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@ MT has been around since the early 1950s
@ Increasingly popular since 1990: statistical approaches

@ Software toolkits to build translation systems from data,
e.g. Moses, cdec

@ Availability of large collections of data, e.g. Europarl,
TAUS data

@ More processing power

@ Increasing demand for (cheap) translations - Google: 1
billion translations requests/day for 200 million users

e Funding for research worldwide

@ Exciting time for MT!
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O menino uma maca
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Introduction

The task of Machine Translation (MT)

The boy an apple

O menino uma maca

BUT

He said that the bottle floated into

7 Dijo que la botella entro a flotando

28 J6 X IFER |, (B XK= KA +5 EE

However , the sky remained clear under the strong north wind .
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@ Lexical ambiguity
@ Syntactic ambiguity
@ Pronoun resolution

@ Structural divergences

Statistical Machine Translation 6/71



Introduction

Challenges in MT

(*]
(]
("]
(*]
(*]

Lexical ambiguity
Syntactic ambiguity
Pronoun resolution
Structural divergences

Idioms

e.g. He finally kicked the bucket at the hospital
— Ele finalmente bateu as botas no hospital

@ Multi-word expressions
e.g. Do take the long waiting list for organ donation in this
country into account
— Considere a longa lista de espera para doacgdo de
6rgaos neste pais
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SMT

Statistical Machine Translation

Statistical Machine Translation (SMT): "learn” how to
generate translations from data

@ Formalised early 1990s by IBM, but idea is much older:
Warren Weaver (1949)

When | look at an article in Russian, | say: “This is really
written in English, but it has been coded in some strange
symbols. | will now proceed to decode.”
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Statistical Machine Translation

Statistical Machine Translation (SMT): "learn” how to
generate translations from data

@ Formalised early 1990s by IBM, but idea is much older:

Warren Weaver (1949)

When | look at an article in Russian, | say: “This is really
written in English, but it has been coded in some strange
symbols. | will now proceed to decode.”

e Inspired by WWII code-breaking, and Shannon's
Information Theory
e Approach was not feasible with early computers
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Noisy Channel Model

Noisy Channel Model

@ Idea developed to model communication (Shannon)

e e.g. communication over an imperfect phone line

. e . guess at
B Sreeasetin, noisy L
sourc: > word  + Vo word  _ PECODIR original
.
- word
NOISY CHANNEL

e want to recover original message (here word) on basis of
distorted signal received (here noisy word)
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SMT

Noisy Channel Model & SMT

@ Output depends probabilistically on input
@ To translate French (F) into English (E):

Given a French sentence F, search for English sentence E*
that maximises P(E|F)
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Noisy Channel Model & SMT

e Find English sentence that maximizes P(E|F), i.e.

E* = argmax P(E|F)
E

P(E)-P(F|E)

1G] Bayes Rule

= argmax
E

o P(F) constant across different E, so:

E* = argmax P(E)-P(F|E) drop P(F)
E

Statistical Machine Translation 1 /71



SMT

Noisy Channel Model & SMT

E* = argmax P(E|F) = argmaxP(E)- P(F|E)
E E

@ Decomposition of P(E|F) to P(E) - P(F|E) breaks the
problem in two parts:
o P(F|E) worries about picking E words that were likely
used to generate F — faithfulness

e P(E) worries about picking E words that are likely to be
said in English and that fit together — fluency
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Noisy Channel Model & SMT

E* = argmax P(E|F) = argmaxP(E)- P(F|E)
E E

@ Decomposition of P(E|F) to P(E) - P(F|E) breaks the
problem in two parts:
o P(F|E) worries about picking E words that were likely
used to generate F — faithfulness

e P(E) worries about picking E words that are likely to be
said in English and that fit together — fluency

@ P(E) and P(F|E) can be trained independently:
model
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Main Components for Translation (F — E)

e Translation model (TM): P(F|E)

o Faithfulness: TMs created from (large) parallel texts
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SMT

Main Components for Translation (F — E)

e Translation model (TM): P(F|E)
o Faithfulness: TMs created from (large) parallel texts
e Language model (LM): P(E)

o Fluency: LMs created from large (fluent) target
language texts

e A Decoder: (argmax)

e Search algorithm to find E*
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SMT

Learning Translation Models

F|E

@ Requires a sentence-aligned bilingual corpus

e e.g. European/Canadian/Hong Kong parliaments,
subtitles, Bible, Web Crawl

here is advice for proceeding : gently excise this page and make it
your bookmark

Mr. Englund is a Swedish historian and journalist

he is also the new permanent Secretary of the Swedish Academy , which

awards the Nobel Prize in literature
not

one he describes

what he has written here is an unusual book ,
inaccurately , as “ a work of anti @-@ history
it contains few big names , major Treaties or famous battles ; there
are almost no ambassadors , dashing journalists or discussions of
tactics and materiel

not so much a book about mzt happened , he explains , as * a
book about what Lt was like . bout “ feelings , impressions ,

experiences and moods . ”

“ the beauty and the sorrow ” threads together the wartime experiences
of 20 more or less unremarkable men and women , on both sides of the
, from schoolgirls and botanists to mountain climbers , doctors

war
ambulance drivers and clerks

a few of these people will become heroes

[Aqui es consejos para proceder: Impuestos especiales amablemente esta
pagina y dejar su booknar!

efior Englund es un historiador y periodista sueco.

ambién esta el nuevo secretario permanente de la Academia Sueca, que
otorga el premio Nobel de literatura

Lo que é1 ha escrito aqui es una inusual, un libro que describe, no de
forma poco precisa, como “ un trabajo de anti-historta

Contiene algunas grandes nombres, principales Tratados o famoso batallas;
no hay casi embajadores, corriendo periodistas o debates de tacticas y

material.
No es tanto un libro sobre lo ocurrido, explica, como “ un libro sobre lo
que era como. ” » sobre la “ sentinientos, impresiones, experiencias y los

estados de animo

o los tiempos de guerra experiencias de 26
anbos lados de la guerra, de las

los médicos, los conductores

“ 1a belleza y el dolor * cabos,
mas o menos brille hombres y mujeres,
estudiantes y botanists de montana climbers,
de ambulancias y burécratas.

a

[Algunas de estas personas se convertira en héroes

Pocos seran los prisioneros de guerra, o perder extremidades, loca o morir

a few will become prisoners of war , or lose limbs , go mad or die
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Learning Translation Models

F|E

@ Requires a sentence-aligned bilingual corpus

e e.g. European/Canadia
subtitles, Bible, Web C

here is advice for proceeding : gently excise this page and make it

your bookmark
ur. Englund is a swedish historian and journalist
he is also the new permanent Secretary of the Swedish Academy , which

awards the Nobel Prize in literatur
not

one he describes

what he has written here is an unusual book ,

inaccurately , as “ a work of anti @-@ history
it contains few big names , major Treaties or famous battles ; there
are almost no ambassadors , dashing journalists or discussions of

tactics and materiel
not so much a book about mzt happened , he explains , as * a
book about what Lt was 11 ut “ feelings , impressions ,
experiences and moods . ”
“ the beauty and the sorrow ” threads together the wartime experiences
of 26 more or less unremarkable men and women , on both sides of the
war , from schoolgirls and botanists to mountain climbers , doctors
anbulance drivers and clerks

a few of these people will become heroes

Aqui es consejos para proceder:
pagina y dejar su booknar!

n/Hong Kong parliaments,
rawl

Impuestos especiales amablemente esta

efior Englund es un historiador y periodista sueco.

Acadenia que

anbién ests el nuevo secretario permanente de la Sueca,
otorga el premio Nobel de literatura

Lo que é1 ha escrito aqui es una inusual, un libro que describe, no de
forma poco precisa, como “ un trabajo de anti-historta

Contiene algunas grandes nombres, principales Tratados o famoso batallas;
no hay casi embajadores, corriendo periodistas o debates de tacticas y
material.

No es tanto un libro sobre lo ocurrido, explica, como “ un libro sobre lo
» sobre la  sentinte mpresiones, experiencias y los

to

que era como. ” 5
estados de animo

“ 1a belleza y el dolor * cabos, los tiempos de guerra experiencias de 26
mas o menos brille hombres y mujeres, a ambos lados de la guerra, de las
estudiantes y botanists de montana climbers, los médicos, los conductores
de ambulancias y burécratas.

[Algunas de estas personas se convertira en héroes

o perder extremidades, loca o morir

Pocos seran los prisioneros de guerra,

a few will become prisoners of war , or lose limbs , go mad or die

@ Can we estimate P(F|E) from entire sentences?
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Learning Translation Models - Word-based SMT

@ Break sentences into smaller units: words

@ Learn translation probabilities by word aligning a
sentence-aligned corpus:
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Learning Translation Models - Word-based SMT

@ Break sentences into smaller units: words

@ Learn translation probabilities by word aligning a
sentence-aligned corpus:

Zenish

Uh useh
Uh jejje
Yiguo useh

| \

English

A home
A garden
| arrived home

Statistical Machine Translation



SMT

Learning Translation Models - Word-based SMT

@ Break sentences into smaller units: words are a good
starting point

@ Learn translation probabilities by word aligning a
sentence-aligned corpus:

Uh useh
Uh jejje
Yiguo useh

@ The same word happens in source 1 and 3

A home
A garden
| arrived home
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SMT

Learning Translation Models - Word-based SMT

@ Break sentences into smaller units: words
@ Learn translation probabilities by word aligning a
sentence-aligned corpus:

Uh useh
Uh jejje
Yiguo useh

@ Could we expect the same in the target side?

A home
A garden
| arrived home
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SMT

Learning Translation Models - Word-based SMT

@ Break sentences into smaller units: words

@ Learn translation probabilities by word aligning a
sentence-aligned corpus:

Zenish

Uh useh
Uh jejje
Yiguo useh

| \

English

A home
A garden
| arrived home

@ useh = home
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SMT

Learning Translation Models - Word-based SMT

@ Break sentences into smaller units: words

@ Learn translation probabilities by word aligning a
sentence-aligned corpus:

Uh useh
Uh jejje
useh

@ What about the contexts?

A home
A garden
| arrived home
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Learning Translation Models - Word-based SMT

@ Break sentences into smaller units: words
@ Learn translation probabilities by word aligning a
sentence-aligned corpus:

Uh useh
Uh jejje
useh

<

English

A home
A garden
home

@ We can align them: Yiguo = [; Yiguo = arrived; Uh = A



SMT

Learning Translation Models - Word-based SMT

@ Break sentences into smaller units: words
@ Learn translation probabilities by word aligning a
sentence-aligned corpus:

Uh useh
Uh jejje
useh

<

English

A home
A garden

home J

@ Reuse this knowledge to align more sentences: Uh = A
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SMT

Learning Translation Models - Word-based SMT

@ Break sentences into smaller units: words
@ Learn translation probabilities by word aligning a
sentence-aligned corpus:

Uh useh
Uh jejje
useh

<

English

A home
A garden
home

N,

@ And the context again: jejje = garden

Statistical Machine Translation



SMT

Learning Translation Models - Word-based SMT

Word-alignment:

o Identify correspondences between two languages at the
word level

@ Basis for word-based SMT, first step for other approaches
@ Alignment learned via Expectation Maximization (EM)

e Start with all alternative word alignments as equally
likely

o Observe across sentences that Zenish useh often links to
English home

@ Increase probability of this word pair aligning
@ Knock-on effect: update alignment of other words

o lteratively redistribute probabilities, until they identify
most likely links for each word (convergence)

Statistical Machine Translation 23/ 71



SMT

Learning Translation Models - Word-based SMT

e Word alignment commonly done using IBM Models 1-5
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SMT

Learning Translation Models - Word-based SMT

e Word alignment commonly done using IBM Models 1-5

e IBM 1 is a straightforward application of EM, including
the alignment to null token (deletion)

e Finds translation probabilities for words in isolation,
regardless of their position in parallel sentence

e IBM 2-5 improve these distributions by considering:
e Position of words in target sentence are related to
position of words in source sentence (distortion model)
e Some source words may be translated into multiple
target words (fertility of the words)
e Position of a target word may be related to position of
neighbouring words (relative distortion model)
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SMT

Learning Translation Models - Word-based SMT

@ IBM1 produces a probabilistic dictionary based on entire
parallel corpus:

uh a 0.90
uh home 0.05
uh garden 0.05
useh | a 0.03
useh | home 0.95
useh | | arrived | 0.02
jejje | a 0.30
jejjje | garden 0.70
yiguo | | arrived | 0.80
yiguo | home 0.20

@ Higher models estimate other probabilities: fertility,
position, etc.
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SMT

Learning Translation Models - Word-based SMT

At translation (decoding) time

For a new sentence to translate, take the set of translations
that jointly maximise the whole translation probability

E* = argmax P(F|E)
E

What about the fluency in the target language?
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SMT

Learning Language Models - Word-based SMT

Language model: P(E)

E* = argmax P(F|E)- P(E)
E

e Different translation options and different word orders are
possible, some are more likely to happen in E
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SMT

Learning Language Models - Word-based SMT

Language model: P(E)
E* = argmax P(F|E)- P(E)
E

e Different translation options and different word orders are
possible, some are more likely to happen in E

e P(E) = probability of strings E based on relative
frequencies in a large corpus of language E
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SMT

Learning Language Models - Word-based SMT

E.g.

@ Given the new sentence: “Yiguo la ta jejje”
@ Assume new dictionary entries: la = at; ta = the

@ Translation model could generate many possible
translations, e.g.:

| arrived at the a

| arrived at the garden
home at the a

home at the garden
the a at | arrived
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@ Given the new sentence: “Yiguo la ta jejje”
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translations, e.g.:
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Learning Language Models - Word-based SMT

E.g.

@ Given the new sentence: “Yiguo la ta jejje”
@ Assume new dictionary entries: la = at; ta = the

@ Translation model could generate many possible
translations, e.g.:

| arrived at the a

| arrived at the garden
home at the a

home at the garden
the a at | arrived

@ Score each of them according to P(E)

Statistical Machine Translation
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Learning Language Models - Word-based SMT

° P(E):P(el7e27e37"' 7en)
= P(el)P(e2|€1) ' P(e3|el762)"'P(en|el7”. 7en—1)

@ Difficult to have reliable estimates for whole sentences —
break it down into smaller sequences: n-grams

° : only the previous n-1 words
matter for predicting a word. For trigram models, n = 3

~ P(e1) - P(e2ler) - P(esler, €2) -
’D(e4|627e3)""D(en|en—27en—1)
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SMT

Learning Language Models - Word-based SMT

@ Relative frequencies to compute these probabilities. E.g.
trigrams:

count(ejexe3)

P(e3|el; 6‘2) = count(ere)

__ count(at the garden)
P(garden|at, the) = count(at the)
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Learning Language Models - Word-based SMT

@ Relative frequencies to compute these probabilities. E.g.
trigrams:

count(ejexe3)

P(e3|el; 6‘2) = count(ere)

__ count(at the garden)
P(garden|at, the) = count(at the)

@ For candidate: | arrived at the garden
P(!|Start) - P(arrived|Start, 1) - P(at|l, arrived) -
P(the|arrived, at) - P(garden|at, the) - P(End|garden, the)
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SMT

Learning Language Models - Word-based SMT

@ Relative frequencies to compute these probabilities. E.g.
trigrams:

count(ejexe3)

P(e3|el; 6‘2) = count(ere)

__ count(at the garden)
P(garden|at, the) = count(at the)

@ For candidate: | arrived at the garden
P(!|Start) - P(arrived|Start, 1) - P(at|l, arrived) -
P(the|arrived, at) - P(garden|at, the) - P(End|garden, the)

@ Smoothing, back-off models, etc. to improve over relative
counts
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SMT

Word-based SMT — Limitations

e Difficult to word-align, and hence learn a TM, for
languages with different words orders
o Considering all possible word orders — too costly, too
noisy
e Poor reordering model
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Word-based SMT — Limitations

e Difficult to word-align, and hence learn a TM, for
languages with different words orders
o Considering all possible word orders — too costly, too
noisy
e Poor reordering model

e Fertility/n-m alignments: Some languages may have
different notions of what counts as a word

The keyhole of the door of the cabin of the captain of a steamship
company operating on the Danube
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SMT

Phrase-based SMT

Most popular approach since early 2000s

No voy; a la; 3 — | am not going; to the; 3
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Phrase-based SMT

Most popular approach since early 2000s

No voy; a la; 3 — | am not going; to the; 3
it seems to; me; — me; parece;
Je; ne vais pas; 3 maison; — |l; am not going, 3 housey
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SMT

Phrase-based SMT

Most popular approach since early 2000s

No voy; a la; 3 — | am not going; to the; 3
it seems to; me, — me; parece,
Je; ne vais pas; 3 maison; — |l; am not going, 3 housey

Eu; sinto saudade de vocé, — |; miss you,
lI; miss you, — Eu; sinto sua falta,
natuerlich; hat, 3 spass amy spiels — of course; > has; fun
with they games

@ More intuitive and reliable alignments

e Account for reordering within the phrases
e Phrases can still be reordered
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Je; ne vais pas; 3 maison; — |l; am not going, 3 housey
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@ Can we directly estimate phrase translation probability
distribution from a parallel corpus using EM?
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Phrase-based SMT

Most popular approach since early 2000s

No voy; a la; 3 — | am not going; to the; 3
it seems to; me; — me; parece;
Je; ne vais pas; 3 maison; — |l; am not going, 3 housey

Eu; sinto saudade de vocé, — |; miss you,
lI; miss you, — Eu; sinto sua falta,
natuerlich; hat, 3 spass amy spiels — of course; > has; fun
with they games

@ More intuitive and reliable alignments

e Account for reordering within the phrases
e Phrases can still be reordered

@ Can we directly estimate phrase translation probability
distribution from a parallel corpus using EM?

e Too many possible phrase pairs
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SMT

Phrase-based SMT - Phrases from word alignments

Extract phrase pairs that are consistent with WA

@ Phrase: sequence of tokens, not linguistically motivated
@ WA produced by IBM Models, like before, only once

reanudacion

del | periodo | de | sesiones

resumption
of
the
session
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Phrase-based SMT - Phrases from word alignments

Extract phrase pairs that are consistent with WA

@ Phrase: sequence of tokens, not linguistically motivated
@ WA produced by IBM Models, like before, only once

reanudacién | del | periodo | de | sesiones

resumption
of
the
session

@ resumption < reanudacién
@ of the « del
© session <> periodo de sesiones
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Phrase-based SMT - Phrases from word alignments

Extract phrase pairs that are consistent with WA

@ Phrase: sequence of tokens, not linguistically motivated

@ WA produced by IBM Models, like before, only once

reanudacion

periodo | de | sesiones

resumption

session

© resumption of the < reanudacién del
@ of the session > del periodo de sesiones

© resumption of the session <> reanudacion del periodo de
sesiones

Statistical Machine Translation 34 /71



SMT

Phrase-based SMT - Phrases from word alignments

Extract phrase pairs that are consistent with WA

@ Phrase: sequence of tokens, not linguistically motivated

@ WA produced by IBM Models, like before, only once

reanudacion

del | periodo | de | sesiones

resumption
of
the
session

© resumption of the < reanudacién del
@ of the session > del periodo de sesiones

© resumption of the session <> reanudacion del periodo de
sesiones
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SMT

Phrase-based SMT - Phrase probabilities

@ Extract phrase pairs from word aligned parallel corpus /

@ Extract counts of those phrases from large parallel
corpus (MLE):

© Store phrases and their probabilities in a phrase table
e Probabilistic dictionary of phrases
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SMT

Phrase-based SMT - Weighing components

E* = argmax P(F|E)- P(E)
E

@ Rewriting equation for phrases:
ps. LM (P(E)) remains the same: computed for n-grams

e = argmax [[,_, ¢(£|&) - 15, P(eiler - 1)
e

@ Which component is more important?
o P(F|E)or P(E) ?
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SMT

Phrase-based SMT - Weighing components

E* = argmax P(F|E)- P(E)
E

@ Rewriting equation for phrases:
ps. LM (P(E)) remains the same: computed for n-grams

e = argmax [[,_, ¢(£|&) - 15, P(eiler - 1)
e

@ Which component is more important?
o P(F|E)or P(E) ?

@ Depends on size/quality of corpus, language-pair, etc.
@ In generative model: components equally important
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SMT

Phrase-based SMT - Linear model

Weigh components for a given task (parallel corpus):

I
e" = argmax | l_Igzﬁ(f_‘,-|é,-)A‘zb :
€ i=1
le|
[IP(eilen---e-1)]
i=1

Applying log (simpler to compute):

I
e’ = argmax exp| Ao Z log ¢(f|&;) +
€ i=1

le]
/\LM Z |Og P(e,-\el s e,-,l)]
i=1
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SMT

Phrase-based SMT - Linear model

Model

e* = argmax expy . \ihi(f,e)
e
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Phrase-based SMT - Linear model

Model

e* = argmax expy . \ihi(f,e)
e

Components

Q P
Q¢
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SMT

Phrase-based SMT - Linear model

Model
e* = argmax expy . \ihi(f,e)
e
Components Weights
Q Pim Q M\
Q0 Q )\
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SMT

Phrase-based SMT - Linear model

Model
e* = argmax expy . \ihi(f,e)
e
Components Weights Feature Functions
Q Pim Q \wm Q hy = logPim
Q9 QX Q hy = log¢
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SMT

Phrase-based SMT - Linear model

Model
e* = argmax expy . \ihi(f,e)
e
Components Weights Feature Functions
Q Pim Q \wm Q hy = logPim
Q¢ QX Q hy = log¢
Benefits
© Extensible

© Weights can be tuned, i.e., learned from examples
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SMT

Phrase-based SMT - Linear model

Common additional components h(f, e):

o Direct phrase translation probabilities: ¢(&|f) extracted
just like ¢(f|€)
@ Distance-based phrase reordering: _
d(start; — end;_1 — 1), for every phrase ¢(f;|&)
o Exponential decaying cost function d(x) = a/¥!

e x = start; — end;_1 — 1: is there a gap in the translation
between two source phrases?

e Phrase penalty: constant p for each phrase produced;
p < 1 to favour fewer, but longer phrases (more fluent)
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SMT

Phrase-based SMT - Linear model

Common additional components h(f, e):

o Direct phrase translation probabilities: ¢(&|f) extracted
just like ¢(f|€)

@ Distance-based phrase reordering:
d(start; — end;_y — 1), for every phrase ¢(fi|&)
o Exponential decaying cost function d(x) = a/¥!
e x = start; — end;_1 — 1: is there a gap in the translation
between two source phrases?

e Phrase penalty: constant p for each phrase produced;
p < 1 to favour fewer, but longer phrases (more fluent)

e Etc: ~ 15 popular components/features
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SMT

Phrase-based SMT - Linear model

@ Decoder remains similar, now with weights associated to
components

@ Discriminative model: learn A weights such as to
minimise error in small corpus
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SMT

Phrase-based SMT - Decoding

e* = argmax Yy ., \ihi(f,e)

@ Search problem: finding the best scoring translation
according to the model
o Translation is build in sequence (left to right)
e Input words may be covered out of sequence (allow for
reordering)

Statistical Machine Translation



SMT

Phrase-based SMT - Decoding

@ All phrases matching source words selected from phrase

table. E.g.:
J’ ai les yeux noirs
| | have | the | eyes black
me | has | them | eye dark ,
| have eyes espresso | !
I am the eyes somber
| did some | black eyes
| had black eyes
| have black eyes
black eyes | have

@ Decoder selects phrases whose combination (in a given
order) yields the highest score acc to the linear model
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SMT

Phrase-based SMT - Decoding

Incrementally construct translation hypotheses by trying out
several possibilities:

@ Generating target words in sequence, from left to right

e Computing the (so far) overall log-linear model score
for each hypothesis

@ Pruning search space via heuristics. e.g:

o Distortion limit - at most 4 positions different from
source order

o Keep only partial hypothesis that are promising, e.g.
model score is close to that of the best partial
hypothesis so far
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SMT

Phrase-based SMT - Decoding

Incrementally construct translation hypotheses by trying out
several possibilities:

@ Generating target words in sequence, from left to right

e Computing the (so far) overall log-linear model score
for each hypothesis

@ Pruning search space via heuristics. e.g:

o Distortion limit - at most 4 positions different from
source order

o Keep only partial hypothesis that are promising, e.g.
model score is close to that of the best partial
hypothesis so far

Approximate search, e.g. stack-based beam search

Statistical Machine Translation 44 /71



SMT

Phrase-based SMT - Decoding

Search space

J" ai les yeux noirs . A/ ai les yeux noirs N/ i les yeux noirs . N/ 31 J¢§ y&iy noirs
empty I have eyes

\ \ .
A/ ai les yeux noirs A/l les yeux pigied
b

' ailes yeux fgifF ' ai les yéilH AIAY -
black eyes

Hypothesis
@ Covered source words
e Target (output) words
@ Model score
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SMT

Phrase-based SMT - Tuning Parameters

@ Apply decoder with uniform weights to produce an
n-best list of translations (e.g. top 1,000 translations)

er geht ja nicht — he does not go
Rank Translation P(e|f) $(f|e) lex(&|f, a) lex(f|e, a) wpP PLM Error
1 it is not under house -9.93 -19.00 -5.08 -8.22 -5 -32.22 0.8
2 he is not under house -7.40 -16.33 -5.01 -8.15 -5 -34.50 0.6
3 it is not a home -12.74 -19.29 -5.08 -8.42 -5 -28.49 0.6
4 it is not to go home -10.34 -20.87 -4.38 -13.11 -6 -32.53 0.8
5 it is not for house -17.25 -20.43 -4.90 -6.90 -5 -31.75 0.8
6 he is not to go home -10.95 -18.20 -4.85 -13.04 -6 -35.79 0.6
7 he does not home -11.84 -16.98 -3.67 -8.76 -4 -32.64 0.2
8 it is not packing -10.63 -17.65 -5.08 -9.89 -4 -32.26 0.8
9 he is not packing -8.10 -14.98 -5.01 -9.82 -4 -34.55 0.6
10 he is not for home -13.52 -17.09 -6.22 -7.82 -5 -36.70 0.4

o lteratively adapt weights to re-rank n-best translations,
e.g. to make 7 appear at the top

@ Error acc. to evaluation metric (BLEU) against ref
translation

e MERT, PRO, MIRA...
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SMT

Hierarchical and Syntax-based SMT

@ PBSMT has trouble with long-distance reorderings

@ Alternative approaches to bring structure and linguistic
knowledge into the transfer rules of phrase table
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SMT

Hierarchical and Syntax-based SMT

@ PBSMT has trouble with long-distance reorderings

@ Alternative approaches to bring structure and linguistic
knowledge into the transfer rules of phrase table

interlingua

transfer

direct translation
source target
text text
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SMT

Hierarchical SMT - Motivation

Introduce structure into phrase-based SMT models to deal
with long-distance reordering

Ich

werde

Ihnen

die
entsprechenden|
Anmerkungen
aushandigen

shall
be
passing
on

to

you

some
comments
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SMT

Hierarchical SMT - Motivation

Introduce structure into phrase-based SMT models to deal
with long-distance reordering

Ich

werde

Ihnen

entsprechenden|
Anmerkungen

die

shall

@ How can we get a phrase for

be

shall be passing on?

to

you

some

comments
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SMT

Hierarchical SMT - Motivation

Introduce structure into phrase-based SMT models to deal
with long-distance reordering

entsprechenden|

Anmerkungen

@ How can we get a phrase for
shall be passing on?

T T @ We cannot, unless we get to
you some comments along

to
you

some
comments
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SMT

Hierarchical SMT - Motivation

Introduce structure into phrase-based SMT models to deal
with long-distance reordering

@ How can we get a phrase for
shall be passing on?

@ We cannot, unless we get to
you some comments along

@ Unless we replace all those
words by a variable

Statistical Machine Translation 51 /71



SMT

Hierarchical SMT - Motivation

shall be to you some comments

!

werde lhnen die entsprechenden Anmerkungen

shall be to you some comments

!

werde lhnen die entsprechenden Anmerkungen

shall be X
)

werde X
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SMT

Hierarchical SMT - basics

Learnt from word-aligned parallel corpora in the same way as
before
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SMT

Hierarchical SMT - basics

Learnt from word-aligned parallel corpora in the same way as
before
@ Based on the fact that language has recursive structures

@ Phrases within other phrases treated as nonterminals:
replaced by X

@ No linguistic constraints added - yet, some structure
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SMT

Hierarchical SMT - basics

shall be to you some comments

!

werde lhnen die entsprechenden Anmerkungen

shall be X; some comments

!

werde X; die entsprechenden Anmerkungen

shall be X1 X5
)

werde X; X5
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SMT

Hierarchical SMT - phrase-table

[X] — shall be X1 Xo | werde X; X

[X] — shall be X5 | werde X3

[X] — to you | lhnen

[X] = some comments | die entsprechenden Anmerkungen

[X] — to you some comments | Ihnen die entsprechenden
Anmerkungen

Learn a bilingual (synchronous) set of context-free rules on
how to translate F—E
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SMT

Syntax-based SMT

@ Hierarchical models are not very informative (Xs) and
suffer from an exponential number of rules

@ Syntax-based SMT: uses linguistic categorise to label
nodes

@ Syntactic parser at pre-processing time for at least one
language (the other could have Xs)

@ Learn a bilingual (synchronous) set of linguistically
informed context-free rules on how to translate F—E

@ Rules extracted acc to word-alignment, constrained by
heuristics for syntax
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SMT

Syntax-based SMT

les  yeux noirs black eyes

Standard constraints on rule construction:

@ Single nonterminal on the left

Ef;’:k @ Consistent with word-alignment
eyes @ Nonterminals on the right must align

one-to-one
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SMT

Syntax-based SMT

Grammar
PRP — J' | |
JJ — noirs | black
NP — les yeux JJ | JJ eyes
VP — ai NP | have NP
S — PRP VP | PRP VP

Decoding becomes a (probabilistic) parsing problem!
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Evaluation

Outline

© Evaluation
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Evaluation
MT evaluation metrics

For developers/researchers:
@ Measure progress over time
@ Compare MT systems

@ Tune model parameters

Close to human translation

@ N-gram matching between system output and one or
more reference (human) translations
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Evaluation
MT evaluation metrics

BLEU: BiLingual Evaluation Understudy
@ Most widely used metric

@ Matching of n-grams between MT and Ref: rewards
same words in equal order

Statistical Machine Translation 61 /71



Evaluation
MT evaluation metrics

BLEU: BiLingual Evaluation Understudy
@ Most widely used metric

@ Matching of n-grams between MT and Ref: rewards
same words in equal order

Ref: the lraqi are to be handed over
within
MT: in Irag’s will give

1-gram precision: 6/10
2-gram precision: 3/9
3-gram precision: 3/8

1

BLEU = (Hi:l Pn) ’

1
o BLEU = (5«3« 2)3 =0.368
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Success stories

Outline

@ Success stories
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Success stories
Interest in MT beyond academia

e Government: U.S. (intelligence purposes); EU
(societal /political /commercial purposes):

e EU spends more than 300M<€ on human translation /
year: 23 official languages (253 language pairs) in 2011

e End-users: Google Translate, Bing Translator, etc.

e Language industry: considerable savings with M T
o Customised SMT: KantanMT, AsiaOnline, etc.
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Success stories
Commercial interest in MT

Autodesk: productivity test (post-editing of MT) [Autll]

@ 2-day translation vs post-editing, 37 participants
@ In-house Moses (Autodesk data: software)
@ Time spent on each segment

Productivity increase

131%

(W Translation ‘
| M Post-Editing |

117% I
86% l
l 65%
57% 6 ’
43% 43% I I

Chinese Japanese Polish Portuguese German [falian Korean Spanish French

42%
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Success stories
Commercial interest in MT

- User satisfaction, unedited MT

@ Translation is good if customer can solve problem
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- User satisfaction, unedited MT
@ Translation is good if customer can solve problem

@ MT for Customer Support websites [Int10]
e Overall customer satisfaction: 75% for English— Chinese
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Success stories
Commercial interest in MT

- User satisfaction, unedited MT
@ Translation is good if customer can solve problem

@ MT for Customer Support websites [Int10]

Overall customer satisfaction: 75% for English—Chinese
95% reduction in cost

Project cycle from 10 days to

Customers in China using MT texts were more satisfied
with support than natives using original texts (68%)!
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Success stories

Other uses of MT+PE

: MT for patent translation
o PATENTSCOPE: customised Moses

@ nhttps://www3.wipo.int/patentscope/translate/translate. jsf
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Success stories

Other uses of MT+PE

: MT for patent translation
PATENTSCOPE: customised Moses

https://www3.wipo.int/patentscope/translate/translate.jsf

uses same workflow as WIPO

Customised Moses for all EU languages [EC-13]

Technology free of charge to any PA in an EU country, or
in an EU institution or agency

o http://ec.europa.eu/dgs/translation/translationresources/machine_translation/index_en.htm
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Success stories

MT for communication

@ Microsoft's speech to speech translation
@ Pipeline:
e Data cleaning
o Pre-processing (named entity recognition)
e Speech recognition
e SMT
e Speech generation

@ Strong interaction component

@ nhttps://www.microsoft.com/translator/skype.aspx
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Conclusions
Conclusions

@ (Cheap) translation is in high demand, which cannot be
supplied by human translators

e MT quality is good for some languages, types of texts,
applications
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Conclusions
Conclusions

@ (Cheap) translation is in high demand, which cannot be
supplied by human translators
e MT quality is good for some languages, types of texts,
applications
@ Popular approaches:
e Most language pairs: phrase-based SMT is sufficient
e Language pairs with long-distance reordering:
syntax-based SMT does better
@ Possible improvements from:
e More information: linguistic (local and global),
contextual
o Better methods: fully discriminative, deciphering,
DNNs, exact search
@ SOA? DNNs are a promising direction to better model
context, long-distance dependencies
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