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Automatic language detection 



Automatic language detection 

• One of the easiest NLP problems 

 

• One of the simplest classifiers: Naïve Bayes 

– Also used for spam detection 

 

• Relies on two simple concepts: 

– Bayes Rule 

– Conditional independence 



(Bayes rule) 

 

• For any random variables A and B: 

 

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)
 

 



(conditional independence) 

• Independence between variables A and B: 

– Knowing A does not give information about B                   
and vice-versa 

 

 

• Conditional independence of A and B, given C: 

– If we know C, knowing A does not give information about B 
and vice-versa 

𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝑃(𝐵) 

𝑃 𝐴, 𝐵|𝐶 = 𝑃 𝐴|𝐶 𝑃(𝐵|𝐶) 



Automatic language detection 

• Training data: Wikipedia 

– 3.3 GB of Portuguese text (PT) 

– 5.6 GB of Spanish text (ES) 

– 8.4 GB of French text (FR) 

 

• Some preprocessing involved 

– Remove XML markup to keep only the text 

– Remove uninformative sections (e.g. references) 

– Transform everything to lowercase 

http://en.wikipedia.org/wiki/File:Wikipedia-logo-v2.svg
http://en.wikipedia.org/wiki/File:Wikipedia_wordmark.svg


Automatic language detection 

• x = input (string) 

– Example: x = “eu fui” 

• y = output (language) 

– y belongs to {PT, ES, FR} 

– Easy to add more languages (use more Wikipedias...) 

 

• Our goal: given the string x, find the language y 
which is most likely  maximize P(y|x) 

– Known as Maximum A Posteriori (MAP) estimator 



Automatic language detection 

• x = string 

• y = language 

 

 

 

 

 

 

• Goal: maximize P(y|x) 

 

 

 

 

 
𝑦∗ = argmax

𝑦
𝑃(𝑦|𝑥)  = argmax

𝑦

𝑃 𝑥 𝑦 𝑃(𝑦)

𝑃(𝑥)
 

= argmax
     𝑦

 𝑃(𝑥|𝑦)𝑃(𝑦) 

Bayes Rule 

P(x) does not 
depend on y 



Automatic language detection 

• x = string 

• y = language 

 

• Goal: find 

 

• How do we compute P(y)? 

• How do we compute P(x|y)? 

𝑦∗ = argmax
     𝑦

 𝑃(𝑥|𝑦)𝑃(𝑦) 



Automatic language detection 

• How do we find P(y)? (called prior) 
 

• In this case, essentially two choices: 
– All languages have the same prior (uniform prior) 

• P(y = PT) = P(y = ES) = P(y = FR) = 1/3 

– Estimate prior from the data 
• P(y) a (size of data of language y) 

 

– In our case, we use the uniform prior 

– Since we want the argmax, we can forget about the prior 
 

argmax
𝑦

𝑃 𝑥 𝑦 𝑃 𝑦 = argmax
𝑦

𝑃 𝑥 𝑦
1

3
= argmax

𝑦
𝑃(𝑥|𝑦) 



(MAP with uniform prior = ML) 

𝑦∗ = argmax
𝑦

𝑃(𝑦|𝑥) 

 

= argmax
𝑦

𝑃 𝑥 𝑦 𝑃(𝑦)

𝑃(𝑥)
 

 
= argmax

𝑦
𝑃 𝑥 𝑦 𝑃 𝑦  

 
= argmax

𝑦
𝑃 𝑥 𝑦  

Bayes Rule 

Drop P(x) 

Uniform Prior 

Maximum A Posteriori Estimator 

Maximum Likelihood Estimator 



Automatic language detection 

• How do we find P(x|y)? (called class conditional) 

 

• For example, what’s P(“eu fui“ | PT)? 
– Maybe count how often “eu fui” appears in the PT data... 

 

• What about this one? 
P(“eu fui à praia com os meus amigos, mas começou a chover por isso 
fomos ao cinema ver o ‘Shrek’, que é um filme de animação”| PT) 

– Probably never appears in the training set for any language! 

– Most non-small sentences would get P(x|y) = 0 for every y      

– What would be the best y ??? 



Automatic language detection 

• Slight change of notation: 

 

 

– i.e. we represent the sentence with all its triplets 

– this is completely equivalent to the original formulation 

 

• Naïve Bayes: assume conditional independence 

𝑃 "eu fui" PT) = 𝑃("eu_", "u_f", "_fu", "fui" | PT) 

𝑃 "eu fui"  PT) = 𝑃("eu_", "u_f", "_fu", "fui" | PT) 
= 𝑃("eu_" | PT)  𝑃("u_f" | PT)  𝑃("_fu" | PT)  𝑃("fui" | PT) 



Automatic language detection 

• We just need to estimate probabilities of the form 
P(“abc” | y), where “abc” are any three characters 

– Can be estimated from train data just by counting: 

 

 

• Example: 

– “fui” appears 102 times in PT train data 

– there are 106 triplets in PT train data 

– then, P(“fui” | PT) = 10-4
 

data train PTin  triplets#

data train PTin  abc""#
)PT|"abc(" P



Automatic language detection 

• No problem with long sentences! 
P(“eu fui à praia com os meus amigos, mas começou a chover por isso 
fomos ao cinema ver o ‘Shrek’, que é um filme de animação”| PT) = 

  

= P(“eu_”|PT) P(“u_f”|PT) P(“_fu”|PT) ... P(“açã”|PT) P(“ção”|PT) 

 

– “eu_” probably appears in all languages 

– same for “u_f”, “_fu”, “fui”, and so on 

 

– if a few triplets do not appear in a language, that can be 
solved with smoothing 

 



(log trick) 
• Each P(“abc” | y) probability of the order of 10-4 to 10-7 

• Sentence with N characters has (N-2) triplets 

• Sentence with 60 characters (10-12 words) has probability of 
order (10-4 to 10-7)58 = 10-232 to 10-406 

• Very easy to get underflow errors! 

 

• Solution: use log-probabilities, log(10-406) = -406*log(10) =       
= -934.85, no risk of underflow, and same argmax: 

 

 

• Products of probabilities become sums of log-probabilities 

 )|(logmaxarg)|(maxarg yxPyxP
yy



 
       )PT|fui""(log)PT|_fu""(log)PT|u_f""(log)PT|eu_""(log

)PT|fui""()PT|_fu""()PT|u_f""()PT|eu_""(log

PPPP

PPPP







Demo time! 

• Feel free to suggest a few sentences to test... 



Automatic language detection 

• Why is “não sei”  

Portuguese? 

 

 

 

• Best: PT, second best: ES 

– large log-ratio high confidence in result 

log[P(x|y)] PT ES FR 

“não“ -7,561 -14,777 -15,513 

“ão_” -5,655 -10,812 -11,252 

“o_s” -6,779 -7,234 -9,674 

“_se” -6,000 -5,997 -6,571 

“sei” -9,464 -10,188 -8,589 

“não sei” -35,459 -49,008 -51,599 

log−ratio ≝ log
𝑃 𝑥 𝑦 = PT

𝑃 𝑥 𝑦 = ES
= log (𝑃 𝑥 𝑦 = PT − log 𝑥 𝑦 = ES = 13.549 



Automatic language detection 

• Why is “eu fui” 

French? 

 

 

 

• Best: FR, second best: PT 

– small log-ratio  low confidence in result 

log[P(x|y)] PT ES FR 

“eu_“ -7,417 -11,610 -8,198 

“u_f” -10,024 -10,196 -9,014 

“_fu” -7,960 -7,067 -8,366 

“fui” -12,456 -13,531 -11,640 

“eu fui” -37,857 -42,404 -37,218 

log−ratio = log (𝑃 𝑥 𝑦 = 𝐹𝑅 − log 𝑥 𝑦 = 𝑃𝑇 = 0,639 



Naïve Bayes (summary) 

• Goal: maximize P(y|x)  
• Bayes Rule, drop P(x) from argmax, uniform prior  maximize P(x|y) 
• Assume features conditionally independent: 

𝑃 𝑥1, 𝑥2, … , 𝑥𝑁 𝑦 = 𝑃 𝑥1 𝑦 𝑃 𝑥2 𝑦 … 𝑃(𝑥𝑁|𝑦) 
 

• Advantage: number of parameters to estimate 
• P(“fui”|y): easy to estimate from train data (just count) 
• P(“eu fui à praia com ...”|y): hard (usually impossible) to estimate 

directly 
 

• Usually NOT a good model of the data! 
– Is (“_fu”|PT) really independent of (“fui”|PT)? 

• Sometimes, the best model which can be used in reasonable time... 
• In this case, it works well even though it is not a perfect model 

 


