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Notes for 2016

• Can add 10min of material



PRON VERB DET NOUN ADP NOUN

nsubj

det

dobj

prep

pobjROOT

Dependency Parsing

They     solved     the   problem     with    statistics



(Non-)Projectivity

• Crossing Arcs needed to account for non-
projective constructions 

• Fairly rare in English but can be common 
in other languages (e.g. Czech): 



Formal Conditions



Styles of Dependency Parsing
• Transition-Based (tr)  

• Fast, greedy, linear time 
inference algorithms 

• Trained for greedy search 
• Beam search

• Graph-Based (gr)  
• Slower, exhaustive, dynamic 

programming inference 
algorithms 

• Higher-order factorizations

Time

Ac
cu

ra
cy

O(n)

greedy tr

O(n3)

1st-order gr
O(n3)

2nd-order gr O(n4)

3rd-order gr

O(
k · n

)
k-best tr

[Nivre et al. ’03-’11] [McDonald et al. ’05-’06]



Arc-Factored Models
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Arc-factored Projective Parsing



Arc-factored Projective Parsing



Eisner Algorithm



Eisner First-Order Rules

h m

 

h r

+

mr + 1

h e

 

h m

+

m e

Eisner First-Order Parsing

In practice also left arc version



First-Order Parsing
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Eisner Algorithm Pseudo Code



Maximum Spanning Trees (MSTs)

Can use MST algorithms for nonprojective parsing!



Chu-Liu-Edmonds



Chu-Liu-Edmonds



Find Cycle and Contract



Recalculate Edge Weights



Theorem



Final MST



Chu-Liu-Edmonds PseudoCode



Chu-Liu-Edmonds PseudoCode



Arc Weights



Arc Feature Ideas for f(i,j,k)

• Identities of the words wi and wj and the label lk 
• Part-of-speech tags of the words wi and wj and the label lk 
• Part-of-speech of words surrounding and between wi and wj 
• Number of words between wi and wj , and their orientation 
• Combinations of the above



First-Order Feature Calculation
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[went] [VBD] [As] [ADP] [went]

[VERB] [As] [IN] [went, VBD] [As, ADP]

[went, As] [VBD, ADP] [went, VERB] [As, IN] [went, As]

[VERB, IN] [VBD, As, ADP] [went, As, ADP] [went, VBD, ADP] [went, VBD, As]

[ADJ, *, ADP] [VBD, *, ADP] [VBD, ADJ, ADP] [VBD, ADJ, *] [NNS, *, ADP]

[NNS, VBD, ADP] [NNS, VBD, *] [ADJ, ADP, NNP] [VBD, ADP, NNP] [VBD, ADJ, NNP]

[NNS, ADP, NNP] [NNS, VBD, NNP] [went, left, 5] [VBD, left, 5] [As, left, 5]

[ADP, left, 5] [VERB, As, IN] [went, As, IN] [went, VERB, IN] [went, VERB, As]

[JJ, *, IN] [VERB, *, IN] [VERB, JJ, IN] [VERB, JJ, *] [NOUN, *, IN]

[NOUN, VERB, IN] [NOUN, VERB, *] [JJ, IN, NOUN] [VERB, IN, NOUN] [VERB, JJ, NOUN]

[NOUN, IN, NOUN] [NOUN, VERB, NOUN] [went, left, 5] [VERB, left, 5] [As, left, 5]

[IN, left, 5] [went, VBD, As, ADP] [VBD, ADJ, *, ADP] [NNS, VBD, *, ADP] [VBD, ADJ, ADP, NNP]

[NNS, VBD, ADP, NNP] [went, VBD, left, 5] [As, ADP, left, 5] [went, As, left, 5] [VBD, ADP, left, 5]

[went, VERB, As, IN] [VERB, JJ, *, IN] [NOUN, VERB, *, IN] [VERB, JJ, IN, NOUN] [NOUN, VERB, IN, NOUN]

[went, VERB, left, 5] [As, IN, left, 5] [went, As, left, 5] [VERB, IN, left, 5] [VBD, As, ADP, left, 5]

[went, As, ADP, left, 5] [went, VBD, ADP, left, 5] [went, VBD, As, left, 5] [ADJ, *, ADP, left, 5] [VBD, *, ADP, left, 5]

[VBD, ADJ, ADP, left, 5] [VBD, ADJ, *, left, 5] [NNS, *, ADP, left, 5] [NNS, VBD, ADP, left, 5] [NNS, VBD, *, left, 5]

[ADJ, ADP, NNP, left, 5] [VBD, ADP, NNP, left, 5] [VBD, ADJ, NNP, left, 5] [NNS, ADP, NNP, left, 5] [NNS, VBD, NNP, left, 5]

[VERB, As, IN, left, 5] [went, As, IN, left, 5] [went, VERB, IN, left, 5] [went, VERB, As, left, 5] [JJ, *, IN, left, 5]

[VERB, *, IN, left, 5] [VERB, JJ, IN, left, 5] [VERB, JJ, *, left, 5] [NOUN, *, IN, left, 5] [NOUN, VERB, IN, left, 5]

[NOUN, VERB, *, left, 5] [JJ, IN, NOUN, left, 5] [VERB, IN, NOUN, left, 5] [VERB, JJ, NOUN, left, 5] [NOUN, IN, NOUN, left, 5]

[NOUN, VERB, NOUN, left, 5] [went, VBD, As, ADP, left, 5] [VBD, ADJ, *, ADP, left, 5] [NNS, VBD, *, ADP, left, 5] [VBD, ADJ, ADP, NNP, left, 5]

[NNS, VBD, ADP, NNP, left, 5] [went, VERB, As, IN, left, 5] [VERB, JJ, *, IN, left, 5] [NOUN, VERB, *, IN, left, 5] [VERB, JJ, IN, NOUN, left, 5]

[NOUN, VERB, IN, NOUN, left, 5]

First-Order Feature Computation



(Structured) Perceptron



Transition Based Dependency Parsing

• Process sentence left to right 
• Different transition strategies available 
• Delay decisions by pushing on stack  

• Arc-Standard Transition Strategy [Nivre ’03] 

 Initial configuration: ([],[0,…,n],[])   
 Terminal configuration: ([0],[],A) 

 shift: (σ,[i|β],A) ⇒ ([σ|i],β,A) 

 left-arc (label): ([σ|i|j],B,A) ⇒ ([σ|j],B,A∪{j,l,i}) 

 right-arc (label): ([σ|i|j],B,A) ⇒ ([σ|i],B,A∪{i,l,j})



↑ Stack ← Buffer

Arc-Standard Example

I booked a flight to Lisbon

SHIFT

I booked a flight to Lisbon
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↑ Stack ← Buffer

Arc-Standard Example

I

booked a flight to Lisbon

LEFT-ARC  
nsubj

I booked a flight to Lisbon



↑ Stack ← Buffer

Arc-Standard Example
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SHIFT

 I        booked
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nsubj
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↑ Stack ← Buffer

Arc-Standard Example
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I booked a flight to Lisbon

nsubj



↑ Stack ← Buffer
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↑ Stack ← Buffer

Arc-Standard Example

to

Lisbon

RIGHT-ARC  
pobj

 I        booked

 a          flight

I booked a flight to Lisbon

nsubj det



↑ Stack

Arc-Standard Example

RIGHT-ARC  
prep

 I        booked

 a          flight

 to        Lisbon

← Buffer

I booked a flight to Lisbon

nsubj det pobj



↑ Stack

Arc-Standard Example

RIGHT-ARC  
dobj

 I        booked

a flight to Lisbon

← Buffer

I booked a flight to Lisbon

nsubj det pobjprep



↑ Stack

Arc-Standard Example

I booked a flight to Lisbon

← Buffer

dobj

nsubj pobjprepdet

I booked a flight to Lisbon



↑ Stack ← Buffer

Features

to Lisbon

 I        booked

 a          flight

Stack top word = “flight” 
Stack top POS tag = “NOUN” 
Buffer front word = “to” 
Child of stack top word = “a” 
....

RIGHT-ARC?

LEFT-ARC?

SHIFT



SVM / Structured Perceptron Hyperparameters

• Regularization 
• Loss function 
• Hand-crafted features



Features ZPar Parser
# From Single Words
pair { stack.tag stack.word }
stack { word tag }
pair { input.tag input.word }
input { word tag }
pair { input(1).tag input(1).word }
input(1) { word tag }
pair { input(2).tag input(2).word }
input(2) { word tag }

# From word pairs
quad { stack.tag stack.word input.tag input.word }
triple { stack.tag stack.word input.word }
triple { stack.word input.tag input.word }
triple { stack.tag stack.word input.tag }
triple { stack.tag input.tag input.word }
pair { stack.word input.word }
pair { stack.tag input.tag }
pair { input.tag input(1).tag }

# From word triples
triple { input.tag input(1).tag input(2).tag }
triple { stack.tag input.tag input(1).tag }
triple { stack.head(1).tag stack.tag input.tag }
triple { stack.tag stack.child(-1).tag input.tag }
triple { stack.tag stack.child(1).tag input.tag }
triple { stack.tag input.tag input.child(-1).tag }

# Distance
pair { stack.distance stack.word }
pair { stack.distance stack.tag }
pair { stack.distance input.word }
pair { stack.distance input.tag }
triple { stack.distance stack.word input.word }
triple { stack.distance stack.tag input.tag }

# valency
pair { stack.word stack.valence(-1) }
pair { stack.word stack.valence(1) }
pair { stack.tag stack.valence(-1) }
pair { stack.tag stack.valence(1) }
pair { input.word input.valence(-1) }
pair { input.tag input.valence(-1) }

# unigrams
stack.head(1) {word tag}
stack.label
stack.child(-1) {word tag label}
stack.child(1) {word tag label}
input.child(-1) {word tag label}

# third order
stack.head(1).head(1) {word tag}
stack.head(1).label
stack.child(-1).sibling(1) {word tag label}
stack.child(1).sibling(-1) {word tag label}
input.child(-1).sibling(1) {word tag label}
triple { stack.tag stack.child(-1).tag stack.child(-1).sibling(1).tag }
triple { stack.tag stack.child(1).tag stack.child(1).sibling(-1).tag }
triple { stack.tag stack.head(1).tag stack.head(1).head(1).tag }
triple { input.tag input.child(-1).tag input.child(-1).sibling(1).tag }

# label set
pair { stack.tag stack.child(-1).label }
triple { stack.tag stack.child(-1).label stack.child(-1).sibling(1).label }
quad { stack.tag stack.child(-1).label stack.child(-1).sibling(1).label stack.child(-1).sibling(2).label }
pair { stack.tag stack.child(1).label }
triple { stack.tag stack.child(1).label stack.child(1).sibling(-1).label }
quad { stack.tag stack.child(1).label stack.child(1).sibling(-1).label stack.child(1).sibling(-2).label }
pair { input.tag input.child(-1).label }
triple { input.tag input.child(-1).label input.child(-1).sibling(1).label }
quad { input.tag input.child(-1).label input.child(-1).sibling(1).label input.child(-1).sibling(2).label }



……

Neural Network Transition Based Parser

f0 = 1 [buffer0-word = “to”]

f1 = 1 [buffer1-word = “Bilbao”]

f3 = 1 [stack0-label = “pobj”]
f2 = 1 [buffer0-POS = “IN”]

… Embedding Layer

Hidden Layer

Softmax

Atomic Inputs

words labelspos

[Chen & Manning ’14] and [Weiss et al. ’15]
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f1 = 1 [buffer1-word = “Bilbao”]
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……

f0 = 1 [buffer0-word = “to”]

f1 = 1 [buffer1-word = “Bilbao”]

f3 = 1 [stack0-label = “pobj”]
f2 = 1 [buffer0-POS = “IN”]

… Embedding Layer

Hidden Layer

Softmax

Atomic Inputs

words labelspos

Hidden Layer 2

1

Neural Network Transition Based Parser
 [Weiss et al. ’15]



……

f0 = 1 [buffer0-word = “to”]

f1 = 1 [buffer1-word = “Bilbao”]

f3 = 1 [stack0-label = “pobj”]
f2 = 1 [buffer0-POS = “IN”]

…

words labelspos

. wfs

structured
perceptron

Neural Network Transition Based Parser
 [Weiss et al. ’15]



NN Hyperparameters
• Regularization 

• Loss function



NN Hyperparameters

• Dimensions 

• Activation function 

• Initialization 

• Adagrad 

• Dropout

• Regularization 

• Loss function



NN Hyperparameters

• Dimensions 

• Activation function 

• Initialization 

• Adagrad 

• Dropout

• Mini-batch size 

• Initial learning rate 

• Learning rate schedule 

• Momentum 
• Stopping time 

• Parameter averaging 

• Regularization 

• Loss function



NN Hyperparameters

Optimization matters! 
Use random restarts, grid  

Pick best using holdout data 

Tune: WSJ S24 
Dev: WSJ S22 
Test: WSJ S23



Random Restarts: How much Variance?

91.2 91.4 91.6 91.8 92
92
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Pretrained 200x200
Pretrained 200
200x200
200

2nd hidden layer +  
pre training increases 

correlation



Effect of Embedding Dimensions

1 2 4 8 16 32 64 128
89.5

90

90.5

91

91.5

92

Word Embedding Dimension (Dwords)

U
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Word Tuning on WSJ (Tune Set, Dpos,Dlabels=32)
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Pretrained 200
200x200
200



1 2 4 8 16 32
90.5

91
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92

POS/Label Embedding Dimension (Dpos,Dlabels)

U
AS

 (%
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POS/Label Tuning on WSJ (Tune Set, Dwords=64)

 

 

Pretrained 200x200
Pretrained 200
200x200
200

Effect of Embedding Dimensions



Tri-Training
[Zhou et al. ’05, Li et al. ’14]

Berkeley

Parser

ZPar

Parser
UAS 96.35 
LAS 95.02 

UAS 89.84 
LAS 87.21 

UAS 89.96 
LAS 87.26 

~40%  
agreement



Tri-Training Impact
WSJ §22 (Dev)

U
AS

 (%
)

92.5

93

93.5

94

94.5

Model

Linear (ZN2011) NN (B=1) NN (B=8)

WSJ WSJ+Up-training WSJ+Tri-training
NN model benefits more 

from additional data

ZN does not improve 
even when using an 

alternative hyper graph 
model for Tri-training

Berkeley (converted)



English Results (WSJ 23)

Method UAS LAS Beam
3rd-order Graph-based (ZM2014) 93.22 91.02 -

Transition-based Linear (ZN2011) 93.00 90.95 32

NN Baseline (Chen & Manning, 2014) 91.80 89.60 1

NN Better SGD (Weiss et al., 2015) 92.58 90.54 1

NN Deeper Network (Weiss et al., 2015) 93.19 91.18 1

NN Perceptron (Weiss et al., 2015) 93.99 92.05 8

NN Semi-supervised (Weiss et al., 2015) 94.26 92.41 8

S-LSTM (Dyer et al., 2015) 93.20 90.90 1

Contrastive NN (Zhou et al., 2015) 92.83 — 100



English Out-of-Domain Results
U

AS
 (%

)

87

87.75

88.5

89.25

90

Supervised Semi-Supervised

3rd Order Graph (ZM2014) Transition-based Linear (ZN 2011, B=32)
Transition-based NN (B=1) Transition-based NN (B=8)

• Train on WSJ + Web Treebank +  QuestionBank 

• Evaluate on Web



Multilingual Results
LA

S 
(%

)

75

79.5

84

88.5

93

Catalan Chinese Czech English German Japanese Spanish

3rd-Order Graph (ZM2014) Tensor-based Graph Lei et al. (2014)
Transition-based Linear (ZN2011) Transition-based NN (B=32)

With morph
features

No tri-training data

[Alberti et al., in submission]



Summary
• Constituency Parsing 

• CKY Algorithm 
• Lexicalized Grammars 
• Latent Variable Grammars 
• Conditional Random Field Parsing 
• Neural Network Representations 

• Dependency Parsing 
• Eisner Algorithm 
• Maximum Spanning Tree Algorithm 
• Transition Based Parsing 
• Neural Network Representations 


