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Deep Learning

Most current machine learning works
well because of human-designed
representations and input features

Parser
Machine learning becomes just optimizing -~

weights to best make a final prediction
Representation learning attempts to

automatically learn good features or representations

y

Deep learning algorithms attempt to learn multiple levels of
representation of increasing complexity/abstraction



A Deep Architecture

Mainly, work has explored deep belief networks (DBNs), Markov
Random Fields with multiple layers, and various types of
multiple-layer neural networks

Output layer

Here predicting a supervised target

Hidden layers

These learn more abstract
representations as you head up

Input layer

2 Raw sensory inputs (roughly)



Part 1.1: The Basics

Five Reasons to Explore
Deep Learning



:/:EI:,:]. Learning representations

Handcrafting features is time-consuming

The features are often both over-specified and incomplete

The work has to be done again for each task/domain/...

We must move beyond handcrafted features and simple ML

Humans develop representations for learning and reasoning
Our computers should do the same

Deep learning provides a way of doing this
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'H',:Z The need for distributed representations

Current NLP systems are incredibly fragile because of
their atomic symbol representations
S

NP ADVP VP )
/N .
PRP$ NN RB VBZ NP .

My dog also eats NNS

oranges




-/"2 The need for distributional & distributed
representations

Learned word representations help enormously in NLP
They provide a powerful similarity model for words

Distributional similarity based word clusters greatly help most
applications

+1.4% F1 Dependency Parsing 15.2% error reduction (Koo &
Collins 2008, Brown clustering)

+3.4% F1 Named Entity Recognition 23.7% error reduction
(Stanford NER, exchange clustering)

Distributed representations can do even better by representing
more dimensions of similarity
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Distributed representations deal with the curse
of dimensionality

Generalizing locally (e.g., nearest
neighbors) requires representative
examples for all relevant variations!

1 dimension:
10 positions

2 dimensions:
100 positions
@&

Classic solutions:
 Manual feature design

* Assuming a smooth target
function (e.g., linear models)

* Kernel methods (linear in terms
of kernel based on data points)

» 3 dimensions:
1000 positions!

Neural networks parameterize and
learn a “similarity” kernel



-/--3 Unsupervised feature and weight
learning

Today, most practical, good NLP& ML methods require
labeled training data (i.e., supervised learning)

But almost all data is unlabeled

Most information must be acquired unsupervised

Fortunately, a good model of observed data can really help you
learn classification decisions



-/'-4 Learning multiple levels of

representation

Biologically inspired learning

The cortex seems to have a generic
learning algorithm

The brain has a deep architecture

Task 2 Output

Task 1 Output Task 3 Output

We need good intermediate representations
that can be shared across tasks

Multiple levels of latent variables allow
combinatorial sharing of statistical strength

Insufficient model depth can be

exponentially inefficient
10
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'H"4 Learning multiple levels of =

representation

[Lee et al. ICML 2009; Lee et al. NIPS 2009]

Successive model layers learn deeper intermediate representations

High-level
Layer 3 linguistic representations

Layer 2
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Handling the recursivity of human language

Human sentences are composed i‘-l Z.t z:l
from words and phrases —® >(8 >8>
. ° ° . ‘ ‘ ‘

We need compositionality in our X 4 X, X,t
ML models eooe| [(eooe| (eoee
Recursion: the same operator T

i i quietly enters
(same parametgrs) is applied pietly enter
repeatedly on different church

Semantic

components Representations

A small quietly
crowd enters Det

L) e
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#5 Why now?

Despite prior investigation and understanding of many of the
algorithmic techniques ...

Before 2006 training deep architectures was unsuccessful ®

What has changed?

* Faster machines and more data help DL more than other
algorithms

*  New methods for unsupervised pre-training have been
developed (Restricted Boltzmann Machines = RBMs,
autoencoders, contrastive estimation, etc.)

* More efficient parameter estimation methods
* Better understanding of model regularization, ++



Deep Learning models have already achieved
Impressive results for HLT

Neural Language Model
[Mikolov et al. Interspeech 2011]

MSR MAVIS Speech System

[Dahl et al. 2012; Seide et al. 2011;
following Mohamed et al. 2011]

The algorlthms represent the First time a
company has released a deep-neural-
networks (DNN)-based speech-recognition

algorithm in a commercial product.”
14
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Deep Learn Models Have Interesting
Performance Characteristics

Deep Iearning models can now be very fast in some circumstances

* SENNA [Collobert et al. 2011] can do POS or NER faster than
other SOTA taggers (16x to 122x), using 25x less memory
* WSJ POS 97.29% acc; CoNLL NER 89.59% F1; CoNLL Chunking 94.32% F1

Changes in computing technology favor deep learning
* In NLP, speed has traditionally come from exploiting sparsity

* But with modern machines, branches and widely spaced
memory accesses are costly

* Uniform parallel operations on dense vectors are faster
These trends are even stronger with multi-core CPUs and GPUs
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Outline of the Tutorial

1. The Basics
1. Motivations
2. From logistic regression to neural networks
3. Word representations
4. Unsupervised word vector learning
5. Backpropagation Training
6. Learning word-level classifiers: POS and NER

7.

Sharing statistical strength

2. Recursive Neural Networks

3. Applications, Discussion, and Resources
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Outline of the Tutorial

1. The Basics
2. Recursive Neural Networks
1. Motivation
2. Recursive Neural Networks for Parsing
3. Optimization and Backpropagation Through Structure
4. Compositional Vector Grammars: Parsing
5. Recursive Autoencoders (short): Paraphrase Detection
6. Matrix-Vector RNNs (short): Relation classification
7. Recursive Neural Tensor Networks: Sentiment Analysis
8. Dependency Tree RNNs: Sentence-Image Search

3. Applications, Discussion, and Resources
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Outline of the Tutorial

1. The Basics
2. Recursive Neural Networks

3. Other Models, Applications, Discussion, and Resources
1.
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2.
3.
4

Assorted Speech and NLP Applications
Deep Learning: General Strategy and Tricks
Resources (readings, code, ...)

Discussion
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Part 1.2: The Basics

From logistic regression to neural nets



Demystifying neural networks

Neural networks come with A single neuron
their own terminological A computational unit with n (3) inputs
bagoage and 1 output
6898 and parameters W, b

... just like SVMs

. [r—
But if you understand how
logistic regression or maxent
models work

Then you already understand the Inputs Activation  Output

operation of a basic neural function

network neuron!
Bias unit corresponds to intercept term
21



From Maxent Classifiers to Neural Networks

In NLP, a maxent classifier is normally written as:
@)
expa /.f(c,d
Pleld /)= p ! fi(c,d)
a ,.expa /.f(c4d)

ct

Supervised learning gives us a distribution for datum d over classes in C

e/Tf(c,d)
Vector form: Pcld /)=

6/ Tf(ctd)
c¢

Such a classifier is used as-is in a neural network (“a softmax layer”)
» Often as the top layer: J = softmax(A-x)

But for now we’ll derive a two-class logistic model for one neuron
22



From Maxent Classifiers to Neural Networks

e/Tf(c,d)
Vector form:  P(c|d,/)=-——
8/ f(ctd)
cC
Make two class:
/Tf(Clid) /Tf(cl,d) - /Tf(cl’d)
B e B e e
Ple|d,1)= o) « T od) Tl 2 T ed) T o)
e 1 + e 2 e 1 + e 2 e 1
1 1

= — forx = C,d - C,d
1+e/T[f(c2,d)-f(c1,d)] 1+e_/Tx f( 1 ) f( 2 )

= f(1"x)

for f(z) = 1/(1 + exp(-2)), the logistic function — a sigmoid non-linearity.

-6 -4 -2 0 2 4 6
23



This Is exactly what a neuron computes

b: We can have an “always on”

_ T ave s |
hw,b (x) — f(W X+ b)e" feature, Wthh gives a cle'lss prior,
or separate it out, as a bias term

/2)= 1 +1e' ) /

X4

X2 o 4 2 0 2 4 s
L /> h,x)
:'":3 S
1 w, b are the parameters of this neuron

24 i.e., this logistic regression model




A neural network =running several logistic
regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs ...

But we don’t have to decide
ahead of time what variables
these logistic regressions are
trying to predict!
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A neural network =running several logistic
regressions at the same time

... which we can feed into another logistic regression function

It is the training
criterion that will direct
what the intermediate
hidden variables should
be, so as to do a good
job at predicting the
targets for the next
layer, etc.

*?._____>
= hw,b(x)

Layer L,

26



A neural network =running several logistic
regressions at the same time

Before we know it, we have a multilayer neural network....

27



Matrix notation for a layer

We have
a, = f(Wyx, + Wox, + Wyx; +b)
ay = [(WyrXy + Wopx, + Wysx3 + b))

etc.
In matrix notation

z=Wx+b
a=f(z)

where f is applied element-wise:

220 2]) =11 (@), f(2,), £(25)]




How do we train the weights W?

* For asingle supervised layer, we train just like a maxent model -
we calculate and use error derivatives (gradients) to improve

* Online learning: Stochastic gradient descent (SGD)
* Batch learning: Conjugate gradient or L-BFGS

* A multilayer net could be more complex because the internal
(“hidden”) logistic units make the function non-convex ... just as
for hidden CRFs [Quattoni et al. 2005, Gunawardana et al. 2005]

* But we can use the same ideas and techniques

 Just without guarantees ...
* We “backpropagate” error derivatives through the model

29



Non-linearities: Why they’re needed

30

For logistic regression: map to probabilities

Here: function approximation,
e.g., regression or classification

* Without non-linearities, deep neural networks
can’t do anything more than a linear transform

e Extra layers could just be compiled down into
a single linear transform

* Probabilistic interpretation unnecessary except in
the Boltzmann machine/graphical models

* People often use other non-linearities, such as
tanh, as we’ll discuss in part 3

:lx_
x
x -
0 1
M=3
K\ X
x
x
0 1




Summary
Knowing the meaning of words!

You now understand the basics and the relation to other models

* Neuron = logistic regression or similar function

* |nput layer = input training/test vector

* Bias unit = intercept term/always on feature

e Activation = response

* Activation function is a logistic (or similar “sigmoid” nonlinearity)

* Backpropagation = running stochastic gradient descent backward
layer-by-layer in a multilayer network

* Weight decay = regularization / Bayesian prior

31



Effective deep learning became possible through
unsupervised pre-training

[Erhan et al., JIMLR 2010]

(with RBMs and Denoising Auto-Encoders)

With unsupervised pre-training
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0-9 handwritten digit recognition error rate (MNIST data)
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Part 1.3: The Basics

Word Representations



The standard word representation

The vast majority of rule-based and statistical NLP work regards
words as atomic symbols: hotel, conference, walk

In vector space terms, this is a vector with one 1 and a lot of zeroes

000000000010000]

Dimensionality: 20K (speech) — 50K (PTB) — 500K (big vocab) — 13M (Google 1T)
We call this a “one-hot” representation. Its problem:

motel[000000000010000] AND
hotel [000000010000000] =0

34



Distributional similarity based representations

You can get a lot of value by representing a word by
means of its neighbors

“You shall know a word by the company it keeps”
(J. R. Firth 1957: 11)

One of the most successful ideas of modern statistical NLP

banking
banking

N These words will represent banking 77

You can vary whether you use local or large context
35 to get a more syntactic or semantic clustering



Class-based (hard) and soft clustering
word representations

Class based models learn word classes of similar words based on
distributional information ( ~ class HMM)

* Brown clustering (Brown et al. 1992)
e Exchange clustering (Martin et al. 1998, Clark 2003)
* Desparsification and great example of unsupervised pre-training

Soft clustering models learn for each cluster/topic a distribution
over words of how likely that word is in each cluster

* Latent Semantic Analysis (LSA/LSI), Random projections
* Latent Dirichlet Analysis (LDA), HMM clustering

36



Neural word embeddings
as a distributed representation

Similar idea

Combine vector space 4
semantics with the prediction of 0.286
probabilistic models (Bengio et 0.792
al. 2003, Collobert & Weston :81(7);
2008, Turian et al. 2010) linguistics = 0.109
In all of these approaches, —-0.542
including deep learning models, 0.349
a word is represented as a 0.271

dense vector \_

37




Neural word embeddings - visualization

need help
come
0o
take
qive keep
make  Qet
meet cem continue
expect want become
think
say remain
are .
is
be
Wergas
being
been
38 hadnas

have



Stunning new result at this conference!
Mikolov, Yih & Zweig (NAACL 2013)

These representations are way better at encoding dimensions of
similarity than we realized!

* Analogies testing dimensions of similarity can be solved quite
well just by doing vector subtraction in the embedding space

Syntactically

* Xapple ~ Xapples = Xcar =~ Xcars = Xfamity ~ Xfamilies

« Similarly for verb and adjective morphological forms
Semantically (Semeval 2012 task 2)

shirt — Xclothing = Xchair - Xfurniture

39



Stunning new result at this conference!
Mikolov, Yih & Zweig (NAACL 2013)

shirt LSA 320 dim 16.5 [best]
RNN 80 dim 16.2
L RNN 320 dim 28.5
| RNN 1600 dim 39.6

clothing /.-

UTD-NB (rink & H.2012)  0.230 [Semeval win]

desk
/ LSA 640 0.149
i RNN 80 0.211

furniture

RNN 1600 0.275

40



Advantages of the neural word embedding
approach

Compared to a method like LSA, neural word embeddings
can become more meaningful through adding supervision
from one or multiple tasks

“Discriminative fine-tuning”

For instance, sentiment is usually not captured in unsupervised
word embeddings but can be in neural word vectors

We can build representations for large linguistic units

See part 2

41
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Part 1.4: The Basics

Unsupervised word vector learning



A neural network for learning word vectors
(Collobert et al. IMLR 2011)

ldea: A word and its context is a positive training
sample; a random word in that same context gives
a negative training sample:

ﬂjcat chills on a mat S cat chills Jeju a mat

Similar: Implicit negative evidence in Contrastive
Estimation, (Smith and Eisner 2005)

43



A neural network for learning word vectors

How do we formalize this idea? Ask that

score(cat chills on a mat) > score(cat chills Jeju a mat)

How do we compute the score?

e With a neural network

e Each word is associated with an
n-dimensional vector

44



Word embedding matrix

 Initialize all word vectors randomly to form a word embedding
matrix [, ¢ R™*IV

V]
o o o o0
o o o oo
L = o o o o o
o o o oo

the cat mat ..
e These are the word features we want to learn
* Also called a look-up table

* Conceptually you get a word’s vector by left multiplying a

one-hotvectorebyl: x=Le
45



Word vectors as input to a neural network

e score(cat chills on a mat)

* To describe a phrase, retrieve (via index) the corresponding
vectors from L

® © o o o
® © o o o
® © ©o o o
® © o o o
cat chillson a mat

e Then concatenate them to 5n vector:
X=[ 0000 0000 0000 0000 0000 |
How do we then compute score(x)?

46



A Single Layer Neural Network

* Asingle layer was a combination of a linear
layer and a nonlinearity: z = Wx+0

a = [(2)

* The neural activations g can then
be used to compute some function

e For instance, the score we care about:
score(r) = UlaeR

47



Summary: Feed-forward Computation

Computing a window’s score with a 3-layer Neural
Net: s = score(cat chills on a mat)

S:UTf(W$+b) $€R2OX1,W€RSX2O,UER8X1

s = Ula T
a = f(z) 0000 0000
z = Wxz+b

T = [xcat Tehills Lon La g;mat] 0000 0000 0000 0000 0000

L € R*IVI cat chills on a mat
48



Summary: Feed-forward Computation

e s =score(cat chills on a mat)
 s_=score(cat chills Jeju a mat)
* |dea for training objective: make score of true window

larger and corrupt window’s score lower (until they’re
good enough): minimize

B

J = max(0,1 — s+ s.) o—

O—

e This is continuous, can perform SGD

49



Training with Backpropagation

s=U"f(Wx +b)

J = max(0,1 — s + s.) se = UL f(Wz, + b)

Assuming cost Jis > 0, it is simple to see that we

can compute the derivatives of s and s_ wrt all the
involved variables: U, W, b, x

0s 0
ou ~au’ @

05 _
oUu

a
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Training with Backpropagation

* Let’s consider the derivative of a single weight W,

s 0 _.p O _p -
8W_8WU a_8WU f(z)—aWU f(Wax +b)

* This only appears inside g;

U,

* For example: W,; is only
used to compute a,

51
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Training with Backpropagation
0s 0

ow oW

0

Ula = —U" f(2) =

ow

Derivative of weight W:

0
8Wij
0

Uiz i
oW,

52

Ula —

0 Uiai

oW

80,%- 8zi

Ui

UL f(Wax +b)
dy  Jydu

Oor  Oudx




Training with Backpropagation

Derivative of single weight W;:  Vigy—a

ap?/. D Wik

17 L

= U, f'(z)

= sz'(zz) .SL‘j
N——

— 5@ .’L‘j

T =

Local error Local input
signal signal

53 where f'(z) = f(2)(1 — f(z)) for logistic f



Training with Backpropagation

* From single weight W to full W:

0J
s = UG
= 5@ ZL‘j

 We want all combinations of
i=1,2andj=1,2,3

e Solution: Outer product: 5—5/ =
where § c p2xtis the
“responsibility” coming from
each activation a
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Training with Backpropagation

* For biases b, we get:

0
Uza—bl(l@

= U f'(z)
— 5

Ob;
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Training with Backpropagation

That’s almost backpropagation

It’s simply taking derivatives and using the chain rule!

Remaining trick: we can re-use derivatives computed for
higher layers in computing derivatives for lower layers

Example: last derivatives of model, the word vectors in x

56



Training with Backpropagation

s °. 9s da;
&L*j 8ai 8583'

* Take derivative of score with
respect to single word vector
(for simplicity a 1d vector, 2 0UT 4 da;

1=1

but same if it was longer) - —~ Qa; Ox;
 Now, we cannot just take 2 9f(Wyz+D)
into consideration one g, - Z Ui 0z
because each x; is connected 7’?
to all the neurons above and — Z U f' (Wi + b) 83/”3
hence x; influences the =1 ~ 7 O
overall score through all of 2 -
these, hence: - ; L
= W,

57 Re-used part of previous derivative —



Simple Window Model

Good for illustration of backpropagation
Now obsolete when it comes to word vectors

In section 3 we will learn about better models for single
word vectors.

But!

The window based model family is indeed useful!



Training with Backpropagation: softmax

What is the major benefit of deep learned word vectors?

Ability to also propagate labeled information into them,
via softmax/maxent and hidden layer:

/7 f(c,d)

e SEROX2

P(cld, /)=

\ 4

~ exp(Sc.a)
p(C‘:L‘) o Zc' eXp(Scr.a)

59

0! Tf(ctd)
cC
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Part 1.5: The Basics

Backpropagation

raining



Back-Prop

e Compute gradient of example-wise loss wrt
parameters

* Simply applying the derivative chain rule wisely

s,
2=fly) y=glx) 5 =F%

* If computing the loss(example, parameters) is O(n)
computation, then so is computing the gradient
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Simple Chain Rule

62

Az = %Ay

Ay = 52 Ax

Az = g; ggAx
0z _ Dz Oy

Ox — Oy Ox



Multiple Paths Chain Rule

63



Multiple Paths Chain Rule - General

&
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Chain Rule in Flow Graph

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

{y17 Ya, - .. yn}=successors of XU

65



Back-Prop in Multi-Layer Net
NLL = —log P(Y = y|x)

66



Back-Prop in General Flow Graph

Single scalar output 2

1. Fprop: visit nodes in topo-sort order
- Compute value of node given predecessors
2. Bprop:
- initialize output gradient =1
- visit nodes in reverse order:
Compute gradient wrt each node using
gradient wrt successors

{yl, Y2, « .. yn} = successors of U

67



Automatic Differentiation

68

7

* The gradient computation can
be automatically inferred from
the symbolic expression of the
fprop.

* Each node type needs to know
how to compute its output and
how to compute the gradient
wrt its inputs given the
gradient wrt its output.

* Easy and fast prototyping
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Part 1.6: The Basics

Learning word-level classifiers: POS
and NER



The Model

(Collobert & Weston 2008;
Collobert et al. 2011)

70

Similar to word vector
learning but replaces the
single scalar score with a
Softmax/Maxent classifier

Training is again done via
backpropagation which gives
an error similar to the score
in the unsupervised word
vector learning model




The Model - Training

 We already know the softmax classifier and how to optimize it

* The interesting twist in deep learning is that the input features
are also learned, similar to learning word vectors with a score:

U,

W23
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The secret sauce Is the unsupervised word
vector pre-training on a large text collection

NER
CoNLL (F1)

State-of-the-art* 97.24 89.31
Supervised NN 96.37 81.47
Unsupervised pre-training 97.20 88.87
followed by supervised NN**

+ hand-crafted features*** 97.29 89.59

* Representative systems: POS: (Toutanova et al. 2003), NER: (Ando & Zhang
2005)

**130,000-word embedding trained on Wikipedia and Reuters with 11 word
window, 100 unit hidden layer — for 7 weeks! — then supervised task training

;‘2**Features are character suffixes for POS and a gazetteer for NER



Supervised refinement of the unsupervised
word representation helps

NER
CoNLL (F1)

Supervised NN 96.37 81.47
NN with Brown clusters 96.92 87.15
Fixed embeddings* 97.10 88.87
C&W 2011** 97.29 89.59

* Same architecture as C&W 2011, but word embeddings are kept constant
during the supervised training phase

** C&W is unsupervised pre-train + supervised NN + features model of last slide
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Part 1.7

Sharing statistical strength



Multi-Task Learning

* Generalizing better to new
tasks is crucial to approach
Al

* Deep architectures learn
good intermediate
representations that can be
shared across tasks

* Good representations make
sense for many tasks
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Combining Multiple Sources of Evidence
with Shared Embeddings

e Relational learning
* Multiple sources of information / relations
 Some symbols (e.g. words, Wikipedia entries) shared

e Shared embeddings help propagate information
among data sources: e.g., WordNet, XWN, Wikipedia,

FreeBase, ...

76



Sharing Statistical Strength

e Besides very fast prediction, the main advantage of
deep learning is statistical

e Potential to learn from less labeled examples because
of sharing of statistical strength:

* Unsupervised pre-training & multi-task learning

» Semi-supervised learning =

77



Semi-Supervised Learning

* Hypothesis: P(c|x) can be more accurately computed using
shared structure with P(x)

purely
supervised
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Semi-Supervised Learning

* Hypothesis: P(c|x) can be more accurately computed using
shared structure with P(x)

semi-
supervised

79



Deep autoencoders

Alternative to contrastive unsupervised word learning
* Another is RBMs (Hinton et al. 2006), which we don’t cover today

Works well for fixed input representations
1. Definition, intuition and variants of autoencoders

2. Stacking for deep autoencoders
3. Why do autoencoders improve deep neural nets so much?

80



Auto-Encoders

e Multilayer neural net with target output = input
* Reconstruction=decoder(encoder(input))

a = tanh(Wz+ b)
v = tanh(W'a+c)
cost = ' ~2lP g - o
decoder
* Probable inputs have o 157
small reconstruction error encoder

L L JORSN
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reconstruction

code= latent features

input



PCA = Linear Manifold = Linear Auto-Encoder

input x, 0-mean

features=code=h(x)=W x

reconstruction(x)=WT" h(x) = W™ W x

W = principal eigen-basis of Cov(X) X

Linear manifold

LSA example:
X = (normalized) distribution
of co-occurrence frequencies
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The Manifold Learning Hypothesis

Ill

 Examples concentrate near a lower dimensional “manifold”
(region of high density where small changes are only allowed in
certain directions)

;g\oiodadadndadcdcdadad_ ol odlad ad ad
2 I 1l R b U B 1 )
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Auto-Encoders Learn Salient Variations, like a
non-linear PCA

o ® %o,
. <
¢ ®
Minimizing reconstruction error ®
forces latent representation of O
“similar inputs” to stay on ®

manifold
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Auto-Encoder Variants

* Discrete inputs: cross-entropy or log-likelihood reconstruction
criterion (similar to used for discrete targets for MLPs)

* Preventing them to learn the identity everywhere:

* Undercomplete (eg PCA): bottleneck code smaller than input

£

 Sparsity: penalize hidden unit activations so at or near 0
[Goodfellow et al 2009]

* Denoising: predict true input from corrupted input
[Vincent et al 2008]

* Contractive: force encoder to have small derivatives
[Rifai et al 2011]




Sparse autoencoder illustration for images

Test example

[a,, ..., ag) =1[0,0,..,0,0.8,0,..,00.3,0,..0,0.5, 0]
8 (feature representation)




Stacking Auto-Encoders

e Can be stacked successfully (Bengio et al NIPS’2006) to form highly
non-linear representations

r

U
hz@OOQOOO) J(ele]elelelele);
N & X
mOOO0O000) h;@OOCROO@ OOOQO0D h mOOOOO00)
A
W; Wl' W, Ww;

x QOO0 CO000 x©OOOD x ©O000D
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Layer-wise Unsupervised Learning

iInput 900 .. O
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Layer-wise Unsupervised Pre-training

features Xp\/
iInput o0 ..
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Layer-wise Unsupervised Pre-training

reconstruction ﬁ(@Q O Z 000 ©
of input \\
features Kp\/ \
input o0

90

Input



Layer-wise Unsupervised Pre-training

features Xp\/
iInput o0 ..
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Layer-wise Unsupervised Pre-training

More abstract PP
features V '{
features W \/
iInput o0 ..
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Layer-wise Unsupervised Learning

reconstruction

of features Y
More abstract ®

features %‘
features K? \Z
iInput OO0 ...
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Layer-wise Unsupervised Pre-training

More abstract PP
features V '{
features W \/
iInput o0 ..

94



Layer-wise Unsupervised Learning

Even more abstract
features ® ... O

More abstract I/;XT
features V '{

features Kp\/
iInput o0 ..
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Supervised Fine-Tuning

Output - Target
f(X) SIX _ Y

Even more abstract / / \

features

More abstract I/ ><
features V ‘ﬁ

features v\/
iInput o0 ..
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Why Is unsupervised pre-training working so
well?

97

Regularization hypothesis:

* Representations good for P(x)
are good for P(y|x)

Optimization hypothesis:

* Unsupervised initializations start

near better local minimum of
supervised training error

* Minima otherwise not
achievable by random
initialization

Erhan, Courville, Manzagol,
Vincent, Bengio (JMLR, 2010)

1500 -

1000+

500

-500

-1000 |-

-1500

WithE pre—traéining

I
-4000 -3000

I I I I I I |
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98

Part 2

Recursive Deep Learning



Building on Word Vector Space Models

St % ]
1 :
1y

9
35] ¥ Monday [2]
' ¥ Tuesday 9_5]
: > "
0 1 2 3 4 5 6 7 8 9 10 Xy

the country of my birth
the place where | was born

But how can we represent the meaning of longer phrases?

99 By mapping them into the same vector space!



How should we map phrases into a vector

space?

Use principle of compositionality

The meaning (vector) of a sentence
is determined by

(1) the meanings of its words and
(2) the rules that combine them.

country  of

x the country of my birth
x the place where | was born

xFrance
xl\/londay
xTuesday
L} : ] ] ] ] L | 1 : i )
1 2 3 4 5 6 7 8 9 10 X,

Models in this section
can jointly learn parse
trees and compositional
vector representations
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Semantic Vector Spaces

Vectors representing

Phrases and Sentences

that do not ignore word order

and capture semantics for NLP tasks

l—l—\

<€ >
Single Word Vectors Documents Vectors
e Distributional Techniques * Bag of words models
 Brown Clusters  LSA, LDA
e Useful as features inside * G@Great for IR, document
models, e.g. CRFs for NER, etc. exploration, etc.
e Cannot capture longer phrases * lgnore word order, no

detailed understanding



Recursive Deep Learning
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Motivation
Recursive Neural Networks for Parsing
Optimization and Backpropagation Through Structure

Compositional Vector Grammars: Parsing
Recursive Autoencoders: Paraphrase Detection
Matrix-Vector RNNs: Relation classification

Recursive Neural Tensor Networks: Sentiment Analysis



Sentence Parsing: What we want

VP



Learn Structure and Representation

R URURURURIENG

mat.



Recursive Neural Networks for Structure

Prediction

Inputs: two candidate children’s representations
Outputs:
1. The semantic representation if the two nodes are merged.

2. Score of how plausible the new node would be.

1) g
o, )
(A

g "
> 3 n th ,
105 \

9
1
e

mat




Recursive Neural Network Definition

score =

score = U'p

Neural

Network = | p= tanh(W[E1]+ b),
2

Same W parameters at all nodes
of the tree
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Related Work to Socher et al. (ICML 2011)

Pollack (1990): Recursive auto-associative memories

Previous Recursive Neural Networks work by
Goller & Kiichler (1996), Costa et al. (2003) assumed
fixed tree structure and used one hot vectors.

Hinton (1990) and Bottou (2011): Related ideas about
recursive models and recursive operators as smooth
versions of logic operations
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Parsing a sentence with an RNN

3.1 [gl 0.3 [cl)] 0.1 : 0.4 [‘1’] 2.3 i
I R T[T]TT T[T]

Neural
Network

Neural Neural Neural Neural
Network Network Network Network
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Parsing a sentence

Neural Neural Neural
Network Network Network

The cat sat on the mat.
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Parsing a sentence




Parsing a sentence




Max-Margin Framework - Detalls

112

The score of a tree is computed by 1'3[3]
the sum of the parsing decision @

scores at each node.
:) ()

Similar to max-margin parsing (Taskar et al. 2004), a supervised
max-margin objective

J=Y s(x;,yi)— max (s(x;,y)+A(,yi))
l- veA(x)

The loss A(y,y;) penalizes all incorrect decisions
Structure search for A(x) was maximally greedy
* Instead: Beam Search with Chart



Backpropagation Through Structure

Introduced by Goller & Kiichler (1996) W
A
Principally the same as general backpropagation
Two differences resulting from the tree structure:
* Split derivatives at each node
* Sum derivatives of W from all nodes
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BTS: Split derivatives at each node

During forward prop, the parent is computed using 2 children

H
[3]%/\[3] ) p = tanh(W[E;]+ b)

Hence, the errors need to be computed wrt each of them:

1)

- . where each child’s error is n-dimensional
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BTS: Sum derivatives of all nodes

You can actually assume it’s a different W at each node

Intuition via example:

0
Wf(w(f(wx))
= o) ( (W) Jve) + W fva)
= FWW2) (FW2) + W/ (Wa)r)

If take separate derivatives of each occurrence, we get same:
0 0
T%f(WQ(f(Wlm)) + a—V[/lf(Wz(f(Wlx))
= [f(Wa(f(Wiz)) (f(Wiz)) + f(Wa(f(Wiz)) (Waf (Wiz)x)
= f(Wa(f(Whz)) (f(Whiz) + Waf (Wiz)z)

= ['(W(f(Wa)) (f(Wa) + W ['(Wa)x)
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BTS: Optimization

* As before, we can plug the gradients into a
standard off-the-shelf L-BFGS optimizer

e Best results with AdaGrad (Duchi et al, 2011):

8
Ori = O0r—1, — —
\/2721 gT,i

* For non-continuous objective use subgradient
method (Ratliff et al. 2007)

Ggt.i
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Discussion: Simple RNN

e Good results with single matrix RNN (more later)

e Single weight matrix RNN could capture some
phenomena but not adequate for more complex,
higher order composition and parsing long sentences

 The composition function is the same
for all syntactic categories, punctuation, etc



Solution: Syntactically-Untied RNN

* |dea: Condition the composition function on the

syntactic categories,

“untie the weights”

* Allows for different composition functions for pairs
of syntactic categories, e.g. Adv + AdjP, VP + NP

 Combines discrete syntactic categories with
continuous semantic information

Standard Recursive Neural Network

Syntactically Untied Recursive Neural Network

a
(ol

\

p
(A a=@®) (B,b=@®) (C, c= o)

//[pm 1;25_“ [ [bﬂ]

AN
S

/ 1) o S 8.c) [ b
L [W Lﬂ
/ /
(A a=@5) (B, b=@H)




Solution: CVG =
PCFG + Syntactically-Untied RNN

* Problem: Speed. Every candidate score in beam
search needs a matrix-vector product.

e Solution: Compute score using a linear combination
of the log-likelihood from a simple PCFG + RNN

* Prunes very unlikely candidates for speed

* Provides coarse syntactic categories of the
children for each beam candidate

 Compositional Vector Grammars: CVG = PCFG + RNN



Detalls: Compositional Vector Grammar

e Scores at each node computed by combination of
PCFG and SU-RNN:

s (1) = (PP +10g PPy B €)

* Interpretation: Factoring discrete and continuous
parsing in one model:

P((P1,p1) — (B, b)(C,¢))
:P(pl — b C’P1—>B C)P(Pl — B C)

e Socher et al. (2013): More details at ACL



Related Work

Resulting CVG Parser is related to previous work that extends PCFG
parsers

Klein and Manning (2003a) : manual feature engineering

Petrov et al. (2006) : learning algorithm that splits and merges
syntactic categories

Lexicalized parsers (Collins, 2003; Charniak, 2000): describe each
category with a lexical item

Hall and Klein (2012) combine several such annotation schemes in a
factored parser.

CVGs extend these ideas from discrete representations to richer
continuous ones

Hermann & Blunsom (2013): Combine Combinatory Categorial
Grammars with RNNs and also untie weights, see upcoming ACL 2013



Experiments
e Standard WSJ split, labeled F1

 Based on simple PCFG with fewer states
e Fast pruning of search space, few matrix-vector products
* 3.8% higher F1, 20% faster than Stanford factored parser

Paser ______________|TestAllSentences

Stanford PCFG, (Klein and Manning, 2003a) 85.5
Stanford Factored (Klein and Manning, 2003b) 86.6
Factored PCFGs (Hall and Klein, 2012) 89.4
Collins (Collins, 1997) 87.7
SSN (Henderson, 2004) 89.4
Berkeley Parser (Petrov and Klein, 2007) 90.1
CVG (RNN) (Socher et al., ACL 2013) 85.0
CVG (SU-RNN) (Socher et al., ACL 2013) 90.4
Charniak - Self Trained (McClosky et al. 2006) 91.0

Charniak - Self Trained-ReRanked (McClosky et al. 2006) 92.1



SU-RNN Analysis

 Learns notion of soft head words

DT-NP

VP-NP




Analysis of resulting vector representations

All the figures are adjusted for seasonal variations
1. All the numbers are adjusted for seasonal fluctuations
2. All the figures are adjusted to remove usual seasonal patterns

Knight-Ridder wouldn’t comment on the offer
1. Harsco declined to say what country placed the order
2. Coastal wouldn’t disclose the terms

Sales grew almost 7% to SUNK m. from SUNK m.
1. Sales rose more than 7% to $94.9 m. from $88.3 m.
2. Sales surged 40% to UNK b. yen from UNK b.




SU-RNN Analysis

e Can transfer semantic information from
single related example

* Train sentences:
* He eats spaghetti with a fork.
* She eats spaghetti with pork.
* Test sentences
* He eats spaghetti with a spoon.
* He eats spaghetti with meat.



SU-RNN Analysis

(a) Stanford factored parser

S S
NP VP NP VP
| |
PRP PRP
| VBZ NP | VBZ NP
He | A He | /\
L
cats N Bp cats ND Pp
| N
Nks TN NNs I NP
IN NP

. ] |
spaghetti =~ ilth DT/\\ﬁN spaghetti  with PITP

| | meat
a spoon

< (b) Compositional Vector Grammar

/\ NP/%\VP

NP VP |
| PRP
PRP | VBZ NP
| He | /\
He vpz NP PP cats NP PP
eats NNS IN NP Nl|\IS IN NP
: | P | |
spaghetti i DT NN spa g|hetti with NN

d Spoon meat



Labeling in Recursive Neural Networks

e \We can use each node’s
representation as features for a
softmax classifier:

p(clp) = softmax(Sp)

e Training similar to model in part 1 with
standard cross-entropy error + scores
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NP

Softmax
Layer

Neural

Network



Scene Parsing

Similar principle of compositionality.

128

The meaning of a scene image is
also a function of smaller regions,

how they combine as parts to form
larger objects,

and how the objects interact,



Algorithm for Parsing Images

Same Recursive Neural Network as for natural language parsing!
(Socher et al. ICML 2011)

Parsing Natural Scene Images

Semantic

Representations
Features

Segments
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Multi-class segmentation

By Mtee Moad orass [water [lbidg  [Wmntn [l obj.

wetod | hcmy
Pixel CRF (Gould et al., ICCV 2009) 74.3
Classifier on superpixel features 75.9
Region-based energy (Gould et al., ICCV 2009) 76.4
Local labelling (Tighe & Lazebnik, ECCV 2010) 76.9
Superpixel MRF (Tighe & Lazebnik, ECCV 2010) 77.5
Simultaneous MRF (Tighe & Lazebnik, ECCV 2010) 77.5
Recursive Neural Network 78.1

130 stanford Background Dataset (Gould et al. 2009)



Recursive Deep Learning
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Paraphrase Detection

Pollack said the plaintiffs failed to show that Merrill and
Blodget directly caused their losses

Basically, the plaintiffs did not show that omissions in
Merrill’s research caused the claimed losses

The initial report was made to Modesto Police December
28

It stems from a Modesto police report
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How to compare
the meaning
of two sentences?



Unsupervised Recursive Autoencoders

Similar to Recursive Neural Net but instead of a
supervised score we compute a reconstruction error at

each node (Socher et al. EMNLP 2011)

1
Bree(fe e2]) = 5 [fexsa] — [ehs ] I

oo ¥,=f(W[xy;y1] + b)

XXX y1=f(W[X2;X3] + b)

(eee0@) (eeee) (eee0e0)
134 X1 X2 X3
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Unsupervised unfolding RAE

Attempt to encode entire tree structure at each node

@ 00 O) Xl' (OO0 Q) Xz' (QQQ Q) X3'

W4 W4

(0000) yll
We 0000 y1

We

@000 X1 (@e000)X) (0000)X3
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Recursive Autoencoders for Full Sentence
Paraphrase Detection

Unsupervised Unfolding RAE and a pair-wise sentence comparison
of nodes in parsed trees (Socher et al. (NIPS 2011)

Recursive Autoencoder Neural Network for Variable-Sized Input

A X 1) Leee®

6 UQM/L"SK”?< 4[}-.-.“
lg;&_uonﬂﬂ_"m LMQTKZL)_J

The cats catch mice @ Cats eat mice 1
e Bl I _.J 432

e
5
\E"JSE?

Paraphrase pajrwise Classification OQutput

Neural Network

Variable-Sized Pooling Layer

Similarity Matrix
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Recursive Autoencoders for Full Sentence
Paraphrase Detection

Experiments on Microsoft Research Paraphrase Corpus
(Dolan et al. 2004)

Rus et al.(2008) 70.6 80.5
Mihalcea et al.(2006) 70.3 81.3
Islam et al.(2007) 72.6 81.3
Qiu et al.(2006) 72.0 81.6
Fernando et al.(2008) 74.1 82.4
Wan et al.(2006) 75.6 83.0
Das and Smith (2009) 73.9 82.3
Das and Smith (2009) + 18 Surface Features 76.1 82.7
F. Bu et al. (ACL 2012): String Re-writing Kernel 76.3 --

Unfolding Recursive Autoencoder (NIPS 2011) 76.8 83.6
137



Recursive Autoencoders for Full Sentence
Paraphrase Detection

Sentences

(1) LLEYTON Hewitt yesterday traded his tennis racquet for his first sporting passion -
Australian football - as the world champion relaxed before his Wimbledon title defence

(2) LLEYTON Hewitt yesterday traded his tennis racquet for his first sporting passion-
Australian rules football-as the world champion relaxed ahead of his Wimbledon defence

0.82

(1) The lies and deceptions from Saddam have been well documented over 12 years
(2) It has been well documented over 12 years of lies and deception from Saddam

0.67

(1) Pollack said the plaintiffs failed to show that Merrill and Blodget directly caused their
losses

(2) Basically . the plaintiffs did not show that omissions in Merrill’s research caused the
claimed losses

0.49

(1) Prof Sally Baldwin, 63, from York, fell into a cavity which opened up when the struc-
ture collapsed at Tiburtina station, Italian railway officials said

(2) Sally Baldwin, from York, was killed instantly when a walkway collapsed and she fell
into the machinery at Tiburtina station

0.44

(1) Bremer, 61, is a onetime assistant to former Secretaries of State William P. Rogers and
Henry Kissinger and was ambassador-at-large for counterterrorism from 1986 to 1989
(2) Bremer, 61, is a former assistant to former Secretaries of State William P. Rogers and
Henry Kissinger

138

0.11

(1) The initial report was made to Modesto Police December 28
(2) It stems from a Modesto police report




Recursive Deep Learning
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Compositionality Through Recursive Matrix-
Vector Spaces

p = tanh(W[C1]+ b)
)

One way to make the composition function more powerful was by
untying the weights W

But what if words act mostly as an operator, e.g. “very” in
very good

Proposal: A new composition function
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Compositionality Through Recursive Matrix-
Vector Recursive Neural Networks

141

p = tanh(W[c1 ]+ b)
Co

p = tanh(W [gzcl] +b)

16,

Recursive Matrix-Vector Model

® 0
Ba= o‘r Ab= oo

Q0 N ]

® @ (O]
(@ Q) (0 0)
very good

3

(a,A) (b,B)
CIDIEY 0|0

Qo @@

- vector

00O
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Predicting Sentiment Distributions

Good example for non-linearity in language

fairly annoying fairly awesome fairly sad
0.5 05r 0.5
—e—MV-RNN oal —— MV-RNN —o— MV-RNN
' ~+~RNN |
03r

BARRRE SLT et

7 8 9 10

not annoying not awesome not sad
051 05
—— MV-RNN oal ——MV-RNN o4 ——MV-RNN
-+=RNN ' -+=RNN ' -+-RNN
03y 0.3 —=—Ground Truth
R s gt S 02r _,,r""
;:*—-_ ¢ g o ° 1 o o Py =" &0
P D R -
A S ghisinh, st 0 L
4 5 6 7 ] 9 10 1 2 3 4 5 6 7 8 9 10
unbelievably annoying unbelievably awesome unbelievably sad
05 051 05
oal —— MV-RNN oal —— MV-RNN » oal —— MV-RNN
' -+~ RNN ' -+~ RNN ' -+~ RNN
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MV-RNN for Relationship Classification

N
| Classifier: Message-Topic | \
e .
- ln
@ @® @O @9 4: ;

the [movie] showed [wars]

Relationship

Cause-
Effect(e2,el)

Entity-
Origin(el,e2)

Message-
Topic(e2,el)
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Sentence with labeled nouns for which

to predict relationships

Avian [influenza]e1 is an infectious
disease caused by type a strains of the
influenza [virus]ez.

The [mother]e1 left her native [land]e2
about the same time and they were
married in that city.

Roadside [attractions]e1 are frequently
advertised with [billboards]e2 to attract
tourists.

Classifier  Feature Sets F1
SVM POS, stemming, syntactic patterns 60.1
SVM word pair, words in between 72.5
SVM POS, WordNet, stemming, syntactic 74.8
patterns
SVM POS, WordNet, morphological fea- 77.6
tures, thesauri, Google n-grams
MaxEnt POS, WordNet, morphological fea- 77.6
tures, noun compound system, the-
sauri, Google n-grams
SVM POS, WordNet, prefixes and other 82.2
morphological features, POS, depen-
dency parse features, Levin classes,
PropBank, FrameNet, NomLex-Plus,
Google n-grams, paraphrases, Tex-
tRunner
RNN 74.8
Lin MVR 73.0
MV-RNN - 79.1
RNN POS.WordNet,NER 77.6
LinMVR POS,WordNet,NER 78.7
MV-RNN POS,WordNet,NER 82.4




Sentiment Detection

Sentiment detection is crucial to business
intelligence, stock trading, ...

3/18/11 at 4:00 PM 17 Comments

Mentions of the
Name ‘Anne

| Hathaway’ May

Drive Berkshire

Hathaway Stock

By Patrick Huguenin

The Huffington Post recently pointed
out that whenever Anne Hathaway is

- in the news, the stock price for Warren
Maybe she'll change her name to Halliburton. Just to '
see. Buffett's Berkshire Hathaway goes up.
Really. When Bride Wars opened, the
stock rose 2.61 percent. (Rachel
144

Getting Married only kicked it up 0.44 percent, but, you know, that one was so
light on plot compared to Bride Wars.)



Sentiment Detection and Bag-of-Words Models

Most methods start with a bag of words
+ linguistic features/processing/lexica

But such methods (including tf-idf) can’t
distinguish:

+ white blood cells destroying an infection

- an infection destroying white blood cells
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Sentiment Detection and Bag-of-Words Models

* Sentiment is that sentiment is “easy”
* Detection accuracy for longer documents ~90%
e Lots of easy cases (... horrible ... or ... awesome ...)

* For dataset of single sentence movie reviews
(Pang and Lee, 2005) accuracy never reached
above 80% for >7 years

* Harder cases require actual understanding of
negation and its scope and other semantic effects



Data: Movie Reviews

Stealing Harvard doesn’t care about
cleverness, wit or any other kind of
intelligent humor.

There are slow and repetitive parts
but it has just enough spice to keep it
Interesting.
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Two missing pieces for improving sentiment

1. Compositional Training Data

2. Better Compositional model



1. New Sentiment Treebank




1. New Sentiment Treebank

nerdy folks
« Parse trees of 11,855 sentences — T T T
Vary  Mogative Somewhat Neutral Somewhat Posiive  Vary
. negativa negative positive positive
e 215,154 phrases with labels
phenomenal fantasy best sellers
e Allows training and evaluating ————————————— 1
. e, ® . - Vary Magative Somewhat Meutral Somewhat Positive Vary
with compositional information negaive negaie postive posive
(a) (b) (©) (d)
[ [ [ |
100%
80% -
j!
= %
e O0% —
£ Neutral
§ 40% e
;:5 /
209% —
0%
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N-Gram Length



2. New Compositional Model

e Recursive Neural Tensor Network o5 p, = g(a,p1)

* More expressive than any other RNN so far b =a(b.c)

* |dea: Allow more interactions of vectors

— e wa o S e EE s sl



2. New Compositional Model

e Recursive Neural Tensor Network o5 p, = g(a,p1)

©o p1=g(b,c)

. W WS S S )
P — — —— —— —— —

—— —— —— — — w—



2. New Compositional Model

e Recursive Neural Tensor Network o5 p, = g(a,p1)

©o p1=g(b,c)

A T N S S s s )
P —————— — — —




Recursive Neural Tensor Network

Neural Tensor Layer

not very good
Slices of Standard a b c
p Tensor Layer Layer \
R \
KCIDICIO) 2099 (g}
8888 i
p=f [+ ® +8338
KCDOICIO) 2999] (9!
| 0000 |
| 0009 (@l
| I




Experimental Result on Treebank

Model

M rRNTN

B MV-RNN

I RNN

M bing
NB

Cumulative Accuracy

N-Gram Length N-Gram Length

Model Fine-grained Positive/Negative
All Root All Root
NB 67.2 41.0 82.6 81.8
SVM 64.3 40.7 84.6 794
BiNB 71.0 41.9 82.7 83.1
VecAvg 73.3 32.7 85.1 80.1
RNN 79.0 43.2 86.1 82.4
MV-RNN 78.7 44 4 86.8 82.9

RNTN 80.7 45.6 87.6 854




Experimental Result on Treebank

« RNTN can capture X but Y

 RNTN accuracy of 72%, compared to MV-RNN (65),
biNB (58) and RNN (54)

©
(D ©
O (D |
© OBNO. (D
e O but it o) o
® O OB O G
There () has .t en zplee ©
< pt-s | ’ O =

) ) keep o ©

repetitive it interesting

slow and



Negation Results

moviegoing pleasures moviegoing pleasures



Negation Results

 Most methods capture that negation often makes
things more negative (See Potts, 2010)

* Analysis on negation dataset

Negated Positive Sentences: Change in Activation

biNB
RRN
MV-RNN -0.5
RNTN | -0.54

-0.6 -0.4 -0.2 0.0 0.2 0.4

Negated Positive

biNB 19.0
RNN 33.3
MV-RNN 52.4

RNTN 71.4



Negation Results
* But how about negating negatives?
* Positive activation should increase!

Model Accuracy
Negated Positive  Negated Negative
biNB 19.0 27.3
RNN 33.3 45.5
MV-RNN 52.4 54.6
RNTN 71.4 90.9

Negated Positive Sentences: Change in Activation

biNB
RRN
MV-RNN -0.5
RNTN | -054

-0.6 -0.4 -0.2 0.0 0.2 0.4
Negated Negative Sentences: Change in Activation

biNB -0.01
's definitely RRN 0.0t
MV-RNN +0.01
RNTN +0.25

-0.6 -0.4 -0.2 0.0 0.2 0.4



T

Most positive n-grams

Most negative n-grams

engaging ; best ; powerful ; love ; beautiful ; enter-
taining ; clever ; terrific ; excellent ; great ;

excellent performances ; amazing performance ; ter-
rific performances ; A masterpiece ; masterful film :
wonderful film ; terrific performance ; masterful piece
; wonderful movie ; marvelous performances ;

an amazing performance ; a terrific performance : a
wonderful film ; wonderful all-ages triumph ; A mas-
terful film ; a wonderful movie ; a tremendous perfor-
mance ; drawn excellent performances ; most visually
stunning : A stunning piece ;

nicely acted and beautifully shot ; gorgeous imagery .
effective performances ; the best of the year ; a terrific
American sports movie ; very solid , very watchable
. a fine documentary does best ; refreshingly honest
and ultimately touching :

one of the best films of the year ; simply the best fam-
ily film of the year ; the best film of the year so far :
A love for films shines through each frame : created
a masterful piece of artistry right here ; A masterful
film from a master filmmaker , ; s easily his finest
American film ... comes ;

bad ; dull ; boring ; fails ; worst ; stupid ; painfully ;
cheap : forgettable ; disaster ;

worst movie ; bad movie ; very bad ; shapeless mess
: worst thing ; tepid waste ; instantly forgettable ; bad
film ; extremely bad ; complete failure ;

for worst movie ; A lousy movie ; most joyless movie
. a complete failure ; another bad movie ; fairly ter-
rible movie ; a bad movie ; extremely unfunny film ;
most painfully marginal ; very bad sign ;

silliest and most incoherent movie ; completely crass
and forgettable movie ; just another bad movie . ;
drowns out the lousy dialogue ; a fairly terrible movie
... ; A cumbersome and cliche-ridden movie ; a hu-
morless , disjointed mess ;

A trashy , exploitative , thoroughly unpleasant expe-
rience ; this sloppy drama is an empty vessel . : a
meandering , inarticulate and ultimately disappoint-
ing film : an unimaginative , nasty , glibly cynical
piece ; bad , he s really bad , and ; quickly drags
on becoming boring and predictable . ; be the worst
special-effects creation of the year ;




Visualizing Deep Learning: Word Embeddings
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Visual Grounding

* |dea: Map sentences and images into a joint space

Compositional Sentence Vectors Multi-Modal Image Vector Representation

Representations

|

>EE®

A small child sits on a cement wall near white flower.

A man wearing a helmet jumps on his bike near a beach.

-

A man jumping his downhill bike.
CXX)

//<\\ [COOM
LLL)

Two airplanes parked in an airport.




Discussion: Compositional Structure

 Recursive Neural Networks so far
used constituency trees
which results in more syntactically

influenced representations
() () (¢

The cat sat on the

* |nstead: Use dependency trees which capture more
semantic structure h, 2

X (e0®

1 X, ko :
Students bikes night



Dependency Tree - Recursive Neural Network

Students blkes night

hgf(g()(wxz—l_jezc:(zg pos(zg ))

* (i) = number of leaf nodes at node i



Convolutional Neural Network for Images
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7 S Filtering L2 Pooling  Local 18x18 pixels 5x5 pixels  Contrast
! Normalization

18x18 pixels 5x5 pixels  Contrast .
Normalization 5x5 pixels

Filtering L2 Pooling Laocal : ; i
. , Skip 2 |
18x18 pixels 5x5 pixels Contrast 5x5 pixels ip 2 pixels
Normalization
5x5 pixels

* CNN trained on ImageNet (Le et al. 2013)

 RNN trained to give large inner products
between sentence and image vectors:

Jowrey = . D, max(0,A vy + vl ye)

(4,7)EP ceS\S(7)

62 pixels

200 pixels




Results

A gray convertible sports car is parked in front of the trees.
A close-up view of the headlights of a blue old-fashioned car.
Black shiny sports car parked on concrete driveway.

A jockey rides a hrown and white horse in a dirt corral.
A young woman is riding a Bay hose in a dirt riding-ring.
A white bird pushes a miniature teal shopping cart.

2 A person rides a brown horse.

A motocross bike with rider flying through the air,
White propeller plane parked in middle of grassy field.

An elderly woman catches a ride on the back of the bicycle.

Five cows grazing on a patch of grass hetween two roadways.

The white jet with its landing gear down flies in the blue sky.

KKK XK K K



People in an outrigger canoe sail on emerald green water
Two people sailing a small white sail boat.

behind a cliff, a boat sails away
Tourist move in on Big Ben on a typical overcast London day.

A group of people sitting around a table on a porch.
A group of four people walking past a giant mushroom.

A man and women smiling for the camera in a kitchen.

A group of men sitting around a table drinking while a man behind
stands pointing.

Describing Images Mean J Image Search Mean
Rank Rank

XXX XXX

Random 92.1 Random 52.1
Bag of Words 21.1 Bag of Words 14.6
CT-RNN 23.9  CT-RNN 16.1
Recurrent Neural Network 27.1 Recurrent Neural Network 19.2

Kernelized Canonical Correlation Analysis 18.0 Kernelized Canonical Correlation Analysis 15.9

DT-RNN 16.9 DT-RNN 12.5



Overview of RNN Model Variations

e Objective Functions

* Supervised Scores for Structure Prediction

* Classifier for Sentiment, Relations, Visual Objects, Logic

* Unsupervised autoencoding immediate children or entire tree structure
 Composition Functions

* Syntactically-Untied Weights

* Matrix Vector RNN

* Tensor-Based Models
* Tree Structures

* Constituency Parse Trees

* Dependency Parse Trees

* Combinatory Categorial Grammar Trees (Hermann and Blunsom, 2013)

s Fixed Tree Structures (Connections to CNNs)



Summary: Recursive Deep Learning

e Recursive Deep Learning can predict hierarchical structure and classify the
structured output using compositional vectors
e State-of-the-art performance (all with code on )
* Parsing on the WSJ (Java code soon)
* Sentiment Analysis on multiple corpora
e Paraphrase detection with unsupervised RNNs
» Relation Classification on SemEval 2011, Task8
* Object detection on Stanford background and MSRC datasets

Parsing Natural Scene Images
0.8
0.6
0.4
0.2
0
L} | R -0.2
The 10 20 30 40 50

Semantic Neural Tensor Layer

Representations

Features Slices of Standard

| | Segments it interesting Tensor Layer Layer

N

A small crowd Recursive Autoencoder ‘ Neural Network for Variable-Sized Input

quietly enters 783%> S5es® Paraphrase  pajrwise Classification Output
the historic /\
st @ss® 4esew @esoe® Neural Network

6 5
A small quietly church ?i iﬁ
crowd enters Det, j N.  Semantic I o O DR T A CONIR I DI DEC O] Variable-Sized Pooling Layer b T b
asadess Representations The cats catch mice  Cats eat mice b / =f V[1:2] b W
é e Indices I\T—:‘,v @) Similarity Matrix p - +
istori s ° C C C '

_ C) O,
slow and _———
Parsing Natural Language Sentences R E: .
p=f 22 B | e
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http://www.socher.org/

Part 3

Assorted Speech and NLP Applications
Deep Learning: General Strategy and Tricks
Resources (readings, code, ...)

o

Discussion
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Part 3.1: Applications

Assorted Speech and NLP Applications

171



Existing NLP Applications

* Language Modeling (Speech Recognition, Machine Translation)
 Word-Sense Learning and Disambiguation
* Reasoning over Knowledge Bases

e Acoustic Modeling

e Part-Of-Speech Tagging

* Chunking

 Named Entity Recognition

 Semantic Role Labeling

e Parsing

* Sentiment Analysis

e Paraphrasing

. . 172
* Question-Answering



Convolutional Neural Networks!

e Phil will talk about them in the evening
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Language Modeling

Predict P(next word | previous word)
* Q@Gives a probability for a longer sequence
* Applications to Speech, Translation and Compression

 Computational bottleneck: large vocabulary V means that
computing the output costs #hidden units X |V/|
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Neural Language Model

* Bengio et al NIPS 2000
and JMLR 2003 “A
Neural Probabilistic

Language Model”

e Each word represented by
a distributed continuous-
valued code

* Generalizes to sequences
of words that are
semantically similar to
training sequences

175

i-th output = P(w; = i | context)

normalized exponential

(e o [ ]

[ XX D)

most| computation here

W

tanh

(eee

----------------------

shared parameters
across words

Wt—n+1 wi—2 Wi—1




Application to Machine Translation

* Language model conditioned on source and target

]

5

7

3_\_.\ N
S: | EL|[HL| ||| T
1 will get money to  perf.
T: [i | [will| |get]| i the money to

sl

them

them

P(the | get, will, i, 5k, HY, %, 25, 1)

* Speed improvements (pre-computation,
unnormalized output)
* Devlin et al. ACL 2014, best paper
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Word Vectors have linear relationships

Country and Capital Vectors Projected by PCA
2 1 1 1 1 L] L]

T

China¢
»Beijing
1.5 | Russia .
Japan«
1k Moscow |
Turkeye Ankara >Tokyo
05 | N
Poland«
0 Germ)zanw i
France Warsaw
s »Berlin
-05 | Italy< Paris -
Greecex x->Athens
-1} Spairx Ol .
B “ Madrid i
-1.5 | Portugal Bl
_2 1 1 1 1 | | 1
-2 -1.5 -1 -0.5 0 0.5 1 15 2

179 Mikolov et al. 2013



Word Vectors have linear relationships

WOMAN

/ AUNT
MAN /
UNCLE
QUEEN
KING
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 Mikolov et al. 2013

QUEENS

AN
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KING




Best word vectors are not “deep”
* They all capture co-occurrence statistics in some way

* Global Methods:

* LSA (Deerwester et al.), LDA (Blei et al.), HAL (Lund &
Burgess), Hellinger-PCA (Lebret & Collobert)

 Scale with vocabulary size and efficient usage of statistics

* Window based / Neural Network based models

* NNLM, HLBL, RNN, ivLBL, Skip-gram/CBOW, (Bengio et al;
Collobert & Weston; Huang et al; Mnih & Hinton; Mnih &
Kavukcuoglu; Mikolov et al.)



Word Vectors: Recent development
e Capturing local co-occurrence statistics

1 -
J — 5 Zf(P”)(wt . wj — long-j)g

tJ

Pennington et al. 2014

* Produces state of the art linear semantic relationships

 Efficient use of statistics:
Can train on (comparably) little data and gigantic data!

* Fast, only non-zero counts matter

e Good performance with small (100-300) dimensions:
Important for downstream tasks



Word Vectors: Recent development

e Spearman correlation between human judgments and
cosine similarity between word vectors

Model Dim. Size | WS353 MC RG SCWS RW
HPCA 100 1.6B | 455 68.0 594 469 21.1
GloVe 100 1.6B | 634 697 712 512 256
SVD 300 6B 353  35.1 425 383 256
SVD-S 300 6B | 565 715 71.0 536 347
SVD-L 300 6B | 657 727 751 565 37.0
GloVe 300 6B | 657 718 776 534 379
SVD-L 300 42B | 740 764 741 583 390
Glove 300 42B | 759 83.6 829 59.6 47.8
CBOW! 300 100B| 684 79.6 754 594 455




Word Vectors: Recent development

* Linear relationship prediction accuracy

Model Dim. Size | Sem. Syn. Tot.
ivLBL 100 1.5B | 559 50.1 53.2
HPCA 100 16B | 42 164 10.8
GloVe 100 1.6B | 67.5 543 60.3
SG 300 1B 61 61 61
CBOW 300 1.6B | 16.1 52.6 36.1
vLBL 300 15B | 542 64.8 60.0
ivLBL 300 15B | 652 63.0 64.0
GloVe 300 1.6B | 80.8 61.5 70.3
SVD 300 6B 6.3 8.1 7.3
SVD-S 300 6B 367 46.6 42.1
SVD-L 300 6B 56.6 63.0 60.1
GloVe 300 6B 775 67.1 7T71.8
CBOW 1000 6B 57.3 689 63.7
SG 1000 6B 66.1 65.1 65.6
SVD-L 300 42B | 384 58.2 49.2
GloVe 300 42B | 819 69.3 75.0




Learning Multiple Word Vectors

Tackles problems with polysemous words

e Can be done with both standard tf-idf based
methods [Reisinger and Mooney, NAACL 2010]

* Neural word vector model by [Huang et al. ACL 2012]
learns multiple prototypes using both local and global context

° State Of the art Local Context Global Context

score

correlations with /ﬁ,\

human similarity

................. @ee%| river
. @eewo | play
judgments | cvue| shore
@088 @eee @e0e Beee Res® @ses (weighted average
he walks to the bank -.- global semantic vector | (@8 e® | water
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Learning Multiple Word Vectors

Visualization of learned word vectors from Huang et al. (ACL 2012)

translatioels fantasy stars

manga
laundering movie |
transaction talk t{ﬂe‘-‘fic?ion inals
finance bank, viaeo constellation
banking camera venue oracle
tapeﬂaSh asteroid mars S
. galaxy moon
rer%‘d%'&pality direction planet
boundary
gap  Genal.
plateau
territory

180 F%%ﬁh%ods



Common Sense Reasoning
Inside Knowledge Bases

Question: Can Neural Networks learn to capture logical inference,

set inclusions, part-of and hypernym relationships?

187

Knowledge Base Word Vector Space Reasoning about Relations
tail
Relation: has part [ N - . .
e o c—— @& Confidence for Triplet
F'y eye y
leg
ca@
%
- 8 Neural
@ Tensor
tiger Network
el QOO0 ex
India S ?E
---------------------------------- Bengal ( Bengal tiger, has part, tail)

Does a Bengal tiger have a tail?




Neural Networks for Reasoning
over Relationships

Neural Tensor Layer

e Higher scores for each

. Linear Slices of Standard Bias
tnplet T= (e 1’R’e2) Layer Tensor Layer Layer
“““““ |
. . oy e | @0® 883 I 5
|nd|cat.e tha.t entltlgs are . }_—_—_—_5’_93—_—_—_' cemm(8) g
more likely in relationship = 22 B

* Training uses contrastive
estimation function, similar
to word vector learning

» NTN scoring function: g(e1, R, e2) = upf (e}nl-{fg:k]gz S VS {Z;] n bR)

N C
* (Cost: Z me{ (0._ l—g (T(i)) +g (Tf))) + )\HQH%



Accuracy of Predicting True and False

Relationships

historian male
gender
professick Ander
Francesco Francesco
Guicciardini Patrizi
place of blrth
nationality
nationality
Florence [taly
IOC&$ Matteo /na.tiona“t)’
Rosselli

Related Work

Bordes, Weston,
Collobert & Bengio,
AAAI 2011

Bordes, Glorot,
Weston & Bengio,
AISTATS 2012

Model ______________|FreeBase |WordNet _

Distance Model
Hadamard Model

Standard Layer Model (<NTN)
Bilinear Model (<NTN)
Neural Tensor Network (Chen et al. 2013)

68.3
80.0

76.0
84.1
86.2

61.0
68.8

85.3
87.7
90.0




Accuracy Per Relationship

WordNet

domain topic

similar to

synset domain topic
domain region
subordinate instance of
has part

part of

member holonym
member meronym

type of

has instance

70 75 80 85 90 95
Accuracy (%)
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ethnicity (211)

religion (107)

cause of death (170)

institution (727)

profession (455)

nationality (188)

gender (2)

7

FreeBase

=
~J
3]
o]
=]

85 90 95
Accuracy (%)



Part 3.2

Deep Learning
General Strategy and Tricks
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General Strategy

1. Select network structure appropriate for problem

1. Structure: Single words, fixed windows vs. Recursive vs.
Recurrent, Sentence Based vs. Bag of words

2. Nonlinearity

2. Check for implementation bugs with gradient checks

3. Parameter initialization

4. Optimization tricks

5. Check if the model is powerful enough to overfit
1. If not, change model structure or make model “larger”
2. If you can overfit: Regularize
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Non-linearities: What’s used

logistic (“sigmoid”) tanh
1 e —e "
R ] f(z) = tamh(2) = %=,
. P o =
1'(2) = F(2)(1 - f(2)) fiz) =1= (=)

tanh is just a rescaled and shifted sigmoid tanh(z) = 2logistic(2z)- 1

tanh is what is most used and often performs best for deep nets
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Non-linearities: There are various other choices

hard tanh soft sign rectified linear
~1 ifx<—1 : a
HardTanh(x)={ x if —1<=x<=1 S0ftsign(z) = rect(z) = max(z, 0)
1 ifx>1 1+l
1 3
)
0.5
1
S =0
- —Tanh | S B B
-0.5 —Sigmoid|| |
—Softsign | |
25 0 25 5 2 2 40 12

X

* hard tanh similar but computationally cheaper than tanh and saturates hard.

* [Glorot and Bengio AISTATS 2010, 2011] discuss softsign and rectifier
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MaxOut Network

A recent type of nonlinearity/network
Goodfellow et al. (2013)

fi(z) = MaXec(1,k] #ij
Where

.
Zij — X W’&J b,,;j
This function too is a universal approximator

State of the art on several image datasets
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Gradient Checks are Awesome!

e Allow you to know that there are no bugs in your neural
network implementation!
e Steps:
1. Implement your gradient
2. Implement a finite difference computation by looping
through the parameters of your network, adding and

subtracting a small epsilon (~107-4) and estimate
derivatives

J([}ﬁﬂ) _ J[[}ﬁ—])

9t = g 4+ EPSILON x ¢
2 x EPSILON

gi(0) =~

3. Compare the two and make sure they are almost the same



General Strategy

1. Select appropriate Network Structure

1. Structure: Single words, fixed windows vs Recursive
Sentence Based vs Bag of words

2. Nonlinearity

2. Check for implementation bugs with gradient check

3. Parameter initialization

4. Optimization tricks

5. Check if the model is powerful enough to overfit
1. If not, change model structure or make model “larger”
2. If you can overfit: Regularize
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Parameter Initialization

198

Initialize hidden layer biases to 0 and output (or reconstruction)
biases to optimal value if weights were 0 (e.g., mean target or
inverse sigmoid of mean target).

Initialize weights ~ Uniform(-r, r), r inversely proportional to
fan-in (previous layer size) and fan-out (next layer size):

\/6/(fan-in + fan-out)

for tanh units, and 4x bigger for sigmoid units [Glorot AISTATS 2010]

Pre-training with Restricted Boltzmann machines



Stochastic Gradient Descent (SGD)

199

Gradient descent uses total gradient over all examples per
update, SGD updates after only 1 or few examples:

_ OL(z,0)
AL — gi—1) ¢ 20
00

L = loss function, z,= current example, 6 = parameter vector, and
g, = learning rate.

Ordinary gradient descent as a batch method is very slow, should
never be used. Use 2" order batch method such as L-BFGS. On
large datasets, SGD usually wins over all batch methods. On
smaller datasets L-BFGS or Conjugate Gradients win. Large-batch
L-BFGS extends the reach of L-BFGS [Le et al. ICML 2011].



Learning Rates

* Simplest recipe: keep it fixed and use the same for all
parameters.

* Collobert scales them by the inverse of square root of the fan-in
of each neuron

* Better results can generally be obtained by allowing learning
rates to decrease, typically in O(1/t) because of theoretical
convergence guarantees, e.g., , — 07
with hyper-parameters g,and t max(t, 7)

e Better yet: No hand-set learning rates by using L-BFGS or
AdaGrad (Duchi, Hazan, & Singer 2011)
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Long-Term Dependencies and Clipping
Trick

* In very deep networks such as recurrent networks (or possibly
recursive ones), the gradient is a product of Jacobian matrices,
each associated with a step in the forward computation. This
can become very small or very large quickly [Bengio et al 1994],

and the locality assumption of gradient descent breaks down.

* The solution first introduced by Mikolov is to clip gradients n
to a maximum value. Makes a big difference in RNNs. @:/
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General Strategy

1. Select appropriate Network Structure
1. Structure: Single words, fixed windows vs Recursive Sentence Based vs Bag of words
2. Nonlinearity

2 Check for implementation bugs with gradient check

3 Parameter initialization

4, Optimization tricks

5 Check if the model is powerful enough to overfit
1. If not, change model structure or make model “larger”
2. If you can overfit: Regularize

Assuming you found the right network structure, implemented it
correctly, optimize it properly and you can make your model
overfit on your training data.

Now, it’s time to regularize
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Prevent Overfitting:
Model Size and Regularization

e Simple first step: Reduce model size by lowering number of
units and layers and other parameters

e Standard L1 or L2 regularization on weights
* Early Stopping: Use parameters that gave best validation error
» Sparsity constraints on hidden activations, e.g., add to cost:

(1/Nzn al™][o. 0001)

203



Prevent Feature Co-adaptation

Dropout (Hinton et al. 2012)

* Training time: at each instance of evaluation (in online SGD-
training), randomly set 50% of the inputs to each neuron to 0

* Test time: halve the model weights (now twice as many)

* This prevents feature co-adaptation: A feature cannot only be
useful in the presence of particular other features

* A kind of middle-ground between Naive Bayes (where all
feature weights are set independently) and logistic regression
models (where weights are set in the context of all others)

* Can be thought of as a form of model bagging

* It also acts as a strong regularizer
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Deep Learning Tricks of the Trade

* Y.Bengio (2012), “Practical Recommendations for Gradlent-
Based Training of Deep Architectures”

* Unsupervised pre-training \
Stochastic gradient descent and setting learning rates

Main hyper-parameters
* Learning rate schedule & early stopping
* Minibatches
e Parameter initialization
* Number of hidden units
* L1 or L2 weight decay
* Sparsity regularization

Debugging = use finite difference gradient checks

How to efficiently search for hyper-parameter configurations

205



Part 3.3: Resources

Resources: Tutorials and Code
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Related Tutorials

* See “Neural Net Language Models” Scholarpedia entry
 Deep Learning tutorials:

e Stanford deep learning tutorials with simple programming
assignments and reading list

e Recursive Autoencoder class project
* Graduate Summer School: Deep Learning, Feature Learning

 |ICML 2012 Representation Learning tutorial

More reading (including tutorial references):
207 — Deep Learning Tutorial/starter code


http://deeplearning.net/tutorials
http://deeplearning.stanford.edu/wiki/
http://cseweb.ucsd.edu/~elkan/250B/learningmeaning.pdf
http://www.ipam.ucla.edu/programs/gss2012/
http://socher.org/

Software

Theano (Python CPU/GPU) mathematical and deep learning
library
* Can do automatic, symbolic differentiation
Senna: POS, Chunking, NER, SRL
* by Collobert et al.
* State-of-the-art performance on many tasks
* 3500 lines of C, extremely fast and using very little memory
Recurrent Neural Network Language Model

Recursive Neural Net and RAE models for paraphrase
detection, sentiment analysis, relation classification
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http://deeplearning.net/software/theano
http://ronan.collobert.com/senna/
http://www.fit.vutbr.cz/~imikolov/rnnlm/
http://www.socher.org/

Software: what’s next

209

Off-the-shelf SVM packages are useful to researchers

from a wide variety of fields (no need to understand
RKHS).

A good goal for NLP deep learning: Build off-the-shelf
NLP classification packages that use as training input
only raw text (instead of features) possibly with a label.



Part 3.4:

Discussion
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concerns

Many algorithms and variants (burgeoning field)

Hyper-parameters (layer size, regularization, possibly
learning rate)

* Use multi-core machines, clusters and random
sampling for cross-validation (Bergstra & Bengio 2012)

* Pretty common for powerful methods, e.g. BM25, LDA
* Can use (mini-batch) L-BFGS instead of SGD
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concerns

Not always obvious how to combine with existing NLP

» Simple: Add word or phrase vectors as features. Gets
close to state of the art for NER, [Turian et al, ACL
2010]

* Integrate with known problem structures: Recursive
and recurrent networks for trees and chains

* Your research here
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concerns

Slower to train than linear models

* Only by a small constant factor, and much more
compact than non-parametric (e.g. n-gram models)

* Very fast during inference/test time (feed-forward
pass is just a few matrix multiplies)

Need more training data

* Can handle and benefit from more training data,
suitable for age of Big Data (Google trains neural
nets with a billion connections, [Le et al, ICML 2012])
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concerns

There aren’t many good ways to encode prior knowledge
about the structure of language into deep learning models

* There is some truth to this. However:

* You can choose architectures suitable for a problem
domain, as we did for linguistic structure

* You can include human-designed features in the first
layer, just like for a linear model

* And the goal is to get the machine doing the learning!
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Concern:
Problems with model interpretability

No discrete categories or words, everything is a continuous vector.
We'd like have symbolic features like NP, VP, etc. and see why their
combination makes sense.

* True, but most of language is fuzzy and many words have soft
relationships to each other. Also, many NLP features are
already not human-understandable (e.g.,
concatenations/combinations of different features).

* Can try by projections of weights and nearest neighbors, see
part 2
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Concern: non-convex optimization

Can initialize system with convex learner
* Convex SVM
 Fixed feature space

Then optimize non-convex variant (add and tune learned features),
can’t be worse than convex learner

Not a big problem in practice (often relatively stable performance
across different local optima)
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Advantages

Despite a small community in the intersection of deep
learning and NLP, already many state of the art results on
a variety of language tasks

Often very simple matrix derivatives (backprop) for
training and matrix multiplications for testing = fast
implementation

Fast inference and well suited for multi-core CPUs/GPUs
and parallelization across machines
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Learning Multiple Levels of Abstraction

The big payoff of deep learning is
to learn feature representations
and higher levels of abstraction

This allows much easier
generalization and transfer
between domains, languages, and
tasks and even modalities

218



The End
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