Natural Language Processing using Machine Learning

Miguel Almeida, André Martins, Afonso Mendes

Priberam Labs
http://labs.priberam.com
mba@priberam.com

December 18, 2012
Automatic language detection
Automatic language detection

• One of the easiest NLP problems

• One of the simplest classifiers: Naïve Bayes
 – Also used for spam detection

• Relies on two simple concepts:
 – Bayes Rule
 – Conditional independence
Bayes rule

- For any random variables A and B:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
(conditional independence)

• Independence between variables A and B:
 – Knowing A does not give information about B and vice-versa

\[P(A, B) = P(A)P(B) \]

• Conditional independence of A and B, given C:
 – If we know C, knowing A does not give information about B and vice-versa

\[P(A, B|C) = P(A|C)P(B|C) \]
Automatic language detection

• Training data: Wikipedia
 – 3.3 GB of Portuguese text (PT)
 – 5.6 GB of Spanish text (ES)
 – 8.4 GB of French text (FR)

• Some preprocessing involved
 – Remove XML markup to keep only the text
 – Remove uninformative sections (e.g. references)
 – Transform everything to lowercase
Automatic language detection

• $x =$ input (string)
 – Example: $x = “eu fui”$

• $y =$ output (language)
 – y belongs to \{PT, ES, FR\}
 – Easy to add more languages (use more Wikipedias...)

• **Our goal:** given the string x, find the language y which is most likely \Rightarrow maximize $P(y|x)$
 – Known as **Maximum A Posteriori (MAP)** estimator
Automatic language detection

- $x = \text{string}$
- $y = \text{language}$

- Goal: maximize $P(y|x)$

$$y^* = \text{argmax}_y P(y|x) = \text{argmax}_y \frac{P(x|y)P(y)}{P(x)} = \text{argmax}_y P(x|y)P(y)$$

Bayes Rule

$P(x)$ does not depend on y
Automatic language detection

- $x =$ string
- $y =$ language

- Goal: find $y^* = \arg\max_y P(x|y)P(y)$

- How do we compute $P(y)$?
- How do we compute $P(x|y)$?
Automatic language detection

• How do we find \(P(y) \)? (called **prior**)

• In this case, essentially two choices:
 – All languages have the same prior (uniform prior)
 • \(P(y = PT) = P(y = ES) = P(y = FR) = 1/3 \)
 – Estimate prior from the data
 • \(P(y) \propto \) (size of data of language \(y \))
 – In our case, we use the uniform prior
 – Since we want the argmax, we can forget about the prior

\[
\arg\max_y P(x|y)P(y) = \arg\max_y P(x|y)\frac{1}{3} = \arg\max_y P(x|y)
\]
(MAP with uniform prior = ML)

Maximum A Posteriori Estimator

\[y^* = \arg\max_y P(y|x) \]

\[= \arg\max_y \frac{P(x|y)P(y)}{P(x)} \]

\[= \arg\max_y P(x|y)P(y) \]

Maximum Likelihood Estimator

\[= \arg\max_y P(x|y) \]

Bayes Rule

Drop P(x)

Uniform Prior
Automatic language detection

• How do we find $P(x|y)$? (called **class conditional**)

• For example, what’s $P(“eu fui“ | PT)$?
 – Maybe count how often “eu fui” appears in the PT data...

• What about this one?
 $P(“eu fui à praia com os meus amigos, mas começou a chover por isso fomos ao cinema ver o ‘Shrek’, que é um filme de animação” | PT)
 – Probably never appears in the training set for any language!
 – Most non-small sentences would get $P(x|y) = 0$ for every y 😞
 – What would be the best y ???
Automatic language detection

• Slight change of notation:

\[P("eu fui"|PT) = P("eu_{}, "u_f", "_fu", "fui" | PT) \]
– i.e. we represent the sentence with all its triplets
– this is completely equivalent to the original formulation

• Naïve Bayes: assume conditional independence

\[P("eu fui" | PT) = P("eu_{}, "u_f", "_fu", "fui" | PT) \]
\[= P("eu_{} | PT) P("u_f" | PT) P("_fu" | PT) P("fui" | PT) \]
Automatic language detection

- We just need to estimate probabilities of the form $P(\text{"abc"} \mid y)$, where “abc” are any three characters
 - Can be estimated from train data just by counting:
 $$P(\text{"abc"}|\text{PT}) = \frac{\#\text{"abc" in PT train data}}{\#\text{triplets in PT train data}}$$

- Example:
 - “fui” appears 10^2 times in PT train data
 - there are 10^6 triplets in PT train data
 - then, $P(\text{“fui”} \mid \text{PT}) = 10^{-4}$
Automatic language detection

• No problem with long sentences!

\[P(\text{"eu fui à praia com os meus amigos, mas começou a chover por isso fomos ao cinema ver o ‘Shrek’, que é um filme de animação"} | \text{PT}) = \]

\[= P(\text{"eu_"} | \text{PT}) P(\text{"u_f"} | \text{PT}) P(\text{"_fu"} | \text{PT}) \ldots P(\text{"açã"} | \text{PT}) P(\text{"ção"} | \text{PT}) \]

– “eu_” probably appears in all languages
– same for “u_f”, “_fu”, “fui”, and so on

– if a few triplets do not appear in a language, that can be solved with smoothing
Each $P(\text{“abc”} \mid y)$ probability of the order of 10^{-4} to 10^{-7}

Sentence with N characters has $(N-2)$ triplets

Sentence with 60 characters (10-12 words) has probability of order $(10^{-4}$ to $10^{-7})^{58} = 10^{-232}$ to 10^{-406}

Very easy to get underflow errors!

Solution: use log-probabilities, $\log(10^{-406}) = -406 \times \log(10) = -934.85$, no risk of underflow, and same argmax:

$$\arg \max_y P(x \mid y) = \arg \max_y \log[P(x \mid y)]$$

Products of probabilities become sums of log-probabilities

$$\log[P(\text{“eu_”} \mid \text{PT})P(\text{“u_f”} \mid \text{PT})P(\text{“_fu”} \mid \text{PT})P(\text{“fui”} \mid \text{PT})] =$$

$$= \log[P(\text{“eu_”} \mid \text{PT})] + \log[P(\text{“u_f”} \mid \text{PT})] + \log[P(\text{“_fu”} \mid \text{PT})] + \log[P(\text{“fui”} \mid \text{PT})]$$
Demo time!

- Feel free to suggest a few sentences to test...
Automatic language detection

• Why is “não sei” Portuguese?

| log[P(x|y)] | PT | ES | FR |
|-------------|-----|------|------|
| “não” | -7,561 | -14,777 | -15,513 |
| “ão_” | -5,655 | -10,812 | -11,252 |
| “o_s” | -6,779 | -7,234 | -9,674 |
| “_se” | -6,000 | -5,997 | -6,571 |
| “sei” | -9,464 | -10,188 | -8,589 |
| “não sei” | -35,459 | -49,008 | -51,599 |

• Best: PT, second best: ES
 – large log-ratio ➔ high confidence in result

\[
\text{log-ratio} \overset{\text{def}}{=} \log \left(\frac{P(x|y = \text{PT})}{P(x|y = \text{ES})} \right) = \log(P(x|y = \text{PT}) - \log(x|y = \text{ES}) = 13.549
\]
Automatic language detection

• Why is “eu fui” French?

| log\(\log(P(x|y))\) | PT | ES | FR |
|----------------------|--------|--------|--------|
| “eu_“ | -7,417 | -11,610| -8,198 |
| “u_f” | -10,024| -10,196| -9,014 |
| “_fu” | -7,960 | -7,067 | -8,366 |
| “fui” | -12,456| -13,531| -11,640|
| “eu fui” | -37,857| -42,404| -37,218|

• Best: FR, second best: PT
 – small log-ratio ➔ low confidence in result

\[
\log\text{-ratio} = \log(P(x|y = FR) - \log(x|y = PT) = 0.639
\]
Naïve Bayes (summary)

- Goal: maximize $P(y|x)$
- Bayes Rule, drop $P(x)$ from argmax, uniform prior \rightarrow maximize $P(x|y)$
- Assume features conditionally independent:
 $$P(x_1, x_2, \ldots, x_N|y) = P(x_1|y)P(x_2|y) \ldots P(x_N|y)$$

- Advantage: number of parameters to estimate
- $P(\text{“fui”} | y)$: easy to estimate from train data (just count)
- $P(\text{“eu fui à praia com …”} | y)$: hard (usually impossible) to estimate directly

- Usually NOT a good model of the data!
 - Is (“_fu” | PT) really independent of (“fui” | PT)?
- Sometimes, the best model which can be used in reasonable time...
- In this case, it works well even though it is not a perfect model