Introduction to Machine Learning

Linear Classifiers

Lisbon Machine Learning School, 2014

Ryan McDonald

Google Inc., London
E-mail: ryanmcd@google.com
Linear Classifiers

▶ Go onto ACL Anthology
▶ Do the same on Google Scholar
 ▶ “Maximum Entropy” & “NLP” 9,000 hits, 240 before 2000
 ▶ “SVM” & “NLP” 11,000 hits, 556 before 2000
 ▶ “Perceptron” & “NLP”, 3,000 hits, 147 before 2000
▶ All are examples of linear classifiers
▶ All have become tools in any NLP/CL researchers tool-box in past 15 years
 ▶ Arguably the most important tool
Experiment

- Document 1 – label: 0; words: ★ ◊ ○
- Document 2 – label: 0; words: ★ ♥ △
- Document 3 – label: 1; words: ★ △ ♠
- Document 4 – label: 1; words: ◊ △ ○
Experiment

- Document 1 – label: 0; words: ★ ◊ ○
- Document 2 – label: 0; words: ★ ♥ △
- Document 3 – label: 1; words: ★ △ ♠
- Document 4 – label: 1; words: ◊ △ ○
- New document – words: ★ ◊ ○; label ?
Experiment

- Document 1 – label: 0; words: ⭐ ⧧ ○
- Document 2 – label: 0; words: ⭐ ♥ △
- Document 3 – label: 1; words: ⭐ △ ♠
- Document 4 – label: 1; words: ⧧ △ ○
- New document – words: ⭐ ⧧ ○; label ?
- New document – words: ⭐ ⧧ ♥; label ?
Experiment

- Document 1 – label: 0; words: ⋆ ◊ ◦
- Document 2 – label: 0; words: ⋆ ♥ △
- Document 3 – label: 1; words: ⋆ △ ♠
- Document 4 – label: 1; words: ◆ △ ◦

- New document – words: ⋆ ◊ ◦; label ?
- New document – words: ⋆ ◊ ♥; label ?
- New document – words: ⋆ △ ◦; label ?
Experiment

- Document 1 – label: 0; words: ★ ◊ ○
- Document 2 – label: 0; words: ★ ♥ △
- Document 3 – label: 1; words: ★ △ ♠
- Document 4 – label: 1; words: ◊ △ ○

- New document – words: ★ ◊ ○; label ?
- New document – words: ★ ◊ ♥; label ?
- New document – words: ★ △ ○; label ?

Why can we do this?
Experiment

- Document 1 – label: 0; words: ★ ◊ ○
- Document 2 – label: 0; words: ★ ♠ △
- Document 3 – label: 1; words: ★ △ ♠
- Document 4 – label: 1; words: ◊ △ ○
- New document – words: ★ ◊ ♥; label 0

<table>
<thead>
<tr>
<th>Label 0</th>
<th>Label 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(0</td>
<td>★) = \frac{\text{count}(★ \text{ and } 0)}{\text{count}(★)} = \frac{2}{3} = 0.67) vs. (P(1</td>
</tr>
<tr>
<td>(P(0</td>
<td>♥) = \frac{\text{count}(♥ \text{ and } 0)}{\text{count}(♥)} = \frac{1}{1} = 1.0) vs. (P(1</td>
</tr>
</tbody>
</table>
Experiment

- **Document 1** – label: 0; words: ⭐ ◇ ●
- **Document 2** – label: 0; words: ⭐ ♦ ♤
- **Document 3** – label: 1; words: ⭐ ♤ ♠
- **Document 4** – label: 1; words: ◇ ♤ ●

- **New document** – words: ⭐ ♤ ●; label ?

<table>
<thead>
<tr>
<th>Label 0</th>
<th>Label 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(0</td>
<td>\ast) = \frac{\text{count}(\ast \text{ and } 0)}{\text{count}(\ast)} = \frac{2}{3} = 0.67) vs. (P(1</td>
</tr>
<tr>
<td>(P(0</td>
<td>\bigtriangleup) = \frac{\text{count}(\bigtriangleup \text{ and } 0)}{\text{count}(\bigtriangleup)} = \frac{1}{3} = 0.33) vs. (P(1</td>
</tr>
<tr>
<td>(P(0</td>
<td>\bigcirc) = \frac{\text{count}(\bigcirc \text{ and } 0)}{\text{count}(\bigcirc)} = \frac{1}{2} = 0.5) vs. (P(1</td>
</tr>
</tbody>
</table>
Machine Learning

- Machine learning is well motivated counting
- Typically, machine learning models
 1. Define a model/distribution of interest
 2. Make some assumptions if needed
 3. Count!!

- Model: \(P(\text{label}|\text{doc}) = P(\text{label}|\text{word}_1, \ldots, \text{word}_n) \)
 - Prediction for new doc = \(\arg \max_{\text{label}} P(\text{label}|\text{doc}) \)
- Assumption: \(P(\text{label}|\text{word}_1, \ldots, \text{word}_n) = \frac{1}{n} \sum_i P(\text{label}|\text{word}_i) \)
- Count (as in example)
Lecture Outline

- Preliminaries
 - Data: input/output, assumptions
 - Feature representations
 - Linear classifiers and decision boundaries

- Classifiers
 - Naive Bayes
 - Generative versus discriminative
 - Logistic-regression
 - Perceptron
 - Large-Margin Classifiers (SVMs)

- Regularization

- Online learning

- Non-linear classifiers
Inputs and Outputs

- **Input:** \(x \in \mathcal{X} \)
 - e.g., document or sentence with some words \(x = w_1 \ldots w_n \), or a series of previous actions

- **Output:** \(y \in \mathcal{Y} \)
 - e.g., parse tree, document class, part-of-speech tags, word-sense

- **Input/Output pair:** \((x, y) \in \mathcal{X} \times \mathcal{Y}\)
 - e.g., a document \(x \) and its label \(y \)
 - Sometimes \(x \) is explicit in \(y \), e.g., a parse tree \(y \) will contain the sentence \(x \)
General Goal

When given a new input x predict the correct output y

But we need to formulate this computationally!
Feature Representations

- We assume a mapping from input x to a high dimensional feature vector
 - $\phi(x) : \mathcal{X} \rightarrow \mathbb{R}^m$
- For many cases, more convenient to have mapping from input-output pairs (x, y)
 - $\phi(x, y) : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^m$
- Under certain assumptions, these are equivalent
- Most papers in NLP use $\phi(x, y)$
Feature Representations

- We assume a mapping from input x to a high dimensional feature vector
 - $\phi(x) : \mathcal{X} \rightarrow \mathbb{R}^m$
- For many cases, more convenient to have mapping from input-output pairs (x, y)
 - $\phi(x, y) : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^m$
- Under certain assumptions, these are equivalent
- Most papers in NLP use $\phi(x, y)$
- Not common in NLP: $\phi \in \mathbb{R}^m$
- More common: $\phi_i \in \{1, \ldots, F_i\}$, $F_i \in \mathbb{N}^+$ (categorical)
- Very common: $\phi \in \{0, 1\}^m$ (binary)
Feature Representations

- We assume a mapping from input x to a high dimensional feature vector
 - $\phi(x) : \mathcal{X} \rightarrow \mathbb{R}^m$
- For many cases, more convenient to have mapping from input-output pairs (x, y)
 - $\phi(x, y) : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^m$
- Under certain assumptions, these are equivalent
- Most papers in NLP use $\phi(x, y)$
- Not common in NLP: $\phi \in \mathbb{R}^m$
- More common: $\phi_i \in \{1, \ldots, F_i\}$, $F_i \in \mathbb{N}^+$ (categorical)
- Very common: $\phi \in \{0, 1\}^m$ (binary)
- For any vector $v \in \mathbb{R}^m$, let v_j be the j^{th} value
Examples

- x is a document and y is a label

$$
\phi_j(x, y) = \begin{cases}
1 & \text{if } x \text{ contains the word "interest"} \\
& \text{and } y = "\text{financial}" \\
0 & \text{otherwise}
\end{cases}
$$

$$
\phi_j(x, y) = \% \text{ of words in } x \text{ with punctuation and } y = "\text{scientific}"
$$

- x is a word and y is a part-of-speech tag

$$
\phi_j(x, y) = \begin{cases}
1 & \text{if } x = "\text{bank}" \text{ and } y = \text{Verb} \\
0 & \text{otherwise}
\end{cases}
$$
Example 2

- x is a name, y is a label classifying the name

\[
\phi_0(x, y) = \begin{cases}
1 & \text{if } x \text{ contains “George” and } y = “Person” \\
0 & \text{otherwise}
\end{cases}
\]

\[
\phi_1(x, y) = \begin{cases}
1 & \text{if } x \text{ contains “Washington” and } y = “Person” \\
0 & \text{otherwise}
\end{cases}
\]

\[
\phi_2(x, y) = \begin{cases}
1 & \text{if } x \text{ contains “Bridge” and } y = “Person” \\
0 & \text{otherwise}
\end{cases}
\]

\[
\phi_3(x, y) = \begin{cases}
1 & \text{if } x \text{ contains “General” and } y = “Person” \\
0 & \text{otherwise}
\end{cases}
\]

\[
\phi_4(x, y) = \begin{cases}
1 & \text{if } x \text{ contains “George” and } y = “Object” \\
0 & \text{otherwise}
\end{cases}
\]

\[
\phi_5(x, y) = \begin{cases}
1 & \text{if } x \text{ contains “Washington” and } y = “Object” \\
0 & \text{otherwise}
\end{cases}
\]

\[
\phi_6(x, y) = \begin{cases}
1 & \text{if } x \text{ contains “Bridge” and } y = “Object” \\
0 & \text{otherwise}
\end{cases}
\]

\[
\phi_7(x, y) = \begin{cases}
1 & \text{if } x \text{ contains “General” and } y = “Object” \\
0 & \text{otherwise}
\end{cases}
\]

- $x=$ General George Washington, $y=$ Person $\rightarrow \phi(x, y) = [1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0]$

- $x=$ George Washington Bridge, $y=$ Object $\rightarrow \phi(x, y) = [0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0]$

- $x=$ George Washington George, $y=$ Object $\rightarrow \phi(x, y) = [0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0]$
Block Feature Vectors

▶ $x=$ General George Washington, $y=$ Person $\rightarrow \phi(x, y) = [1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0]$
▶ $x=$ General George Washington, $y=$ Object $\rightarrow \phi(x, y) = [0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1]$
▶ $x=$ George Washington Bridge, $y=$ Object $\rightarrow \phi(x, y) = [0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0]$
▶ $x=$ George Washington George, $y=$ Object $\rightarrow \phi(x, y) = [0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0]$

▶ Each equal size block of the feature vector corresponds to one label
▶ Non-zero values allowed only in one block
Feature Representations - $\phi(x)$

- Instead of $\phi(x, y) : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^m$ over input/outputs (x, y)

- Let $\phi(x) : \mathcal{X} \rightarrow \mathbb{R}^{m'}$ (e.g., $m' = m/|\mathcal{Y}|$)
 - i.e., Feature representation only over inputs x

- Equivalent when $\phi(x, y) = \phi(x) \times \mathcal{Y}$

- Advantages: Can make math cleaner, e.g., binary classification; Can use less parameters.

- Disadvantages: No complex features over properties of labels
Feature Representations - $\phi(x) \text{ vs. } \phi(x, y)$

- $\phi(x, y)$
 - $x=$ General George Washington, $y=$ Person $\rightarrow \phi(x, y) = [1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0]$
 - $x=$ General George Washington, $y=$ Object $\rightarrow \phi(x, y) = [0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1]$

- $\phi(x)$
 - $x=$ General George Washington $\rightarrow \phi(x) = [1 \ 1 \ 0 \ 1]$

- Different ways of representing same thing
- Can deterministically map from $\phi(x)$ to $\phi(x, y)$ given y
Linear Classifiers

▶ **Linear classifier**: score (or probability) of a particular classification is based on a linear combination of features and their weights

▶ Let $\omega \in \mathbb{R}^m$ be a high dimensional weight vector

▶ Assume that ω is known

▶ **Multiclass Classification**: $\mathcal{Y} = \{0, 1, \ldots, N\}$

$$y = \arg\max_y \omega \cdot \phi(x, y)$$

$$= \arg\max_y \sum_{j=0}^{m} \omega_j \times \phi_j(x, y)$$

▶ **Binary Classification** just a special case of multiclass
Linear Classifiers – $\phi(x)$

- Define $|\mathcal{Y}|$ parameter vectors $\omega_y \in \mathbb{R}^{m'}$
 - i.e., one parameter vector per output class y

- Classification

$$y = \arg \max_y \omega_y \cdot \phi(x)$$
Linear Classifiers – \(\phi(x) \)

- Define \(|\mathcal{Y}|\) parameter vectors \(\omega_y \in \mathbb{R}^{m'} \)
 - I.e., one parameter vector per output class \(y \)

- Classification

 \[
 y = \arg \max_y \omega_y \cdot \phi(x)
 \]

- \(\phi(x, y) \)
 - \(x=\text{General George Washington}, \ y=\text{Person} \rightarrow \phi(x, y) = [1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0] \)
 - \(x=\text{General George Washington}, \ y=\text{Object} \rightarrow \phi(x, y) = [0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1] \)
 - Single \(\omega \in \mathbb{R}^{8} \)

- \(\phi(x) \)
 - \(x=\text{General George Washington} \rightarrow \phi(x) = [1 \ 1 \ 0 \ 1] \)
 - Two parameter vectors \(\omega_0 \in \mathbb{R}^{4}, \ \omega_1 \in \mathbb{R}^{4} \)
Linear Classifiers - Bias Terms

- Often linear classifiers presented as

\[y = \arg \max_y \sum_{j=0}^{m} \omega_j \times \phi_j(x, y) + b_y \]

- Where \(b \) is a bias or offset term
- Sometimes this is folded into \(\phi \)

\(x= \text{General George Washington}, \ y= \text{Person} \rightarrow \phi(x, y) = [1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0] \)

\(x= \text{General George Washington}, \ y= \text{Object} \rightarrow \phi(x, y) = [0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1] \)

\(\phi_4(x, y) = \begin{cases}
1 & \text{if } y = \text{“Person”} \\
0 & \text{otherwise}
\end{cases} \quad \phi_9(x, y) = \begin{cases}
1 & \text{if } y = \text{“Object”} \\
0 & \text{otherwise}
\end{cases} \)

- \(\omega_4 \) and \(\omega_9 \) are now the bias terms for the labels
Binary Linear Classifier

Let’s say \(\omega = (1, -1) \) and \(b_y = 1, \forall y \)

Then \(\omega \) is a line (generally a hyperplane) that divides all points:
Binary Linear Classifier - Block Features

\[\phi(x, y) = [v, 0] \text{ or } [0, v] \text{ in block features} \]
Multiclass Linear Classifier

Defines regions of space. Visualization difficult.

\[\text{i.e., } + \text{ are all points } (x, y) \text{ where } + = \arg \max_y \omega \cdot \phi(x, y) \]
Separability

- A set of points is separable, if there exists a ω such that classification is perfect.

Separable

Not Separable

- This can also be defined mathematically (and we will shortly).
Machine Learning – finding ω

- **Supervised Learning**
- Input: training examples $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^{\mathcal{T}}$
- Input: feature representation ϕ
- Output: ω that maximizes some important function on the training set
 - $\omega = \arg \max \mathcal{L} (\mathcal{T}; \omega)$
Machine Learning – finding ω

- **Supervised Learning**
- Input: training examples $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^{\mathcal{T}}$
- Input: feature representation ϕ
- Output: ω that maximizes some *important function* on the training set
 - $\omega = \arg\max \mathcal{L}(\mathcal{T}; \omega)$
- Equivalently minimize: $\omega = \arg\min -\mathcal{L}(\mathcal{T}; \omega)$
Objective Functions

- $\mathcal{L}(\cdot)$ is called the **objective function**
- Usually we can decompose \mathcal{L} by training pairs (x, y)
 - $\mathcal{L}(\mathcal{T}; \omega) \propto \sum_{(x,y) \in \mathcal{T}} \text{loss}((x, y); \omega)$
 - *loss* is a function that measures some value correlated with errors of parameters ω on instance (x, y)

- Defining $\mathcal{L}(\cdot)$ and *loss* is core of linear classifiers in machine learning
Supervised Learning – Assumptions

- Assumption: \((x_t, y_t)\) are sampled i.i.d.
 - i.i.d. = independent and identically distributed
 - independent = each sample independent of the other
 - identically = each sample from same probability distribution

- Sometimes assumption: The training data is separable
 - Needed to prove convergence for Perceptron
 - Not needed in practice
For a moment, forget linear classifiers and parameter vectors ω.

Let’s assume our goal is to model the conditional probability of output labels y given inputs x (or $\phi(x)$).

I.e., $P(y|x)$.

If we can define this distribution, then classification becomes $\arg\max_y P(y|x)$.
Bayes Rule

- One way to model $P(y|x)$ is through Bayes Rule:

$$P(y|x) = \frac{P(y)P(x|y)}{P(x)}$$

$$\arg\max_y P(y|x) \propto \arg\max_y P(y)P(x|y)$$

- Since x is fixed

- $P(y)P(x|y) = P(x, y)$: a joint probability

- Modeling the joint input-output distribution is at the core of generative models
 - Because we model a distribution that can randomly generate outputs and inputs, not just outputs
 - More on this later
Naive Bayes (NB)

- Use $\phi(x) \in \mathbb{R}^m$ instead of $\phi(x, y)$

- $P(x|y) = P(\phi(x)|y) = P(\phi_1(x), \ldots, \phi_m(x)|y)$

Naive Bayes Assumption
(conditional independence)

$$P(\phi_1(x), \ldots, \phi_m(x)|y) = \prod_i P(\phi_i(x)|y)$$

$$P(y)P(\phi_1(x), \ldots, \phi_m(x)|y) = P(y)\prod_{i=1}^{m} P(\phi_i(x)|y)$$
Naive Bayes – Learning

- **Input:** $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^{\mathcal{T}}$

- Let $\phi_i(x) \in \{1, \ldots, F_i\}$ – categorical; common in NLP

- **Parameters** $\mathcal{P} = \{P(y), P(\phi_i(x)|y)\}$
 - Both $P(y)$ and $P(\phi_i(x)|y)$ are multinomials

- **Objective:** Maximum Likelihood Estimation (MLE)

$$
\mathcal{L}(\mathcal{T}) = \prod_{t=1}^{\mathcal{T}} P(x_t, y_t) = \prod_{t=1}^{\mathcal{T}} \left(P(y_t) \prod_{i=1}^{m} P(\phi_i(x_t)|y_t) \right)
$$

$$
\mathcal{P} = \arg \max_{\mathcal{P}} \prod_{t=1}^{\mathcal{T}} \left(P(y_t) \prod_{i=1}^{m} P(\phi_i(x_t)|y_t) \right)
$$
Naive Bayes – Learning

MLE has closed form solution!! (more later)

\[P = \arg \max_{\mathcal{P}} \prod_{t=1}^{\mid \mathcal{T} \mid} \left(P(y_t) \prod_{i=1}^{m} P(\phi_i(x_t)|y_t) \right) \]

\[P(y) = \frac{\sum_{t=1}^{\mid \mathcal{T} \mid} [y_t = y]}{\mid \mathcal{T} \mid} \]

\[P(\phi_i(x)|y) = \frac{\sum_{t=1}^{\mid \mathcal{T} \mid} [\phi_i(x_t) = \phi_i(x) \text{ and } y_t = y]}{\sum_{t=1}^{\mid \mathcal{T} \mid} [y_t = y]} \]

[[X]] is the identity function for property X

Thus, these are just normalized counts over events in \(\mathcal{T} \)
Naive Bayes Example

- $\phi_i(x) \in 0, 1, \forall i$
- doc 1: $y_1 = 0$, $\phi_0(x_1) = 1$, $\phi_1(x_1) = 1$
- doc 2: $y_2 = 0$, $\phi_0(x_2) = 0$, $\phi_1(x_2) = 1$
- doc 3: $y_3 = 1$, $\phi_0(x_3) = 1$, $\phi_1(x_3) = 0$

- Two label parameters $P(y = 0)$, $P(y = 1)$
- Eight feature parameters
 - 2 (labels) * 2 (features) * 2 (feature values)
 - E.g., $y = 0$ and $\phi_0(x) = 1$: $P(\phi_0(x) = 1|y = 0)$

- $P(y = 0) = 2/3$, $P(y = 1) = 1/3$
- $P(\phi_0(x) = 1|y = 0) = 1/2$, $P(\phi_1(x) = 0|y = 1) = 1/1$
Naive Bayes Document Classification

- doc 1: $y_1 = \text{sports, “hockey is fast”}$
- doc 2: $y_2 = \text{politics, “politicians talk fast”}$
- doc 3: $y_3 = \text{politics, “washington is sleazy”}$

- $\phi_0(x) = 1$ iff doc has word ‘hockey’, 0 o.w.
- $\phi_1(x) = 1$ iff doc has word ‘is’, 0 o.w.
- $\phi_2(x) = 1$ iff doc has word ‘fast’, 0 o.w.
- $\phi_3(x) = 1$ iff doc has word ‘politicians’, 0 o.w.
- $\phi_4(x) = 1$ iff doc has word ‘talk’, 0 o.w.
- $\phi_5(x) = 1$ iff doc has word ‘washington’, 0 o.w.
- $\phi_6(x) = 1$ iff doc has word ‘sleazy’, 0 o.w.
Deriving MLE

\[\mathcal{P} = \arg \max_{\mathcal{P}} \prod_{t=1}^{\mid \mathcal{T} \mid} \left(P(y_t) \prod_{i=1}^{m} P(\phi_i(x_t)|y_t) \right) \]

\[= \arg \max_{\mathcal{P}} \sum_{t=1}^{\mid \mathcal{T} \mid} \left(\log P(y_t) + \sum_{i=1}^{m} \log P(\phi_i(x_t)|y_t) \right) \]

\[= \arg \max_{P(y)} \sum_{t=1}^{\mid \mathcal{T} \mid} \log P(y_t) + \arg \max_{P(\phi_i(x)|y)} \sum_{t=1}^{\mid \mathcal{T} \mid} \sum_{i=1}^{m} \log P(\phi_i(x_t)|y_t) \]

such that \(\sum_{y} P(y) = 1, \sum_{j=1}^{F_i} P(\phi_i(x) = j|y) = 1, P(\cdot) \geq 0 \)
Deriving MLE

\[P = \arg \max_{P(y)} \sum_{t=1}^{|T|} \log P(y_t) + \arg \max_{P(\phi_i(x)|y)} \sum_{t=1}^{|T|} \sum_{i=1}^{m} \log P(\phi_i(x_t)|y_t) \]

Both optimizations are of the form

\[\arg \max_{P} \sum_{v} \text{count}(v) \log P(v), \text{s.t.}, \sum_{v} P(v) = 1, P(v) \geq 0 \]

For example:

\[\arg \max_{P(y)} \sum_{t=1}^{|T|} \log P(y_t) = \arg \max_{P(y)} \sum_{y} \text{count}(y, T) \log P(y) \]

such that \(\sum_{y} P(y) = 1, P(y) \geq 0 \)
Deriving MLE

\[
\arg \max_P \sum_v \text{count}(v) \log P(v)
\]
\[
s.t., \sum_v P(v) = 1, P(v) \geq 0
\]

Introduce Lagrangian multiplier \(\lambda \), optimization becomes

\[
\arg \max_{P, \lambda} \sum_v \text{count}(v) \log P(v) - \lambda (\sum_v P(v) - 1)
\]

Derivative w.r.t. \(P(v) \) is

\[
\frac{\text{count}(v)}{P(v)} - \lambda
\]

Setting this to zero \(P(v) = \frac{\text{count}(v)}{\lambda} \)

Combine with \(\sum_v P(v) = 1. P(v) \geq 0 \), then \(P(v) = \frac{\text{count}(v)}{\sum_v \text{count}(v')} \)
Put it together

\[\mathcal{P} = \arg \max_{\mathcal{P}} \prod_{t=1}^{|\mathcal{T}|} \left(P(y_t) \prod_{i=1}^m P(\phi_i(x_t)|y_t) \right) \]

\[= \arg \max_{P(y)} \sum_{t=1}^{|\mathcal{T}|} \log P(y_t) + \arg \max_{P(\phi_i(x)|y)} \sum_{t=1}^{|\mathcal{T}|} \sum_{i=1}^m \log P(\phi_i(x_t)|y_t) \]

\[P(y) = \frac{\sum_{t=1}^{|\mathcal{T}|} [y_t = y]}{|\mathcal{T}|} \]

\[P(\phi_i(x)|y) = \frac{\sum_{t=1}^{|\mathcal{T}|} [\phi_i(x_t) = \phi_i(x) \text{ and } y_t = y]}{\sum_{t=1}^{|\mathcal{T}|} [y_t = y]} \]
NB is a linear classifier

- Let $\omega_y = \log P(y), \forall y \in \mathcal{Y}$
- Let $\omega_{\phi_i(x), y} = \log P(\phi_i(x) | y), \forall y \in \mathcal{Y}, \phi_i(x) \in \{1, \ldots, F_i\}$
- Let ω be set of all ω_* and $\omega_*,*$

$$
\arg \max_y P(y | \phi(x)) \propto \arg \max_y P(\phi(x), y) = \arg \max_y P(y) \prod_{i=1}^m P(\phi_i(x) | y) \\
= \arg \max_y \log P(y) + \sum_{i=1}^m \log P(\phi_i(x) | y) \\
= \arg \max_y \omega_y + \sum_{i=1}^m \omega_{\phi_i(x), y} \\
= \arg \max_y \sum_{y'} \omega_y \psi_{y'}(y) + \sum_{i=1}^m \sum_{j=1}^{F_i} \omega_{\phi_i(x), y} \psi_{i,j}(x)
$$

where $\psi_* \in \{0, 1\}$, $\psi_{i,j}(x) = [[\phi_i(x) = j]]$, $\psi_{y'}(y) = [[y = y']]$
Smoothing

- doc 1: $y_1 = \text{sports, “hockey is fast”}$
- doc 2: $y_2 = \text{politics, “politicians talk fast”}$
- doc 3: $y_3 = \text{politics, “washington is sleazy”}$

- New doc: “washington hockey is fast”
- Both ‘sports’ and ‘politics’ have probabilities of 0

- Smoothing aims to assign a small amount of probability to unseen events

- E.g., Additive/Laplacian smoothing

$$P(v) = \frac{\text{count}(v)}{\sum_{v'} \text{count}(v')} \implies P(v) = \frac{\text{count}(v) + \alpha}{\sum_{v'} (\text{count}(v') + \alpha)}$$
Discriminative versus Generative

- Generative models attempt to model inputs and outputs
 - e.g., NB = MLE of joint distribution $P(x, y)$
 - Statistical model must explain generation of input

- Ocam’s Razor: why model input?

- Discriminative models
 - Use \mathcal{L} that directly optimizes $P(y|x)$ (or something related)
 - Logistic Regression – MLE of $P(y|x)$
 - Perceptron and SVMs – minimize classification error

- Generative and discriminative models use $P(y|x)$ for prediction
- Differ only on what distribution they use to set ω
Logistic Regression
Logistic Regression

Define a conditional probability:

\[P(y|x) = \frac{e^{\omega \cdot \phi(x,y)}}{Z_x}, \quad \text{where } Z_x = \sum_{y' \in Y} e^{\omega \cdot \phi(x,y')} \]

Note: still a linear classifier

\[
\begin{align*}
\arg \max_y P(y|x) &= \arg \max_y \frac{e^{\omega \cdot \phi(x,y)}}{Z_x} \\
&= \arg \max_y e^{\omega \cdot \phi(x,y)} \\
&= \arg \max_y \omega \cdot \phi(x, y)
\end{align*}
\]
Logistic Regression

\[P(y|x) = \frac{e^{\omega \cdot \phi(x,y)}}{Z_x} \]

- Q: How do we learn weights \(\omega \)?
- A: Set weights to maximize log-likelihood of training data:

\[
\omega = \arg \max_\omega \mathcal{L}(\mathcal{T}; \omega) = \arg \max_\omega \left| \mathcal{T} \right| \prod_{t=1}^{\left| \mathcal{T} \right|} P(y_t|x_t) = \arg \max_\omega \sum_{t=1}^{\left| \mathcal{T} \right|} \log P(y_t|x_t)
\]

- In a nut shell we set the weights \(\omega \) so that we assign as much probability to the correct label \(y \) for each \(x \) in the training set.
Logistic Regression

\[P(y|x) = \frac{e^{\omega \cdot \phi(x,y)}}{Z_x}, \quad \text{where } Z_x = \sum_{y' \in \mathcal{Y}} e^{\omega \cdot \phi(x,y')} \]

\[\omega = \arg \max_{\omega} \sum_{t=1}^{|T|} \log P(y_t|x_t) \quad (*) \]

- The objective function (*) is concave (take the 2nd derivative)
- Therefore there is a global maximum
- No closed form solution, but lots of numerical techniques
 - Gradient methods (gradient ascent, conjugate gradient, iterative scaling)
 - Newton methods (limited-memory quasi-newton)
Gradient Ascent

- Let \(\mathcal{L}(\mathcal{T}; \omega) = \sum_{t=1}^{\mid\mathcal{T}\mid} \log \left(\frac{e^{\omega \cdot \phi(x_t, y_t)}}{Z_x} \right) \)
- Want to find \(\arg \max_{\omega} \mathcal{L}(\mathcal{T}; \omega) \)
 - Set \(\omega^0 = O^m \)
 - Iterate until convergence
 \[
 \omega^i = \omega^{i-1} + \alpha \nabla \mathcal{L}(\mathcal{T}; \omega^{i-1})
 \]
- \(\alpha > 0 \) and set so that \(\mathcal{L}(\mathcal{T}; \omega^i) > \mathcal{L}(\mathcal{T}; \omega^{i-1}) \)
- \(\nabla \mathcal{L}(\mathcal{T}; \omega) \) is gradient of \(\mathcal{L} \) w.r.t. \(\omega \)
 - A gradient is all partial derivatives over variables \(\omega_i \)
 - i.e., \(\nabla \mathcal{L}(\mathcal{T}; \omega) = \left(\frac{\partial}{\partial \omega_0} \mathcal{L}(\mathcal{T}; \omega), \frac{\partial}{\partial \omega_1} \mathcal{L}(\mathcal{T}; \omega), \ldots, \frac{\partial}{\partial \omega_m} \mathcal{L}(\mathcal{T}; \omega) \right) \)
- Gradient ascent will always find \(\omega \) to maximize \(\mathcal{L} \)
Gradient Descent

- Let $L(\mathcal{T}; \omega) = -\sum_{t=1}^{\lvert \mathcal{T} \rvert} \log \left(e^{\omega \cdot \phi(x_t, y_t)} / Z_x \right)$
- Want to find $\arg \min \omega L(\mathcal{T}; \omega)$
 - Set $\omega^0 = O^m$
 - Iterate until convergence

$$\omega^i = \omega^{i-1} - \alpha \nabla L(\mathcal{T}; \omega^{i-1})$$

- $\alpha > 0$ and set so that $L(\mathcal{T}; \omega^i) < L(\mathcal{T}; \omega^{i-1})$
- $\nabla L(\mathcal{T}; \omega)$ is gradient of L w.r.t. ω
 - A gradient is all partial derivatives over variables ω_i
 - i.e., $\nabla L(\mathcal{T}; \omega) = (\frac{\partial}{\partial \omega_0} L(\mathcal{T}; \omega), \frac{\partial}{\partial \omega_1} L(\mathcal{T}; \omega), \ldots, \frac{\partial}{\partial \omega_m} L(\mathcal{T}; \omega))$

- Gradient ascent will always find ω to minimize L
The partial derivatives

- Need to find all partial derivatives \(\frac{\partial}{\partial \omega_i} \mathcal{L}(\mathcal{T}; \omega) \)

\[
\mathcal{L}(\mathcal{T}; \omega) = \sum_t \log P(y_t | x_t)
\]

\[
= \sum_t \log \frac{e^{\omega \cdot \phi(x_t, y_t)}}{\sum_{y' \in y} e^{\omega \cdot \phi(x_t, y')}}
\]

\[
= \sum_t \log \frac{e^{\sum_j \omega_j \times \phi_j(x_t, y_t)}}{Z_{x_t}}
\]
Partial derivatives - some reminders

1. \[\frac{\partial}{\partial x} \log F = \frac{1}{F} \frac{\partial}{\partial x} F \]
 - We always assume \(\log \) is the natural logarithm \(\log_e \)

2. \[\frac{\partial}{\partial x} e^F = e^F \frac{\partial}{\partial x} F \]

3. \[\frac{\partial}{\partial x} \sum_t F_t = \sum_t \frac{\partial}{\partial x} F_t \]

4. \[\frac{\partial}{\partial x} \frac{F}{G} = \frac{G \frac{\partial}{\partial x} F - F \frac{\partial}{\partial x} G}{G^2} \]
The partial derivatives

\[
\frac{\partial}{\partial \omega_i} \mathcal{L}(T; \omega) = \frac{\partial}{\partial \omega_i} \sum_t \log \frac{e^{\sum_j \omega_j \times \phi_j(x_t, y_t)}}{Z_{x_t}}
\]

\[
= \sum_t \frac{\partial}{\partial \omega_i} \log \frac{e^{\sum_j \omega_j \times \phi_j(x_t, y_t)}}{Z_{x_t}}
\]

\[
= \sum_t \left(\frac{Z_{x_t}}{e^{\sum_j \omega_j \times \phi_j(x_t, y_t)}} \right) \left(\frac{\partial}{\partial \omega_i} \frac{e^{\sum_j \omega_j \times \phi_j(x_t, y_t)}}{Z_{x_t}} \right)
\]
The partial derivatives

Now,

\[
\frac{\partial}{\partial \omega_i} \frac{e^{\sum_j \omega_j \times \phi_j(x_t, y_t)}}{Z_{x_t}} = \frac{Z_{x_t} \frac{\partial}{\partial \omega_i} e^{\sum_j \omega_j \times \phi_j(x_t, y_t)} - e^{\sum_j \omega_j \times \phi_j(x_t, y_t)} \frac{\partial}{\partial \omega_i} Z_{x_t}}{Z_{x_t}^2}
\]

\[
= \frac{Z_{x_t} e^{\sum_j \omega_j \times \phi_j(x_t, y_t)} \phi_i(x_t, y_t) - e^{\sum_j \omega_j \times \phi_j(x_t, y_t)} \frac{\partial}{\partial \omega_i} Z_{x_t}}{Z_{x_t}^2}
\]

\[
= \frac{e^{\sum_j \omega_j \times \phi_j(x_t, y_t)}}{Z_{x_t}^2} (Z_{x_t} \phi_i(x_t, y_t) - \frac{\partial}{\partial \omega_i} Z_{x_t})
\]

\[
= \frac{e^{\sum_j \omega_j \times \phi_j(x_t, y_t)}}{Z_{x_t}^2} (Z_{x_t} \phi_i(x_t, y_t) - \sum_{y' \in Y} e^{\sum_j \omega_j \times \phi_j(x_t, y')} \phi_i(x_t, y'))
\]

because

\[
\frac{\partial}{\partial \omega_i} Z_{x_t} = \frac{\partial}{\partial \omega_i} \sum_{y' \in Y} e^{\sum_j \omega_j \times \phi_j(x_t, y')} = \sum_{y' \in Y} e^{\sum_j \omega_j \times \phi_j(x_t, y')} \phi_i(x_t, y')
\]
The partial derivatives

From before,
\[
\frac{\partial}{\partial \omega_i} \frac{e^{\sum_j \omega_j \times \phi_j(x_t, y_t)}}{Z_{x_t}} = \frac{e^{\sum_j \omega_j \times \phi_j(x_t, y_t)}}{Z_{x_t}^2} \left(Z_{x_t} \phi_i(x_t, y_t) - \sum_{y' \in \mathcal{Y}} e^{\sum_j \omega_j \times \phi_j(x_t, y')} \phi_i(x_t, y') \right)
\]

Sub this in,
\[
\frac{\partial}{\partial \omega_i} \mathcal{L}(T; \omega) = \sum_t \left(\frac{Z_{x_t}}{e^{\sum_j \omega_j \times \phi_j(x_t, y_t)}} \right) \left(\frac{\partial}{\partial \omega_i} \frac{e^{\sum_j \omega_j \times \phi_j(x_t, y_t)}}{Z_{x_t}} \right)
\]
\[
= \sum_t \frac{1}{Z_{x_t}} \left(Z_{x_t} \phi_i(x_t, y_t) - \sum_{y' \in \mathcal{Y}} e^{\sum_j \omega_j \times \phi_j(x_t, y')} \phi_i(x_t, y') \right)
\]
\[
= \sum_t \phi_i(x_t, y_t) - \sum_t \sum_{y' \in \mathcal{Y}} \frac{e^{\sum_j \omega_j \times \phi_j(x_t, y')}}{Z_{x_t}} \phi_i(x_t, y')
\]
\[
= \sum_t \phi_i(x_t, y_t) - \sum_t \sum_{y' \in \mathcal{Y}} P(y' | x_t) \phi_i(x_t, y')
\]
FINALLY!!!

- After all that,

\[
\frac{\partial}{\partial \omega_i} \mathcal{L}(\mathcal{T}; \omega) = \sum_t \phi_i(x_t, y_t) - \sum_t \sum_{y' \in \mathcal{Y}} P(y'|x_t) \phi_i(x_t, y')
\]

- And the gradient is:

\[
\nabla \mathcal{L}(\mathcal{T}; \omega) = \left(\frac{\partial}{\partial \omega_0} \mathcal{L}(\mathcal{T}; \omega), \frac{\partial}{\partial \omega_1} \mathcal{L}(\mathcal{T}; \omega), \ldots, \frac{\partial}{\partial \omega_m} \mathcal{L}(\mathcal{T}; \omega) \right)
\]

- So we can now use gradient ascent to find \(\omega!! \)
Logistic Regression Summary

- Define conditional probability

\[P(y\mid x) = \frac{e^{\mathbf{\omega} \cdot \phi(x, y)}}{Z_x} \]

- Set weights to maximize log-likelihood of training data:

\[\mathbf{\omega} = \arg \max_\mathbf{\omega} \sum_t \log P(y_t \mid x_t) \]

- Can find the gradient and run gradient ascent (or any gradient-based optimization algorithm)

\[\frac{\partial}{\partial \omega_i} L(T; \mathbf{\omega}) = \sum_t \phi_i(x_t, y_t) - \sum_t \sum_{y' \in Y} P(y' \mid x_t) \phi_i(x_t, y') \]
Logistic Regression = Maximum Entropy

- Well known equivalence
- Max Ent: maximize entropy subject to constraints on features
 - Empirical feature counts must equal expected counts
- Quick intuition
 - Partial derivative in logistic regression

 \[
 \frac{\partial}{\partial \omega_i} \mathcal{L}(T; \omega) = \sum_t \phi_i(x_t, y_t) - \sum_t \sum_{y' \in \mathcal{Y}} P(y'|x_t) \phi_i(x_t, y')
 \]

 - First term is empirical feature counts and second term is expected counts
 - Derivative set to zero maximizes function
 - Therefore when both counts are equivalent, we optimize the logistic regression objective!
Perceptron
Perceptron

Choose a ω that minimizes error

$$\mathcal{L}(\mathcal{T}; \omega) = \sum_{t=1}^{\mid \mathcal{T} \mid} 1 - [y_t = \arg \max_y \omega \cdot \phi(x_t, y)]$$

$$\omega = \arg \min \sum_{t=1}^{\mid \mathcal{T} \mid} 1 - [y_t = \arg \max_y \omega \cdot \phi(x_t, y)]$$

$$[[p]] = \begin{cases}
1 & p \text{ is true} \\
0 & \text{otherwise}
\end{cases}$$

This is a 0-1 loss function

- When minimizing error people tend to use hinge-loss
- We'll get back to this
Aside: Min error versus max log-likelihood

- Highly related but not identical

- Example: consider a training set \mathcal{T} with 1001 points

 $1000 \times (x_i, y = 0) = [-1, 1, 0, 0]$ for $i = 1 \ldots 1000$

 $1 \times (x_{1001}, y = 1) = [0, 0, 3, 1]$

- Now consider $\omega = [-1, 0, 1, 0]$

- Error in this case is 0 – so ω minimizes error

 $[-1, 0, 1, 0] \cdot [-1, 1, 0, 0] = 1 > [-1, 0, 1, 0] \cdot [0, 0, -1, 1] = -1$

 $[-1, 0, 1, 0] \cdot [0, 0, 3, 1] = 3 > [-1, 0, 1, 0] \cdot [3, 1, 0, 0] = -3$

- However, log-likelihood = -126.9 (omit calculation)
Aside: Min error versus max log-likelihood

- Highly related but not identical

- Example: consider a training set \mathcal{T} with 1001 points

 $1000 \times (x_i, y = 0) = [-1, 1, 0, 0] \text{ for } i = 1 \ldots 1000$

 $1 \times (x_{1001}, y = 1) = [0, 0, 3, 1]$

- Now consider $\omega = [-1, 7, 1, 0]$

- Error in this case is 1 – so ω does not minimizes error

 $[-1, 7, 1, 0] \cdot [-1, 1, 0, 0] = 8 > [-1, 7, 1, 0] \cdot [-1, 1, 0, 0] = -1$

 $[-1, 7, 1, 0] \cdot [0, 0, 3, 1] = 3 < [-1, 7, 1, 0] \cdot [3, 1, 0, 0] = 4$

- However, log-likelihood = -1.4

- Better log-likelihood and worse error
Aside: Min error versus max log-likelihood

- Max likelihood \neq min error
- Max likelihood pushes as much probability on correct labeling of training instance
 - Even at the cost of mislabeling a few examples
- Min error forces all training instances to be correctly classified
 - Often not possible
 - Ways of regularizing model to allow sacrificing some errors for better predictions on more examples
Perceptron Learning Algorithm

Training data: $T = \{(x_t, y_t)\}_{t=1}^{T}$

1. $\omega^{(0)} = 0; \ i = 0$
2. for $n: 1..N$
3. for $t: 1..T$
4. Let $y' = \arg\max_{y'} \omega^{(i)} \cdot \phi(x_t, y')$
5. if $y' \neq y_t$
6. $\omega^{(i+1)} = \omega^{(i)} + \phi(x_t, y_t) - \phi(x_t, y')$
7. $i = i + 1$
8. return ω^i
Perceptron: Separability and Margin

Given an training instance \((x_t, y_t)\), define:

\[\tilde{Y}_t = \mathcal{Y} - \{y_t\} \]

\[\text{i.e., } \tilde{Y}_t \text{ is the set of incorrect labels for } x_t \]

A training set \(\mathcal{T}\) is separable with margin \(\gamma > 0\) if there exists a vector \(u\) with \(\|u\| = 1\) such that:

\[u \cdot \phi(x_t, y_t) - u \cdot \phi(x_t, y') \geq \gamma \]

for all \(y' \in \tilde{Y}_t\) and \(\|u\| = \sqrt{\sum_j u_j^2}\)

Assumption: the training set is separable with margin \(\gamma\)
Theorem: For any training set separable with a margin of γ, the following holds for the perceptron algorithm:

\[
\text{mistakes made during training} \leq \frac{R^2}{\gamma^2}
\]

where $R \geq \|\phi(x_t, y_t) - \phi(x_t, y')\|$ for all $(x_t, y_t) \in T$ and $y' \in \bar{Y}_t$

Thus, after a finite number of training iterations, the error on the training set will converge to zero

Let’s prove it! (proof taken from Collins ’02)
Perceptron Learning Algorithm

Training data: \(\mathcal{T} = \{(x_t, y_t)\}_{t=1}^{|\mathcal{T}|} \)

1. \(\omega^{(0)} = 0; \ i = 0 \)
2. for \(n : 1..N \)
3. for \(t : 1..T \)
4. Let \(y' = \arg\max_{y'} \omega^{(i)} \cdot \phi(x_t, y') \)
5. if \(y' \neq y_t \)
6. \(\omega^{(i+1)} = \omega^{(i)} + \phi(x_t, y_t) - \phi(x_t, y') \)
7. \(i = i + 1 \)
8. return \(\omega^{i} \)

\(\omega^{(k-1)} \) are the weights before \(k^{th} \) mistake

Suppose \(k^{th} \) mistake made at the \(t^{th} \) example, \((x_t, y_t) \)

\(y' = \arg\max_{y'} \omega^{(k-1)} \cdot \phi(x_t, y') \)

\(y' \neq y_t \)

\(\omega^{(k)} = \omega^{(k-1)} + \phi(x_t, y_t) - \phi(x_t, y') \)

Now:

\[u \cdot \omega^{(k)} = u \cdot \omega^{(k-1)} + u \cdot (\phi(x_t, y_t) - \phi(x_t, y')) \geq u \cdot \omega^{(k-1)} + \gamma \]

Now: \(\omega^{(0)} = 0 \) and \(u \cdot \omega^{(0)} = 0 \), by induction on \(k \), \(u \cdot \omega^{(k)} \geq k \gamma \)

Now: since \(u \cdot \omega^{(k)} \leq ||u|| \times ||\omega^{(k)}|| \) and \(||u|| = 1 \) then \(||\omega^{(k)}|| \geq k \gamma \)

Now:

\[
||\omega^{(k)}||^2 = ||\omega^{(k-1)}||^2 + ||\phi(x_t, y_t) - \phi(x_t, y')||^2 + 2\omega^{(k-1)} \cdot (\phi(x_t, y_t) - \phi(x_t, y'))
\]

\[
||\omega^{(k)}||^2 \leq ||\omega^{(k-1)}||^2 + R^2
\]

(since \(R \geq ||\phi(x_t, y_t) - \phi(x_t, y')|| \)
and \(\omega^{(k-1)} \cdot \phi(x_t, y_t) - \omega^{(k-1)} \cdot \phi(x_t, y') \leq 0 \)
Perceptron Learning Algorithm

- We have just shown that $||\omega^{(k)}|| \geq k\gamma$ and $||\omega^{(k)}||^2 \leq ||\omega^{(k-1)}||^2 + R^2$

- By induction on k and since $\omega^{(0)} = 0$ and $||\omega^{(0)}||^2 = 0$

\[
||\omega^{(k)}||^2 \leq kR^2
\]

- Therefore,

\[
k^2\gamma^2 \leq ||\omega^{(k)}||^2 \leq kR^2
\]

- and solving for k

\[
k \leq \frac{R^2}{\gamma^2}
\]

- Therefore the number of errors is bounded!
Perceptron Summary

- Learns a linear classifier that minimizes error
- Guaranteed to find a ω in a finite amount of time
- Perceptron is an example of an Online Learning Algorithm
 - ω is updated based on a single training instance in isolation

$$\omega^{(i+1)} = \omega^{(i)} + \phi(x_t, y_t) - \phi(x_t, y')$$
Averaged Perceptron

Training data: \(\mathcal{T} = \{(x_t, y_t)\}^{|\mathcal{T}|}_{t=1} \)

1. \(\omega^{(0)} = 0; \ i = 0 \)
2. for \(n : 1..N \)
3. for \(t : 1..T \)
4. Let \(y' = \arg \max_{y'} \omega^{(i)} \cdot \phi(x_t, y') \)
5. if \(y' \neq y_t \)
6. \(\omega^{(i+1)} = \omega^{(i)} + \phi(x_t, y_t) - \phi(x_t, y') \)
7. else
6. \(\omega^{(i+1)} = \omega^{(i)} \)
7. \(i = i + 1 \)
8. return \(\frac{\sum_i \omega^{(i)}}{N \times T} \)
Margin

Training

Testing

Denote the value of the margin by γ
Maximizing Margin

- For a training set \mathcal{T}
- Margin of a weight vector ω is smallest γ such that
 \[\omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y') \geq \gamma \]
- for every training instance $(x_t, y_t) \in \mathcal{T}$, $y' \in \bar{Y}_t$
Maximizing Margin

- Intuitively maximizing margin makes sense.
- More importantly, generalization error to unseen test data is proportional to the inverse of the margin:
 \[\epsilon \propto \frac{R^2}{\gamma^2 \times |T|} \]

- **Perceptron**: we have shown that:
 - If a training set is separable by some margin, the perceptron will find a \(\omega \) that separates the data.
 - However, the perceptron does not pick \(\omega \) to maximize the margin!
Support Vector Machines (SVMs)
Maximizing Margin

Let $\gamma > 0$

$$\max_{||\omega|| \leq 1} \gamma$$

such that:

$$\omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y') \geq \gamma$$

$$\forall (x_t, y_t) \in \mathcal{T}$$

and $y' \in \mathcal{Y}_t$

- Note: algorithm still minimizes error if data is separable
- $||\omega||$ is bound since scaling trivially produces larger margin

$$\beta(\omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y')) \geq \beta \gamma,$$ for some $\beta \geq 1$
Max Margin = Min Norm

Let $\gamma > 0$

Max Margin:

$$\max_{\|\omega\| \leq 1} \gamma$$

such that:

$$\omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y') \geq \gamma$$

$\forall (x_t, y_t) \in \mathcal{T}$

and $y' \in \check{Y}_t$

Min Norm:

$$\min_{\omega} \frac{1}{2}\|\omega\|^2$$

such that:

$$\omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y') \geq 1$$

$\forall (x_t, y_t) \in \mathcal{T}$

and $y' \in \check{Y}_t$

▶ Instead of fixing $\|\omega\|$ we fix the margin $\gamma = 1$
Max Margin = Min Norm

Max Margin:

\[
\max_{||\omega||\leq 1} \gamma
\]

such that:

\[
\omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y') \geq \gamma
\]

\forall (x_t, y_t) \in \mathcal{T}

and \(y' \in \mathcal{Y}_t \)

Min Norm:

\[
\min_{\omega} \frac{1}{2} ||\omega||^2
\]

such that:

\[
\omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y') \geq 1
\]

\forall (x_t, y_t) \in \mathcal{T}

and \(y' \in \mathcal{Y}_t \)

- Let's say min norm solution \(||\omega|| = \zeta \)
- Now say original objective is \(\max ||\omega|| \leq \zeta \gamma \)
- We know that \(\gamma \) must be 1
 - Or we would have found smaller \(||\omega|| \) in min norm solution
- \(||\omega|| \leq 1 \) in max margin formulation is an arbitrary scaling choice
Support Vector Machines

\[\omega = \arg \min_{\omega} \frac{1}{2} \| \omega \|^2 \]

such that:

\[\omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y') \geq 1 \]

\[\forall (x_t, y_t) \in T \text{ and } y' \in \bar{Y}_t \]

- Quadratic programming problem – a well known convex optimization problem
- Can be solved with many techniques [Nocedal and Wright 1999]
Support Vector Machines

What if data is not separable?

\[
\omega = \arg \min_{\omega, \xi} \frac{1}{2} ||\omega||^2 + C \sum_{t=1}^{|T|} \xi_t
\]

such that:

\[
\omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y') \geq 1 - \xi_t \quad \text{and} \quad \xi_t \geq 0
\]

\forall (x_t, y_t) \in T \quad \text{and} \quad y' \in \bar{Y}_t

\xi_t: \text{ trade-off between margin per example and } ||\omega||

Larger C = more examples correctly classified

If data is separable, optimal solution has \(\xi_i = 0, \forall i \)
Support Vector Machines

\[\omega = \arg \min_{\omega,\xi} \frac{1}{2} \| \omega \|^2 + C \sum_{t=1}^{\tau} \xi_t \]

such that:

\[\omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y') \geq 1 - \xi_t \]
Support Vector Machines

$$\omega = \arg \min_{\omega, \xi} \frac{1}{2}||\omega||^2 + C \sum_{t=1}^{|T|} \xi_t$$

such that:

$$\omega \cdot \phi(x_t, y_t) - \max_{y' \neq y_t} \omega \cdot \phi(x_t, y') \geq 1 - \xi_t$$
Support Vector Machines

\[\omega = \arg \min_{\omega, \xi} \frac{1}{2} \| \omega \|^2 + C \sum_{t=1}^{|T|} \xi_t \]

such that:

\[\xi_t \geq 1 + \max_{y' \neq y_t} \omega \cdot \phi(x_t, y') - \omega \cdot \phi(x_t, y_t) \]
Support Vector Machines

\[\omega = \arg\min_{\omega, \xi} \frac{\lambda}{2} ||\omega||^2 + \sum_{t=1}^{T} \xi_t \quad \lambda = \frac{1}{C} \]

such that:

\[\xi_t \geq 1 + \max_{y' \neq y_t} \omega \cdot \phi(x_t, y') - \omega \cdot \phi(x_t, y_t) \]
Support Vector Machines

\[\omega = \arg \min_{\omega, \xi} \frac{\lambda}{2} \|\omega\|^2 + \sum_{t=1}^{\mathcal{T}} \xi_t \quad \lambda = \frac{1}{C} \]

such that:

\[\xi_t \geq 1 + \max_{y' \neq y_t} \omega \cdot \phi(x_t, y') - \omega \cdot \phi(x_t, y_t) \]

If \(\|\omega\| \) classifies \((x_t, y_t)\) with margin 1, penalty \(\xi_t = 0 \)

Otherwise penalty \(\xi_t = 1 + \max_{y' \neq y_t} \omega \cdot \phi(x_t, y') - \omega \cdot \phi(x_t, y_t) \)
Support Vector Machines

\[\omega = \arg \min_{\omega, \xi} \frac{\lambda}{2} \| \omega \|^2 + \sum_{t=1}^{T} \xi_t \quad \lambda = \frac{1}{C} \]

such that:

\[\xi_t \geq 1 + \max_{y' \neq y_t} \omega \cdot \phi(x_t, y') - \omega \cdot \phi(x_t, y_t) \]

If \(\| \omega \| \) classifies \((x_t, y_t)\) with margin 1, penalty \(\xi_t = 0 \)
Otherwise penalty \(\xi_t = 1 + \max_{y' \neq y_t} \omega \cdot \phi(x_t, y') - \omega \cdot \phi(x_t, y_t) \)

Hinge loss:

\[\text{loss}((x_t, y_t); \omega) = \max (0, 1 + \max_{y' \neq y_t} \omega \cdot \phi(x_t, y') - \omega \cdot \phi(x_t, y_t)) \]
Support Vector Machines

\[\omega = \arg \min_{\omega, \xi} \frac{\lambda}{2} ||\omega||^2 + \sum_{t=1}^{\mathcal{T}} \xi_t \]

such that:

\[\xi_t \geq 1 + \max_{y' \neq y_t} \omega \cdot \phi(x_t, y') - \omega \cdot \phi(x_t, y_t) \]

Hinge loss equivalent

\[\omega = \arg \min_{\omega} \mathcal{L}(\mathcal{T}; \omega) = \arg \min_{\omega} \sum_{t=1}^{\mathcal{T}} \text{loss}((x_t, y_t); \omega) + \frac{\lambda}{2} ||\omega||^2 \]

\[= \arg \min_{\omega} \left(\sum_{t=1}^{\mathcal{T}} \max_{y' \neq y_t} (0, 1 + \max \omega \cdot \phi(x_t, y') - \omega \cdot \phi(x_t, y_t)) \right) + \frac{\lambda}{2} ||\omega||^2 \]
Summary

What we have covered

▶ Linear Classifiers
 ▶ Naive Bayes
 ▶ Logistic Regression
 ▶ Perceptron
 ▶ Support Vector Machines

What is next

▶ Regularization
▶ Online learning
▶ Non-linear classifiers
Regularization
Overfitting

- Early in lecture we made assumption data was i.i.d.
- Rarely is this true
 - E.g., syntactic analyzers typically trained on 40,000 sentences from early 1990s WSJ news text

- Even more common: \(\mathcal{T} \) is very small
- This leads to **overfitting**

- E.g.: ‘fake’ is never a verb in WSJ treebank (only adjective)
 - High weight on ‘\(\phi(x, y) = 1 \) if \(x=\text{fake} \) and \(y=\text{adjective} \)’
 - Of course: leads to high log-likelihood / low error

- Other features might be more indicative
- Adjacent word identities: ‘He wants to X his death’ \(\rightarrow X=\text{verb} \)
Regularization

- In practice, we regularize models to prevent overfitting
 \[
 \arg\max_{\omega} \mathcal{L}(T; \omega) - \lambda \mathcal{R}(\omega)
 \]

- Where \(\mathcal{R}(\omega) \) is the regularization function

- \(\lambda \) controls how much to regularize

- Common functions
 - \(\text{L2: } \mathcal{R}(\omega) \propto \|\omega\|_2 = \|\omega\| = \sqrt{\sum_i \omega_i^2} \) – smaller weights desired
 - \(\text{L0: } \mathcal{R}(\omega) \propto \|\omega\|_0 = \sum_i [[\omega_i > 0]] \) – zero weights desired
 - Non-convex
 - Approximate with \(\text{L1: } \mathcal{R}(\omega) \propto \|\omega\|_1 = \sum_i |\omega_i| \)
Logistic Regression with L2 Regularization

- Perhaps most common classifier in NLP

\[L(T; \omega) - \lambda R(\omega) = \sum_{t=1}^{|T|} \log \left(\frac{e^{\omega \cdot \phi(x_t, y_t) / Z_x}}{Z_x} \right) - \frac{\lambda}{2} \| \omega \|^2 \]

- What are the new partial derivatives?

\[\frac{\partial}{\partial w_i} L(T; \omega) - \frac{\partial}{\partial w_i} \lambda R(\omega) \]

- We know \(\frac{\partial}{\partial w_i} L(T; \omega) \)

- Just need \(\frac{\partial}{\partial w_i} \frac{\lambda}{2} \| \omega \|^2 = \frac{\partial}{\partial w_i} \frac{\lambda}{2} \left(\sqrt{\sum_i \omega_i^2} \right)^2 = \frac{\partial}{\partial w_i} \frac{\lambda}{2} \sum_i \omega_i^2 = \lambda \omega_i \)
Support Vector Machines

Hinge-loss formulation: L2 regularization already happening!

\[
\omega = \arg \min_{\omega} \mathcal{L}(T; \omega) + \lambda \mathcal{R}(\omega)
\]

\[
= \arg \min_{\omega} \sum_{t=1}^{\lvert T \rvert} \text{loss}((x_t, y_t); \omega) + \lambda \mathcal{R}(\omega)
\]

\[
= \arg \min_{\omega} \sum_{t=1}^{\lvert T \rvert} \max (0, 1 + \max_{y \neq y_t} \omega \cdot \phi(x_t, y) - \omega \cdot \phi(x_t, y_t)) + \lambda \mathcal{R}(\omega)
\]

\[
= \arg \min_{\omega} \sum_{t=1}^{\lvert T \rvert} \max (0, 1 + \max_{y \neq y_t} \omega \cdot \phi(x_t, y) - \omega \cdot \phi(x_t, y_t)) + \frac{\lambda}{2} \|\omega\|^2
\]

\[\uparrow\text{ SVM optimization} \uparrow\]
SVMs vs. Logistic Regression

\[
\omega = \arg \min_{\omega} \mathcal{L}(\mathcal{T}; \omega) + \lambda \mathcal{R}(\omega)
\]

\[
= \arg \min_{\omega} \sum_{t=1}^{|\mathcal{T}|} \text{loss}(x_t, y_t; \omega) + \lambda \mathcal{R}(\omega)
\]
SVMs vs. Logistic Regression

\[
\omega = \arg \min_{\omega} \mathcal{L}(\mathcal{T}; \omega) + \lambda \mathcal{R}(\omega)
\]

\[
= \arg \min_{\omega} \sum_{t=1}^{\mathcal{T}} \text{loss}(x_t, y_t; \omega) + \lambda \mathcal{R}(\omega)
\]

SVMs/hinge-loss: \(\max (0, 1 + \max_{y \neq y_t} (\omega \cdot \phi(x_t, y) - \omega \cdot \phi(x_t, y_t)))\)

\[
\omega = \arg \min_{\omega} \sum_{t=1}^{\mathcal{T}} \max (0, 1 + \max_{y \neq y_t} \omega \cdot \phi(x_t, y) - \omega \cdot \phi(x_t, y_t)) + \frac{\lambda}{2} \|\omega\|^2
\]
SVMs vs. Logistic Regression

\[\omega = \arg\min_{\omega} L(T; \omega) + \lambda R(\omega) \]

\[= \arg\min_{\omega} \sum_{t=1}^{\left| T \right|} \text{loss}((x_t, y_t); \omega) + \lambda R(\omega) \]

SVMs/hinge-loss: \(\max (0, 1 + \max_{y \neq y_t} (\omega \cdot \phi(x_t, y) - \omega \cdot \phi(x_t, y_t))) \)

\[\omega = \arg\min_{\omega} \sum_{t=1}^{\left| T \right|} \max_{y \neq y_t} (0, 1 + \omega \cdot \phi(x_t, y) - \omega \cdot \phi(x_t, y_t)) + \frac{\lambda}{2} ||\omega||^2 \]

Logistic Regression/log-loss: \(-\log \left(\frac{e^{\omega \cdot \phi(x_t, y_t)}}{Z_x} \right) \)

\[\omega = \arg\min_{\omega} \sum_{t=1}^{\left| T \right|} -\log \left(\frac{e^{\omega \cdot \phi(x_t, y_t)}}{Z_x} \right) + \frac{\lambda}{2} ||\omega||^2 \]
Generalized Linear Classifiers

\[\omega = \arg \min_{\omega} \mathcal{L}(T; \omega) + \lambda R(\omega) = \arg \min_{\omega} \sum_{t=1}^{\lvert T \rvert} \text{loss}((x_t, y_t); \omega) + \lambda R(\omega) \]
Online Learning
Online vs. Batch Learning

Batch(\mathcal{T});

▶ for 1 \ldots N

▶ $\omega \leftarrow \text{update}(\mathcal{T}; \omega)$

▶ return ω

Online(\mathcal{T});

▶ for 1 \ldots N

▶ for $(x_t, y_t) \in \mathcal{T}$

▶ $\omega \leftarrow \text{update}((x_t, y_t); \omega)$

▶ end for

▶ end for

▶ return ω

E.g., SVMs, logistic regression, NB

E.g., Perceptron

$\omega = \omega + \phi(x_t, y_t) - \phi(x_t, y)$
Online vs. Batch Learning

- Online algorithms
 - Tend to converge more quickly
 - Often easier to implement
 - Require more hyperparameter tuning (exception Perceptron)
 - More unstable convergence

- Batch algorithms
 - Tend to converge more slowly
 - Implementation more complex (quad prog, LBFGs)
 - Typically more robust to hyperparameters
 - More stable convergence
Gradient Descent Reminder

- Let $\mathcal{L}(\mathcal{T}; \omega) = \sum_{t=1}^{\mathcal{T}} \text{loss}((x_t, y_t); \omega)$
 - Set $\omega^0 = O^m$
 - Iterate until convergence

$$
\omega^i = \omega^{i-1} - \alpha \nabla \mathcal{L}(\mathcal{T}; \omega^{i-1}) = \omega^{i-1} - \sum_{t=1}^{\mathcal{T}} \alpha \nabla \text{loss}((x_t, y_t); \omega^{i-1})
$$

- $\alpha > 0$ and set so that $\mathcal{L}(\mathcal{T}; \omega^i) < \mathcal{L}(\mathcal{T}; \omega^{i-1})$
Gradient Descent Reminder

- Let $\mathcal{L}(\mathcal{T}; \omega) = \sum_{t=1}^{\lvert \mathcal{T} \rvert} \text{loss}((x_t, y_t); \omega)$
 - Set $\omega^0 = O_m$
 - Iterate until convergence

$$\omega^i = \omega^{i-1} - \alpha \nabla \mathcal{L}(\mathcal{T}; \omega^{i-1}) = \omega^{i-1} - \sum_{t=1}^{\lvert \mathcal{T} \rvert} \alpha \nabla \text{loss}((x_t, y_t); \omega^{i-1})$$

- $\alpha > 0$ and set so that $\mathcal{L}(\mathcal{T}; \omega^i) < \mathcal{L}(\mathcal{T}; \omega^{i-1})$

- **Stochastic Gradient Descent (SGD)**
 - Approximate $\nabla \mathcal{L}(\mathcal{T}; \omega)$ with single $\nabla \text{loss}((x_t, y_t); \omega)$
Stochastic Gradient Descent

- Let $\mathcal{L}(\mathcal{T}; \omega) = \sum_{t=1}^{\mathcal{|T|}} \text{loss}((x_t, y_t); \omega)$

- Set $\omega^0 = O^m$

- Iterate until convergence
 - sample $(x_t, y_t) \in \mathcal{T}$ // “stochastic”
 - $\omega^i = \omega^{i-1} - \alpha \nabla \text{loss}((x_t, y_t); \omega)$

- Return ω
Stochastic Gradient Descent

- Let $\mathcal{L}(T; \omega) = \sum_{t=1}^{|T|} \text{loss}(x_t, y_t; \omega)$

- Set $\omega^0 = O^m$

- Iterate until convergence
 - Sample $(x_t, y_t) \in T$ // “stochastic”
 - $\omega^i = \omega^{i-1} - \alpha \nabla \text{loss}(x_t, y_t; \omega)$

- Return ω

In practice

- Set $\omega^0 = O^m$

- For $1 \ldots N$
 - For $(x_t, y_t) \in T$
 - $\omega^i = \omega^{i-1} - \alpha \nabla \text{loss}(x_t, y_t; \omega)$

- Return ω
Stochastic Gradient Descent

- Let $\mathcal{L}(\mathcal{T}; \omega) = \sum_{t=1}^{\vert \mathcal{T} \vert} \text{loss}((x_t, y_t); \omega)$

- Set $\omega^0 = O^m$

- Iterate until convergence
 - Sample $(x_t, y_t) \in \mathcal{T}$
 - $\omega^i = \omega^{i-1} - \alpha \nabla \text{loss}((x_t, y_t); \omega)$

- Return ω

In practice

Need to solve $\nabla \text{loss}((x_t, y_t); \omega)$

- Set $\omega^0 = O^m$

- For 1 \ldots N
 - For $(x_t, y_t) \in \mathcal{T}$
 - $\omega^i = \omega^{i-1} - \alpha \nabla \text{loss}((x_t, y_t); \omega)$

- Return ω
Online Logistic Regression

- Stochastic Gradient Descent (SGD)
- \(\text{loss}(\{x_t, y_t\}; \omega) = \text{log-loss} \)
- \(\nabla \text{loss}(\{x_t, y_t\}; \omega) = \nabla \left(- \log \left(\frac{e^{\omega \cdot \phi(x_t, y_t)}}{Z_{x_t}} \right) \right) \)
- From logistic regression section:
 \[
 \nabla \left(- \log \left(\frac{e^{\omega \cdot \phi(x_t, y_t)}}{Z_{x_t}} \right) \right) = - \left(\phi(x_t, y_t) - \sum_{y} P(y|x) \phi(x_t, y) \right)
 \]
- Plus regularization term (if part of model)
Online SVMs

- Stochastic Gradient Descent (SGD)
- $\text{loss}((x_t, y_t); \omega) = \text{hinge-loss}$

$$\nabla \text{loss}((x_t, y_t); \omega) = \nabla \left(\max \left(0, 1 + \max_{y \neq y_t} \omega \cdot \phi(x_t, y) - \omega \cdot \phi(x_t, y_t) \right) \right)$$

- Subgradient is:

$$\begin{cases} 0, & \text{if } \omega \cdot \phi(x_t, y_t) - \max_y \omega \cdot \phi(x_t, y) \geq 1 \\ \phi(x_t, y) - \phi(x_t, y_t), & \text{otherwise, where } y = \max_y \omega \cdot \phi(x_t, y) \end{cases}$$

- Plus regularization term (required for SVMs)
Perceptron and Hinge-Loss

SVM subgradient update looks like perceptron update

$$\omega^i = \omega^{i-1} - \alpha \begin{cases}
0, & \text{if } \omega \cdot \phi(x_t, y_t) - \max_y \omega \cdot \phi(x_t, y) \geq 1 \\
\phi(x_t, y) - \phi(x_t, y_t), & \text{otherwise, where } y = \max_y \omega \cdot \phi(x_t, y)
\end{cases}$$

Perceptron

$$\omega^i = \omega^{i-1} - \alpha \begin{cases}
0, & \text{if } \omega \cdot \phi(x_t, y_t) - \max_y \omega \cdot \phi(x_t, y) \geq 0 \\
\phi(x_t, y) - \phi(x_t, y_t), & \text{otherwise, where } y = \max_y \omega \cdot \phi(x_t, y)
\end{cases}$$

where $\alpha = 1$, note $\phi(x_t, y) - \phi(x_t, y_t)$ not $\phi(x_t, y_t) - \phi(x_t, y)$ since ‘−’ (descent)

Perceptron = SGD with no-margin hinge-loss

$$\max \left(0, 1 + \max_{y \neq y_t} \omega \cdot \phi(x_t, y) - \omega \cdot \phi(x_t, y_t) \right)$$
Margin Infused Relaxed Algorithm (MIRA)

Batch (SVMs):

\[
\min \frac{1}{2} \| \omega \|^2
\]

such that:

\[
\omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y') \geq 1
\]

\(\forall (x_t, y_t) \in \mathcal{T} \) and \(y' \in \mathcal{Y}_t\)

Online (MIRA):

Training data: \(\mathcal{T} = \{(x_t, y_t)\}_{t=1}^{\mathcal{T}} \)

1. \(\omega^{(0)} = 0; \ i = 0 \)
2. for \(n : 1..N \)
3. for \(t : 1..T \)
4. \(\omega^{(i+1)} = \arg \min_{\omega^*} \| \omega^* - \omega^{(i)} \| \)
 such that:
 \[
 \omega \cdot \phi(x_t, y_t) - \omega \cdot \phi(x_t, y') \geq 1
 \]
 \(\forall y' \in \mathcal{Y}_t\)
5. \(i = i + 1 \)
6. return \(\omega^i \)

- MIRA has much smaller optimizations with only \(|\mathcal{Y}_t| \) constraints
Quick Summary
Linear Classifiers

- Naive Bayes, Perceptron, Logistic Regression and SVMs
- Generative vs. Discriminative
- Objective functions and loss functions
 - Log-loss, min error and hinge loss
 - Generalized linear classifiers
- Regularization
- Online vs. Batch learning
Non-linear Classifiers
Non-Linear Classifiers

- Some data sets require more than a linear classifier to be correctly modeled
- A lot of models out there
 - K-Nearest Neighbours
 - Decision Trees
 - **Kernels**
 - Neural Networks
Kernels

- A kernel is a similarity function between two points that is symmetric and positive semi-definite, which we denote by:

\[\varphi(x_t, x_r) \in \mathbb{R} \]

- Let \(M \) be a \(n \times n \) matrix such that ...

\[M_{t,r} = \varphi(x_t, x_r) \]

- ... for any \(n \) points. Called the Gram matrix.

- Symmetric:

\[\varphi(x_t, x_r) = \varphi(x_r, x_t) \]

- Positive definite: for all non-zero \(\mathbf{v} \)

\[\mathbf{v}M\mathbf{v}^T \geq 0 \]
Kernels

- Mercer’s Theorem: for any kernel φ, there exists an ϕ, such that:
 \[\varphi(x_t, x_r) = \phi(x_t) \cdot \phi(x_r) \]

- Since our features are over pairs (x, y), we will write kernels over pairs
 \[\varphi((x_t, y_t), (x_r, y_r)) = \phi(x_t, y_t) \cdot \phi(x_r, y_r) \]
Kernel Trick – Perceptron Algorithm

Training data: $\mathcal{T} = \{(x_t, y_t)\}_{t=1}^{\left|\mathcal{T}\right|}$

1. $\omega^{(0)} = 0; \quad i = 0$
2. for $n : 1..N$
3. for $t : 1..T$
4. Let $y = \text{arg max}_y \omega^{(i)} \cdot \phi(x_t, y)$
5. if $y \neq y_t$
6. $\omega^{(i+1)} = \omega^{(i)} + \phi(x_t, y_t) - \phi(x_t, y)$
7. $i = i + 1$
8. return ω^i

- Each feature function $\phi(x_t, y_t)$ is added and $\phi(x_t, y)$ is subtracted to ω say $\alpha_{y,t}$ times
 - $\alpha_{y,t}$ is the # of times during learning label y is predicted for example t

- Thus,

$$\omega = \sum_{t,y} \alpha_{y,t} [\phi(x_t, y_t) - \phi(x_t, y)]$$
Kernel Trick – Perceptron Algorithm

► We can re-write the argmax function as:

\[y^* = \arg \max_{y^*} \sum_{t,y} \alpha_{y,t} [\phi(x_t, y_t) - \phi(x_t, y)] \cdot \phi(x_t, y^*) \]

\[= \arg \max_{y^*} \sum_{t,y} \alpha_{y,t} [\phi(x_t, y_t) \cdot \phi(x_t, y^*) - \phi(x_t, y) \cdot \phi(x_t, y^*)] \]

\[= \arg \max_{y^*} \sum_{t,y} \alpha_{y,t} [\mathcal{K}(x_t, y_t), (x_t, y^*)) - \mathcal{K}(x_t, y), (x_t, y^*))] \]

► We can then re-write the perceptron algorithm strictly with kernels
Kernel Trick – Perceptron Algorithm

Training data: \(\mathcal{T} = \{ (x_t, y_t) \}_{t=1}^{\mathcal{T}} \)

1. \(\forall y, t \) set \(\alpha_{y,t} = 0 \)
2. for \(n : 1..N \)
3. for \(t : 1..T \)
4. Let \(y^* = \text{arg max}_{y^*} \sum_{t,y} \alpha_{y,t} [\varphi((x_t, y_t), (x_t, y^*)) - \varphi((x_t, y), (x_t, y^*))] \)
5. if \(y^* \neq y_t \)
6. \(\alpha_{y^*,t} = \alpha_{y^*,t} + 1 \)

- Given a new instance \(x \)

\[y^* = \text{arg max}_{y^*} \sum_{t,y} \alpha_{y,t} [\varphi((x_t, y_t), (x, y^*)) - \varphi((x_t, y), (x, y^*))] \]

- But it seems like we have just complicated things???
Kernels = Tractable Non-Linearity

- A linear classifier in a higher dimensional feature space is a non-linear classifier in the original space.
- Computing a non-linear kernel is often better computationally than calculating the corresponding dot product in the high dimension feature space.
- Thus, kernels allow us to efficiently learn non-linear classifiers.
Linear Classifiers in High Dimension

\[\mathbb{R}^2 \rightarrow \mathbb{R}^3 \]

\[(x_1, x_2) \rightarrow (z_1, z_2, z_3) = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \]
Example: Polynomial Kernel

$\phi(x) \in \mathbb{R}^M$, $d \geq 2$

$\varphi(x_t, x_s) = (\phi(x_t) \cdot \phi(x_s) + 1)^d$

$O(M)$ to calculate for any d!!

But in the original feature space (primal space)

Consider $d = 2$, $M = 2$, and $\phi(x_t) = [x_{t,1}, x_{t,2}]$

$$(\phi(x_t) \cdot \phi(x_s) + 1)^2 = ([x_{t,1}, x_{t,2}] \cdot [x_{s,1}, x_{s,2}] + 1)^2$$

$$= (x_{t,1}x_{s,1} + x_{t,2}x_{s,2} + 1)^2$$

$$= (x_{t,1}x_{s,1})^2 + (x_{t,2}x_{s,2})^2 + 2(x_{t,1}x_{s,1}) + 2(x_{t,2}x_{s,2})$$

$$+ 2(x_{t,1}x_{t,2}x_{s,1}x_{s,2}) + (1)^2$$

which equals:

$$[(x_{t,1})^2, (x_{t,2})^2, \sqrt{2}x_{t,1}, \sqrt{2}x_{t,2}, \sqrt{2}x_{t,1}x_{t,2}, 1] \cdot [(x_{s,1})^2, (x_{s,2})^2, \sqrt{2}x_{s,1}, \sqrt{2}x_{s,2}, \sqrt{2}x_{s,1}x_{s,2}, 1]$$
Popular Kernels

▶ Polynomial kernel

\[\varphi(x_t, x_s) = (\phi(x_t) \cdot \phi(x_s) + 1)^d \]

▶ Gaussian radial basis kernel (infinite feature space representation!)

\[\varphi(x_t, x_s) = \exp\left(\frac{-||\phi(x_t) - \phi(x_s)||^2}{2\sigma}\right) \]

▶ String kernels \cite{Lodhi et al. 2002, Collins and Duffy 2002}

▶ Tree kernels \cite{Collins and Duffy 2002}
Kernels Summary

- Can turn a linear classifier into a non-linear classifier
- Kernels project feature space to higher dimensions
 - Sometimes exponentially larger
 - Sometimes an infinite space!
- Can “kernalize” algorithms to make them non-linear
References and Further Reading

K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, and Y. Singer. 2006. Online passive aggressive algorithms. JMLR.

Maximum entropy Markov models for information extraction and segmentation. In Proc. ICML.

