-linear model of the conditional distribution:

$$\Pr(\mathbf{y}|\mathbf{x};\mathbf{w}) = \frac{\exp\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})\}}{Z(\mathbf{x})}$$

where

- $\mathbf{x} = x_1 x_2 \dots x_n \in \mathcal{X}^*$
- $\mathbf{y} = y_1 y_2 \dots y_n \in \mathcal{Y}^* \text{ and } \mathcal{Y} = \{1, \dots, L\}$
- ightharpoonup f(x,y) is a feature vector of x and y
- ▶ w are model parameters
- ▶ To predict the best sequence

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^*} \Pr(\mathbf{y}|\mathbf{x})$$

Assumption in CRF (for tractability): f(x, y) decomposes into factors

Parameter Estimation in CRFs

► Given a training set

$$\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$$

estimate w

Define the conditional log-likelihood of the data:

$$L(\mathbf{w}) = \sum_{k=1}^{m} \log \Pr(\mathbf{y}^{(k)}|\mathbf{x}^{(k)};\mathbf{w})$$

- ▶ $L(\mathbf{w})$ measures how well \mathbf{w} explains the data. A good value for \mathbf{w} will give a high value for $\Pr(\mathbf{y}^{(k)}|\mathbf{x}^{(k)};\mathbf{w})$ for all $k=1\dots m$.
- lacktriangle We want f w that maximizes L(f w)

Learning the Parameters of a CRF

- We pose it as a concave optimization problem
- ► Find:

$$\mathbf{w}^* = \operatorname*{argmax}_{\mathbf{w} \in \mathbb{R}^D} L(\mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^2$$

where

- The first term is the log-likelihood of the data
- ► The second term is a regularization term, it penalizes solutions with large norm (similar to norm-minimization in SVM)
- $ightharpoonup \lambda$ is a parameter to control the trade-off between fitting the data and model complexity

Learning the Parameters of a CRF

Find

$$\mathbf{w}^* = \operatorname*{argmax}_{\mathbf{w} \in \mathbb{R}^D} L(\mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^2$$

- ▶ In general there is no analytical solution to this optimization
- ▶ We use iterative techniques, i.e. gradient-based optimization
 - 1. Initialize $\mathbf{w} = \mathbf{0}$
 - 2. Take derivatives of $L(\mathbf{w}) \frac{\lambda}{2} ||\mathbf{w}||^2$, compute gradient
 - 3. Move w in steps proportional to the gradient
 - 4. Repeat steps 2 and 3 until convergence
- Fast and scalable algorithms exist

Computing the Gradient in CRFs

Consider a parameter \mathbf{w}_j and its associated feature \mathbf{f}_j :

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}_{j}} = \frac{1}{m} \sum_{k=1}^{m} \mathbf{f}_{j}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$$
$$-\sum_{k=1}^{m} \sum_{\mathbf{y} \in \mathcal{Y}^{*}} \Pr(\mathbf{y} | \mathbf{x}^{(k)}; \mathbf{w}) \mathbf{f}_{j}(\mathbf{x}^{(k)}, \mathbf{y})$$

where

$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}_{j}(\mathbf{x}, i, y_{i-1}, y_{i})$$

- \triangleright First term: observed value of \mathbf{f}_i in training examples
- ightharpoonup Second term: expected value of f_i under current w
- In the optimal, observed = expected

Computing the Gradient in CRFs

▶ The first term is easy to compute, by counting explicitly

$$\frac{1}{m} \sum_{k=1}^{m} \sum_{i} \mathbf{f}_{j}(\mathbf{x}, i, y_{i-1}^{(k)}, y_{i}^{(k)})$$

▶ The second term is more involved,

$$\sum_{k=1}^{m} \sum_{\mathbf{y} \in \mathcal{Y}^*} \Pr(\mathbf{y} | \mathbf{x}^{(k)}; \mathbf{w}) \sum_{i} \mathbf{f}_{j}(\mathbf{x}^{(k)}, i, y_{i-1}, y_{i})$$

because it sums over all sequences $\mathbf{y} \in \mathcal{Y}^*$

But there is an efficient solution . . .

Computing the Gradient in CRFs

For an example $(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$:

$$\sum_{\mathbf{y} \in \mathcal{Y}^n} \Pr(\mathbf{y}|\mathbf{x}^{(k)}; \mathbf{w}) \sum_{i=1}^n \mathbf{f}_j(\mathbf{x}^{(k)}, i, y_{i-1}, y_i) = \sum_{i=1}^n \sum_{a,b \in \mathcal{Y}} \mu_i^k(a, b) \mathbf{f}_j(\mathbf{x}^{(k)}, i, a, b)$$

where

$$\mu_i^k(a, b) = \Pr(\langle i, a, b \rangle \mid \mathbf{x}^{(k)}; \mathbf{w})$$

$$= \sum_{\mathbf{y} \in \mathcal{Y}^n : y_{i-1} = a, y_i = b} \Pr(\mathbf{y} | \mathbf{x}^{(k)}; \mathbf{w})$$

 \blacktriangleright The quantities μ_i^k can be computed efficiently in $O(nL^2)$ using the forward-backward algorithm

Forward-Backward for CRFs

▶ Assume fixed **x**. Calculate in $O(n|\mathcal{Y}|^2)$

$$\mu_i(a,b) = \sum_{\mathbf{y} \in \mathcal{Y}^n : y_{i-1} = a, y_i = b} \Pr(\mathbf{y}|\mathbf{x}; \mathbf{w}) , 1 \le i \le n; a, b \in \mathcal{Y}$$

Definition: forward and backward quantities

$$\alpha_{i}(a) = \sum_{\mathbf{y}_{1:i} \in \mathcal{Y}^{i}: y_{i} = a} \exp \left\{ \sum_{j=1}^{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, j, y_{j-1}, y_{j}) \right\}$$

$$\beta_{i}(b) = \sum_{\mathbf{y}_{i:n} \in \mathcal{Y}^{(n-i+1)}: y_{i} = b} \exp \left\{ \sum_{j=i+1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, j, y_{j-1}, y_{j}) \right\}$$

- $ightharpoonup Z = \sum_a \alpha_n(a)$
- $\mu_i(a,b) = \{\alpha_{i-1}(a) * \exp\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, a, b)\} * \beta_i(b) * Z^{-1}\}\$
- ▶ Similarly to Viterbi, $\alpha_i(a)$ and $\beta_i(b)$ can be computed efficiently in a recursive manner

Forward-Backward for CRFs

▶ Assume fixed **x**. Calculate in $O(n|\mathcal{Y}|^2)$

$$\mu_i(a,b) = \sum_{\mathbf{y} \in \mathcal{Y}^n: y_{i-1} = a, y_i = b} \Pr(\mathbf{y}|\mathbf{x}; \mathbf{w}) , 1 \le i \le n; a, b \in \mathcal{Y}$$

Definition: forward and backward quantities

$$\alpha_{i}(a) = \sum_{\mathbf{y}_{1:i} \in \mathcal{Y}^{i}: y_{i} = a} \exp \left\{ \sum_{j=1}^{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, j, y_{j-1}, y_{j}) \right\}$$

$$\beta_{i}(b) = \sum_{\mathbf{y}_{i:n} \in \mathcal{Y}^{(n-i+1)}: y_{i} = b} \exp \left\{ \sum_{j=i+1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, j, y_{j-1}, y_{j}) \right\}$$

- $ightharpoonup Z = \sum_a \alpha_n(a)$
- $\mu_i(a,b) = \{\alpha_{i-1}(a) * \exp\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, a, b)\} * \beta_i(b) * Z^{-1}\}\$
- ▶ Similarly to Viterbi, $\alpha_i(a)$ and $\beta_i(b)$ can be computed efficiently in a recursive manner

CRFs: summary so far

- ▶ Log-linear models for sequence prediction, Pr(y|x; w)
- Computations factorize on label bigrams
- Model form:

$$\underset{\mathbf{y} \in \mathcal{Y}^*}{\operatorname{argmax}} \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

- Prediction: uses Viterbi (from HMMs)
- Parameter estimation:
 - Gradient-based methods, in practice L-BFGS
 - Computation of gradient uses forward-backward (from HMMs)

CRFs: summary so far

- ▶ Log-linear models for sequence prediction, Pr(y|x; w)
- Computations factorize on label bigrams
- Model form:

$$\underset{\mathbf{y} \in \mathcal{Y}^*}{\operatorname{argmax}} \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

- Prediction: uses Viterbi (from HMMs)
- Parameter estimation:
 - Gradient-based methods, in practice L-BFGS
 - Computation of gradient uses forward-backward (from HMMs)
- Next Question: MEMMs or CRFs? HMMs or CRFs?

MEMMs and CRFs

MEMMs:
$$\Pr(\mathbf{y} \mid \mathbf{x}) = \prod_{i=1}^{n} \frac{\exp \{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)\}}{Z(\mathbf{x}, i, y_{i-1}; \mathbf{w})}$$

CRFs:
$$\Pr(\mathbf{y} \mid \mathbf{x}) = \frac{\exp\left\{\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)\right\}}{Z(\mathbf{x})}$$

- ▶ MEMMs locally normalized; CRFs globally normalized
- ▶ MEMM assume that $\Pr(y_i \mid x_{1:n}, y_{1:i-1}) = \Pr(y_i \mid x_{1:n}, y_{i-1})$
- ▶ Both exploit the same factorization, i.e. same features
- ightharpoonup Same computations to compute $\operatorname{argmax}_{\mathbf{v}} \Pr(\mathbf{y} \mid \mathbf{x})$
- MEMMs are cheaper to train
- CRFs are easier to extend to other structures (next lecture)

HMMs for sequence prediction

- x are the observations, y are the hidden states
- ightharpoonup HMMs model the joint distributon $\Pr(\mathbf{x}, \mathbf{y})$
- ▶ Parameters: (assume $\mathcal{X} = \{1, ..., k\}$ and $\mathcal{Y} = \{1, ..., l\}$)
 - \bullet $\pi \in \mathbb{R}^l$, $\pi_a = \Pr(y_1 = a)$
 - $T \in \mathbb{R}^{l \times l}$, $T_{a,b} = \Pr(y_i = b | y_{i-1} = a)$
 - $O \in \mathbb{R}^{l \times k}$, $O_{a,c} = \Pr(x_i = c | y_i = a)$
- ► Model form

$$\Pr(\mathbf{x}, \mathbf{y}) = \pi_{y_1} O_{y_1, x_1} \prod_{i=2}^{n} T_{y_{i-1}, y_i} O_{y_i, x_i}$$

 Parameter Estimation: maximum likelihood by counting events and normalizing

HMMs and CRFs

- ▶ In CRFs: $\hat{\mathbf{y}} = \max_{\mathbf{y}} \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$
- ► In HMMs:

$$\hat{\mathbf{y}} = \max_{\mathbf{y}} \pi_{y_1} O_{y_1, x_1} \prod_{i=2}^n T_{y_{i-1}, y_i} O_{y_i, x_i}
= \max_{\mathbf{y}} \log(\pi_{y_1} O_{y_1, x_1}) + \sum_{i=2}^n \log(T_{y_{i-1}, y_i} O_{y_i, x_i})$$

▶ An HMM can be expressed as factored linear models:

$\mathbf{f}_j(\mathbf{x},i,y,y')$	\mathbf{w}_{j}
i = 1 & y' = a	$\log(\pi_a)$
i > 1 & y = a & y' = b	$\log(T_{a,b})$
$y' = a \& x_i = c$	$\log(O_{a,b})$

Hence, HMM are factored linear models

HMMs and CRFs: main differences

Representation:

- ► HMM "features" are tied to the generative process.
- ▶ CRF features are **very** flexible. They can look at the whole input \mathbf{x} paired with a label bigram (y_i, y_{i+1}) .
- In practice, for prediction tasks, "good" discriminative features can improve accuracy a lot.

Parameter estimation:

- ► HMMs focus on explaining the data, both x and y.
- CRFs focus on the mapping from x to y.
- ▶ A priori, it is hard to say which paradigm is better.
- Same dilemma as Naive Bayes vs. Maximum Entropy.

Structured Prediction

Perceptron, SVMs, CRFs

Learning Structured Predictors

▶ Goal: given training data $\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$ learn a predictor $\mathbf{x} \to \mathbf{y}$ with small error on unseen inputs

In a CRF:
$$\underset{\mathbf{y} \in \mathcal{Y}^*}{\operatorname{argmax}} P(\mathbf{y} | \mathbf{x}; \mathbf{w}) = \frac{\exp \left\{ \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i) \right\}}{Z(\mathbf{x}; \mathbf{w})}$$
$$= \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

- ▶ To predict new values, $Z(\mathbf{x}; \mathbf{w})$ is not relevant
- ▶ Parameter estimation: w is set to maximize likelihood
- ► Can we learn w more directly, focusing on errors?

Learning Structured Predictors

▶ Goal: given training data $\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$ learn a predictor $\mathbf{x} \to \mathbf{y}$ with small error on unseen inputs

In a CRF:
$$\underset{\mathbf{y} \in \mathcal{Y}^*}{\operatorname{argmax}} P(\mathbf{y} | \mathbf{x}; \mathbf{w}) = \frac{\exp \left\{ \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i) \right\}}{Z(\mathbf{x}; \mathbf{w})}$$
$$= \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

- ▶ To predict new values, $Z(\mathbf{x}; \mathbf{w})$ is not relevant
- ▶ Parameter estimation: w is set to maximize likelihood
- ► Can we learn w more directly, focusing on errors?

The Structured Perceptron

(Collins, 2002)

- ightharpoonup Set $\mathbf{w} = \mathbf{0}$
- ightharpoonup For $t=1\dots T$
 - ightharpoonup For each training example (\mathbf{x}, \mathbf{y})
 - 1. Compute $\mathbf{z} = \operatorname{argmax}_{\mathbf{z}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{z})$
 - 2. If $\mathbf{z} \neq \mathbf{y}$

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{x}, \mathbf{y}) - \mathbf{f}(\mathbf{x}, \mathbf{z})$$

► Return w

The Structured Perceptron + Averaging

(Freund and Schapire, 1998) (Collins 2002)

- ightharpoonup For $t = 1 \dots T$
 - For each training example (x, y)
 - 1. Compute $\mathbf{z} = \operatorname{argmax}_{\mathbf{z}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{z})$
 - 2. If $z \neq y$

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{x}, \mathbf{y}) - \mathbf{f}(\mathbf{x}, \mathbf{z})$$

- 3. $\mathbf{w}^{\mathbf{a}} = \mathbf{w}^{\mathbf{a}} + \mathbf{w}$
- ▶ Return $\mathbf{w}^{\mathbf{a}}/mT$, where m is the number of training examples

Perceptron Updates: Example

```
egin{array}{llll} \mathbf{y} & \operatorname{PER} & \operatorname{PER} & - & - & \operatorname{LOC} \\ \mathbf{z} & \operatorname{PER} & \operatorname{LOC} & - & - & \operatorname{LOC} \\ \mathbf{x} & \operatorname{Jack} & \operatorname{London} & \operatorname{went} & \operatorname{to} & \operatorname{Paris} \end{array}
```

- Let y be the correct output for x.
- ► Say we predict **z** instead, under our current **w**
- ► The update is:

$$\mathbf{g} = \mathbf{f}(\mathbf{x}, \mathbf{y}) - \mathbf{f}(\mathbf{x}, \mathbf{z})$$

$$= \sum_{i} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i) - \sum_{i} \mathbf{f}(\mathbf{x}, i, z_{i-1}, z_i)$$

$$= \mathbf{f}(\mathbf{x}, 2, \text{PER}, \text{PER}) - \mathbf{f}(\mathbf{x}, 2, \text{PER}, \text{LOC})$$

$$+ \mathbf{f}(\mathbf{x}, 3, \text{PER}, -) - \mathbf{f}(\mathbf{x}, 3, \text{LOC}, -)$$

Perceptron updates are typically very sparse

Properties of the Perceptron

- Online algorithm. Often much more efficient than "batch" algorithms
- ▶ If the data is separable, it will converge to parameter values with 0 errors
- Number of errors before convergence is related to a definition of margin. Can also relate margin to generalization properties
- ▶ In practice:
 - 1. Averaging improves performance a lot
 - 2. Typically reaches a good solution after only a few (say 5) iterations over the training set
 - 3. Often performs nearly as well as CRFs, or SVMs

Averaged Perceptron Convergence

Iteration	Accuracy
1	90.79
2	91.20
3	91.32
4	91.47
5	91.58
6	91.78
7	91.76
8	91.82
9	91.88
10	91.91
11	91.92
12	91.96

(results on validation set for a parsing task)

Margin-based Structured Prediction

- Let $\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$
- ▶ Model: $\operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^*} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$
- ► Consider an example $(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$: $\exists \mathbf{y} \neq \mathbf{y}^{(k)} : \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) < \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}) \Longrightarrow \text{error}$
- Let $\mathbf{y}' = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^*: \mathbf{y} \neq \mathbf{y}^{(k)}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y})$ Define $\gamma_k = \mathbf{w} \cdot (\mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) - \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}'))$
- ▶ The quantity γ_k is a notion of margin on example k: $\gamma_k > 0 \Longleftrightarrow$ no mistakes in the example high $\gamma_k \Longleftrightarrow$ high confidence

Margin-based Structured Prediction

- Let $\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$
- ▶ Model: $\operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^*} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$
- ► Consider an example $(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$: $\exists \mathbf{y} \neq \mathbf{y}^{(k)} : \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) < \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}) \Longrightarrow \text{error}$
- Let $\mathbf{y}' = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^*: \mathbf{y} \neq \mathbf{y}^{(k)}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y})$ Define $\gamma_k = \mathbf{w} \cdot (\mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) - \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}'))$
- The quantity γ_k is a notion of margin on example k: $\gamma_k > 0 \Longleftrightarrow$ no mistakes in the example high $\gamma_k \Longleftrightarrow$ high confidence

Margin-based Structured Prediction

- Let $\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$
- ▶ Model: $\operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^*} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$
- ► Consider an example $(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$: $\exists \mathbf{y} \neq \mathbf{y}^{(k)} : \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) < \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}) \Longrightarrow \text{error}$
- Let $\mathbf{y}' = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^*: \mathbf{y} \neq \mathbf{y}^{(k)}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y})$ Define $\gamma_k = \mathbf{w} \cdot (\mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) - \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}'))$
- ▶ The quantity γ_k is a notion of margin on example k: $\gamma_k > 0 \Longleftrightarrow$ no mistakes in the example high $\gamma_k \Longleftrightarrow$ high confidence

Mistake-augmented Margins

(Taskar et al, 2004)

						$e(\mathbf{y}^{(k)}, \cdot)$
	Jack	London	went	to	Paris	
$\mathbf{y}^{(k)}$	PER	PER	-	-	LOC	
$\overline{\mathbf{y}'}$	PER	LOC	-	-	LOC	1
\mathbf{y}''	PER	-	-	-	-	2
\mathbf{y}'''	-	-	PER	PER	-	5

▶ Def:
$$e(\mathbf{y}, \mathbf{y}') = \sum_{i=1}^{n} [y_i \neq y_i']$$

e.g., $e(\mathbf{y}^{(k)}, \mathbf{y}^{(k)}) = 0$, $e(\mathbf{y}^{(k)}, \mathbf{y}') = 1$, $e(\mathbf{y}^{(k)}, \mathbf{y}'') = 5$

▶ We want a w such that

$$\forall \mathbf{y} \neq \mathbf{y}^{(k)} : \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) > \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}) + e(\mathbf{y}^{(k)}, \mathbf{y})$$

(the higher the error of y, the larger the separation should be)

Mistake-augmented Margins

(Taskar et al, 2004)

						$e(\mathbf{y}^{(k)}, \cdot)$
	Jack	London	went	to	Paris	
$\mathbf{y}^{(k)}$	PER	PER	-	-	LOC	0
\mathbf{y}'	PER	LOC	-	-	LOC	1
\mathbf{y}''	PER	-	-	-	-	2
\mathbf{y}'''	-	-	PER	PER	-	5

▶ Def:
$$e(\mathbf{y}, \mathbf{y}') = \sum_{i=1}^{n} [y_i \neq y_i']$$

e.g., $e(\mathbf{y}^{(k)}, \mathbf{y}^{(k)}) = 0$, $e(\mathbf{y}^{(k)}, \mathbf{y}') = 1$, $e(\mathbf{y}^{(k)}, \mathbf{y}''') = 5$

▶ We want a w such that

$$\forall \mathbf{y} \neq \mathbf{y}^{(k)} : \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) > \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}) + e(\mathbf{y}^{(k)}, \mathbf{y})$$

(the higher the error of y, the larger the separation should be)

Mistake-augmented Margins

(Taskar et al, 2004)

▶ Def:
$$e(\mathbf{y}, \mathbf{y}') = \sum_{i=1}^{n} [y_i \neq y_i']$$

e.g., $e(\mathbf{y}^{(k)}, \mathbf{y}^{(k)}) = 0$, $e(\mathbf{y}^{(k)}, \mathbf{y}') = 1$, $e(\mathbf{y}^{(k)}, \mathbf{y}''') = 5$

We want a w such that

$$\forall \mathbf{y} \neq \mathbf{y}^{(k)} : \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) > \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}) + e(\mathbf{y}^{(k)}, \mathbf{y})$$

(the higher the error of y, the larger the separation should be)

Structured Hinge Loss

Define a mistake-augmented margin

$$\gamma_{k,\mathbf{y}} = \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) - \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}) - e(\mathbf{y}^{(k)}, \mathbf{y})$$
$$\gamma_k = \min_{\mathbf{y} \neq \mathbf{y}^{(k)}} \gamma_{k,\mathbf{y}}$$

▶ Define loss function on example *k* as:

$$L(\mathbf{w}, \mathbf{x}^{(k)}, \mathbf{y}^{(k)}) = \max_{\mathbf{y} \in \mathcal{Y}^*} \left\{ \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}) + e(\mathbf{y}^{(k)}, \mathbf{y}) - \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) \right\}$$

- Leads to an SVM for structured prediction
- Given a training set, find:

$$\underset{\mathbf{w} \in \mathbb{R}^D}{\operatorname{argmin}} \quad \sum_{k=1}^m L(\mathbf{w}, \mathbf{x}^{(k)}, \mathbf{y}^{(k)}) + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Regularized Loss Minimization

▶ Given a training set $\{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)})\}$. Find:

$$\underset{\mathbf{w} \in \mathbb{R}^D}{\operatorname{argmin}} \quad \sum_{k=1}^m L(\mathbf{w}, \mathbf{x}^{(k)}, \mathbf{y}^{(k)}) + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

- ▶ Two common loss functions $L(\mathbf{w}, \mathbf{x}^{(k)}, \mathbf{y}^{(k)})$:
 - Log-likelihood loss (CRFs)

$$-\log P(\mathbf{y}^{(k)} \mid \mathbf{x}^{(k)}; \mathbf{w})$$

Hinge loss (SVMs)

$$\max_{\mathbf{y} \in \mathcal{Y}^*} \left(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}) + e(\mathbf{y}^{(k)}, \mathbf{y}) - \mathbf{w} \cdot \mathbf{f}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)}) \right)$$

Learning Structure Predictors: summary so far

Linear models for sequence prediction

$$\underset{\mathbf{y} \in \mathcal{Y}^*}{\operatorname{argmax}} \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i)$$

- Computations factorize on label bigrams
 - Decoding: using Viterbi
 - Marginals: using forward-backward
- Parameter estimation:
 - Perceptron, Log-likelihood, SVMs
 - Extensions from classification to the structured case
 - Optimization methods:
 - Stochastic (sub)gradient methods (LeCun et al 98) (Shalev-Shwartz et al. 07)
 - Exponentiated Gradient (Collins et al 08)
 - SVM Struct (Tsochantaridis et al. 04)
 - Structured MIRA (McDonald et al 05)

Sequence Prediction, Beyond Bigrams

▶ It is easy to extend the scope of features to *k*-grams

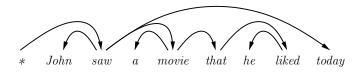
$$\mathbf{f}(\mathbf{x}, i, y_{i-k+1:i-1}, y_i)$$

- ▶ In general, think of state σ_i remembering relevant history
 - $\sigma_i = y_{i-1}$ for bigrams
 - $ightharpoonup \sigma_i = y_{i-k+1:i-1}$ for k-grams
 - σ_i can be the state at time i of a deterministic automaton generating ${f y}$
- ▶ The structured predictor is

$$\underset{\mathbf{y} \in \mathcal{Y}^*}{\operatorname{argmax}} \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \sigma_i, y_i)$$

▶ Viterbi and forward-backward extend naturally, in $O(nL^k)$

Dependency Structures

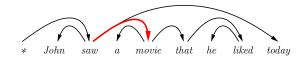


- Directed arcs represent dependencies between a head word and a modifier word.
- ► E.g.:

movie *modifies* saw, John *modifies* saw, today *modifies* saw

Dependency Parsing: arc-factored models

(McDonald et al. 2005)



lacktriangle Parse trees decompose into single dependencies $\langle h, m \rangle$

$$\underset{\mathbf{y} \in \mathcal{Y}(\mathbf{x})}{\operatorname{argmax}} \sum_{\langle h, m \rangle \in y} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, h, m)$$

- Some features: $\mathbf{f}_1(\mathbf{x}, h, m) = [\text{"saw"} \rightarrow \text{"movie"}]$ $\mathbf{f}_2(\mathbf{x}, h, m) = [\text{distance} = +2]$
- Tractable inference algorithms exist (tomorrow's lecture)

Linear Structured Prediction

Sequence prediction (bigram factorization)

$$\operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i})$$

Dependency parsing (arc-factored)

$$\underset{\mathbf{y} \in \mathcal{Y}(\mathbf{x})}{\operatorname{argmax}} \sum_{\langle h, m \rangle \in y} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, h, m)$$

▶ In general, we can enumerate parts $r \in \mathbf{y}$

$$\underset{\mathbf{y} \in \mathcal{Y}(\mathbf{x})}{\operatorname{argmax}} \sum_{r \in \mathbf{v}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, r)$$

Linear Structured Prediction Framework

- Abstract models of structures
 - ▶ Input domain \mathcal{X} , output domain \mathcal{Y}
 - ▶ A choice of factorization, $r \in \mathbf{y}$
 - ▶ Features: $\mathbf{f}(\mathbf{x},r) \to \mathbb{R}^d$
- lacktriangle The linear prediction model, with $\mathbf{w} \in \mathbb{R}^d$

$$\underset{\mathbf{y} \in \mathcal{Y}(\mathbf{x})}{\operatorname{argmax}} \sum_{r \in y} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, r)$$

- Generic algorithms for Perceptron, CRF, SVM
 - Require tractable inference algorithms