
Natural Language Processing
using Machine Learning

Miguel Almeida, André Martins, Afonso Mendes

Priberam Labs
http://labs.priberam.com

mba@priberam.com

December 18, 2012

http://labs.priberam.com/
mailto:mba@priberam.com

Automatic language detection

Automatic language detection

• One of the easiest NLP problems

• One of the simplest classifiers: Naïve Bayes

– Also used for spam detection

• Relies on two simple concepts:

– Bayes Rule

– Conditional independence

(Bayes rule)

• For any random variables A and B:

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)

(conditional independence)

• Independence between variables A and B:

– Knowing A does not give information about B
and vice-versa

• Conditional independence of A and B, given C:

– If we know C, knowing A does not give information about B
and vice-versa

𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝑃(𝐵)

𝑃 𝐴, 𝐵|𝐶 = 𝑃 𝐴|𝐶 𝑃(𝐵|𝐶)

Automatic language detection

• Training data: Wikipedia

– 3.3 GB of Portuguese text (PT)

– 5.6 GB of Spanish text (ES)

– 8.4 GB of French text (FR)

• Some preprocessing involved

– Remove XML markup to keep only the text

– Remove uninformative sections (e.g. references)

– Transform everything to lowercase

http://en.wikipedia.org/wiki/File:Wikipedia-logo-v2.svg
http://en.wikipedia.org/wiki/File:Wikipedia_wordmark.svg

Automatic language detection

• x = input (string)

– Example: x = “eu fui”

• y = output (language)

– y belongs to {PT, ES, FR}

– Easy to add more languages (use more Wikipedias...)

• Our goal: given the string x, find the language y
which is most likely  maximize P(y|x)

– Known as Maximum A Posteriori (MAP) estimator

Automatic language detection

• x = string

• y = language

• Goal: maximize P(y|x)

𝑦∗ = argmax

𝑦
𝑃(𝑦|𝑥) = argmax

𝑦

𝑃 𝑥 𝑦 𝑃(𝑦)

𝑃(𝑥)

= argmax
 𝑦

 𝑃(𝑥|𝑦)𝑃(𝑦)

Bayes Rule

P(x) does not
depend on y

Automatic language detection

• x = string

• y = language

• Goal: find

• How do we compute P(y)?

• How do we compute P(x|y)?

𝑦∗ = argmax
 𝑦

 𝑃(𝑥|𝑦)𝑃(𝑦)

Automatic language detection

• How do we find P(y)? (called prior)

• In this case, essentially two choices:
– All languages have the same prior (uniform prior)

• P(y = PT) = P(y = ES) = P(y = FR) = 1/3

– Estimate prior from the data
• P(y) a (size of data of language y)

– In our case, we use the uniform prior

– Since we want the argmax, we can forget about the prior

argmax
𝑦

𝑃 𝑥 𝑦 𝑃 𝑦 = argmax
𝑦

𝑃 𝑥 𝑦
1

3
= argmax

𝑦
𝑃(𝑥|𝑦)

(MAP with uniform prior = ML)

𝑦∗ = argmax
𝑦

𝑃(𝑦|𝑥)

= argmax
𝑦

𝑃 𝑥 𝑦 𝑃(𝑦)

𝑃(𝑥)

= argmax

𝑦
𝑃 𝑥 𝑦 𝑃 𝑦

= argmax

𝑦
𝑃 𝑥 𝑦

Bayes Rule

Drop P(x)

Uniform Prior

Maximum A Posteriori Estimator

Maximum Likelihood Estimator

Automatic language detection

• How do we find P(x|y)? (called class conditional)

• For example, what’s P(“eu fui“ | PT)?
– Maybe count how often “eu fui” appears in the PT data...

• What about this one?
P(“eu fui à praia com os meus amigos, mas começou a chover por isso
fomos ao cinema ver o ‘Shrek’, que é um filme de animação”| PT)

– Probably never appears in the training set for any language!

– Most non-small sentences would get P(x|y) = 0 for every y 

– What would be the best y ???

Automatic language detection

• Slight change of notation:

– i.e. we represent the sentence with all its triplets

– this is completely equivalent to the original formulation

• Naïve Bayes: assume conditional independence

𝑃 "eu fui" PT) = 𝑃("eu_", "u_f", "_fu", "fui" | PT)

𝑃 "eu fui" PT) = 𝑃("eu_", "u_f", "_fu", "fui" | PT)
= 𝑃("eu_" | PT) 𝑃("u_f" | PT) 𝑃("_fu" | PT) 𝑃("fui" | PT)

Automatic language detection

• We just need to estimate probabilities of the form
P(“abc” | y), where “abc” are any three characters

– Can be estimated from train data just by counting:

• Example:

– “fui” appears 102 times in PT train data

– there are 106 triplets in PT train data

– then, P(“fui” | PT) = 10-4

data train PTin triplets#

data train PTin abc""#
)PT|"abc(" P

Automatic language detection

• No problem with long sentences!
P(“eu fui à praia com os meus amigos, mas começou a chover por isso
fomos ao cinema ver o ‘Shrek’, que é um filme de animação”| PT) =

= P(“eu_”|PT) P(“u_f”|PT) P(“_fu”|PT) ... P(“açã”|PT) P(“ção”|PT)

– “eu_” probably appears in all languages

– same for “u_f”, “_fu”, “fui”, and so on

– if a few triplets do not appear in a language, that can be
solved with smoothing

(log trick)
• Each P(“abc” | y) probability of the order of 10-4 to 10-7

• Sentence with N characters has (N-2) triplets

• Sentence with 60 characters (10-12 words) has probability of
order (10-4 to 10-7)58 = 10-232 to 10-406

• Very easy to get underflow errors!

• Solution: use log-probabilities, log(10-406) = -406*log(10) =
= -934.85, no risk of underflow, and same argmax:

• Products of probabilities become sums of log-probabilities

 )|(logmaxarg)|(maxarg yxPyxP
yy



 
       )PT|fui""(log)PT|_fu""(log)PT|u_f""(log)PT|eu_""(log

)PT|fui""()PT|_fu""()PT|u_f""()PT|eu_""(log

PPPP

PPPP





Demo time!

• Feel free to suggest a few sentences to test...

Automatic language detection

• Why is “não sei”

Portuguese?

• Best: PT, second best: ES

– large log-ratio high confidence in result

log[P(x|y)] PT ES FR

“não“ -7,561 -14,777 -15,513

“ão_” -5,655 -10,812 -11,252

“o_s” -6,779 -7,234 -9,674

“_se” -6,000 -5,997 -6,571

“sei” -9,464 -10,188 -8,589

“não sei” -35,459 -49,008 -51,599

log−ratio ≝ log
𝑃 𝑥 𝑦 = PT

𝑃 𝑥 𝑦 = ES
= log (𝑃 𝑥 𝑦 = PT − log 𝑥 𝑦 = ES = 13.549

Automatic language detection

• Why is “eu fui”

French?

• Best: FR, second best: PT

– small log-ratio  low confidence in result

log[P(x|y)] PT ES FR

“eu_“ -7,417 -11,610 -8,198

“u_f” -10,024 -10,196 -9,014

“_fu” -7,960 -7,067 -8,366

“fui” -12,456 -13,531 -11,640

“eu fui” -37,857 -42,404 -37,218

log−ratio = log (𝑃 𝑥 𝑦 = 𝐹𝑅 − log 𝑥 𝑦 = 𝑃𝑇 = 0,639

Naïve Bayes (summary)

• Goal: maximize P(y|x)
• Bayes Rule, drop P(x) from argmax, uniform prior  maximize P(x|y)
• Assume features conditionally independent:

𝑃 𝑥1, 𝑥2, … , 𝑥𝑁 𝑦 = 𝑃 𝑥1 𝑦 𝑃 𝑥2 𝑦 … 𝑃(𝑥𝑁|𝑦)

• Advantage: number of parameters to estimate
• P(“fui”|y): easy to estimate from train data (just count)
• P(“eu fui à praia com ...”|y): hard (usually impossible) to estimate

directly

• Usually NOT a good model of the data!
– Is (“_fu”|PT) really independent of (“fui”|PT)?

• Sometimes, the best model which can be used in reasonable time...
• In this case, it works well even though it is not a perfect model

