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Features and NLP

/\ p(gamelin) « exp(wTd>(game,in))
_ J1,if PoS(x)=Noun & y=in
®,(x,y) =
. 106y {O, otherwise
all n the game o_(xy) = 1, if x=game & PoS(y)=Prep
2%y = 0, otherwise

etc.

Twenty years ago log-linear models freed us from the shackles of

simple multinomial parametrisations, but imposed the tyranny of
feature engineering.
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Features and NLP

the game done changed

(e e o9
p(game|changed) o exp ( )

Distributed /neural models allow us to learn shallow features for our
classifiers, capturing simple correlations between inputs.
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Features and NLP
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game's the same, just got more fierce

Deep learning allows us to learn hierarchical generalisations.

Something that is proving rather useful for vision, speech, and now
NLP...
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Distributed Representations in Compositional Semantics
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How to Represent Meaning in NLP

We can represent words using a number of approaches

e Characters
e POS tags
e Grammatical roles

e Named Entity Recognition

Collocation and distributional representations

e Task-specific features

All of these representations can be encoded in vectors. Some of
these representations capture meaning.
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A harder problem: paraphrase detection

Q: Do two sentences (roughly) mean the same?
“He enjoys Jazz music” = “He likes listening to Jazz" ?

A: Use a distributional representation to find out?
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A harder problem: paraphrase detection

Q: Do two sentences (roughly) mean the same?
“He enjoys Jazz music” = “He likes listening to Jazz" ?

A: Use a distributional representation to find out?

Most representations not sensible on the sentence level

e Characters ?
POS tags ?

e Grammatical roles ?

Named Entity Recognition ?

Collocation and distributional representations ?

e Task-specific features ?
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Why can't we extract hierarchical features?

The curse of dimensionality

As the dimensionality of a representation increases, learning
becomes less and less viable due to sparsity.

Dimensionality for collocation
e One word per entry: Size of dictionary (small)
e One sentence per entry: Number of possible sentences
(infinite)

= We need a different method for representing sentences
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What is Deep Learning

Deep Learning for Language

Learning a hierarchy of features, where higher levels of abstraction
are derived from lower levels.
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A door, a roof, a window: It's a house
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Lots of possible ways to compose vectors
e Addition
Multiplication

Kronecker Product

Tensor Magic

Matrix-Vector multiplication

Requirements

Not commutative Mary likes John # John likes Mary
Encode its parts? Magic carpet = Magic + Carpet
More than parts? Memory lane # Memory + Lane
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Autoencoders

We want to ensure that the joint representation captures the
meaning of its parts. We can achieve this by autoencoding our
data at each step:

Reconstruction Layer

000000000

Reconstruction

Encodingl OO O O]
Encoding step

@000 00000)
Input Layer

For this to work, our autoencoder minimizes an objective function
over inputs x;,i € N and their reconstructions x;:

1 )
S35
i
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Recursive Autoencoders (RAE)

We still want to learn how to represent a full sentence (or house).
To do this, we chain autoencoders to create a recursive structure.

(elelele)

) ([©OOO] We use a composition function
1

& g(W x input + bias)

[e]e)
g is a non-linearity (tanh, sigm)
W is a weight matrix
b is a bias

¥, =9(Wly,lIx3)+b) (O O
Q000 OO0
X X

1 2

Y1 = g(W(x1||x2)+b) O O
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A different task: paraphrase detection

Q: Do two sentences (roughly) mean the same?

“He enjoys Jazz music” = “He likes listening to Jazz" ?

A: Use deep learning to find out!

enjoys Jazz music

@006 ©668 ©668 ©06T

0000 ©CCO00 0000 0000 ©000

Distributed Representations in Céfipositional Sdikéntics listening to Jazz
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Other Applications: Stick a label on top

(@) sentiment

S[dcl]
F(F(Tina,0,lex),f(likes,f(tigers,0,lex),>),<)

(S[dcl]\NP)
f(likes,f(tigers,0,lex),>)

f(Tina,0,leX)

(©0 00 ©00J0) (0000
N (S\[dcl]NP)/NP N
Tina likes tigers
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1. Combine label and
reconstruction error

E(N,1,0) =
Z Erec (n7 9) + ElbI(Vm 1, 9)
neN

0 2
Erec(n 2 H[Xn”yn —In

EMWL®:§W—vW

2. Strong results for a number
of tasks:

Sentiment Analysis

Paraphrase Detection

Image Search
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Convolution Sentence Models

Deep learning is suppose to learn the features for us, so can we do
away with all this structural engineering and forget about latent
parse trees?
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Convolution Sentence Models

o o o (@] o o
Open the pod bay doors HAL
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Convolution Sentence Models
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Open the pod bay doors HAL
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Convolution Sentence Models

o o
Open the pod bay doors HAL
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Convolution Sentence Models
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Open the pod bay doors HAL
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A CSM for Dialogue Act Tagging

@

B

B

B:

My favourite show is Masterpiece Theatre.

: Do you like it by any chance?

: Oh yes!

You do!

Yes, very much.

: Well, wouldn't you know.

As a matter of fact, | prefer public television.

And, uh, | have, particularly enjoy English

comedies.
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Statement-Non-Opinion
Yes-No-Question
Yes-Answers
Declarative Yes-No-Q
Yes-Answers
Exclamation
Statement-non-opinion

Statement-non-opinion

18/3¢



A CSM for Dialogue Act Tagging

Dave: Hello HAL, do : Affirmative, Dave, Dave: Open the pod bay : I'm sorry, Dave,
you read me HAL? | read you. doors, HAL. I'm afraid | can't do that.
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A CSM for Dialogue Act Tagging

Dave: Hello HAL, do : Affirmative, Dave, Dave: Open the pod bay : I'm sorry, Dave,
you read me HAL? | read you. doors, HAL. I'm afraid | can't do that.

Yoy Yy
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A CSM for Dialogue Act Tagging

Dave: Hello HAL, do : Affirmative, Dave, Dave: Open the pod bay : I'm sorry, Dave,
you read me HAL? | read you. doors, HAL. I'm afraid | can't do that.

..
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A CSM for Dialogue Act Tagging

Dave: Hello HAL, do : Affirmative, Dave, Dave: Open the pod bay : I'm sorry, Dave,
you read me HAL? | read you. doors, HAL. I'm afraid | can't do that.

[ o) ) Qoi?
S4

HDave
1 % OHAL
z3 hy y21

\4

h; = g(TIz;—1 + H"'h;_; + Ss;)
p; = softmax(O’hy)
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A CSM for Dialogue Act Tagging

Dave: Hello HAL, do : Affirmative, Dave, Dave: Open the pod bay : I'm sorry, Dave,
you read me HAL? | read you. doors, HAL. I'm afraid | can't do that.
R Q i ? R Q i ? [ Q
Sy
HDave
1 OHAL
T3
h, P4

h; = g(TIz;—1 + H"'h;_; + Ss;)
p; = softmax(O’hy)

State of the art results while allowing online processing of dialogue.
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Convolution Sentence Models: Question Answering

?X ( ; X)

What is the population of Vancouver ?

Competitive with a template based approach with lots of hand
engineered features.
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Convolution Sentence Models

Projected
sentence
matrix
(s=7)

The cat sat on the red mat
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Convolution Sentence Models
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The cat sat on the red mat
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Convolution Sentence Models
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The cat sat on the red mat
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Convolution Sentence
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Convolution Sentence Models
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Convolution Sentence Models
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Convolution Sentence
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Small Sentiment Task

Five-class (%) Binary (%)

NB 41.0 81.8
SVM 40.7 79.4
BINB 419 83.1
RECNTN 45.7 85.4
MAX-TDNN 374 77.1
NBowW 424 80.5
DCNN 48.5 86.8

Sentiment prediction on the Stanford movie reviews dataset.

Distributed Representations in Compositional Semantics
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Large Sentiment Task

Accuracy (%)
SVM 81.6
NB 82.7
MAXENT 83.0
MAX-TDNN 78.8
NBoW 80.9
DCNN 87.4

Accuracy on the larger Twitter sentiment dataset.
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Question Classification Task

Classifier Features Acc. (%)

unigram, POS, head chunks 91.0

HIER NE, semantic relations

unigram, bigram, trigram 92.6
MAXENT POS, chunks, NE, supertags

CCG parser, WordNet

unigram, bigram, trigram 93.6
MAXENT POS, wh-word, head word

word shape, parser

hypernyms, WordNet

unigram, POS, wh-word 95.0

head word, parser
SVM hypernyms, WordNet

60 hand-coded rules
MAX-TDNN  unsupervised vectors 84.4
NBow unsupervised vectors 88.2
DCNN unsupervised vectors 93.0

Six-way question classification on the TREC questions dataset, e.g.

Input: How far is it from Denver to Aspen ?
Output: NUMBER
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Feature: not only ... but also
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Feature: as ...as ...as
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Feature: positivity
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From Vector Space Compositional Semantics to MT
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Generalisation in MT

BB R - # B #®& .
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Generalisation in MT

Lambda Calculus

Generalisation

B oA & - # B #®& .
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Generalisation in MT

i 'd like a glass of white wine , please .

Generation

Lambda Calculus

Generalisation

BB R - # B #®& .
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Generalisation in MT

i 'd like a glass of white wine , please .

Generation

B oA & - # B #®& .

Formal logical representations are very hard to learn from data. Let
us optimistically assume a vector space and see how we go.
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Generation

A simple distributed representation language model:

R(Wn—Z) R(Wn—l) Pn

Nﬁ
X

e o o o
+
Q
x

e o o o
I

Pn = n72R(Wn72) + CnflR(anl)

p(Wn’Wn—la Wn—2) X exp (R(Wn)Tpn)

This is referred to as a log-bilinear model.

From Vector Space Compositional Semantics to MT 30/3¢



Generation

A simple distributed representation language model:

Rw,_p) Rw,_y) Pn

. . .

G X : + C, X ¢ = *
. . .

Pn = CanR(an2) + CnflR(anl)
p(Wn|Wn—17 Wn—2) X exp (R(Wn)TU(pn))

Adding a non-linearity gives a version of what is often called a
neural, or continuous space, LM.
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Conditional Generation

R(t,.,) R(t, 1) Po
C, X : + C % 4 =
.
+
Cn
CSM

S(sy) S(s;)  S(s3) S(sy)  S(ss) S(sg) S(s;) S(sg)

pn = n_QR(tn_Q) + Cn_lR(tn_l) + CSM(n, S)
p(taltn—1, tn—2,5) o exp (R(ta) "o(pn))
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Conditional Generation: A Naive First Model

R(t,_,) R(t,_y) Py
C, X : + Cy % : =
+
cn
Il
+ + + + + + +

S(sp)  S(sp)  S(s3)  S(s)  S(sg) S(sg) S(s;) S(sg)

sl

pn = GR(th—2) + GiR(th—1) + Z S(sj)
=

p(tnltn—1, tr2,5) < exp (R(tn) T o(pn))
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Conditional Generation: A Naive First Model

EEPN BE t= N g * iF ng ?
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Conditional Generation: A Naive First Model

X ®BE +t= WE X H B 2
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Conditional Generation: A Naive First Model

X ®BE +t= WE X H B 2
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Conditional Generation: A Naive First Model

may i have a wake-up call at seven tomorrow morning ?

CLM

X ®BE +t= WE X H B 2
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Conditional Generation: A Naive First Model

where 's the currency exchange office ?

\ CLM

L] . L] L]
+

L] L] L] L]
+

L] L] L] L]

L] L] L] L]
+

L] L] L] L]

kW gk &' WE ?
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Conditional Generation: A Naive First Model

i 'd like a glass of white wine , please .

L] L] L] L] . L] . .

L] L] . . . L] . .
+ + + + + + +

L] L] . . . L] . .

L] L] . . . L] . .

B & K - B ®#®%8E .
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Conditional Generation: A Naive First Model

i 'm going to los angeles this afternoon .

CLM

5% TF
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Conditional Generation: A Naive First Model

i 'd like to have a room under thirty dollars a night .

CLM

&
i
|
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Conditional Generation: A Naive First Model

i 'd like to have a room under thirty dollars a night .

CLM

RN R N I R e N R ¥ R R R N g
BB OE — B =t =T UT W BE

Rough Gloss
| would like a night thirty dollars under room.
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Conditional Generation: A Naive First Model

i 'd like to have a room under thirty dollars a night .

\ CLM

\

et
odh

2 - m®m =

Google Translate
| want a late thirties under $'s room.
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Conditional Generation: A Naive First Model

you have to do something about it .

CLM

AR I M N W IR N R
~ ®BR O OopzE B oE B O o W
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Conditional Generation: A Naive First Model

i can n't urinate .
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Conditional Generaton: Small test dataset

Chinese (zh) — English (en) test 1 test 2
cdec (state-of-the-art MT) 50.1 589
Direct (naive bag of words source) 308 33.2
Direct (convolution p(en|zh)) 446 504
Noisy Channel (convolution p(zh|en)p(en)) 50.1  51.8
Noisy Channel x Direct 51.0 55.2

BLEU score results on a small Chinese — English translation task.
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e unsupervised features extraction alleviates domain and
language dependencies.

e very compact models.

e distributed representations for words naturally include
morphological properties.

e the conditional generation framework easily permits additional
context such as dialogue and domain level vectors.

<

Challenges

e better conditioning on sentence position for long sentences,
and all the other things this model does not capture!

e handling rare and unknown words.
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Computational Linguistics at The University of Oxford

DEPARTMENT OF

- COMPUTER
oy SCIENCE

We are growing!
Postdoctoral and DPhil studentships are available working in
Machine Learning and Computational Linguistics

http://wuw.clg.ox.ac.uk
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