Syntax and Parsing II

Dependency Parsing

Slav Petrov – Google

Thanks to:

Dan Klein, Ryan McDonald, Alexander Rush, Joakim Nivre, Greg Durrett, David Weiss

Lisbon Machine Learning School 2015

Notes for 2016

Can add 10min of material

Dependency Parsing

(Non-)Projectivity

- Crossing Arcs needed to account for nonprojective constructions
- Fairly rare in English but can be common in other languages (e.g. Czech):

He is mostly not even interested in the new things and in most cases, he has no money for it either.

Formal Conditions

- For a dependency graph G = (V, A)
- ▶ With label set $L = \{l_1, \ldots, l_{|L|}\}$
- ► *G* is (weakly) connected:
 - ▶ If $i, j \in V$, $i \leftrightarrow^* j$.
- ▶ G is acyclic:
 - ▶ If $i \rightarrow j$, then not $j \rightarrow^* i$.
- ► *G* obeys the single-head constraint:
 - ▶ If $i \rightarrow j$, then not $i' \rightarrow j$, for any $i' \neq i$.
- ► *G* is projective:
 - ▶ If $i \rightarrow j$, then $i \rightarrow^* i'$, for any i' such that i < i' < j or j < i' < i.

Styles of Dependency Parsing

- Transition-Based (tr)
 - Fast, greedy, linear time inference algorithms
 - Trained for greedy search
 - Beam search

- Graph-Based (gr)
 - Slower, exhaustive, dynamic programming inference algorithms
 - Higher-order factorizations

Arc-Factored Models

 Assumes that the score / probability / weight of a dependency graph factors by its arcs

$$w(G) = \prod_{(i,j,k) \in G} w_{ij}^k$$
 look familiar?

- w_{ij}^k is the weight of creating a dependency from word w_i to w_j with label I_k
- Thus there is an assumption that each dependency decision is independent
 - Strong assumption! Will address this later.

Arc-factored Projective Parsing

All projective graphs can be written as the combination of two smaller adjacent graphs

Arc-factored Projective Parsing

- Chart item filled in a bottom-up manner
 - First do all strings of length 1, then 2, etc. just like CKY

- ▶ Weight of new item: $\max_{l,j,k} w(A) \times w(B) \times w_{hh'}^{k}$
- ▶ Algorithm runs in $O(|L|n^5)$
- Use back-pointers to extract best parse (like CKY)

Eisner Algorithm

- $ightharpoonup O(|L|n^5)$ is not that good
- ▶ [Eisner 1996] showed how this can be reduced to $O(|L|n^3)$
 - Key: split items so that sub-roots are always on periphery

In practice also left arc version

Eisner Algorithm Pseudo Code

```
Initialization: C[s][s][d][c] = 0.0 \quad \forall s, d, c
for k : 1..n
  for s: 1...n
    t = s + k
    if t > n then break
     % First: create incomplete items
    C[s][t][\leftarrow][0] = \max_{s \le r < t} (C[s][r][\rightarrow][1] + C[r+1][t][\leftarrow][1] + s(t,s))
    C[s][t][\to][0] = \max_{s \le r < t} (C[s][r][\to][1] + C[r+1][t][\leftarrow][1] + s(s,t))
     % Second: create complete items
    C[s][t][\leftarrow][1] = \max_{s \le r < t} (C[s][r][\leftarrow][1] + C[r][t][\leftarrow][0])
    C[s][t][\to][1] = \max_{s < r < t} (C[s][r][\to][0] + C[r][t][\to][1])
  end for
end for
```

Maximum Spanning Trees (MSTs)

- A directed spanning tree of a (multi-)digraph G = (V, A), is a subgraph G' = (V', A') such that:
 - V' = V
 - \triangleright $A' \subseteq A$, and |A'| = |V'| 1
 - ► G' is a tree (acyclic)
- A spanning tree of the following (multi-)digraphs

Can use MST algorithms for nonprojective parsing!

Chu-Liu-Edmonds

 $\triangleright x = \text{root John saw Mary}$

Chu-Liu-Edmonds

Find highest scoring incoming arc for each vertex

▶ If this is a tree, then we have found MST!!

Find Cycle and Contract

- ▶ If not a tree, identify cycle and contract
- Recalculate arc weights into and out-of cycle

Recalculate Edge Weights

- Incoming arc weights
 - Equal to the weight of best spanning tree that includes head of incoming arc, and all nodes in cycle
 - root → saw → John is 40 (**)
 - root → John → saw is 29

Theorem

The weight of the MST of this contracted graph is equal to the weight of the MST for the original graph

► Therefore, recursively call algorithm on new graph

Final MST

This is a tree and the MST for the contracted graph!!

► Go back up recursive call and reconstruct final graph

Chu-Liu-Edmonds PseudoCode

Chu-Liu-Edmonds(G_x, w) Let $M = \{(i^*, j) : j \in V_x, i^* = \arg \max_{i'} w_{ii}\}$ Let $G_M = (V_x, M)$ If G_M has no cycles, then it is an MST: return G_M Otherwise, find a cycle C in G_M Let $\langle G_C, c, ma \rangle = \text{contract}(G, C, w)$ 5. Let $G = \text{Chu-Liu-Edmonds}(G_C, w)$ 6. Find vertex $i \in C$ such that $(i', c) \in G$ and ma(i', c) = i7. Find arc $(i'', i) \in C$ 8. Find all arc $(c, i''') \in G$ 9. $G = G \cup \{(ma(c, i'''), i''')\}_{\forall (c, i''') \in G} \cup C \cup \{(i', i)\} - \{(i'', i)\}$ 10. Remove all vertices and arcs in G containing c 11. 12.

▶ Reminder: $w_{ij} = \arg \max_k w_{ii}^k$

return G

Chu-Liu-Edmonds PseudoCode

```
contract(G = (V, A), C, w)
     Let G_C be the subgraph of G excluding nodes in C
   Add a node c to G_C representing cycle C
    For i \in V - C: \exists_{i' \in C}(i', i) \in A
3.
        Add arc (c, i) to G_C with
           ma(c, i) = \arg \max_{i' \in C} score(i', i)
           i' = ma(c, i)
           score(c, i) = score(i', i)
     For i \in V - C: \exists_{i' \in C}(i, i') \in A
        Add edge (i, c) to G_C with
           ma(i, c) = \arg \max_{i' \in C} [score(i, i') - score(a(i'), i')]
           i' = ma(i, c)
           score(i, c) = [score(i, i') - score(a(i'), i') + score(C)]
             where a(v) is the predecessor of v in C
             and score(C) = \sum_{v \in C} score(a(v), v)
5.
     return < G_C, c, ma >
```

Arc Weights

$$w_{ij}^k = e^{\mathbf{W} \cdot \mathbf{f}(i,j,k)}$$

- Arc weights are a linear combination of features of the arc, f, and a corresponding weight vector w
- Raised to an exponent (simplifies some math ...)
- What arc features?
- [McDonald et al. 2005] discuss a number of binary features

Arc Feature Ideas for f(i,j,k)

- Identities of the words wi and wj and the label lk
- Part-of-speech tags of the words wi and wj and the label lk
- Part-of-speech of words surrounding and between wi and wj
- Number of words between wi and wj, and their orientation
- Combinations of the above

First-Order Feature Computation

[went] [VERB] [went, As] [VERB, IN] [ADJ, *, ADP] [NNS, VBD, ADP] [NNS, ADP, NNP] [ADP, left, 5] [JJ, *, IN] [NOUN, VERB, IN] [NOUN, IN, NOUN] [IN, left, 5] [NNS, VBD, ADP, NNP] [went, VERB, As, IN] [went, VERB, left, 5] [went, As, ADP, left, 5] [VBD, ADJ, ADP, left, 5] [ADJ, ADP, NNP, left, 5] [VERB, As, IN, left, 5] [VERB. *. IN. left. 5]

[VBD] [As] [VBD, ADP] [VBD, As, ADP] [VBD, *, ADP] [NNS, VBD, *] [NNS, VBD, NNP] [VERB, As, IN] [VERB, *, IN] [NOUN, VERB, *] [NOUN, VERB, NOUN] [went, VBD, As, ADP] [went, VBD, left, 5] [VERB, JJ, *, IN] [As, IN, left, 5] [went, VBD, ADP, left, 5] [VBD, ADJ, *, left, 5] [VBD, ADP, NNP, left, 5] [went, As, IN, left, 5] [VERB. JJ. IN. left. 5]

[As] [IN] [went, VERB] [went, As, ADP] [VBD, ADJ, ADP] [ADJ, ADP, NNP] [went, left, 5] [went, As, IN] [VERB, JJ, IN] [JJ, IN, NOUN] [went, left, 5] [VBD, ADJ, *, ADP] [As, ADP, left, 5] [NOUN, VERB, *, IN] [went, As, left, 5] [went, VBD, As, left, 5] [NNS, *, ADP, left, 5] [VBD, ADJ, NNP, left, 5] [went, VERB, IN, left, 5] [VERB. JJ. *. left. 5]

[ADP] [went, VBD] [As, IN] [went, VBD, ADP] [VBD, ADJ, *] [VBD, ADP, NNP] [VBD, left, 5] [went, VERB, IN] [VERB, JJ, *] [VERB, IN, NOUN] [VERB, left, 5] [NNS, VBD, *, ADP] [went, As, left, 5] [VERB, JJ, IN, NOUN] [VERB, IN, left, 5] [ADJ, *, ADP, left, 5] [NNS, VBD, ADP, left, 5] [NNS, ADP, NNP, left, 5] [went, VERB, As, left, 5] [NOUN. *. IN. left. 5]

[went] [As, ADP] [went, As] [went, VBD, As] [NNS, *, ADP] [VBD, ADJ, NNP] [As, left, 5] [went, VERB, As] [NOUN, *, IN] [VERB, JJ, NOUN] [As, left, 5] [VBD, ADJ, ADP, NNP] [VBD, ADP, left, 5] [NOUN, VERB, IN, NOUN] [VBD, As, ADP, left, 5] [VBD, *, ADP, left, 5] [NNS, VBD, *, left, 5] [NNS, VBD, NNP, left, 5] [JJ, *, IN, left, 5] [NOUN. VERB. IN. left. 5]

(Structured) Perceptron

```
Training data: T = \{(x_t, G_t)\}_{t=1}^{|T|}
1. \mathbf{w}^{(0)} = 0; i = 0
2. for n : 1..N
3. for t:1...T
            Let G' = \operatorname{arg\,max}_{G'} \mathbf{w}^{(i)} \cdot \mathbf{f}(G')
5.
            if G' \neq G_t
                \mathbf{w}^{(i+1)} = \mathbf{w}^{(i)} + \mathbf{f}(G_t) - \mathbf{f}(G')
6.
         i = i + 1
7.
      return wi
8.
```

Transition Based Dependency Parsing

- Process sentence left to right
 - Different transition strategies available
 - Delay decisions by pushing on stack
- Arc-Standard Transition Strategy [Nivre '03]

```
Initial configuration: ([],[0,...,n],[])
Terminal configuration: ([0],[],A)
```

```
shift: (\sigma,[i|\beta],A) \Rightarrow ([\sigma|i],\beta,A)
left-arc (label): ([\sigma|i|j],B,A) \Rightarrow ([\sigma|j],B,A\cup\{j,l,i\})
right-arc (label): ([\sigma|i|j],B,A) \Rightarrow ([\sigma|i],B,A\cup\{i,l,j\})
```


I booked a flight to Lisbon

I booked a flight to Lisbon

booked a flight to Lisbon

nsubj

I booked a flight to Lisbon

← Buffer

RIGHT-ARC pobj

← Buffer

RIGHT-ARC prep

← Buffer

RIGHT-ARC dobj

Features

SHIFT
RIGHT-ARC?
LEFT-ARC?

```
Stack top word = "flight"
Stack top POS tag = "NOUN"
Buffer front word = "to"
Child of stack top word = "a"
....
```

SVM / Structured Perceptron Hyperparameters

- Regularization
- Loss function
- Hand-crafted features

Features ZPar Parser

```
# From Single Words
pair { stack.tag stack.word }
stack { word tag }
pair { input.tag input.word }
input { word tag }
pair { input(1).tag input(1).word }
input(1) { word tag }
pair { input(2).tag input(2).word }
input(2) { word tag }
# From word pairs
quad { stack.tag stack.word input.tag input.word }
triple { stack.tag stack.word input.word }
triple { stack.word input.tag input.word }
triple { stack.tag stack.word input.tag }
triple { stack.tag input.tag input.word }
pair { stack.word input.word }
pair { stack.tag input.tag }
pair { input.tag input(1).tag }
# From word triples
triple { input.tag input(1).tag input(2).tag }
triple { stack.tag input.tag input(1).tag }
triple { stack.head(1).tag stack.tag input.tag }
triple { stack.tag stack.child(-1).tag input.tag }
triple { stack.tag stack.child(1).tag input.tag }
triple { stack.tag input.tag input.child(-1).tag }
# Distance
pair { stack.distance stack.word }
pair { stack.distance stack.tag }
pair { stack.distance input.word }
pair { stack.distance input.tag }
triple { stack.distance stack.word input.word }
triple { stack.distance stack.tag input.tag }
```

```
# valency
pair { stack.word stack.valence(-1) }
pair { stack.word stack.valence(1) }
pair { stack.tag stack.valence(-1) }
pair { stack.tag stack.valence(1) }
pair { input.word input.valence(-1) }
pair { input.tag input.valence(-1) }
# unigrams
stack.head(1) {word tag}
stack.label
stack.child(-1) {word tag label}
stack.child(1) {word tag label}
input.child(-1) {word tag label}
# third order
stack.head(1).head(1) {word tag}
stack.head(1).label
stack.child(-1).sibling(1) {word tag label}
stack.child(1).sibling(-1) {word tag label}
input.child(-1).sibling(1) {word tag label}
triple { stack.tag stack.child(-1).tag stack.child(-1).sibling(1).tag }
triple { stack.tag stack.child(1).tag stack.child(1).sibling(-1).tag }
triple { stack.tag stack.head(1).tag stack.head(1).head(1).tag }
triple { input.tag input.child(-1).tag input.child(-1).sibling(1).tag }
# label set
pair { stack.tag stack.child(-1).label }
triple { stack.tag stack.child(-1).label stack.child(-1).sibling(1).lab
quad { stack.tag stack.child(-1).label stack.child(-1).sibling(1).label
pair { stack.tag stack.child(1).label }
triple { stack.tag stack.child(1).label stack.child(1).sibling(-1).labe
quad { stack.tag stack.child(1).label stack.child(1).sibling(-1).label
pair { input.tag input.child(-1).label }
triple { input.tag input.child(-1).label input.child(-1).sibling(1).lab
quad { input.tag input.child(-1).label input.child(-1).sibling(1).label
```

[Chen & Manning '14] and [Weiss et al. '15]

[Weiss et al. '15]

[Weiss et al. '15]

[Weiss et al. '15]

Softmax

Hidden Layer 2

Hidden Layer 1

Embedding Layer

Atomic Inputs

- Regularization
- Loss function

- Regularization
- Loss function
- Dimensions
- Activation function
- Initialization
- Adagrad
- Dropout

- Regularization
- Loss function
- Dimensions
- Activation function
- Initialization
- Adagrad
- Dropout
- Mini-batch size
- Initial learning rate
- Learning rate schedule
- Momentum

- Stopping time
- Parameter averaging

Random Restarts: How much Variance?

Effect of Embedding Dimensions

Effect of Embedding Dimensions

POS/Label Tuning on WSJ (Tune Set, Dwords=64)

Tri-Training

[Zhou et al. '05, Li et al. '14]

Tri-Training Impact

English Results (WSJ 23)

Method	UAS	LAS	Beam
3rd-order Graph-based (ZM2014)	93.22	91.02	-
Transition-based Linear (ZN2011)	93.00	90.95	32
NN Baseline (Chen & Manning, 2014)	91.80	89.60	1
NN Better SGD (Weiss et al., 2015)	92.58	90.54	1
NN Deeper Network (Weiss et al., 2015)	93.19	91.18	1
NN Perceptron (Weiss et al., 2015)	93.99	92.05	8
NN Semi-supervised (Weiss et al., 2015)	94.26	92.41	8
S-LSTM (Dyer et al., 2015)	93.20	90.90	1
Contrastive NN (Zhou et al., 2015)	92.83	_	100

English Out-of-Domain Results

- Train on WSJ + Web Treebank + QuestionBank
- Evaluate on Web

Multilingual Results

[Alberti et al., in submission]

Summary

Constituency Parsing

- CKY Algorithm
- Lexicalized Grammars
- Latent Variable Grammars
- Conditional Random Field Parsing
- Neural Network Representations

Dependency Parsing

- Eisner Algorithm
- Maximum Spanning Tree Algorithm
- Transition Based Parsing
- Neural Network Representations