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Deep Learning

Most current machine learning works
well because of human-designed
representations and input features

Machine learning becomes just optimizing
weights to best make a final prediction

Representation learning attempts to 
automatically learn good features or representations

Deep learning algorithms attempt to learn multiple levels of 
representation of increasing complexity/abstraction

NER WordNet

SRL Parser 
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A Deep Architecture

Mainly, work has explored deep belief networks (DBNs), Markov 
Random Fields with multiple layers, and various types of 
multiple-layer neural networks

Output layer

Here predicting a supervised target

Hidden layers

These learn more abstract 
representations as you head up

Input layer

Raw sensory inputs (roughly)2



Five Reasons to Explore

Deep Learning

Part 1.1: The Basics
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#1 Learning representations

4

Handcrafting features is time-consuming

The features are often both over-specified and incomplete

The work has to be done again for each task/domain/…

We must move beyond handcrafted features and simple ML

Humans develop representations for learning and reasoning

Our computers should do the same

Deep learning provides a way of doing this



#2 The need for distributed representations

Current NLP systems are incredibly fragile because of 
their atomic symbol representations

Crazy sentential 
complement, such as for 
“likes [(being) crazy]”5



#2 The need for distributional & distributed 

representations

Learned word representations help enormously in NLP

They provide a powerful similarity model for words 

Distributional similarity based word clusters greatly help most 
applications

+1.4% F1 Dependency Parsing 15.2% error reduction  (Koo & 
Collins 2008, Brown clustering)

+3.4% F1 Named Entity Recognition 23.7% error reduction 
(Stanford NER, exchange clustering)

Distributed representations can do even better by representing 
more dimensions of similarity
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Learning features that are not mutually exclusive can be exponentially 
more efficient than nearest-neighbor-like or clustering-like models

#2 The need for distributed representations

Multi-
Clustering

Clustering
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Distributed representations deal with the curse 

of dimensionality

Generalizing locally (e.g., nearest 
neighbors) requires representative 
examples for all relevant variations!

Classic solutions:

• Manual feature design

• Assuming a smooth target 
function (e.g., linear models)

• Kernel methods (linear in terms 
of kernel based on data points)

Neural networks parameterize and 
learn a “similarity” kernel
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#3 Unsupervised feature and weight 

learning 

Today, most practical, good NLP& ML methods require 
labeled training data (i.e., supervised learning)

But almost all data is unlabeled

Most information must be acquired unsupervised

Fortunately, a good model of observed data can really help you 
learn classification decisions
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We need good intermediate representations 
that can be shared across tasks

Multiple levels of latent variables allow 
combinatorial sharing of statistical strength

Insufficient model depth can be 
exponentially inefficient

#4 Learning multiple levels of 

representation

Biologically inspired learning

The cortex seems to have a generic 
learning algorithm 

The brain has a deep architecture

Task 1 Output

Linguistic Input

Task 2 Output Task 3 Output
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#4 Learning multiple levels of 

representation

Successive model layers learn deeper intermediate representations

Layer 1

Layer 2

Layer 3

High-level
linguistic representations

[Lee et al. ICML 2009; Lee et al. NIPS 2009]
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Handling the recursivity of human language 

Human sentences are composed 
from words and phrases

We need compositionality in our 
ML models 

Recursion: the same operator 
(same parameters) is applied 
repeatedly on different 
components

A small crowd 
quietly enters 

the historic 
church

historicthe

quietly 
enters

S
VP

Det. Adj.

NPVP

A small 
crowd

NP

NP

church

N.

Semantic  
Representations

xt−1 xt xt+1

zt−1 zt zt+1
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#5 Why now?

Despite prior investigation and understanding of many of the 
algorithmic techniques …

Before 2006 training deep architectures was unsuccessful 

What has changed?

• Faster machines and more data help DL more than other 
algorithms

• New methods for unsupervised pre-training have been 
developed (Restricted Boltzmann Machines = RBMs, 
autoencoders, contrastive estimation, etc.)

• More efficient parameter estimation methods

• Better understanding of model regularization, ++



Deep Learning models have already achieved 

impressive results for HLT

Neural Language Model
[Mikolov et al. Interspeech 2011]

MSR MAVIS Speech System
[Dahl et al. 2012; Seide et al. 2011; 
following Mohamed et al. 2011]

“The algorithms represent the first time a 
company has released a deep-neural-
networks (DNN)-based speech-recognition 
algorithm in a commercial product.”

Model \ WSJ ASR task Eval WER

KN5 Baseline 17.2

Discriminative LM 16.9

Recurrent NN combination 14.4

Acoustic model &
training

Recog
\ WER

RT03S 
FSH

Hub5 
SWB

GMM 40-mix, 
BMMI, SWB 309h

1-pass 
−adapt

27.4 23.6

DBN-DNN 7 layer 
x 2048, SWB 
309h

1-pass 
−adapt

18.5
(−33%)

16.1
(−32%)

GMM 72-mix,
BMMI, FSH 2000h

k-pass 
+adapt

18.6 17.1
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Deep Learn Models Have Interesting 

Performance Characteristics

Deep learning models can now be very fast in some circumstances

• SENNA [Collobert et al. 2011] can do POS or NER faster than 
other SOTA taggers (16x to 122x), using 25x less memory

• WSJ POS 97.29% acc; CoNLL NER 89.59% F1; CoNLL Chunking 94.32% F1

Changes in computing technology favor deep learning

• In NLP, speed has traditionally come from exploiting sparsity

• But with modern machines, branches and widely spaced 
memory accesses are costly

• Uniform parallel operations on dense vectors are faster

These trends are even stronger with multi-core CPUs and GPUs
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Outline of the Tutorial

1. The Basics

1. Motivations

2. From logistic regression to neural networks

3. Word representations

4. Unsupervised word vector learning

5. Backpropagation Training

6. Learning word-level classifiers: POS and NER

7. Sharing statistical strength

2. Recursive Neural Networks

3. Applications, Discussion, and Resources
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Outline of the Tutorial

1. The Basics

2. Recursive Neural Networks

1. Motivation

2. Recursive Neural Networks for Parsing 

3. Optimization and Backpropagation Through Structure

4. Compositional Vector Grammars: Parsing

5. Recursive Autoencoders (short): Paraphrase Detection

6. Matrix-Vector RNNs (short): Relation classification

7. Recursive Neural Tensor Networks: Sentiment Analysis

8. Dependency Tree RNNs: Sentence-Image Search

3. Applications, Discussion, and Resources
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Outline of the Tutorial

1. The Basics

2. Recursive Neural Networks

3. Other Models, Applications, Discussion, and Resources

1. Assorted Speech and NLP Applications

2. Deep Learning: General Strategy and Tricks

3. Resources (readings, code, …)

4. Discussion
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From logistic regression to neural nets

Part 1.2: The Basics
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Demystifying neural networks

Neural networks come with 
their own terminological 
baggage 

… just like SVMs

But if you understand how 
logistic regression or maxent
models work

Then you already understand the 
operation of a basic neural 
network neuron!

A single neuron
A computational unit with n (3) inputs

and 1 output
and parameters W, b

Activation 
function

Inputs

Bias unit corresponds to intercept term

Output

21



From Maxent Classifiers to Neural Networks

In NLP, a maxent classifier is normally written as:

Supervised learning gives us a distribution for datum d over classes in C

Vector form:

Such a classifier is used as-is in a neural network (“a softmax layer”)

• Often as the top layer:  J = softmax(λ·x)

But for now we’ll derive a two-class logistic model for one neuron

P(c | d, l) =
exp li fi (c,d)

i
å

exp li fi ( ¢c ,d)
i

å
¢c ÎC

å

P(c | d,l) =
elT f (c,d )

elT f ( ¢c ,d )

¢c
å
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From Maxent Classifiers to Neural Networks

Vector form:

Make two class:

P(c1 | d,l) =
elT f (c1,d )

elT f (c1,d ) + elT f (c2 ,d )
=

elT f (c1,d )

elT f (c1,d ) + elT f (c2 ,d )
×
e-lT f (c1,d )

e-lT f (c1,d )

=
1

1+ elT [ f (c2 ,d )- f (c1,d )]
= for x = f (c1,d)- f (c2,d)

1

1+ e-lTx

23

= f (lTx)

P(c | d,l) =
elT f (c,d )

elT f ( ¢c ,d )

¢c
å

for f(z) = 1/(1 + exp(−z)), the logistic function – a sigmoid non-linearity.



This is exactly what a neuron computes

hw,b(x) = f (wTx+ b)

f (z) =
1

1+ e-z

w, b are the parameters of this neuron
i.e., this logistic regression model24

b: We can have an “always on” 
feature, which gives a class prior, 
or separate it out, as a bias term



A neural network = running several logistic 

regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression 
functions, then we get a vector of outputs …

But we don’t have to decide 
ahead of time what variables 
these logistic regressions are 
trying to predict!
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A neural network = running several logistic 

regressions at the same time

… which we can feed into another logistic regression function

It is the training 
criterion that will direct 
what the intermediate 
hidden variables should 
be, so as to do a good 
job at predicting the 
targets for the next 
layer, etc.
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A neural network = running several logistic 

regressions at the same time

Before we know it, we have a multilayer neural network….
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Matrix notation for a layer

We have 

In matrix notation

where f is applied element-wise:

a1

a2

a3

a1 = f (W11x1 +W12x2 +W13x3 +b1)

a2 = f (W21x1 +W22x2 +W23x3 +b2 )

etc.

z =Wx+ b

a = f (z)

f ([z1, z2, z3]) = [ f (z1), f (z2 ), f (z3)]
28
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How do we train the weights W?

• For a single supervised layer, we train just like a maxent model –
we calculate and use error derivatives (gradients) to improve

• Online learning: Stochastic gradient descent (SGD)

• Batch learning: Conjugate gradient or L-BFGS

• A multilayer net could be more complex because the internal 
(“hidden”) logistic units make the function non-convex … just as 
for hidden CRFs   [Quattoni et al. 2005, Gunawardana et al. 2005]

• But we can use the same ideas and techniques 
• Just without guarantees …

• We “backpropagate” error derivatives through the model

29



Non-linearities: Why they’re needed

• For logistic regression: map to probabilities

• Here: function approximation, 
e.g., regression or classification
• Without non-linearities, deep neural networks 

can’t do anything more than a linear transform

• Extra layers could just be compiled down into 
a single linear transform

• Probabilistic interpretation unnecessary except in 
the Boltzmann machine/graphical models

• People often use other non-linearities, such as 
tanh, as we’ll discuss in part 3

30



Summary

Knowing the meaning of words!

You now understand the basics and the relation to other models

• Neuron = logistic regression or similar function

• Input layer = input training/test vector

• Bias unit = intercept term/always on feature

• Activation = response

• Activation function is a logistic (or similar “sigmoid” nonlinearity)

• Backpropagation = running stochastic gradient descent backward 
layer-by-layer in a multilayer network

• Weight decay = regularization / Bayesian prior

31



Effective deep learning became possible through 

unsupervised pre-training

[Erhan et al., JMLR 2010]

Purely supervised neural net With unsupervised pre-training

(with RBMs and Denoising Auto-Encoders)

0–9 handwritten digit recognition error rate (MNIST data)
32



Word Representations

Part 1.3: The Basics
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The standard word representation

The vast majority of rule-based and statistical NLP work regards 
words as atomic symbols: hotel, conference, walk

In vector space terms, this is a vector with one 1 and a lot of zeroes

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

Dimensionality: 20K (speech) – 50K (PTB) – 500K (big vocab) – 13M (Google 1T)

We call this a “one-hot” representation. Its problem:

motel [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]  AND
hotel  [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]  =  0
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Distributional similarity based representations

You can get a lot of value by representing a word by 
means of its neighbors

“You shall know a word by the company it keeps” 

(J. R. Firth 1957: 11)

One of the most successful ideas of modern statistical NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

 These words will represent banking 

35

You can vary whether you use local or large context 
to get a more syntactic or semantic clustering



Class-based (hard) and soft clustering 

word representations

Class based models learn word classes of similar words based on 
distributional information ( ~ class HMM)

• Brown clustering (Brown et al. 1992)

• Exchange clustering (Martin et al. 1998, Clark 2003)

• Desparsification and great example of unsupervised pre-training

Soft clustering models learn for each cluster/topic a distribution 
over words of how likely that word is in each cluster

• Latent Semantic Analysis (LSA/LSI), Random projections

• Latent Dirichlet Analysis (LDA), HMM clustering
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Neural word embeddings 

as a distributed representation

Similar idea

Combine vector space 
semantics with the prediction of 
probabilistic models (Bengio et 
al. 2003, Collobert & Weston 
2008, Turian et al. 2010)

In all of these approaches, 
including deep learning models, 
a word is represented as a 
dense vector

linguistics  =

37

0.286
0.792

−0.177
−0.107

0.109
−0.542

0.349
0.271



Neural word embeddings - visualization
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Stunning new result at this conference!

Mikolov, Yih & Zweig (NAACL 2013)

These representations are way better at encoding dimensions of 
similarity than we realized!

• Analogies testing dimensions of similarity can be solved quite 
well just by doing vector subtraction in the embedding space

Syntactically

• xapple − xapples ≈ xcar − xcars ≈ xfamily − xfamilies

• Similarly for verb and adjective morphological forms

Semantically (Semeval 2012 task 2)

• xshirt − xclothing ≈ xchair − xfurniture
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Stunning new result at this conference!

Mikolov, Yih & Zweig (NAACL 2013)

Method Syntax % correct

LSA 320 dim 16.5 [best]

RNN 80 dim 16.2

RNN 320 dim 28.5

RNN 1600 dim 39.6

Method Semantics Spearm ρ

UTD-NB (Rink & H. 2012) 0.230 [Semeval win]

LSA 640 0.149

RNN 80 0.211

RNN 1600 0.275
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Advantages of the neural word embedding 

approach

41

Compared to a method like LSA, neural word embeddings 
can become more meaningful through adding supervision 
from one or multiple tasks

“Discriminative fine-tuning”

For instance, sentiment is usually not captured in unsupervised 
word embeddings but can be in neural word vectors

We can build representations for large linguistic units

See part 2



Unsupervised word vector learning

Part 1.4: The Basics
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A neural network for learning word vectors         
(Collobert et al. JMLR 2011)

Idea: A word and its context is a positive training 
sample; a random word in that same context gives 
a negative training sample:

cat chills on a mat cat chills Jeju a mat

Similar: Implicit negative evidence in Contrastive 
Estimation, (Smith and Eisner 2005)
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A neural network for learning word vectors

44

How do we  formalize this idea? Ask that

score(cat chills on a mat) > score(cat chills Jeju a mat)

How do we compute the score?

• With a neural network

• Each word is associated with an 
n-dimensional vector



Word embedding matrix

• Initialize all word vectors randomly to form a word embedding 
matrix

|V|

L =         … n

the   cat      mat  …

• These are the word features we want to learn

• Also called a look-up table

• Conceptually you get a word’s vector by left multiplying a 
one-hot vector e by L:     x = Le

[            ]
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• score(cat chills on a mat) 

• To describe a phrase, retrieve (via index) the corresponding 
vectors from L

cat chills on   a   mat

• Then concatenate them to 5n vector:

• x =[ ]

• How do we then compute score(x)?

Word vectors as input to a neural network

46



A Single Layer Neural Network

• A single layer was a combination of a linear 
layer and a nonlinearity:

• The neural activations a can then
be used to compute some function

• For instance, the score we care about:
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Summary: Feed-forward Computation

48

Computing a window’s score with a 3-layer Neural 
Net: s = score(cat chills on a mat)

cat     chills      on         a       mat



Summary: Feed-forward Computation

• s = score(cat chills on a mat)

• sc = score(cat chills Jeju a mat)

• Idea for training objective: make score of true window 
larger and corrupt window’s score lower (until they’re 
good enough): minimize

• This is continuous, can perform SGD
49



Training with Backpropagation

Assuming cost J is > 0, it is simple to see that we 
can compute the derivatives of s and sc wrt all the 
involved variables: U, W, b, x
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Training with Backpropagation

• Let’s consider the derivative of a single weight Wij

• This only appears inside ai

• For example: W23 is only 
used to compute a2

x1 x2                 x3 +1

a1 a2

s  U2

W23

51



Training with Backpropagation

Derivative of weight Wij:

52

x1 x2                 x3 +1

a1 a2

s  U2

W23



where                                                  for logistic f

Training with Backpropagation

Derivative of single weight Wij :

Local error 
signal

Local input 
signal

53

x1 x2                 x3 +1

a1 a2

s  U2

W23



• We want all combinations of
i = 1, 2 and j = 1, 2, 3

• Solution: Outer product:
where                  is the 
“responsibility” coming from 
each activation a

Training with Backpropagation

• From single weight Wij to full W:

54

x1 x2                 x3 +1

a1 a2

s  U2

W23



Training with Backpropagation

• For biases b, we get:

55

x1 x2                 x3 +1

a1 a2

s  U2

W23



Training with Backpropagation

56

That’s almost backpropagation

It’s simply taking derivatives and using the chain rule!

Remaining trick: we can re-use derivatives computed for 
higher layers in computing derivatives for lower layers

Example: last derivatives of model, the word vectors in x



Training with Backpropagation

• Take derivative of score with 
respect to single word vector 
(for simplicity a 1d vector, 
but same if it was longer)

• Now, we cannot just take 
into consideration one ai

because each xj is connected 
to all the neurons above and 
hence xj influences the 
overall score through all of 
these, hence:

Re-used part of previous derivative57



Simple Window Model

Good for illustration of backpropagation

Now obsolete when it comes to word vectors

In section 3 we will learn about better models for single 
word vectors.

But!

The window based model family is indeed useful!



Training with Backpropagation: softmax

59

What is the major benefit of deep learned word vectors?

Ability to also propagate labeled information into them, 
via softmax/maxent and hidden layer:

S

c1 c2 c3

x1 x2                x3 +1

a1 a2

P(c | d,l) =
elT f (c,d )

elT f ( ¢c ,d )

¢c
å



Backpropagation Training

Part 1.5: The Basics
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Back-Prop

• Compute gradient of example-wise loss wrt
parameters 

• Simply applying the derivative chain rule wisely

• If computing the loss(example, parameters) is O(n) 
computation, then so is computing the gradient
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Simple Chain Rule
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Multiple Paths Chain Rule

63



Multiple Paths Chain Rule - General

…
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Chain Rule in Flow Graph

…

…

…

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

= successors of 

65



Back-Prop in Multi-Layer Net

…

…

66

h = sigmoid(Vx)



Back-Prop in General Flow Graph

…

…

…

= successors of 

1. Fprop: visit nodes in topo-sort order 
- Compute value of node given predecessors

2. Bprop:
- initialize output gradient = 1 
- visit nodes in reverse order:

Compute gradient wrt each node using 
gradient wrt successors

Single scalar output
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Automatic Differentiation

• The gradient computation can 
be automatically inferred from 
the symbolic expression of the 
fprop.

• Each node type needs to know 
how to compute its output and 
how to compute the gradient 
wrt its inputs given the 
gradient wrt its output.

• Easy and fast prototyping

68



Learning word-level classifiers: POS 

and NER

Part 1.6: The Basics
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The Model

(Collobert & Weston 2008;
Collobert et al. 2011)

• Similar to word vector 
learning but replaces the 
single scalar score with a 
Softmax/Maxent classifier

• Training is again done via 
backpropagation which gives 
an error similar to the score 
in the unsupervised word 
vector learning model

70

S

c1 c2 c3

x1 x2                x3 +1

a1 a2



The Model - Training

• We already know the softmax classifier and how to optimize it

• The interesting twist in deep learning is that the input features 
are also learned, similar to learning word vectors with a score:

S

c1 c2 c3

x1 x2                x3 +1

a1 a2

s  U2

W23

x1 x2                x3 +1

a1 a2
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POS
WSJ (acc.)

NER
CoNLL (F1)

State-of-the-art* 97.24 89.31

Supervised NN 96.37 81.47

Unsupervised pre-training 
followed by supervised NN**

97.20 88.87

+ hand-crafted features*** 97.29 89.59

* Representative systems: POS: (Toutanova et al. 2003), NER: (Ando & Zhang 
2005)

** 130,000-word embedding trained on Wikipedia and Reuters with 11 word 
window, 100 unit hidden layer – for 7 weeks! – then supervised task training

***Features are character suffixes for POS and a gazetteer for NER

The secret sauce is the unsupervised word 

vector pre-training on a large text collection
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POS
WSJ (acc.)

NER
CoNLL (F1)

Supervised NN 96.37 81.47

NN with Brown clusters 96.92 87.15

Fixed embeddings* 97.10 88.87

C&W 2011** 97.29 89.59

* Same architecture as C&W 2011, but word embeddings are kept constant 
during the supervised training phase

** C&W is unsupervised pre-train + supervised NN + features model of last slide

Supervised refinement of the unsupervised 

word representation helps
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Sharing statistical strength

Part 1.7
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Multi-Task Learning

• Generalizing better to new 
tasks is crucial to approach 
AI

• Deep architectures learn 
good intermediate 
representations that can be 
shared across tasks

• Good representations make 
sense for many tasks

raw input x

task 1 

output y1

task 3 

output y3

task 2

output y2

shared 

intermediate 

representation h
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Combining Multiple Sources of Evidence 

with Shared Embeddings

• Relational learning

• Multiple sources of information / relations

• Some symbols (e.g. words, Wikipedia entries) shared

• Shared embeddings help propagate information 
among data sources: e.g., WordNet, XWN, Wikipedia, 
FreeBase, …
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Sharing Statistical Strength

• Besides very fast prediction, the main advantage of 
deep learning is statistical

• Potential to learn from less labeled examples because 
of sharing of statistical strength:

• Unsupervised pre-training & multi-task learning

• Semi-supervised learning 
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Semi-Supervised Learning

• Hypothesis: P(c|x) can be more accurately computed using 
shared structure with P(x) 

purely 
supervised
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Semi-Supervised Learning

• Hypothesis: P(c|x) can be more accurately computed using 
shared structure with P(x) 

semi-
supervised
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Deep autoencoders

Alternative to contrastive unsupervised word learning

• Another is RBMs (Hinton et al. 2006), which we don’t cover today

Works well for fixed input representations

1. Definition, intuition and variants of autoencoders

2. Stacking for deep autoencoders

3. Why do autoencoders improve deep neural nets so much?

80



Auto-Encoders

• Multilayer neural net with target output = input

• Reconstruction=decoder(encoder(input))

• Probable inputs have 
small reconstruction error

…

code= latent features

…

encoder

decoder

input

reconstruction

81



PCA = Linear Manifold = Linear Auto-Encoder

reconstruction error vector

Linear manifold

reconstruction(x)

x

input x, 0-mean
features=code=h(x)=W x
reconstruction(x)=WT h(x) = WT W x
W = principal eigen-basis of Cov(X)

LSA example:
x = (normalized) distribution 
of co-occurrence frequencies
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The Manifold Learning Hypothesis

• Examples concentrate near a lower dimensional “manifold” 
(region of high density where small changes are only allowed in 
certain directions)

83
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Auto-Encoders Learn Salient Variations, like a 

non-linear PCA

Minimizing reconstruction error

forces latent representation of 

“similar inputs” to stay on 

manifold



Auto-Encoder Variants

• Discrete inputs: cross-entropy or log-likelihood reconstruction 
criterion (similar to used for discrete targets for MLPs)

• Preventing them to learn the identity everywhere:

• Undercomplete (eg PCA):  bottleneck code smaller than input

• Sparsity: penalize hidden unit activations so at or near 0

[Goodfellow et al 2009]

• Denoising: predict true input from corrupted input

[Vincent et al 2008]

• Contractive: force encoder to have small derivatives

[Rifai et al 2011]
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Sparse autoencoder illustration for images

Natural Images

Learned bases:  “Edges”
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 0.8 *                   + 0.3 *                     + 0.5 *

[a1, …, a64] = [0, 0, …, 0, 0.8, 0, …, 0, 0.3, 0, …, 0, 0.5, 0] 
(feature representation) 

Test example
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Stacking Auto-Encoders

• Can be stacked successfully (Bengio et al NIPS’2006) to form highly 
non-linear representations
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Layer-wise Unsupervised Learning

…input
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Layer-wise Unsupervised Pre-training

…

…

input

features
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Layer-wise Unsupervised Pre-training

…

…

…

input

features

reconstruction

of input
=
?

… input
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Layer-wise Unsupervised Pre-training

…

…

input

features
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Layer-wise Unsupervised Pre-training

…

…

input

features

…More abstract

features
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Layer-Wise Unsupervised Pre-training
Layer-wise Unsupervised Learning
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Layer-wise Unsupervised Pre-training
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Layer-wise Unsupervised Learning
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features
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Even more abstract 

features

Output 

f(X) six
Target 

Y
two!=

?

Supervised Fine-Tuning
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Why is unsupervised pre-training working so 

well?

• Regularization hypothesis: 

• Representations good for P(x) 
are good for P(y|x) 

• Optimization hypothesis:

• Unsupervised initializations start 
near better local minimum of 
supervised training error

• Minima otherwise not 
achievable by random 
initialization

Erhan, Courville, Manzagol, 
Vincent, Bengio (JMLR, 2010)
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Recursive Deep Learning

Part 2
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Building on Word Vector Space Models

99
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By mapping them into the same vector space!

1
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1.1
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the country of my birth
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But how can we represent the meaning of longer phrases?
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2
2.5

Germany 1
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How should we map phrases into a vector 

space?

the  country       of       my  birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

2.5
3.8

5.5
6.1

1
3.5

1
5

Use principle of compositionality

The meaning (vector) of a sentence 
is  determined by 
(1) the meanings of its words and
(2) the rules that combine them.

Models in this section 
can jointly learn parse 
trees and compositional 
vector representations

x2

x1
0        1      2       3      4      5      6      7       8      9     10

5

4

3

2

1

the country of my birth

the place where I was born

Monday

Tuesday

France

Germany
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Semantic Vector Spaces

• Distributional Techniques

• Brown Clusters

• Useful as features inside 
models, e.g. CRFs for NER, etc.

• Cannot capture longer phrases

Single Word Vectors Documents Vectors

• Bag of words models

• LSA, LDA

• Great for IR, document 
exploration, etc.

• Ignore word order, no 
detailed understanding

Vectors representing
Phrases and Sentences
that do not ignore word order
and capture semantics for NLP tasks



Recursive Deep Learning

1. Motivation

2. Recursive Neural Networks for Parsing 

3. Optimization and Backpropagation Through Structure

4. Compositional Vector Grammars: Parsing

5. Recursive Autoencoders: Paraphrase Detection

6. Matrix-Vector RNNs: Relation classification

7. Recursive Neural Tensor Networks: Sentiment Analysis
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Sentence Parsing: What we want
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Learn Structure and Representation
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Recursive Neural Networks for Structure 

Prediction

on           the             mat.

9
1

4
3

3
3

8
3

8
5

3
3

Neural 

Network

8
3

1.3

Inputs: two candidate children’s representations
Outputs:
1. The semantic representation if the two nodes are merged.
2. Score of how plausible the new node would be.

8
5
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Recursive Neural Network Definition

score  =  UTp

p =  tanh(W + b),

Same W parameters at all nodes 
of the tree

8
5

3
3

Neural 

Network

8
3

1.3score  = = parent

c1 c2

c1

c2
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Related Work to Socher et al. (ICML 2011)

Pollack (1990): Recursive auto-associative memories

Previous Recursive Neural Networks work by 
Goller & Küchler (1996), Costa et al. (2003) assumed 
fixed tree structure and used one hot vectors.

Hinton (1990) and Bottou (2011): Related ideas about 
recursive models and recursive operators as smooth 
versions of logic operations
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Parsing a sentence with an RNN
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Parsing a sentence
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Parsing a sentence
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Parsing a sentence
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Max-Margin Framework - Details

• The score of a tree is computed by 
the sum of the parsing decision
scores at each node.

• Similar to max-margin parsing (Taskar et al. 2004), a supervised 
max-margin objective

• The loss                penalizes all incorrect decisions

• Structure search for A(x) was maximally greedy

• Instead: Beam Search with Chart

8
5

3
3

RNN

8
31.3
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Backpropagation Through Structure

Introduced by Goller & Küchler (1996) 

Principally the same as general backpropagation

Two differences resulting from the tree structure:

• Split derivatives at each node

• Sum derivatives of W from all nodes
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BTS: Split derivatives at each node

During forward prop, the parent is computed using 2 children

Hence, the errors need to be computed wrt each of them:

where each child’s error is n-dimensional

8
5

3
3

8
3

c1

p  =  tanh(W       + b)c1

c2
c2

8
5

3
3

8
3

c1 c2

114



BTS: Sum derivatives of all nodes

You can actually assume it’s a different W at each node

Intuition via example:

If take separate derivatives of each occurrence, we get same:
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BTS: Optimization

• As before, we can plug the gradients into a 
standard off-the-shelf L-BFGS optimizer

• Best results with AdaGrad (Duchi et al, 2011): 

• For non-continuous objective use subgradient
method (Ratliff et al. 2007)
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Discussion: Simple RNN

• Good results with single matrix RNN (more later)

• Single weight matrix RNN could capture some 
phenomena but not adequate for more complex, 
higher order composition and parsing long sentences

• The composition function is the same 
for all syntactic categories, punctuation, etc

W

c1 c2

p
Wscore

s



Solution: Syntactically-Untied RNN

• Idea: Condition the composition function on the 
syntactic categories, “untie the weights”

• Allows for different composition functions for pairs 
of syntactic categories, e.g. Adv + AdjP, VP + NP

• Combines discrete syntactic categories with 
continuous semantic information



Solution: CVG = 

PCFG + Syntactically-Untied RNN

• Problem: Speed. Every candidate score in beam 
search needs a matrix-vector product.

• Solution: Compute score using a linear combination 
of the log-likelihood from a simple PCFG + RNN

• Prunes very unlikely candidates for speed

• Provides coarse syntactic categories of the 
children for each beam candidate

• Compositional Vector Grammars: CVG = PCFG + RNN



Details: Compositional Vector Grammar

• Scores at each node computed by combination of 
PCFG and SU-RNN:

• Interpretation: Factoring discrete and continuous 
parsing in one model:

• Socher et al. (2013): More details at ACL



Related Work

• Resulting CVG Parser is related to previous work that extends PCFG 
parsers

• Klein and Manning (2003a) : manual feature engineering

• Petrov et al. (2006) : learning algorithm that splits and merges 
syntactic categories 

• Lexicalized parsers (Collins, 2003; Charniak, 2000): describe each 
category with a lexical item

• Hall and Klein (2012) combine several such annotation schemes in a 
factored parser. 

• CVGs extend these ideas from discrete representations to richer 
continuous ones

• Hermann & Blunsom (2013): Combine Combinatory Categorial
Grammars with RNNs and also untie weights, see upcoming ACL 2013



Experiments
• Standard WSJ split, labeled F1

• Based on simple PCFG with fewer states

• Fast pruning of search space, few matrix-vector products

• 3.8% higher F1, 20% faster than Stanford factored parser

Parser Test, All Sentences

Stanford PCFG, (Klein and Manning, 2003a) 85.5

Stanford Factored (Klein and Manning, 2003b) 86.6

Factored PCFGs (Hall and Klein, 2012) 89.4

Collins (Collins, 1997) 87.7

SSN (Henderson, 2004) 89.4

Berkeley Parser (Petrov and Klein, 2007) 90.1

CVG (RNN) (Socher et al., ACL 2013) 85.0

CVG (SU-RNN) (Socher et al., ACL 2013) 90.4

Charniak - Self Trained (McClosky et al. 2006) 91.0

Charniak - Self Trained-ReRanked (McClosky et al. 2006) 92.1



SU-RNN Analysis

• Learns notion of soft head words

DT-NP 

VP-NP



Analysis of resulting vector representations

All the figures are adjusted for seasonal variations
1. All the numbers are adjusted for seasonal fluctuations
2. All the figures are adjusted to remove usual seasonal patterns

Knight-Ridder wouldn’t comment on the offer
1. Harsco declined to say what country placed the order
2. Coastal wouldn’t disclose the terms

Sales grew almost 7% to $UNK m. from $UNK m.
1. Sales rose more than 7% to $94.9 m. from $88.3 m.
2. Sales surged 40% to UNK b. yen from UNK b.



SU-RNN Analysis

• Can transfer semantic information from 
single related example

• Train sentences:

• He eats spaghetti with a fork. 

• She eats spaghetti with pork. 

• Test sentences 

• He eats spaghetti with a spoon. 

• He eats spaghetti with meat.



SU-RNN Analysis



Labeling in Recursive Neural Networks

Neural 

Network

8
3

• We can use each node’s 
representation as features for a 
softmax classifier:

• Training similar to model in part 1 with 
standard cross-entropy error + scores

Softmax

Layer

NP

127



Scene Parsing

• The meaning of a scene image is 
also a function of smaller regions, 

• how they combine as parts to form 
larger objects,

• and how the objects interact.

Similar principle of compositionality.
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Algorithm for Parsing Images
Same Recursive Neural Network as for natural language parsing! 

(Socher et al. ICML 2011)

Features

Grass Tree

Segments

Semantic  
Representations

People Building

Parsing Natural Scene ImagesParsing Natural Scene Images
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Multi-class segmentation

Method Accuracy

Pixel CRF (Gould et al., ICCV 2009) 74.3

Classifier on superpixel features 75.9

Region-based energy (Gould et al., ICCV 2009) 76.4

Local labelling (Tighe & Lazebnik, ECCV 2010) 76.9

Superpixel MRF (Tighe & Lazebnik, ECCV 2010) 77.5

Simultaneous MRF (Tighe & Lazebnik, ECCV 2010) 77.5

Recursive Neural Network 78.1

Stanford Background Dataset (Gould et al. 2009)130



Recursive Deep Learning
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4. Compositional Vector Grammars: Parsing

5. Recursive Autoencoders: Paraphrase Detection
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7. Recursive Neural Tensor Networks: Sentiment Analysis
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Paraphrase Detection

132

Pollack said the plaintiffs failed to show that Merrill and 
Blodget directly caused their losses

Basically , the plaintiffs did not show that omissions in 
Merrill’s research caused the claimed losses

The initial report was made to Modesto Police December 
28

It stems from a Modesto police report



How to compare

the meaning

of two sentences?
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Unsupervised Recursive Autoencoders

Similar to Recursive Neural Net but instead of a 
supervised score we compute a reconstruction error at 
each node (Socher et al. EMNLP  2011)

x2 x3x1

y1=f(W[x2;x3] + b)

y2=f(W[x1;y1] + b)
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Unsupervised unfolding RAE

135

Attempt to encode entire tree structure at each node



Recursive Autoencoders for Full Sentence 

Paraphrase Detection

Unsupervised Unfolding RAE and a pair-wise sentence comparison 
of nodes in parsed trees (Socher et al. (NIPS 2011)
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Recursive Autoencoders for Full Sentence 

Paraphrase Detection

Experiments on Microsoft Research Paraphrase Corpus 
(Dolan et al. 2004)

Method Acc. F1

Rus et al.(2008) 70.6 80.5

Mihalcea et al.(2006) 70.3 81.3

Islam et al.(2007) 72.6 81.3

Qiu et al.(2006) 72.0 81.6

Fernando et al.(2008) 74.1 82.4

Wan et al.(2006) 75.6 83.0

Das and Smith (2009) 73.9 82.3

Das and Smith (2009) + 18 Surface Features 76.1 82.7

F. Bu et al. (ACL 2012): String Re-writing Kernel 76.3 --

Unfolding Recursive Autoencoder (NIPS 2011) 76.8 83.6
137



Recursive Autoencoders for Full Sentence 

Paraphrase Detection
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Recursive Deep Learning
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Compositionality Through Recursive Matrix-

Vector Spaces

140

One way to make the composition function more powerful was by 
untying the weights W

But what if words act mostly as an operator, e.g. “very” in
very good

Proposal: A new composition function

p  =  tanh(W       + b)c1

c2



Compositionality Through Recursive Matrix-

Vector Recursive Neural Networks

p  =  tanh(W       + b)c1

c2
p  =  tanh(W            + b)C2c1

C1c2

141



Predicting Sentiment Distributions

Good example for non-linearity in language
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MV-RNN for Relationship Classification

Relationship Sentence with labeled nouns for which 
to predict relationships

Cause-
Effect(e2,e1)

Avian [influenza]e1 is an infectious 
disease caused by type a strains of the 
influenza [virus]e2.

Entity-
Origin(e1,e2)

The [mother]e1 left her native [land]e2

about the same time and they were 
married in that city.

Message-
Topic(e2,e1)

Roadside [attractions]e1 are frequently 
advertised with [billboards]e2 to attract 
tourists.
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Sentiment Detection

144

Sentiment detection is crucial to business 
intelligence, stock  trading, …



Sentiment Detection and Bag-of-Words Models

145

Most methods start with a bag of words
+ linguistic features/processing/lexica

But such methods (including tf-idf) can’t 
distinguish:

+ white blood cells destroying an infection

− an infection destroying white blood cells



Sentiment Detection and Bag-of-Words Models

• Sentiment is that sentiment is “easy”

• Detection accuracy for longer documents ∼90%

• Lots of easy cases (… horrible … or … awesome …)

• For dataset of single sentence movie reviews 
(Pang and Lee, 2005)  accuracy never reached 
above 80% for >7 years

• Harder cases require actual understanding of 
negation and its scope and other semantic effects



Data: Movie Reviews

Stealing Harvard doesn’t care about 
cleverness, wit or any other kind of 
intelligent humor.

There are slow and repetitive parts 
but it has just enough spice to keep it 
interesting.
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Two missing pieces for improving sentiment

1. Compositional Training Data

2. Better Compositional model



1. New Sentiment Treebank 



1. New Sentiment Treebank 

• Parse trees of 11,855 sentences

• 215,154 phrases with labels

• Allows training and evaluating 
with compositional information



2. New Compositional Model

• Recursive Neural Tensor Network

• More expressive than any other RNN so far

• Idea: Allow more interactions of vectors



2. New Compositional Model

• Recursive Neural Tensor Network



2. New Compositional Model

• Recursive Neural Tensor Network



Recursive Neural Tensor Network



Experimental Result on Treebank



Experimental Result on Treebank

• RNTN can capture X but Y

• RNTN accuracy of 72%, compared to MV-RNN (65), 
biNB (58) and RNN (54)



Negation Results



Negation Results
• Most methods capture that negation often makes 

things more negative (See Potts, 2010)

• Analysis on negation dataset



Negation Results
• But how about negating negatives?

• Positive activation should increase!
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Visualizing Deep Learning: Word Embeddings



Visual Grounding

• Idea: Map sentences and images into a joint space



Discussion: Compositional Structure

• Recursive Neural Networks so far 
used constituency trees 
which results in more syntactically 
influenced representations

• Instead: Use dependency trees which capture more 
semantic structure



Dependency Tree - Recursive Neural Network

• l (i) = number of leaf nodes at node i



Convolutional Neural Network for Images

• CNN trained on ImageNet (Le et al. 2013)
• RNN trained to give large inner products 

between sentence and image vectors:



Results



























Results

















Image Search Mean 
Rank

Random 52.1

Bag of Words 14.6

CT-RNN 16.1

Recurrent Neural Network 19.2

Kernelized Canonical Correlation Analysis 15.9

DT-RNN 12.5

Describing Images Mean 
Rank

Random 92.1

Bag of Words 21.1

CT-RNN 23.9

Recurrent Neural Network 27.1

Kernelized Canonical Correlation Analysis 18.0

DT-RNN 16.9



Overview of RNN Model Variations

• Objective Functions

• Supervised Scores for Structure Prediction

• Classifier for Sentiment, Relations, Visual Objects, Logic

• Unsupervised autoencoding immediate children or entire tree structure

• Composition Functions

• Syntactically-Untied Weights

• Matrix Vector RNN

• Tensor-Based Models

• Tree Structures

• Constituency Parse Trees

• Dependency Parse Trees

• Combinatory Categorial Grammar Trees (Hermann and Blunsom, 2013)

• Fixed Tree Structures (Connections to CNNs)
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Summary: Recursive Deep Learning

• Recursive Deep Learning can predict hierarchical structure and classify the 
structured output using compositional vectors

• State-of-the-art performance (all with code on www.socher.org)
• Parsing on the WSJ (Java code soon)
• Sentiment Analysis on multiple corpora
• Paraphrase detection with unsupervised RNNs
• Relation Classification on SemEval 2011, Task8
• Object detection on Stanford background and MSRC datasets
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Grass Tree
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Parsing Natural Language SentencesParsing Natural Language Sentences

Parsing Natural Scene ImagesParsing Natural Scene Images
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Part 3

1. Assorted Speech and NLP Applications

2. Deep Learning: General Strategy and Tricks

3. Resources (readings, code, …)

4. Discussion
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Assorted Speech and NLP Applications

Part 3.1: Applications

171



Existing NLP Applications

• Language Modeling (Speech Recognition, Machine Translation)

• Word-Sense Learning and Disambiguation

• Reasoning over Knowledge Bases

• Acoustic Modeling

• Part-Of-Speech Tagging

• Chunking

• Named Entity Recognition

• Semantic Role Labeling

• Parsing

• Sentiment Analysis

• Paraphrasing

• Question-Answering 172



Convolutional Neural Networks!

• Phil will talk about them in the evening
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Language Modeling

• Predict P(next word | previous word)

• Gives a probability for a longer sequence

• Applications to Speech, Translation and Compression

• Computational bottleneck: large vocabulary V means that 
computing the output costs  #hidden units × |V|
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Neural Language Model

• Bengio et al NIPS 2000 

and JMLR 2003 “A 
Neural Probabilistic 
Language Model”
• Each word represented by 

a distributed continuous-
valued code

• Generalizes to sequences 
of words that are 
semantically similar to 
training sequences
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Application to Machine Translation

• Language model conditioned on source and target

• Speed improvements (pre-computation, 
unnormalized output)

• Devlin et al. ACL 2014, best paper
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Word Vectors have linear relationships

• Mikolov et al. 2013179



Word Vectors have linear relationships

180

• Mikolov et al. 2013



Best word vectors are not “deep”

• They all capture co-occurrence statistics in some way

• Global Methods: 

• LSA (Deerwester et al.), LDA (Blei et al.), HAL (Lund & 
Burgess), Hellinger-PCA (Lebret & Collobert)

• Scale with vocabulary size and efficient usage of statistics

• Window based / Neural Network based models

• NNLM, HLBL, RNN, ivLBL, Skip-gram/CBOW, (Bengio et al; 
Collobert & Weston; Huang et al; Mnih & Hinton; Mnih & 
Kavukcuoglu; Mikolov et al.)



Word Vectors: Recent development

• Capturing local co-occurrence statistics

• Produces state of the art linear semantic relationships 

• Efficient use of statistics: 
Can train on (comparably) little data and gigantic data!

• Fast, only non-zero counts matter

• Good performance with small (100-300) dimensions: 
Important for downstream tasks

Pennington et al. 2014



Word Vectors: Recent development

• Spearman correlation between human judgments and 
cosine similarity between word vectors



Word Vectors: Recent development

• Linear relationship prediction accuracy



Learning Multiple Word Vectors

• Tackles problems with polysemous words

• Can be done with both standard tf-idf based 
methods [Reisinger and Mooney, NAACL 2010]

• Neural word vector model by [Huang et al. ACL 2012]
learns multiple prototypes using both local and global context 

• State of the art 
correlations with 
human similarity 
judgments
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Learning Multiple Word Vectors

Visualization of learned word vectors from Huang et al. (ACL 2012)
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Common Sense Reasoning 

Inside Knowledge Bases

187

Question: Can Neural Networks learn to capture logical inference, 
set inclusions, part-of and hypernym relationships?



Neural Networks for Reasoning 

over Relationships

• Higher scores for each 
triplet T = (e1,R,e2) 
indicate that entities are
more likely in relationship

• Training uses contrastive 
estimation function, similar 
to word vector learning

• NTN scoring function:

• Cost:
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Accuracy of Predicting True and False 

Relationships
• Related Work

• Bordes, Weston, 
Collobert & Bengio,  
AAAI 2011

• Bordes, Glorot, 
Weston & Bengio, 
AISTATS 2012

189

Model FreeBase WordNet

Distance Model 68.3 61.0

Hadamard Model 80.0 68.8

Standard Layer Model (<NTN) 76.0 85.3

Bilinear Model (<NTN) 84.1 87.7

Neural Tensor Network (Chen et al. 2013) 86.2 90.0



Accuracy Per Relationship
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Deep Learning 

General Strategy and Tricks

Part 3.2

191



General Strategy
1. Select network structure appropriate for problem

1. Structure: Single words, fixed windows vs. Recursive vs. 
Recurrent, Sentence Based vs. Bag of words

2. Nonlinearity

2. Check for implementation bugs with gradient checks

3. Parameter initialization

4. Optimization tricks

5. Check if the model is powerful enough to overfit

1. If not, change model structure or make model “larger”

2. If you can overfit: Regularize

192



Non-linearities: What’s used

logistic (“sigmoid”)                               tanh

tanh is just a rescaled and shifted sigmoid

tanh is what is most used and often performs best for deep nets

tanh(z) = 2logistic(2z)-1
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Non-linearities: There are various other choices

hard tanh soft sign rectified linear

• hard tanh similar but computationally cheaper than tanh and saturates hard.

• [Glorot and Bengio AISTATS 2010, 2011] discuss softsign and rectifier

rect(z) = max(z, 0)softsign(z) =
a

1+ a
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MaxOut Network

195

A recent type of nonlinearity/network

Goodfellow et al. (2013)

Where 

This function too is a universal approximator

State of the art on several image datasets



Gradient Checks are Awesome!

• Allow you to know that there are no bugs in your neural 
network implementation!

• Steps:

1. Implement your gradient

2. Implement a finite difference computation by looping 
through the parameters of your network, adding and 
subtracting a small epsilon (∼10^-4) and estimate 
derivatives

3. Compare the two and make sure they are almost the same
196
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General Strategy
1. Select appropriate Network Structure

1. Structure: Single words, fixed windows vs Recursive 
Sentence Based vs Bag of words

2. Nonlinearity

2. Check for implementation bugs with gradient check

3. Parameter initialization

4. Optimization tricks

5. Check if the model is powerful enough to overfit

1. If not, change model structure or make model “larger”

2. If you can overfit: Regularize
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Parameter Initialization

• Initialize hidden layer biases to 0 and output (or reconstruction) 
biases to optimal value if weights were 0 (e.g., mean target or 
inverse sigmoid of mean target).

• Initialize weights ∼ Uniform(−r, r), r inversely proportional to 
fan-in (previous layer size) and fan-out (next layer size):

for tanh units, and 4x bigger for sigmoid units [Glorot AISTATS 2010]

• Pre-training with Restricted Boltzmann machines
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• Gradient descent uses total gradient over all examples per 
update, SGD updates after only 1 or few examples:

• L = loss function, zt = current example, θ = parameter vector, and 
εt = learning rate.

• Ordinary gradient descent as a batch method is very slow, should 
never be used. Use 2nd order batch method such as L-BFGS. On 
large datasets, SGD usually wins over all batch methods. On 
smaller datasets L-BFGS or Conjugate Gradients win. Large-batch 
L-BFGS extends the reach of L-BFGS [Le et al. ICML 2011].

Stochastic Gradient Descent (SGD)
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Learning Rates

• Simplest recipe: keep it fixed and use the same for all 
parameters.

• Collobert scales them by the inverse of square root of the fan-in 
of each neuron

• Better results can generally be obtained by allowing learning 
rates to decrease, typically in O(1/t) because of theoretical 
convergence guarantees, e.g.,
with hyper-parameters ε0 and τ

• Better yet: No hand-set learning rates by using L-BFGS or 
AdaGrad (Duchi, Hazan, & Singer 2011)
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Long-Term Dependencies and Clipping 

Trick

• In very deep networks such as recurrent networks (or possibly 
recursive ones), the gradient is a product of Jacobian matrices, 
each associated with a step in the forward computation. This 
can become very small or very large quickly [Bengio et al 1994], 
and the locality assumption of gradient descent breaks down. 

• The solution first introduced by Mikolov is to clip gradients
to a maximum value. Makes a big difference in RNNs.
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General Strategy
1. Select appropriate Network Structure

1. Structure: Single words, fixed windows vs Recursive Sentence Based vs Bag of words

2. Nonlinearity

2. Check for implementation bugs with gradient check

3. Parameter initialization

4. Optimization tricks

5. Check if the model is powerful enough to overfit

1. If not, change model structure or make model “larger”

2. If you can overfit: Regularize

Assuming you found the right network structure, implemented it 
correctly, optimize it properly and you can make your model 
overfit on your training data.

Now, it’s time to regularize
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Prevent Overfitting: 

Model Size and Regularization

• Simple first step: Reduce model size by lowering number of 
units and layers and other parameters

• Standard L1 or L2 regularization on weights 

• Early Stopping: Use parameters that gave best validation error

• Sparsity constraints on hidden activations, e.g., add to cost: 
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Prevent Feature Co-adaptation

Dropout (Hinton et al. 2012)

• Training time: at each instance of evaluation (in online SGD-
training), randomly set 50% of the inputs to each neuron to 0

• Test time: halve the model weights (now twice as many)

• This prevents feature co-adaptation: A feature cannot only be 
useful in the presence of particular other features

• A kind of middle-ground between Naïve Bayes (where all 
feature weights are set independently) and logistic regression 
models (where weights are set in the context of all others)

• Can be thought of as a form of model bagging

• It also acts as a strong regularizer
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Deep Learning Tricks of the Trade

• Y. Bengio (2012), “Practical Recommendations for Gradient-
Based Training of Deep Architectures” 

• Unsupervised pre-training

• Stochastic gradient descent and setting learning rates

• Main hyper-parameters
• Learning rate schedule & early stopping 
• Minibatches
• Parameter initialization
• Number of hidden units
• L1 or L2 weight decay
• Sparsity regularization

• Debugging  use finite difference gradient checks

• How to efficiently search for hyper-parameter configurations
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Resources: Tutorials and Code

Part 3.3: Resources
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Related Tutorials

• See “Neural Net Language Models” Scholarpedia entry

• Deep Learning tutorials: http://deeplearning.net/tutorials

• Stanford deep learning tutorials with simple programming 
assignments and reading list http://deeplearning.stanford.edu/wiki/

• Recursive Autoencoder class project 
http://cseweb.ucsd.edu/~elkan/250B/learningmeaning.pdf

• Graduate Summer School: Deep Learning, Feature Learning
http://www.ipam.ucla.edu/programs/gss2012/

• ICML 2012 Representation Learning tutorial 
http://www.iro.umontreal.ca/~bengioy/talks/deep-learning-tutorial-
2012.html

• More reading (including tutorial references):
http://www.socher.org Deep Learning Tutorial/starter code207
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Software

• Theano (Python CPU/GPU) mathematical and deep learning 
library http://deeplearning.net/software/theano
• Can do automatic, symbolic differentiation

• Senna: POS, Chunking, NER, SRL
• by Collobert et al. http://ronan.collobert.com/senna/
• State-of-the-art performance on many tasks
• 3500 lines of C, extremely fast and using very little memory

• Recurrent Neural Network Language Model 
http://www.fit.vutbr.cz/~imikolov/rnnlm/

• Recursive Neural Net and RAE models for paraphrase 
detection, sentiment analysis, relation classification 
http://www.socher.org
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Software: what’s next

• Off-the-shelf SVM packages are useful to researchers 
from a wide variety of fields (no need to understand 
RKHS).

• A good goal for NLP deep learning: Build off-the-shelf 
NLP classification packages that use as training input 
only raw text (instead of features) possibly with a label.
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Discussion

Part 3.4:
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Concerns

Many algorithms and variants (burgeoning field)

Hyper-parameters (layer size, regularization, possibly 
learning rate)

• Use multi-core machines, clusters and random 
sampling for cross-validation (Bergstra & Bengio 2012)

• Pretty common for powerful methods, e.g. BM25, LDA

• Can use (mini-batch) L-BFGS instead of SGD
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Concerns

Not always obvious how to combine with existing NLP 

• Simple: Add word or phrase vectors as features. Gets 
close to state of the art for NER, [Turian et al, ACL 
2010]

• Integrate with known problem structures: Recursive 
and recurrent networks for trees and chains

• Your research here 
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Concerns

Slower to train than linear models 

• Only by a small constant factor, and much more 
compact than non-parametric (e.g. n-gram models) 

• Very fast during inference/test time (feed-forward 
pass is just a few matrix multiplies)

Need more training data

• Can handle and benefit from more training data, 
suitable for age of Big Data (Google trains neural 
nets with a billion connections, [Le et al, ICML 2012])
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Concerns

There aren’t many good ways to encode prior knowledge 
about the structure of language into deep learning models

• There is some truth to this. However:

• You can choose architectures suitable for a problem 
domain, as we did for linguistic structure

• You can include human-designed features in the first 
layer, just like for a linear model

• And the goal is to get the machine doing the learning!
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Concern:

Problems with model interpretability

No discrete categories or words, everything is a continuous vector. 
We’d like have symbolic features like NP, VP, etc. and see why their 
combination makes sense. 

• True, but most of language is fuzzy and many words have soft 
relationships to each other. Also, many NLP features are 
already not human-understandable (e.g., 
concatenations/combinations of different features). 

• Can try by projections of weights and nearest neighbors, see 
part 2
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Concern: non-convex optimization

Can initialize system with convex learner

• Convex SVM

• Fixed feature space

Then optimize non-convex variant (add and tune learned features), 
can’t be worse than convex learner

Not a big problem in practice (often relatively stable performance 
across different local optima)
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Advantages

217

Despite a small community in the intersection of deep 
learning and NLP, already many state of the art results on 
a variety of language tasks

Often very simple matrix derivatives (backprop) for 
training and matrix multiplications for testing  fast 
implementation

Fast inference and well suited for multi-core CPUs/GPUs 
and parallelization across machines



Learning Multiple Levels of Abstraction

The big payoff of deep learning is 
to learn feature representations 
and higher levels of abstraction

This allows much easier 
generalization and transfer 
between domains, languages, and 
tasks and even modalities
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The End
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