
Syntax and Parsing II
Dependency Parsing

Slav Petrov – Google

Thanks to:

Dan Klein, Ryan McDonald, Alexander Rush, Joakim Nivre,  
Greg Durrett, David Weiss

Lisbon Machine Learning School 2015

Notes for 2016

• Can add 10min of material

PRON VERB DET NOUN ADP NOUN

nsubj

det

dobj

prep

pobjROOT

Dependency Parsing

They solved the problem with statistics

(Non-)Projectivity

• Crossing Arcs needed to account for non-
projective constructions

• Fairly rare in English but can be common
in other languages (e.g. Czech):

Formal Conditions

Styles of Dependency Parsing
• Transition-Based (tr)

• Fast, greedy, linear time
inference algorithms

• Trained for greedy search
• Beam search

• Graph-Based (gr)
• Slower, exhaustive, dynamic

programming inference
algorithms

• Higher-order factorizations

Time

Ac
cu

ra
cy

O(n)

greedy tr

O(n3)

1st-order gr
O(n3)

2nd-order gr O(n4)

3rd-order gr

O(
k · n

)
k-best tr

[Nivre et al. ’03-’11] [McDonald et al. ’05-’06]

Arc-Factored Models

Representation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Heads

Modifiers

Dependency Representation

Representation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Heads

Modifiers

Dependency Representation

Representation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Heads

Modifiers

Dependency Representation

Representation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Heads

Modifiers

Dependency Representation

Representation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Heads

Modifiers

Dependency Representation

Representation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Heads

Modifiers

Dependency Representation

Representation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Heads

Modifiers

Dependency Representation

Representation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Heads

Modifiers

Dependency Representation

Arc-factored Projective Parsing

Arc-factored Projective Parsing

Eisner Algorithm

Eisner First-Order Rules

h m

h r

+

mr + 1

h e

h m

+

m e

Eisner First-Order Parsing

In practice also left arc version

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

First-Order Parsing

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild

A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

Eisner First-Order Parsing

Eisner Algorithm Pseudo Code

Maximum Spanning Trees (MSTs)

Can use MST algorithms for nonprojective parsing!

Chu-Liu-Edmonds

Chu-Liu-Edmonds

Find Cycle and Contract

Recalculate Edge Weights

Theorem

Final MST

Chu-Liu-Edmonds PseudoCode

Chu-Liu-Edmonds PseudoCode

Arc Weights

Arc Feature Ideas for f(i,j,k)

• Identities of the words wi and wj and the label lk
• Part-of-speech tags of the words wi and wj and the label lk
• Part-of-speech of words surrounding and between wi and wj
• Number of words between wi and wj , and their orientation
• Combinations of the above

First-Order Feature Calculation

* As McGwire neared , fans went wild

*

As

McGwire

neared

,

fans

went

wild
A
s

M
cG

w
ire

neared

, fans

w
ent

w
ild

[went] [VBD] [As] [ADP] [went]

[VERB] [As] [IN] [went, VBD] [As, ADP]

[went, As] [VBD, ADP] [went, VERB] [As, IN] [went, As]

[VERB, IN] [VBD, As, ADP] [went, As, ADP] [went, VBD, ADP] [went, VBD, As]

[ADJ, *, ADP] [VBD, *, ADP] [VBD, ADJ, ADP] [VBD, ADJ, *] [NNS, *, ADP]

[NNS, VBD, ADP] [NNS, VBD, *] [ADJ, ADP, NNP] [VBD, ADP, NNP] [VBD, ADJ, NNP]

[NNS, ADP, NNP] [NNS, VBD, NNP] [went, left, 5] [VBD, left, 5] [As, left, 5]

[ADP, left, 5] [VERB, As, IN] [went, As, IN] [went, VERB, IN] [went, VERB, As]

[JJ, *, IN] [VERB, *, IN] [VERB, JJ, IN] [VERB, JJ, *] [NOUN, *, IN]

[NOUN, VERB, IN] [NOUN, VERB, *] [JJ, IN, NOUN] [VERB, IN, NOUN] [VERB, JJ, NOUN]

[NOUN, IN, NOUN] [NOUN, VERB, NOUN] [went, left, 5] [VERB, left, 5] [As, left, 5]

[IN, left, 5] [went, VBD, As, ADP] [VBD, ADJ, *, ADP] [NNS, VBD, *, ADP] [VBD, ADJ, ADP, NNP]

[NNS, VBD, ADP, NNP] [went, VBD, left, 5] [As, ADP, left, 5] [went, As, left, 5] [VBD, ADP, left, 5]

[went, VERB, As, IN] [VERB, JJ, *, IN] [NOUN, VERB, *, IN] [VERB, JJ, IN, NOUN] [NOUN, VERB, IN, NOUN]

[went, VERB, left, 5] [As, IN, left, 5] [went, As, left, 5] [VERB, IN, left, 5] [VBD, As, ADP, left, 5]

[went, As, ADP, left, 5] [went, VBD, ADP, left, 5] [went, VBD, As, left, 5] [ADJ, *, ADP, left, 5] [VBD, *, ADP, left, 5]

[VBD, ADJ, ADP, left, 5] [VBD, ADJ, *, left, 5] [NNS, *, ADP, left, 5] [NNS, VBD, ADP, left, 5] [NNS, VBD, *, left, 5]

[ADJ, ADP, NNP, left, 5] [VBD, ADP, NNP, left, 5] [VBD, ADJ, NNP, left, 5] [NNS, ADP, NNP, left, 5] [NNS, VBD, NNP, left, 5]

[VERB, As, IN, left, 5] [went, As, IN, left, 5] [went, VERB, IN, left, 5] [went, VERB, As, left, 5] [JJ, *, IN, left, 5]

[VERB, *, IN, left, 5] [VERB, JJ, IN, left, 5] [VERB, JJ, *, left, 5] [NOUN, *, IN, left, 5] [NOUN, VERB, IN, left, 5]

[NOUN, VERB, *, left, 5] [JJ, IN, NOUN, left, 5] [VERB, IN, NOUN, left, 5] [VERB, JJ, NOUN, left, 5] [NOUN, IN, NOUN, left, 5]

[NOUN, VERB, NOUN, left, 5] [went, VBD, As, ADP, left, 5] [VBD, ADJ, *, ADP, left, 5] [NNS, VBD, *, ADP, left, 5] [VBD, ADJ, ADP, NNP, left, 5]

[NNS, VBD, ADP, NNP, left, 5] [went, VERB, As, IN, left, 5] [VERB, JJ, *, IN, left, 5] [NOUN, VERB, *, IN, left, 5] [VERB, JJ, IN, NOUN, left, 5]

[NOUN, VERB, IN, NOUN, left, 5]

First-Order Feature Computation

(Structured) Perceptron

Transition Based Dependency Parsing

• Process sentence left to right
• Different transition strategies available
• Delay decisions by pushing on stack  

• Arc-Standard Transition Strategy [Nivre ’03]

 Initial configuration: ([],[0,…,n],[])
 Terminal configuration: ([0],[],A)

 shift: (σ,[i|β],A) ⇒ ([σ|i],β,A)

 left-arc (label): ([σ|i|j],B,A) ⇒ ([σ|j],B,A∪{j,l,i})

 right-arc (label): ([σ|i|j],B,A) ⇒ ([σ|i],B,A∪{i,l,j})

↑ Stack ← Buffer

Arc-Standard Example

I booked a flight to Lisbon

SHIFT

I booked a flight to Lisbon

↑ Stack ← Buffer

Arc-Standard Example

I booked a flight to Lisbon

SHIFT

I booked a flight to Lisbon

↑ Stack ← Buffer

Arc-Standard Example

I

booked a flight to Lisbon

LEFT-ARC  
nsubj

I booked a flight to Lisbon

↑ Stack ← Buffer

Arc-Standard Example

a flight to Lisbon

SHIFT

 I booked

I booked a flight to Lisbon

nsubj

↑ Stack ← Buffer

Arc-Standard Example

a flight to Lisbon

SHIFT
 I booked

I booked a flight to Lisbon

nsubj

↑ Stack ← Buffer

Arc-Standard Example

a

flight to Lisbon

LEFT-ARC  
det I booked

I booked a flight to Lisbon

nsubj

↑ Stack ← Buffer

Arc-Standard Example

to Lisbon

SHIFT
 I booked

 a flight

I booked a flight to Lisbon

nsubj det

↑ Stack ← Buffer

Arc-Standard Example

to Lisbon

SHIFT
 I booked

 a flight

I booked a flight to Lisbon

nsubj det

↑ Stack ← Buffer

Arc-Standard Example

to

Lisbon

RIGHT-ARC  
pobj

 I booked

 a flight

I booked a flight to Lisbon

nsubj det

↑ Stack

Arc-Standard Example

RIGHT-ARC  
prep

 I booked

 a flight

 to Lisbon

← Buffer

I booked a flight to Lisbon

nsubj det pobj

↑ Stack

Arc-Standard Example

RIGHT-ARC  
dobj

 I booked

a flight to Lisbon

← Buffer

I booked a flight to Lisbon

nsubj det pobjprep

↑ Stack

Arc-Standard Example

I booked a flight to Lisbon

← Buffer

dobj

nsubj pobjprepdet

I booked a flight to Lisbon

↑ Stack ← Buffer

Features

to Lisbon

 I booked

 a flight

Stack top word = “flight”
Stack top POS tag = “NOUN”
Buffer front word = “to”
Child of stack top word = “a”
....

RIGHT-ARC?

LEFT-ARC?

SHIFT

SVM / Structured Perceptron Hyperparameters

• Regularization
• Loss function
• Hand-crafted features

Features ZPar Parser
From Single Words
pair { stack.tag stack.word }
stack { word tag }
pair { input.tag input.word }
input { word tag }
pair { input(1).tag input(1).word }
input(1) { word tag }
pair { input(2).tag input(2).word }
input(2) { word tag }

From word pairs
quad { stack.tag stack.word input.tag input.word }
triple { stack.tag stack.word input.word }
triple { stack.word input.tag input.word }
triple { stack.tag stack.word input.tag }
triple { stack.tag input.tag input.word }
pair { stack.word input.word }
pair { stack.tag input.tag }
pair { input.tag input(1).tag }

From word triples
triple { input.tag input(1).tag input(2).tag }
triple { stack.tag input.tag input(1).tag }
triple { stack.head(1).tag stack.tag input.tag }
triple { stack.tag stack.child(-1).tag input.tag }
triple { stack.tag stack.child(1).tag input.tag }
triple { stack.tag input.tag input.child(-1).tag }

Distance
pair { stack.distance stack.word }
pair { stack.distance stack.tag }
pair { stack.distance input.word }
pair { stack.distance input.tag }
triple { stack.distance stack.word input.word }
triple { stack.distance stack.tag input.tag }

valency
pair { stack.word stack.valence(-1) }
pair { stack.word stack.valence(1) }
pair { stack.tag stack.valence(-1) }
pair { stack.tag stack.valence(1) }
pair { input.word input.valence(-1) }
pair { input.tag input.valence(-1) }

unigrams
stack.head(1) {word tag}
stack.label
stack.child(-1) {word tag label}
stack.child(1) {word tag label}
input.child(-1) {word tag label}

third order
stack.head(1).head(1) {word tag}
stack.head(1).label
stack.child(-1).sibling(1) {word tag label}
stack.child(1).sibling(-1) {word tag label}
input.child(-1).sibling(1) {word tag label}
triple { stack.tag stack.child(-1).tag stack.child(-1).sibling(1).tag }
triple { stack.tag stack.child(1).tag stack.child(1).sibling(-1).tag }
triple { stack.tag stack.head(1).tag stack.head(1).head(1).tag }
triple { input.tag input.child(-1).tag input.child(-1).sibling(1).tag }

label set
pair { stack.tag stack.child(-1).label }
triple { stack.tag stack.child(-1).label stack.child(-1).sibling(1).label }
quad { stack.tag stack.child(-1).label stack.child(-1).sibling(1).label stack.child(-1).sibling(2).label }
pair { stack.tag stack.child(1).label }
triple { stack.tag stack.child(1).label stack.child(1).sibling(-1).label }
quad { stack.tag stack.child(1).label stack.child(1).sibling(-1).label stack.child(1).sibling(-2).label }
pair { input.tag input.child(-1).label }
triple { input.tag input.child(-1).label input.child(-1).sibling(1).label }
quad { input.tag input.child(-1).label input.child(-1).sibling(1).label input.child(-1).sibling(2).label }

……

Neural Network Transition Based Parser

f0 = 1 [buffer0-word = “to”]

f1 = 1 [buffer1-word = “Bilbao”]

f3 = 1 [stack0-label = “pobj”]
f2 = 1 [buffer0-POS = “IN”]

… Embedding Layer

Hidden Layer

Softmax

Atomic Inputs

words labelspos

[Chen & Manning ’14] and [Weiss et al. ’15]

……

f0 = 1 [buffer0-word = “to”]

f1 = 1 [buffer1-word = “Bilbao”]

f3 = 1 [stack0-label = “pobj”]
f2 = 1 [buffer0-POS = “IN”]

… Embedding Layer

Hidden Layer

Softmax

Atomic Inputs

words labelspos

Neural Network Transition Based Parser
 [Weiss et al. ’15]

……

f0 = 1 [buffer0-word = “to”]

f1 = 1 [buffer1-word = “Bilbao”]

f3 = 1 [stack0-label = “pobj”]
f2 = 1 [buffer0-POS = “IN”]

… Embedding Layer

Hidden Layer

Softmax

Atomic Inputs

words labelspos

 [Weiss et al. ’15]

Neural Network Transition Based Parser

……

f0 = 1 [buffer0-word = “to”]

f1 = 1 [buffer1-word = “Bilbao”]

f3 = 1 [stack0-label = “pobj”]
f2 = 1 [buffer0-POS = “IN”]

… Embedding Layer

Hidden Layer

Softmax

Atomic Inputs

words labelspos

Hidden Layer 2

1

Neural Network Transition Based Parser
 [Weiss et al. ’15]

……

f0 = 1 [buffer0-word = “to”]

f1 = 1 [buffer1-word = “Bilbao”]

f3 = 1 [stack0-label = “pobj”]
f2 = 1 [buffer0-POS = “IN”]

…

words labelspos

. wfs

structured
perceptron

Neural Network Transition Based Parser
 [Weiss et al. ’15]

NN Hyperparameters
• Regularization

• Loss function

NN Hyperparameters

• Dimensions

• Activation function

• Initialization

• Adagrad

• Dropout

• Regularization

• Loss function

NN Hyperparameters

• Dimensions

• Activation function

• Initialization

• Adagrad

• Dropout

• Mini-batch size

• Initial learning rate

• Learning rate schedule

• Momentum
• Stopping time

• Parameter averaging

• Regularization

• Loss function

NN Hyperparameters

Optimization matters!
Use random restarts, grid

Pick best using holdout data

Tune: WSJ S24
Dev: WSJ S22
Test: WSJ S23

Random Restarts: How much Variance?

91.2 91.4 91.6 91.8 92
92

92.1

92.2

92.3

92.4

92.5

92.6

92.7

UAS (%) on WSJ Tune Set

U
AS

 (%
) o

n
W

SJ
 D

ev
 S

et
Variance of Networks on Tuning/Dev Set

Pretrained 200x200
Pretrained 200
200x200
200

2nd hidden layer +  
pre training increases

correlation

Effect of Embedding Dimensions

1 2 4 8 16 32 64 128
89.5

90

90.5

91

91.5

92

Word Embedding Dimension (Dwords)

U
AS

 (%
)

Word Tuning on WSJ (Tune Set, Dpos,Dlabels=32)

Pretrained 200x200
Pretrained 200
200x200
200

1 2 4 8 16 32
90.5

91

91.5

92

POS/Label Embedding Dimension (Dpos,Dlabels)

U
AS

 (%
)

POS/Label Tuning on WSJ (Tune Set, Dwords=64)

Pretrained 200x200
Pretrained 200
200x200
200

Effect of Embedding Dimensions

Tri-Training
[Zhou et al. ’05, Li et al. ’14]

Berkeley

Parser

ZPar

Parser
UAS 96.35
LAS 95.02

UAS 89.84
LAS 87.21

UAS 89.96
LAS 87.26

~40%  
agreement

Tri-Training Impact
WSJ §22 (Dev)

U
AS

 (%
)

92.5

93

93.5

94

94.5

Model

Linear (ZN2011) NN (B=1) NN (B=8)

WSJ WSJ+Up-training WSJ+Tri-training
NN model benefits more

from additional data

ZN does not improve
even when using an

alternative hyper graph
model for Tri-training

Berkeley (converted)

English Results (WSJ 23)

Method UAS LAS Beam
3rd-order Graph-based (ZM2014) 93.22 91.02 -

Transition-based Linear (ZN2011) 93.00 90.95 32

NN Baseline (Chen & Manning, 2014) 91.80 89.60 1

NN Better SGD (Weiss et al., 2015) 92.58 90.54 1

NN Deeper Network (Weiss et al., 2015) 93.19 91.18 1

NN Perceptron (Weiss et al., 2015) 93.99 92.05 8

NN Semi-supervised (Weiss et al., 2015) 94.26 92.41 8

S-LSTM (Dyer et al., 2015) 93.20 90.90 1

Contrastive NN (Zhou et al., 2015) 92.83 — 100

English Out-of-Domain Results
U

AS
 (%

)

87

87.75

88.5

89.25

90

Supervised Semi-Supervised

3rd Order Graph (ZM2014) Transition-based Linear (ZN 2011, B=32)
Transition-based NN (B=1) Transition-based NN (B=8)

• Train on WSJ + Web Treebank + QuestionBank

• Evaluate on Web

Multilingual Results
LA

S
(%

)

75

79.5

84

88.5

93

Catalan Chinese Czech English German Japanese Spanish

3rd-Order Graph (ZM2014) Tensor-based Graph Lei et al. (2014)
Transition-based Linear (ZN2011) Transition-based NN (B=32)

With morph
features

No tri-training data

[Alberti et al., in submission]

Summary
• Constituency Parsing

• CKY Algorithm
• Lexicalized Grammars
• Latent Variable Grammars
• Conditional Random Field Parsing
• Neural Network Representations

• Dependency Parsing
• Eisner Algorithm
• Maximum Spanning Tree Algorithm
• Transition Based Parsing
• Neural Network Representations

