
Deep Learning for NLP
(without Magic)

Richard Socher

Stanford, MetaMind

ML Summer School, Lisbon

*with a big thank you to Chris Manning and Yoshua Bengio,
with whom I did the previous versions of this lecture

Deep Learning

Most current machine learning works
well because of human-designed
representations and input features

Machine learning becomes just optimizing
weights to best make a final prediction

Representation learning attempts to
automatically learn good features or representations

Deep learning algorithms attempt to learn multiple levels of
representation of increasing complexity/abstraction

NER WordNet

SRL Parser

1

A Deep Architecture

Mainly, work has explored deep belief networks (DBNs), Markov
Random Fields with multiple layers, and various types of
multiple-layer neural networks

Output layer

Here predicting a supervised target

Hidden layers

These learn more abstract
representations as you head up

Input layer

Raw sensory inputs (roughly)2

Five Reasons to Explore

Deep Learning

Part 1.1: The Basics

3

#1 Learning representations

4

Handcrafting features is time-consuming

The features are often both over-specified and incomplete

The work has to be done again for each task/domain/…

We must move beyond handcrafted features and simple ML

Humans develop representations for learning and reasoning

Our computers should do the same

Deep learning provides a way of doing this

#2 The need for distributed representations

Current NLP systems are incredibly fragile because of
their atomic symbol representations

Crazy sentential
complement, such as for
“likes [(being) crazy]”5

#2 The need for distributional & distributed

representations

Learned word representations help enormously in NLP

They provide a powerful similarity model for words

Distributional similarity based word clusters greatly help most
applications

+1.4% F1 Dependency Parsing 15.2% error reduction (Koo &
Collins 2008, Brown clustering)

+3.4% F1 Named Entity Recognition 23.7% error reduction
(Stanford NER, exchange clustering)

Distributed representations can do even better by representing
more dimensions of similarity

6

Learning features that are not mutually exclusive can be exponentially
more efficient than nearest-neighbor-like or clustering-like models

#2 The need for distributed representations

Multi-
Clustering

Clustering

7

C1 C2 C3

input

Distributed representations deal with the curse

of dimensionality

Generalizing locally (e.g., nearest
neighbors) requires representative
examples for all relevant variations!

Classic solutions:

• Manual feature design

• Assuming a smooth target
function (e.g., linear models)

• Kernel methods (linear in terms
of kernel based on data points)

Neural networks parameterize and
learn a “similarity” kernel

8

#3 Unsupervised feature and weight

learning

Today, most practical, good NLP& ML methods require
labeled training data (i.e., supervised learning)

But almost all data is unlabeled

Most information must be acquired unsupervised

Fortunately, a good model of observed data can really help you
learn classification decisions

9

We need good intermediate representations
that can be shared across tasks

Multiple levels of latent variables allow
combinatorial sharing of statistical strength

Insufficient model depth can be
exponentially inefficient

#4 Learning multiple levels of

representation

Biologically inspired learning

The cortex seems to have a generic
learning algorithm

The brain has a deep architecture

Task 1 Output

Linguistic Input

Task 2 Output Task 3 Output

10

#4 Learning multiple levels of

representation

Successive model layers learn deeper intermediate representations

Layer 1

Layer 2

Layer 3

High-level
linguistic representations

[Lee et al. ICML 2009; Lee et al. NIPS 2009]

11

Handling the recursivity of human language

Human sentences are composed
from words and phrases

We need compositionality in our
ML models

Recursion: the same operator
(same parameters) is applied
repeatedly on different
components

A small crowd
quietly enters

the historic
church

historicthe

quietly
enters

S
VP

Det. Adj.

NPVP

A small
crowd

NP

NP

church

N.

Semantic
Representations

xt−1 xt xt+1

zt−1 zt zt+1

12

#5 Why now?

Despite prior investigation and understanding of many of the
algorithmic techniques …

Before 2006 training deep architectures was unsuccessful

What has changed?

• Faster machines and more data help DL more than other
algorithms

• New methods for unsupervised pre-training have been
developed (Restricted Boltzmann Machines = RBMs,
autoencoders, contrastive estimation, etc.)

• More efficient parameter estimation methods

• Better understanding of model regularization, ++

Deep Learning models have already achieved

impressive results for HLT

Neural Language Model
[Mikolov et al. Interspeech 2011]

MSR MAVIS Speech System
[Dahl et al. 2012; Seide et al. 2011;
following Mohamed et al. 2011]

“The algorithms represent the first time a
company has released a deep-neural-
networks (DNN)-based speech-recognition
algorithm in a commercial product.”

Model \ WSJ ASR task Eval WER

KN5 Baseline 17.2

Discriminative LM 16.9

Recurrent NN combination 14.4

Acoustic model &
training

Recog
\ WER

RT03S
FSH

Hub5
SWB

GMM 40-mix,
BMMI, SWB 309h

1-pass
−adapt

27.4 23.6

DBN-DNN 7 layer
x 2048, SWB
309h

1-pass
−adapt

18.5
(−33%)

16.1
(−32%)

GMM 72-mix,
BMMI, FSH 2000h

k-pass
+adapt

18.6 17.1
14

Deep Learn Models Have Interesting

Performance Characteristics

Deep learning models can now be very fast in some circumstances

• SENNA [Collobert et al. 2011] can do POS or NER faster than
other SOTA taggers (16x to 122x), using 25x less memory

• WSJ POS 97.29% acc; CoNLL NER 89.59% F1; CoNLL Chunking 94.32% F1

Changes in computing technology favor deep learning

• In NLP, speed has traditionally come from exploiting sparsity

• But with modern machines, branches and widely spaced
memory accesses are costly

• Uniform parallel operations on dense vectors are faster

These trends are even stronger with multi-core CPUs and GPUs

15

16

Outline of the Tutorial

1. The Basics

1. Motivations

2. From logistic regression to neural networks

3. Word representations

4. Unsupervised word vector learning

5. Backpropagation Training

6. Learning word-level classifiers: POS and NER

7. Sharing statistical strength

2. Recursive Neural Networks

3. Applications, Discussion, and Resources

17

Outline of the Tutorial

1. The Basics

2. Recursive Neural Networks

1. Motivation

2. Recursive Neural Networks for Parsing

3. Optimization and Backpropagation Through Structure

4. Compositional Vector Grammars: Parsing

5. Recursive Autoencoders (short): Paraphrase Detection

6. Matrix-Vector RNNs (short): Relation classification

7. Recursive Neural Tensor Networks: Sentiment Analysis

8. Dependency Tree RNNs: Sentence-Image Search

3. Applications, Discussion, and Resources

18

Outline of the Tutorial

1. The Basics

2. Recursive Neural Networks

3. Other Models, Applications, Discussion, and Resources

1. Assorted Speech and NLP Applications

2. Deep Learning: General Strategy and Tricks

3. Resources (readings, code, …)

4. Discussion

19

From logistic regression to neural nets

Part 1.2: The Basics

20

Demystifying neural networks

Neural networks come with
their own terminological
baggage

… just like SVMs

But if you understand how
logistic regression or maxent
models work

Then you already understand the
operation of a basic neural
network neuron!

A single neuron
A computational unit with n (3) inputs

and 1 output
and parameters W, b

Activation
function

Inputs

Bias unit corresponds to intercept term

Output

21

From Maxent Classifiers to Neural Networks

In NLP, a maxent classifier is normally written as:

Supervised learning gives us a distribution for datum d over classes in C

Vector form:

Such a classifier is used as-is in a neural network (“a softmax layer”)

• Often as the top layer: J = softmax(λ·x)

But for now we’ll derive a two-class logistic model for one neuron

P(c | d, l) =
exp li fi (c,d)

i
å

exp li fi (¢c ,d)
i

å
¢c ÎC

å

P(c | d,l) =
elT f (c,d)

elT f (¢c ,d)

¢c
å

22

From Maxent Classifiers to Neural Networks

Vector form:

Make two class:

P(c1 | d,l) =
elT f (c1,d)

elT f (c1,d) + elT f (c2 ,d)
=

elT f (c1,d)

elT f (c1,d) + elT f (c2 ,d)
×
e-lT f (c1,d)

e-lT f (c1,d)

=
1

1+ elT [f (c2 ,d)- f (c1,d)]
= for x = f (c1,d)- f (c2,d)

1

1+ e-lTx

23

= f (lTx)

P(c | d,l) =
elT f (c,d)

elT f (¢c ,d)

¢c
å

for f(z) = 1/(1 + exp(−z)), the logistic function – a sigmoid non-linearity.

This is exactly what a neuron computes

hw,b(x) = f (wTx+ b)

f (z) =
1

1+ e-z

w, b are the parameters of this neuron
i.e., this logistic regression model24

b: We can have an “always on”
feature, which gives a class prior,
or separate it out, as a bias term

A neural network = running several logistic

regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs …

But we don’t have to decide
ahead of time what variables
these logistic regressions are
trying to predict!

25

A neural network = running several logistic

regressions at the same time

… which we can feed into another logistic regression function

It is the training
criterion that will direct
what the intermediate
hidden variables should
be, so as to do a good
job at predicting the
targets for the next
layer, etc.

26

A neural network = running several logistic

regressions at the same time

Before we know it, we have a multilayer neural network….

27

Matrix notation for a layer

We have

In matrix notation

where f is applied element-wise:

a1

a2

a3

a1 = f (W11x1 +W12x2 +W13x3 +b1)

a2 = f (W21x1 +W22x2 +W23x3 +b2)

etc.

z =Wx+ b

a = f (z)

f ([z1, z2, z3]) = [f (z1), f (z2), f (z3)]
28

W12

b3

How do we train the weights W?

• For a single supervised layer, we train just like a maxent model –
we calculate and use error derivatives (gradients) to improve

• Online learning: Stochastic gradient descent (SGD)

• Batch learning: Conjugate gradient or L-BFGS

• A multilayer net could be more complex because the internal
(“hidden”) logistic units make the function non-convex … just as
for hidden CRFs [Quattoni et al. 2005, Gunawardana et al. 2005]

• But we can use the same ideas and techniques
• Just without guarantees …

• We “backpropagate” error derivatives through the model

29

Non-linearities: Why they’re needed

• For logistic regression: map to probabilities

• Here: function approximation,
e.g., regression or classification
• Without non-linearities, deep neural networks

can’t do anything more than a linear transform

• Extra layers could just be compiled down into
a single linear transform

• Probabilistic interpretation unnecessary except in
the Boltzmann machine/graphical models

• People often use other non-linearities, such as
tanh, as we’ll discuss in part 3

30

Summary

Knowing the meaning of words!

You now understand the basics and the relation to other models

• Neuron = logistic regression or similar function

• Input layer = input training/test vector

• Bias unit = intercept term/always on feature

• Activation = response

• Activation function is a logistic (or similar “sigmoid” nonlinearity)

• Backpropagation = running stochastic gradient descent backward
layer-by-layer in a multilayer network

• Weight decay = regularization / Bayesian prior

31

Effective deep learning became possible through

unsupervised pre-training

[Erhan et al., JMLR 2010]

Purely supervised neural net With unsupervised pre-training

(with RBMs and Denoising Auto-Encoders)

0–9 handwritten digit recognition error rate (MNIST data)
32

Word Representations

Part 1.3: The Basics

33

The standard word representation

The vast majority of rule-based and statistical NLP work regards
words as atomic symbols: hotel, conference, walk

In vector space terms, this is a vector with one 1 and a lot of zeroes

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

Dimensionality: 20K (speech) – 50K (PTB) – 500K (big vocab) – 13M (Google 1T)

We call this a “one-hot” representation. Its problem:

motel [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0] AND
hotel [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] = 0

34

Distributional similarity based representations

You can get a lot of value by representing a word by
means of its neighbors

“You shall know a word by the company it keeps”

(J. R. Firth 1957: 11)

One of the most successful ideas of modern statistical NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

 These words will represent banking

35

You can vary whether you use local or large context
to get a more syntactic or semantic clustering

Class-based (hard) and soft clustering

word representations

Class based models learn word classes of similar words based on
distributional information (~ class HMM)

• Brown clustering (Brown et al. 1992)

• Exchange clustering (Martin et al. 1998, Clark 2003)

• Desparsification and great example of unsupervised pre-training

Soft clustering models learn for each cluster/topic a distribution
over words of how likely that word is in each cluster

• Latent Semantic Analysis (LSA/LSI), Random projections

• Latent Dirichlet Analysis (LDA), HMM clustering

36

Neural word embeddings

as a distributed representation

Similar idea

Combine vector space
semantics with the prediction of
probabilistic models (Bengio et
al. 2003, Collobert & Weston
2008, Turian et al. 2010)

In all of these approaches,
including deep learning models,
a word is represented as a
dense vector

linguistics =

37

0.286
0.792

−0.177
−0.107

0.109
−0.542

0.349
0.271

Neural word embeddings - visualization

38

Stunning new result at this conference!

Mikolov, Yih & Zweig (NAACL 2013)

These representations are way better at encoding dimensions of
similarity than we realized!

• Analogies testing dimensions of similarity can be solved quite
well just by doing vector subtraction in the embedding space

Syntactically

• xapple − xapples ≈ xcar − xcars ≈ xfamily − xfamilies

• Similarly for verb and adjective morphological forms

Semantically (Semeval 2012 task 2)

• xshirt − xclothing ≈ xchair − xfurniture

39

Stunning new result at this conference!

Mikolov, Yih & Zweig (NAACL 2013)

Method Syntax % correct

LSA 320 dim 16.5 [best]

RNN 80 dim 16.2

RNN 320 dim 28.5

RNN 1600 dim 39.6

Method Semantics Spearm ρ

UTD-NB (Rink & H. 2012) 0.230 [Semeval win]

LSA 640 0.149

RNN 80 0.211

RNN 1600 0.275

40

Advantages of the neural word embedding

approach

41

Compared to a method like LSA, neural word embeddings
can become more meaningful through adding supervision
from one or multiple tasks

“Discriminative fine-tuning”

For instance, sentiment is usually not captured in unsupervised
word embeddings but can be in neural word vectors

We can build representations for large linguistic units

See part 2

Unsupervised word vector learning

Part 1.4: The Basics

42

A neural network for learning word vectors
(Collobert et al. JMLR 2011)

Idea: A word and its context is a positive training
sample; a random word in that same context gives
a negative training sample:

cat chills on a mat cat chills Jeju a mat

Similar: Implicit negative evidence in Contrastive
Estimation, (Smith and Eisner 2005)

43

A neural network for learning word vectors

44

How do we formalize this idea? Ask that

score(cat chills on a mat) > score(cat chills Jeju a mat)

How do we compute the score?

• With a neural network

• Each word is associated with an
n-dimensional vector

Word embedding matrix

• Initialize all word vectors randomly to form a word embedding
matrix

|V|

L = … n

the cat mat …

• These are the word features we want to learn

• Also called a look-up table

• Conceptually you get a word’s vector by left multiplying a
one-hot vector e by L: x = Le

[]

45

• score(cat chills on a mat)

• To describe a phrase, retrieve (via index) the corresponding
vectors from L

cat chills on a mat

• Then concatenate them to 5n vector:

• x =[]

• How do we then compute score(x)?

Word vectors as input to a neural network

46

A Single Layer Neural Network

• A single layer was a combination of a linear
layer and a nonlinearity:

• The neural activations a can then
be used to compute some function

• For instance, the score we care about:

47

Summary: Feed-forward Computation

48

Computing a window’s score with a 3-layer Neural
Net: s = score(cat chills on a mat)

cat chills on a mat

Summary: Feed-forward Computation

• s = score(cat chills on a mat)

• sc = score(cat chills Jeju a mat)

• Idea for training objective: make score of true window
larger and corrupt window’s score lower (until they’re
good enough): minimize

• This is continuous, can perform SGD
49

Training with Backpropagation

Assuming cost J is > 0, it is simple to see that we
can compute the derivatives of s and sc wrt all the
involved variables: U, W, b, x

50

Training with Backpropagation

• Let’s consider the derivative of a single weight Wij

• This only appears inside ai

• For example: W23 is only
used to compute a2

x1 x2 x3 +1

a1 a2

s U2

W23

51

Training with Backpropagation

Derivative of weight Wij:

52

x1 x2 x3 +1

a1 a2

s U2

W23

where for logistic f

Training with Backpropagation

Derivative of single weight Wij :

Local error
signal

Local input
signal

53

x1 x2 x3 +1

a1 a2

s U2

W23

• We want all combinations of
i = 1, 2 and j = 1, 2, 3

• Solution: Outer product:
where is the
“responsibility” coming from
each activation a

Training with Backpropagation

• From single weight Wij to full W:

54

x1 x2 x3 +1

a1 a2

s U2

W23

Training with Backpropagation

• For biases b, we get:

55

x1 x2 x3 +1

a1 a2

s U2

W23

Training with Backpropagation

56

That’s almost backpropagation

It’s simply taking derivatives and using the chain rule!

Remaining trick: we can re-use derivatives computed for
higher layers in computing derivatives for lower layers

Example: last derivatives of model, the word vectors in x

Training with Backpropagation

• Take derivative of score with
respect to single word vector
(for simplicity a 1d vector,
but same if it was longer)

• Now, we cannot just take
into consideration one ai

because each xj is connected
to all the neurons above and
hence xj influences the
overall score through all of
these, hence:

Re-used part of previous derivative57

Simple Window Model

Good for illustration of backpropagation

Now obsolete when it comes to word vectors

In section 3 we will learn about better models for single
word vectors.

But!

The window based model family is indeed useful!

Training with Backpropagation: softmax

59

What is the major benefit of deep learned word vectors?

Ability to also propagate labeled information into them,
via softmax/maxent and hidden layer:

S

c1 c2 c3

x1 x2 x3 +1

a1 a2

P(c | d,l) =
elT f (c,d)

elT f (¢c ,d)

¢c
å

Backpropagation Training

Part 1.5: The Basics

60

Back-Prop

• Compute gradient of example-wise loss wrt
parameters

• Simply applying the derivative chain rule wisely

• If computing the loss(example, parameters) is O(n)
computation, then so is computing the gradient

61

Simple Chain Rule

62

Multiple Paths Chain Rule

63

Multiple Paths Chain Rule - General

…

64

Chain Rule in Flow Graph

…

…

…

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

= successors of

65

Back-Prop in Multi-Layer Net

…

…

66

h = sigmoid(Vx)

Back-Prop in General Flow Graph

…

…

…

= successors of

1. Fprop: visit nodes in topo-sort order
- Compute value of node given predecessors

2. Bprop:
- initialize output gradient = 1
- visit nodes in reverse order:

Compute gradient wrt each node using
gradient wrt successors

Single scalar output

67

Automatic Differentiation

• The gradient computation can
be automatically inferred from
the symbolic expression of the
fprop.

• Each node type needs to know
how to compute its output and
how to compute the gradient
wrt its inputs given the
gradient wrt its output.

• Easy and fast prototyping

68

Learning word-level classifiers: POS

and NER

Part 1.6: The Basics

69

The Model

(Collobert & Weston 2008;
Collobert et al. 2011)

• Similar to word vector
learning but replaces the
single scalar score with a
Softmax/Maxent classifier

• Training is again done via
backpropagation which gives
an error similar to the score
in the unsupervised word
vector learning model

70

S

c1 c2 c3

x1 x2 x3 +1

a1 a2

The Model - Training

• We already know the softmax classifier and how to optimize it

• The interesting twist in deep learning is that the input features
are also learned, similar to learning word vectors with a score:

S

c1 c2 c3

x1 x2 x3 +1

a1 a2

s U2

W23

x1 x2 x3 +1

a1 a2

71

POS
WSJ (acc.)

NER
CoNLL (F1)

State-of-the-art* 97.24 89.31

Supervised NN 96.37 81.47

Unsupervised pre-training
followed by supervised NN**

97.20 88.87

+ hand-crafted features*** 97.29 89.59

* Representative systems: POS: (Toutanova et al. 2003), NER: (Ando & Zhang
2005)

** 130,000-word embedding trained on Wikipedia and Reuters with 11 word
window, 100 unit hidden layer – for 7 weeks! – then supervised task training

***Features are character suffixes for POS and a gazetteer for NER

The secret sauce is the unsupervised word

vector pre-training on a large text collection

72

POS
WSJ (acc.)

NER
CoNLL (F1)

Supervised NN 96.37 81.47

NN with Brown clusters 96.92 87.15

Fixed embeddings* 97.10 88.87

C&W 2011** 97.29 89.59

* Same architecture as C&W 2011, but word embeddings are kept constant
during the supervised training phase

** C&W is unsupervised pre-train + supervised NN + features model of last slide

Supervised refinement of the unsupervised

word representation helps

73

Sharing statistical strength

Part 1.7

74

Multi-Task Learning

• Generalizing better to new
tasks is crucial to approach
AI

• Deep architectures learn
good intermediate
representations that can be
shared across tasks

• Good representations make
sense for many tasks

raw input x

task 1

output y1

task 3

output y3

task 2

output y2

shared

intermediate

representation h

75

Combining Multiple Sources of Evidence

with Shared Embeddings

• Relational learning

• Multiple sources of information / relations

• Some symbols (e.g. words, Wikipedia entries) shared

• Shared embeddings help propagate information
among data sources: e.g., WordNet, XWN, Wikipedia,
FreeBase, …

76

Sharing Statistical Strength

• Besides very fast prediction, the main advantage of
deep learning is statistical

• Potential to learn from less labeled examples because
of sharing of statistical strength:

• Unsupervised pre-training & multi-task learning

• Semi-supervised learning

77

Semi-Supervised Learning

• Hypothesis: P(c|x) can be more accurately computed using
shared structure with P(x)

purely
supervised

78

Semi-Supervised Learning

• Hypothesis: P(c|x) can be more accurately computed using
shared structure with P(x)

semi-
supervised

79

Deep autoencoders

Alternative to contrastive unsupervised word learning

• Another is RBMs (Hinton et al. 2006), which we don’t cover today

Works well for fixed input representations

1. Definition, intuition and variants of autoencoders

2. Stacking for deep autoencoders

3. Why do autoencoders improve deep neural nets so much?

80

Auto-Encoders

• Multilayer neural net with target output = input

• Reconstruction=decoder(encoder(input))

• Probable inputs have
small reconstruction error

…

code= latent features

…

encoder

decoder

input

reconstruction

81

PCA = Linear Manifold = Linear Auto-Encoder

reconstruction error vector

Linear manifold

reconstruction(x)

x

input x, 0-mean
features=code=h(x)=W x
reconstruction(x)=WT h(x) = WT W x
W = principal eigen-basis of Cov(X)

LSA example:
x = (normalized) distribution
of co-occurrence frequencies

82

The Manifold Learning Hypothesis

• Examples concentrate near a lower dimensional “manifold”
(region of high density where small changes are only allowed in
certain directions)

83

//localhost/Volumes/grieg.iro.umontreal.ca/Desktop/images/manifold.png

84

Auto-Encoders Learn Salient Variations, like a

non-linear PCA

Minimizing reconstruction error

forces latent representation of

“similar inputs” to stay on

manifold

Auto-Encoder Variants

• Discrete inputs: cross-entropy or log-likelihood reconstruction
criterion (similar to used for discrete targets for MLPs)

• Preventing them to learn the identity everywhere:

• Undercomplete (eg PCA): bottleneck code smaller than input

• Sparsity: penalize hidden unit activations so at or near 0

[Goodfellow et al 2009]

• Denoising: predict true input from corrupted input

[Vincent et al 2008]

• Contractive: force encoder to have small derivatives

[Rifai et al 2011]
85

Sparse autoencoder illustration for images

Natural Images

Learned bases: “Edges”

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

 0.8 * + 0.3 * + 0.5 *

[a1, …, a64] = [0, 0, …, 0, 0.8, 0, …, 0, 0.3, 0, …, 0, 0.5, 0]
(feature representation)

Test example

86

Stacking Auto-Encoders

• Can be stacked successfully (Bengio et al NIPS’2006) to form highly
non-linear representations

87

Layer-wise Unsupervised Learning

…input

88

Layer-wise Unsupervised Pre-training

…

…

input

features

89

Layer-wise Unsupervised Pre-training

…

…

…

input

features

reconstruction

of input
=
?

… input

90

Layer-wise Unsupervised Pre-training

…

…

input

features

91

Layer-wise Unsupervised Pre-training

…

…

input

features

…More abstract

features

92

…

…

input

features

…More abstract

features

reconstruction

of features
=
?

… ………

Layer-Wise Unsupervised Pre-training
Layer-wise Unsupervised Learning

93

…

…

input

features

…More abstract

features

Layer-wise Unsupervised Pre-training

94

…

…

input

features

…More abstract

features

…
Even more abstract

features

Layer-wise Unsupervised Learning

95

…

…

input

features

…More abstract

features

…
Even more abstract

features

Output

f(X) six
Target

Y
two!=

?

Supervised Fine-Tuning

96

Why is unsupervised pre-training working so

well?

• Regularization hypothesis:

• Representations good for P(x)
are good for P(y|x)

• Optimization hypothesis:

• Unsupervised initializations start
near better local minimum of
supervised training error

• Minima otherwise not
achievable by random
initialization

Erhan, Courville, Manzagol,
Vincent, Bengio (JMLR, 2010)

97

Recursive Deep Learning

Part 2

98

Building on Word Vector Space Models

99

x2

x10 1 2 3 4 5 6 7 8 9 10

5

4

3

2

1

Monday

9
2

Tuesday 9.5
1.5

By mapping them into the same vector space!

1
5

1.1
4

the country of my birth
the place where I was born

But how can we represent the meaning of longer phrases?

France
2
2.5

Germany 1
3

How should we map phrases into a vector

space?

the country of my birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

2.5
3.8

5.5
6.1

1
3.5

1
5

Use principle of compositionality

The meaning (vector) of a sentence
is determined by
(1) the meanings of its words and
(2) the rules that combine them.

Models in this section
can jointly learn parse
trees and compositional
vector representations

x2

x1
0 1 2 3 4 5 6 7 8 9 10

5

4

3

2

1

the country of my birth

the place where I was born

Monday

Tuesday

France

Germany

100

Semantic Vector Spaces

• Distributional Techniques

• Brown Clusters

• Useful as features inside
models, e.g. CRFs for NER, etc.

• Cannot capture longer phrases

Single Word Vectors Documents Vectors

• Bag of words models

• LSA, LDA

• Great for IR, document
exploration, etc.

• Ignore word order, no
detailed understanding

Vectors representing
Phrases and Sentences
that do not ignore word order
and capture semantics for NLP tasks

Recursive Deep Learning

1. Motivation

2. Recursive Neural Networks for Parsing

3. Optimization and Backpropagation Through Structure

4. Compositional Vector Grammars: Parsing

5. Recursive Autoencoders: Paraphrase Detection

6. Matrix-Vector RNNs: Relation classification

7. Recursive Neural Tensor Networks: Sentiment Analysis

102

Sentence Parsing: What we want

9
1

5
3

8
5

9
1

4
3

NP
NP

PP

S

7
1

VP

The cat sat on the mat.103

Learn Structure and Representation

NP
NP

PP

S

VP

5
2 3

3

8
3

5
4

7
3

The cat sat on the mat.

9
1

5
3

8
5

9
1

4
3

7
1

104

Recursive Neural Networks for Structure

Prediction

on the mat.

9
1

4
3

3
3

8
3

8
5

3
3

Neural

Network

8
3

1.3

Inputs: two candidate children’s representations
Outputs:
1. The semantic representation if the two nodes are merged.
2. Score of how plausible the new node would be.

8
5

105

Recursive Neural Network Definition

score = UTp

p = tanh(W + b),

Same W parameters at all nodes
of the tree

8
5

3
3

Neural

Network

8
3

1.3score = = parent

c1 c2

c1

c2

106

Related Work to Socher et al. (ICML 2011)

Pollack (1990): Recursive auto-associative memories

Previous Recursive Neural Networks work by
Goller & Küchler (1996), Costa et al. (2003) assumed
fixed tree structure and used one hot vectors.

Hinton (1990) and Bottou (2011): Related ideas about
recursive models and recursive operators as smooth
versions of logic operations

107

Parsing a sentence with an RNN

Neural

Network

0.1

2
0

Neural

Network

0.4

1
0

Neural

Network

2.3

3
3

9
1

5
3

8
5

9
1

4
3

7
1

Neural

Network

3.1

5
2

Neural

Network

0.3

0
1

The cat sat on the mat.

108

Parsing a sentence

9
1

5
3

5
2

Neural

Network

1.1
2
1

Neural

Network

0.1

2
0

Neural

Network

0.4

1
0

Neural

Network

2.3

3
3

5
3

8
5

9
1

4
3

7
1

109

The cat sat on the mat.

Parsing a sentence

5
2

Neural

Network

1.1
2
1

Neural

Network

0.1

2
0

3
3

Neural

Network

3.6

8
3

9
1

5
3
5
3

8
5

9
1

4
3

7
1

110

The cat sat on the mat.

Parsing a sentence

5
2

3
3

8
3

5
4

7
3

9
1

5
3
5
3

8
5

9
1

4
3

7
1

111

The cat sat on the mat.

Max-Margin Framework - Details

• The score of a tree is computed by
the sum of the parsing decision
scores at each node.

• Similar to max-margin parsing (Taskar et al. 2004), a supervised
max-margin objective

• The loss penalizes all incorrect decisions

• Structure search for A(x) was maximally greedy

• Instead: Beam Search with Chart

8
5

3
3

RNN

8
31.3

112

Backpropagation Through Structure

Introduced by Goller & Küchler (1996)

Principally the same as general backpropagation

Two differences resulting from the tree structure:

• Split derivatives at each node

• Sum derivatives of W from all nodes

113

BTS: Split derivatives at each node

During forward prop, the parent is computed using 2 children

Hence, the errors need to be computed wrt each of them:

where each child’s error is n-dimensional

8
5

3
3

8
3

c1

p = tanh(W + b)c1

c2
c2

8
5

3
3

8
3

c1 c2

114

BTS: Sum derivatives of all nodes

You can actually assume it’s a different W at each node

Intuition via example:

If take separate derivatives of each occurrence, we get same:

115

BTS: Optimization

• As before, we can plug the gradients into a
standard off-the-shelf L-BFGS optimizer

• Best results with AdaGrad (Duchi et al, 2011):

• For non-continuous objective use subgradient
method (Ratliff et al. 2007)

116

Discussion: Simple RNN

• Good results with single matrix RNN (more later)

• Single weight matrix RNN could capture some
phenomena but not adequate for more complex,
higher order composition and parsing long sentences

• The composition function is the same
for all syntactic categories, punctuation, etc

W

c1 c2

p
Wscore

s

Solution: Syntactically-Untied RNN

• Idea: Condition the composition function on the
syntactic categories, “untie the weights”

• Allows for different composition functions for pairs
of syntactic categories, e.g. Adv + AdjP, VP + NP

• Combines discrete syntactic categories with
continuous semantic information

Solution: CVG =

PCFG + Syntactically-Untied RNN

• Problem: Speed. Every candidate score in beam
search needs a matrix-vector product.

• Solution: Compute score using a linear combination
of the log-likelihood from a simple PCFG + RNN

• Prunes very unlikely candidates for speed

• Provides coarse syntactic categories of the
children for each beam candidate

• Compositional Vector Grammars: CVG = PCFG + RNN

Details: Compositional Vector Grammar

• Scores at each node computed by combination of
PCFG and SU-RNN:

• Interpretation: Factoring discrete and continuous
parsing in one model:

• Socher et al. (2013): More details at ACL

Related Work

• Resulting CVG Parser is related to previous work that extends PCFG
parsers

• Klein and Manning (2003a) : manual feature engineering

• Petrov et al. (2006) : learning algorithm that splits and merges
syntactic categories

• Lexicalized parsers (Collins, 2003; Charniak, 2000): describe each
category with a lexical item

• Hall and Klein (2012) combine several such annotation schemes in a
factored parser.

• CVGs extend these ideas from discrete representations to richer
continuous ones

• Hermann & Blunsom (2013): Combine Combinatory Categorial
Grammars with RNNs and also untie weights, see upcoming ACL 2013

Experiments
• Standard WSJ split, labeled F1

• Based on simple PCFG with fewer states

• Fast pruning of search space, few matrix-vector products

• 3.8% higher F1, 20% faster than Stanford factored parser

Parser Test, All Sentences

Stanford PCFG, (Klein and Manning, 2003a) 85.5

Stanford Factored (Klein and Manning, 2003b) 86.6

Factored PCFGs (Hall and Klein, 2012) 89.4

Collins (Collins, 1997) 87.7

SSN (Henderson, 2004) 89.4

Berkeley Parser (Petrov and Klein, 2007) 90.1

CVG (RNN) (Socher et al., ACL 2013) 85.0

CVG (SU-RNN) (Socher et al., ACL 2013) 90.4

Charniak - Self Trained (McClosky et al. 2006) 91.0

Charniak - Self Trained-ReRanked (McClosky et al. 2006) 92.1

SU-RNN Analysis

• Learns notion of soft head words

DT-NP

VP-NP

Analysis of resulting vector representations

All the figures are adjusted for seasonal variations
1. All the numbers are adjusted for seasonal fluctuations
2. All the figures are adjusted to remove usual seasonal patterns

Knight-Ridder wouldn’t comment on the offer
1. Harsco declined to say what country placed the order
2. Coastal wouldn’t disclose the terms

Sales grew almost 7% to $UNK m. from $UNK m.
1. Sales rose more than 7% to $94.9 m. from $88.3 m.
2. Sales surged 40% to UNK b. yen from UNK b.

SU-RNN Analysis

• Can transfer semantic information from
single related example

• Train sentences:

• He eats spaghetti with a fork.

• She eats spaghetti with pork.

• Test sentences

• He eats spaghetti with a spoon.

• He eats spaghetti with meat.

SU-RNN Analysis

Labeling in Recursive Neural Networks

Neural

Network

8
3

• We can use each node’s
representation as features for a
softmax classifier:

• Training similar to model in part 1 with
standard cross-entropy error + scores

Softmax

Layer

NP

127

Scene Parsing

• The meaning of a scene image is
also a function of smaller regions,

• how they combine as parts to form
larger objects,

• and how the objects interact.

Similar principle of compositionality.

128

Algorithm for Parsing Images
Same Recursive Neural Network as for natural language parsing!

(Socher et al. ICML 2011)

Features

Grass Tree

Segments

Semantic
Representations

People Building

Parsing Natural Scene ImagesParsing Natural Scene Images

129

Multi-class segmentation

Method Accuracy

Pixel CRF (Gould et al., ICCV 2009) 74.3

Classifier on superpixel features 75.9

Region-based energy (Gould et al., ICCV 2009) 76.4

Local labelling (Tighe & Lazebnik, ECCV 2010) 76.9

Superpixel MRF (Tighe & Lazebnik, ECCV 2010) 77.5

Simultaneous MRF (Tighe & Lazebnik, ECCV 2010) 77.5

Recursive Neural Network 78.1

Stanford Background Dataset (Gould et al. 2009)130

Recursive Deep Learning

1. Motivation

2. Recursive Neural Networks for Parsing

3. Theory: Backpropagation Through Structure

4. Compositional Vector Grammars: Parsing

5. Recursive Autoencoders: Paraphrase Detection

6. Matrix-Vector RNNs: Relation classification

7. Recursive Neural Tensor Networks: Sentiment Analysis

131

Paraphrase Detection

132

Pollack said the plaintiffs failed to show that Merrill and
Blodget directly caused their losses

Basically , the plaintiffs did not show that omissions in
Merrill’s research caused the claimed losses

The initial report was made to Modesto Police December
28

It stems from a Modesto police report

How to compare

the meaning

of two sentences?

133

Unsupervised Recursive Autoencoders

Similar to Recursive Neural Net but instead of a
supervised score we compute a reconstruction error at
each node (Socher et al. EMNLP 2011)

x2 x3x1

y1=f(W[x2;x3] + b)

y2=f(W[x1;y1] + b)

134

Unsupervised unfolding RAE

135

Attempt to encode entire tree structure at each node

Recursive Autoencoders for Full Sentence

Paraphrase Detection

Unsupervised Unfolding RAE and a pair-wise sentence comparison
of nodes in parsed trees (Socher et al. (NIPS 2011)

136

Recursive Autoencoders for Full Sentence

Paraphrase Detection

Experiments on Microsoft Research Paraphrase Corpus
(Dolan et al. 2004)

Method Acc. F1

Rus et al.(2008) 70.6 80.5

Mihalcea et al.(2006) 70.3 81.3

Islam et al.(2007) 72.6 81.3

Qiu et al.(2006) 72.0 81.6

Fernando et al.(2008) 74.1 82.4

Wan et al.(2006) 75.6 83.0

Das and Smith (2009) 73.9 82.3

Das and Smith (2009) + 18 Surface Features 76.1 82.7

F. Bu et al. (ACL 2012): String Re-writing Kernel 76.3 --

Unfolding Recursive Autoencoder (NIPS 2011) 76.8 83.6
137

Recursive Autoencoders for Full Sentence

Paraphrase Detection

138

Recursive Deep Learning

1. Motivation

2. Recursive Neural Networks for Parsing

3. Theory: Backpropagation Through Structure

4. Compositional Vector Grammars: Parsing

5. Recursive Autoencoders: Paraphrase Detection

6. Matrix-Vector RNNs: Relation classification

7. Recursive Neural Tensor Networks: Sentiment Analysis

139

Compositionality Through Recursive Matrix-

Vector Spaces

140

One way to make the composition function more powerful was by
untying the weights W

But what if words act mostly as an operator, e.g. “very” in
very good

Proposal: A new composition function

p = tanh(W + b)c1

c2

Compositionality Through Recursive Matrix-

Vector Recursive Neural Networks

p = tanh(W + b)c1

c2
p = tanh(W + b)C2c1

C1c2

141

Predicting Sentiment Distributions

Good example for non-linearity in language

142

MV-RNN for Relationship Classification

Relationship Sentence with labeled nouns for which
to predict relationships

Cause-
Effect(e2,e1)

Avian [influenza]e1 is an infectious
disease caused by type a strains of the
influenza [virus]e2.

Entity-
Origin(e1,e2)

The [mother]e1 left her native [land]e2

about the same time and they were
married in that city.

Message-
Topic(e2,e1)

Roadside [attractions]e1 are frequently
advertised with [billboards]e2 to attract
tourists.

143

Sentiment Detection

144

Sentiment detection is crucial to business
intelligence, stock trading, …

Sentiment Detection and Bag-of-Words Models

145

Most methods start with a bag of words
+ linguistic features/processing/lexica

But such methods (including tf-idf) can’t
distinguish:

+ white blood cells destroying an infection

− an infection destroying white blood cells

Sentiment Detection and Bag-of-Words Models

• Sentiment is that sentiment is “easy”

• Detection accuracy for longer documents ∼90%

• Lots of easy cases (… horrible … or … awesome …)

• For dataset of single sentence movie reviews
(Pang and Lee, 2005) accuracy never reached
above 80% for >7 years

• Harder cases require actual understanding of
negation and its scope and other semantic effects

Data: Movie Reviews

Stealing Harvard doesn’t care about
cleverness, wit or any other kind of
intelligent humor.

There are slow and repetitive parts
but it has just enough spice to keep it
interesting.

147

Two missing pieces for improving sentiment

1. Compositional Training Data

2. Better Compositional model

1. New Sentiment Treebank

1. New Sentiment Treebank

• Parse trees of 11,855 sentences

• 215,154 phrases with labels

• Allows training and evaluating
with compositional information

2. New Compositional Model

• Recursive Neural Tensor Network

• More expressive than any other RNN so far

• Idea: Allow more interactions of vectors

2. New Compositional Model

• Recursive Neural Tensor Network

2. New Compositional Model

• Recursive Neural Tensor Network

Recursive Neural Tensor Network

Experimental Result on Treebank

Experimental Result on Treebank

• RNTN can capture X but Y

• RNTN accuracy of 72%, compared to MV-RNN (65),
biNB (58) and RNN (54)

Negation Results

Negation Results
• Most methods capture that negation often makes

things more negative (See Potts, 2010)

• Analysis on negation dataset

Negation Results
• But how about negating negatives?

• Positive activation should increase!

160

Visualizing Deep Learning: Word Embeddings

Visual Grounding

• Idea: Map sentences and images into a joint space

Discussion: Compositional Structure

• Recursive Neural Networks so far
used constituency trees
which results in more syntactically
influenced representations

• Instead: Use dependency trees which capture more
semantic structure

Dependency Tree - Recursive Neural Network

• l (i) = number of leaf nodes at node i

Convolutional Neural Network for Images

• CNN trained on ImageNet (Le et al. 2013)
• RNN trained to give large inner products

between sentence and image vectors:

Results

Results

Image Search Mean
Rank

Random 52.1

Bag of Words 14.6

CT-RNN 16.1

Recurrent Neural Network 19.2

Kernelized Canonical Correlation Analysis 15.9

DT-RNN 12.5

Describing Images Mean
Rank

Random 92.1

Bag of Words 21.1

CT-RNN 23.9

Recurrent Neural Network 27.1

Kernelized Canonical Correlation Analysis 18.0

DT-RNN 16.9

Overview of RNN Model Variations

• Objective Functions

• Supervised Scores for Structure Prediction

• Classifier for Sentiment, Relations, Visual Objects, Logic

• Unsupervised autoencoding immediate children or entire tree structure

• Composition Functions

• Syntactically-Untied Weights

• Matrix Vector RNN

• Tensor-Based Models

• Tree Structures

• Constituency Parse Trees

• Dependency Parse Trees

• Combinatory Categorial Grammar Trees (Hermann and Blunsom, 2013)

• Fixed Tree Structures (Connections to CNNs)
168

Summary: Recursive Deep Learning

• Recursive Deep Learning can predict hierarchical structure and classify the
structured output using compositional vectors

• State-of-the-art performance (all with code on www.socher.org)
• Parsing on the WSJ (Java code soon)
• Sentiment Analysis on multiple corpora
• Paraphrase detection with unsupervised RNNs
• Relation Classification on SemEval 2011, Task8
• Object detection on Stanford background and MSRC datasets

169

Features

Grass Tree

Segments

A small crowd
quietly enters

the historic
church

historicthe

quietly
enters

S
VP

Det. Adj.

NP

Semantic
Representations

VP

A small
crowd

NP

NP

church

N.

People Building

Indices
Words

Semantic
Representations

Parsing Natural Language SentencesParsing Natural Language Sentences

Parsing Natural Scene ImagesParsing Natural Scene Images

http://www.socher.org/

Part 3

1. Assorted Speech and NLP Applications

2. Deep Learning: General Strategy and Tricks

3. Resources (readings, code, …)

4. Discussion

170

Assorted Speech and NLP Applications

Part 3.1: Applications

171

Existing NLP Applications

• Language Modeling (Speech Recognition, Machine Translation)

• Word-Sense Learning and Disambiguation

• Reasoning over Knowledge Bases

• Acoustic Modeling

• Part-Of-Speech Tagging

• Chunking

• Named Entity Recognition

• Semantic Role Labeling

• Parsing

• Sentiment Analysis

• Paraphrasing

• Question-Answering 172

Convolutional Neural Networks!

• Phil will talk about them in the evening

173

Language Modeling

• Predict P(next word | previous word)

• Gives a probability for a longer sequence

• Applications to Speech, Translation and Compression

• Computational bottleneck: large vocabulary V means that
computing the output costs #hidden units × |V|

174

Neural Language Model

• Bengio et al NIPS 2000

and JMLR 2003 “A
Neural Probabilistic
Language Model”
• Each word represented by

a distributed continuous-
valued code

• Generalizes to sequences
of words that are
semantically similar to
training sequences

175

Application to Machine Translation

• Language model conditioned on source and target

• Speed improvements (pre-computation,
unnormalized output)

• Devlin et al. ACL 2014, best paper

176

Word Vectors have linear relationships

• Mikolov et al. 2013179

Word Vectors have linear relationships

180

• Mikolov et al. 2013

Best word vectors are not “deep”

• They all capture co-occurrence statistics in some way

• Global Methods:

• LSA (Deerwester et al.), LDA (Blei et al.), HAL (Lund &
Burgess), Hellinger-PCA (Lebret & Collobert)

• Scale with vocabulary size and efficient usage of statistics

• Window based / Neural Network based models

• NNLM, HLBL, RNN, ivLBL, Skip-gram/CBOW, (Bengio et al;
Collobert & Weston; Huang et al; Mnih & Hinton; Mnih &
Kavukcuoglu; Mikolov et al.)

Word Vectors: Recent development

• Capturing local co-occurrence statistics

• Produces state of the art linear semantic relationships

• Efficient use of statistics:
Can train on (comparably) little data and gigantic data!

• Fast, only non-zero counts matter

• Good performance with small (100-300) dimensions:
Important for downstream tasks

Pennington et al. 2014

Word Vectors: Recent development

• Spearman correlation between human judgments and
cosine similarity between word vectors

Word Vectors: Recent development

• Linear relationship prediction accuracy

Learning Multiple Word Vectors

• Tackles problems with polysemous words

• Can be done with both standard tf-idf based
methods [Reisinger and Mooney, NAACL 2010]

• Neural word vector model by [Huang et al. ACL 2012]
learns multiple prototypes using both local and global context

• State of the art
correlations with
human similarity
judgments

185

Learning Multiple Word Vectors

Visualization of learned word vectors from Huang et al. (ACL 2012)

186

Common Sense Reasoning

Inside Knowledge Bases

187

Question: Can Neural Networks learn to capture logical inference,
set inclusions, part-of and hypernym relationships?

Neural Networks for Reasoning

over Relationships

• Higher scores for each
triplet T = (e1,R,e2)
indicate that entities are
more likely in relationship

• Training uses contrastive
estimation function, similar
to word vector learning

• NTN scoring function:

• Cost:
188

Accuracy of Predicting True and False

Relationships
• Related Work

• Bordes, Weston,
Collobert & Bengio,
AAAI 2011

• Bordes, Glorot,
Weston & Bengio,
AISTATS 2012

189

Model FreeBase WordNet

Distance Model 68.3 61.0

Hadamard Model 80.0 68.8

Standard Layer Model (<NTN) 76.0 85.3

Bilinear Model (<NTN) 84.1 87.7

Neural Tensor Network (Chen et al. 2013) 86.2 90.0

Accuracy Per Relationship

190

Deep Learning

General Strategy and Tricks

Part 3.2

191

General Strategy
1. Select network structure appropriate for problem

1. Structure: Single words, fixed windows vs. Recursive vs.
Recurrent, Sentence Based vs. Bag of words

2. Nonlinearity

2. Check for implementation bugs with gradient checks

3. Parameter initialization

4. Optimization tricks

5. Check if the model is powerful enough to overfit

1. If not, change model structure or make model “larger”

2. If you can overfit: Regularize

192

Non-linearities: What’s used

logistic (“sigmoid”) tanh

tanh is just a rescaled and shifted sigmoid

tanh is what is most used and often performs best for deep nets

tanh(z) = 2logistic(2z)-1

193

Non-linearities: There are various other choices

hard tanh soft sign rectified linear

• hard tanh similar but computationally cheaper than tanh and saturates hard.

• [Glorot and Bengio AISTATS 2010, 2011] discuss softsign and rectifier

rect(z) = max(z, 0)softsign(z) =
a

1+ a

194

MaxOut Network

195

A recent type of nonlinearity/network

Goodfellow et al. (2013)

Where

This function too is a universal approximator

State of the art on several image datasets

Gradient Checks are Awesome!

• Allow you to know that there are no bugs in your neural
network implementation!

• Steps:

1. Implement your gradient

2. Implement a finite difference computation by looping
through the parameters of your network, adding and
subtracting a small epsilon (∼10^-4) and estimate
derivatives

3. Compare the two and make sure they are almost the same
196

,

General Strategy
1. Select appropriate Network Structure

1. Structure: Single words, fixed windows vs Recursive
Sentence Based vs Bag of words

2. Nonlinearity

2. Check for implementation bugs with gradient check

3. Parameter initialization

4. Optimization tricks

5. Check if the model is powerful enough to overfit

1. If not, change model structure or make model “larger”

2. If you can overfit: Regularize

197

Parameter Initialization

• Initialize hidden layer biases to 0 and output (or reconstruction)
biases to optimal value if weights were 0 (e.g., mean target or
inverse sigmoid of mean target).

• Initialize weights ∼ Uniform(−r, r), r inversely proportional to
fan-in (previous layer size) and fan-out (next layer size):

for tanh units, and 4x bigger for sigmoid units [Glorot AISTATS 2010]

• Pre-training with Restricted Boltzmann machines

198

• Gradient descent uses total gradient over all examples per
update, SGD updates after only 1 or few examples:

• L = loss function, zt = current example, θ = parameter vector, and
εt = learning rate.

• Ordinary gradient descent as a batch method is very slow, should
never be used. Use 2nd order batch method such as L-BFGS. On
large datasets, SGD usually wins over all batch methods. On
smaller datasets L-BFGS or Conjugate Gradients win. Large-batch
L-BFGS extends the reach of L-BFGS [Le et al. ICML 2011].

Stochastic Gradient Descent (SGD)

199

Learning Rates

• Simplest recipe: keep it fixed and use the same for all
parameters.

• Collobert scales them by the inverse of square root of the fan-in
of each neuron

• Better results can generally be obtained by allowing learning
rates to decrease, typically in O(1/t) because of theoretical
convergence guarantees, e.g.,
with hyper-parameters ε0 and τ

• Better yet: No hand-set learning rates by using L-BFGS or
AdaGrad (Duchi, Hazan, & Singer 2011)

200

Long-Term Dependencies and Clipping

Trick

• In very deep networks such as recurrent networks (or possibly
recursive ones), the gradient is a product of Jacobian matrices,
each associated with a step in the forward computation. This
can become very small or very large quickly [Bengio et al 1994],
and the locality assumption of gradient descent breaks down.

• The solution first introduced by Mikolov is to clip gradients
to a maximum value. Makes a big difference in RNNs.

201

General Strategy
1. Select appropriate Network Structure

1. Structure: Single words, fixed windows vs Recursive Sentence Based vs Bag of words

2. Nonlinearity

2. Check for implementation bugs with gradient check

3. Parameter initialization

4. Optimization tricks

5. Check if the model is powerful enough to overfit

1. If not, change model structure or make model “larger”

2. If you can overfit: Regularize

Assuming you found the right network structure, implemented it
correctly, optimize it properly and you can make your model
overfit on your training data.

Now, it’s time to regularize
202

Prevent Overfitting:

Model Size and Regularization

• Simple first step: Reduce model size by lowering number of
units and layers and other parameters

• Standard L1 or L2 regularization on weights

• Early Stopping: Use parameters that gave best validation error

• Sparsity constraints on hidden activations, e.g., add to cost:

203

Prevent Feature Co-adaptation

Dropout (Hinton et al. 2012)

• Training time: at each instance of evaluation (in online SGD-
training), randomly set 50% of the inputs to each neuron to 0

• Test time: halve the model weights (now twice as many)

• This prevents feature co-adaptation: A feature cannot only be
useful in the presence of particular other features

• A kind of middle-ground between Naïve Bayes (where all
feature weights are set independently) and logistic regression
models (where weights are set in the context of all others)

• Can be thought of as a form of model bagging

• It also acts as a strong regularizer
204

Deep Learning Tricks of the Trade

• Y. Bengio (2012), “Practical Recommendations for Gradient-
Based Training of Deep Architectures”

• Unsupervised pre-training

• Stochastic gradient descent and setting learning rates

• Main hyper-parameters
• Learning rate schedule & early stopping
• Minibatches
• Parameter initialization
• Number of hidden units
• L1 or L2 weight decay
• Sparsity regularization

• Debugging use finite difference gradient checks

• How to efficiently search for hyper-parameter configurations

205

Resources: Tutorials and Code

Part 3.3: Resources

206

Related Tutorials

• See “Neural Net Language Models” Scholarpedia entry

• Deep Learning tutorials: http://deeplearning.net/tutorials

• Stanford deep learning tutorials with simple programming
assignments and reading list http://deeplearning.stanford.edu/wiki/

• Recursive Autoencoder class project
http://cseweb.ucsd.edu/~elkan/250B/learningmeaning.pdf

• Graduate Summer School: Deep Learning, Feature Learning
http://www.ipam.ucla.edu/programs/gss2012/

• ICML 2012 Representation Learning tutorial
http://www.iro.umontreal.ca/~bengioy/talks/deep-learning-tutorial-
2012.html

• More reading (including tutorial references):
http://www.socher.org Deep Learning Tutorial/starter code207

http://deeplearning.net/tutorials
http://deeplearning.stanford.edu/wiki/
http://cseweb.ucsd.edu/~elkan/250B/learningmeaning.pdf
http://www.ipam.ucla.edu/programs/gss2012/
http://socher.org/

Software

• Theano (Python CPU/GPU) mathematical and deep learning
library http://deeplearning.net/software/theano
• Can do automatic, symbolic differentiation

• Senna: POS, Chunking, NER, SRL
• by Collobert et al. http://ronan.collobert.com/senna/
• State-of-the-art performance on many tasks
• 3500 lines of C, extremely fast and using very little memory

• Recurrent Neural Network Language Model
http://www.fit.vutbr.cz/~imikolov/rnnlm/

• Recursive Neural Net and RAE models for paraphrase
detection, sentiment analysis, relation classification
http://www.socher.org

208

http://deeplearning.net/software/theano
http://ronan.collobert.com/senna/
http://www.fit.vutbr.cz/~imikolov/rnnlm/
http://www.socher.org/

Software: what’s next

• Off-the-shelf SVM packages are useful to researchers
from a wide variety of fields (no need to understand
RKHS).

• A good goal for NLP deep learning: Build off-the-shelf
NLP classification packages that use as training input
only raw text (instead of features) possibly with a label.

209

Discussion

Part 3.4:

210

Concerns

Many algorithms and variants (burgeoning field)

Hyper-parameters (layer size, regularization, possibly
learning rate)

• Use multi-core machines, clusters and random
sampling for cross-validation (Bergstra & Bengio 2012)

• Pretty common for powerful methods, e.g. BM25, LDA

• Can use (mini-batch) L-BFGS instead of SGD

211

Concerns

Not always obvious how to combine with existing NLP

• Simple: Add word or phrase vectors as features. Gets
close to state of the art for NER, [Turian et al, ACL
2010]

• Integrate with known problem structures: Recursive
and recurrent networks for trees and chains

• Your research here

212

Concerns

Slower to train than linear models

• Only by a small constant factor, and much more
compact than non-parametric (e.g. n-gram models)

• Very fast during inference/test time (feed-forward
pass is just a few matrix multiplies)

Need more training data

• Can handle and benefit from more training data,
suitable for age of Big Data (Google trains neural
nets with a billion connections, [Le et al, ICML 2012])

213

Concerns

There aren’t many good ways to encode prior knowledge
about the structure of language into deep learning models

• There is some truth to this. However:

• You can choose architectures suitable for a problem
domain, as we did for linguistic structure

• You can include human-designed features in the first
layer, just like for a linear model

• And the goal is to get the machine doing the learning!

214

Concern:

Problems with model interpretability

No discrete categories or words, everything is a continuous vector.
We’d like have symbolic features like NP, VP, etc. and see why their
combination makes sense.

• True, but most of language is fuzzy and many words have soft
relationships to each other. Also, many NLP features are
already not human-understandable (e.g.,
concatenations/combinations of different features).

• Can try by projections of weights and nearest neighbors, see
part 2

215

Concern: non-convex optimization

Can initialize system with convex learner

• Convex SVM

• Fixed feature space

Then optimize non-convex variant (add and tune learned features),
can’t be worse than convex learner

Not a big problem in practice (often relatively stable performance
across different local optima)

216

Advantages

217

Despite a small community in the intersection of deep
learning and NLP, already many state of the art results on
a variety of language tasks

Often very simple matrix derivatives (backprop) for
training and matrix multiplications for testing fast
implementation

Fast inference and well suited for multi-core CPUs/GPUs
and parallelization across machines

Learning Multiple Levels of Abstraction

The big payoff of deep learning is
to learn feature representations
and higher levels of abstraction

This allows much easier
generalization and transfer
between domains, languages, and
tasks and even modalities

218

The End

219

