Hankel-Based Methods for Latent-State
Structured Prediction

Ariadna Quattoni

Xerox Research Centre Europe
Collaborators: R. Bailly, B. Balle, X.Carreras, A. Globerson, F. Luque, A. Mayo

LxMLS 2014

Structured Prediction

» We want to learn functions over structured objects:

» from sequences to reals (e.g. sequence classification)
» from pairs of sequences to reals (e.g. sequence tagging)
» from pairs of sequences and trees to reals (e.g. NLP parsing)

» Stochastic Functions: 0 < f(x) <1land } yf(x)=1

» Use these models to make predictions: argmax, f(x)

| atent State Models

» Consider a sequence abaccb

f(abaccbh) = x¢(ab) - B¢(acch)
= af(ab) - Aq - Br(ceb)
= a¢(aba) - Ac - Be(cb)
where:

» n is the dimension of the model
» of maps prefixes to R™

» 3+ maps suffixes to R™

» A is a bilinear operator in R™*™

» F: functions computed by WFAs (HMMs is a subclass)

| atent State Models

» Consider a sequence abaccb

f(abaccbh) = x¢(ab) - B¢(acch)
= af(ab) - Aq - P(cchb)
= a¢(aba) - Ac - Be(cb)
where:

» n is the dimension of the model
» of maps prefixes to R™

» 3+ maps suffixes to R™

» A is a bilinear operator in R™*™

» F: functions computed by WFAs (HMMs is a subclass)

» Finding f € F: Estimate o, P and Ag from S
» EM

» Many ways of expressing the same f € F
» Algebraic Methods

Outline

Spectral Learning of WFA

Hankel-Based Optimization
for Structured Prediction

Outline

* Spectral Learning of WFA mas)

* Hankel-Based Optimization
for Structured Prediction

Outline

. ‘Classic spectral
_
Spectral Learning of WFA learning algorithms’

Hankel-Based Optimization
for Structured Prediction

Outline

. ‘Classic spectral
S SN
Spectral Learning of WFA learning algorithms’

Hankel-Based Optimization
for Structured Prediction)

Outline

* Spectral Learning of WFA

e
: Classic spectral
learning algorithms’

* Hankel-Based Optimization

for Structured Prediction s Different

interpretation of
spectral trick’

Outline

Spectral Learning of WFA

Hankel-Based Optimization
for Structured Prediction

Weighted Automata (WFA)

Weighted Automata (WFA)

a 04
b 0.1

e

a 0.1
b 0.1

a 0.2
b 0.3

a 0.1
b 0.1

Weighted Automata (WFA)

a04 001 a 0.1
b 0.1 bo1 b 0.1 1.0 A
w 1= 10.0 @
0.6 [V
—> o _ |00
o =
a 0.2 0.6 Ab
b 0.3

Weighted Automata (WFA)

a 0. a 0. _ _
bo1 %0 bon 1] A _ [04 02
—@) w — [0 0.1 03
0.9 _0.6_ Ab:

{;0;3 _0.1 0.1_

» Class of WA parametrized by alphabet X and number of states n

Weighted Automata (WFA)

a 0. a 0. _ _

bo1 %0 bon 1] A _ [04 02

— @) x. — |00 0.1 0.3
a 0.2 0.6 Ab:

o 01 0.1

» Class of WA parametrized by alphabet X and number of states n

A = (“1» ‘xoo»{Acr}GEZ>

Weighted Automata (WFA)

a 0. a 0. _ _
bo1 %0 bon 1] A _ [04 02
—@) w — |00 0.1 0.3
— 06] Ay =

o 01 0.1

» Class of WA parametrized by alphabet X and number of states n

A = (061, OCoo»{AG}GEZ>
X1 € R™

Weighted Automata (WFA)

a 0. a0.1 - =
bo1 00 po o) A [04 02
o6 M= lool % |01 0.1
— (9o, 0.0] I 7
oo = 0.1 0.3

02 -0-6- Ab p—
b 04 0.1 0.1

» Class of WA parametrized by alphabet X and number of states n

A = (061. ‘xoo»{Acr}GEZ>
x1 € R"w)

Weighted Automata (WFA)

a 0. a 0. _ _
bo1 %0 bon 1] A _ [04 02
— @) w — [0 0.1 03
0.0 _0.6_ Ab:

o 01 0.1

» Class of WA parametrized by alphabet X and number of states n

A = (x1, &0, {Acloes)
x1 € R™ m) (initial weights)

Weighted Automata (WFA)

a 0. a 0.1 - =
bo1 00 po o) A [04 02
o M= lool % |01 0.1
—(®) 0.0] - 1
oo = 0.1 0.3

1 0.2 06] Ap =
oo - 0.1 0.1

» Class of WA parametrized by alphabet X and number of states n

A = (x1, &0, {Acloes)
x1 € R™) (initial weights) oy € R™

Weighted Automata (WFA)

a 0. a 0. _ _
bo1 %0 bon 1] A _ [04 02
— @) w — [0 0.1 03
0.0 _0.6_ Ab:

o 01 0.1

» Class of WA parametrized by alphabet X and number of states n

A = (x1, &0, {Acloes)
x1 € R™) (initial weights) o € R™"mmd

Weighted Automata (WFA)

a 0. a 0.1 - =
bo1 00 po o) A [04 02
o6 M= lool % |01 0.1
—(®) 0.0] - 1
oo = 0.1 0.3

1 0.2 06] Ap =
oo o 0.1 0.1

» Class of WA parametrized by alphabet X and number of states n

A — <a‘11 (X'OOv {AO'}O'EZ>
a1 € R™ me) (initial weights) oo € R™ @) (terminal weights)

Weighted Automata (WFA)

a 0. a 0.1 - =
bo1 00 po o) A [04 02
o6 M= lool % |01 0.1
—(®) 0.0] - 1
oo = 0.1 0.3

1 0.2 06] Ap =
oo o 0.1 0.1

» Class of WA parametrized by alphabet X and number of states n

A — <a‘11 (X'OOv {AO'}O'EZ>
a1 € R™ me) (initial weights) oo € R™ @) (terminal weights)

AO‘ c Ran

Weighted Automata (WFA)

a 0. a 0.1 - =
bo1 00 po o) A [04 02
o6 M= lool % |01 0.1
—(®) 0.0] - 1
oo = 0.1 0.3

1 0.2 06] Ap =
oo o 0.1 0.1

» Class of WA parametrized by alphabet X and number of states n

A — <a‘11 (X'OOv {AO'}O'EZ>
a1 € R™ me) (initial weights) oo € R™ @) (terminal weights)

AO‘ c Ranﬁ

Weighted Automata (WFA)

a 0. a 0.1 - -
bo1 00 po o) A [04 02
o M= lool % |01 0.1
—(@ 0.0 - 1
Koo = 0.1 0.3

1 0.2 06] Ap =
b 03 - 0.1 0.1

» Class of WA parametrized by alphabet X and number of states n

A — <a‘11 a’OOv {AO'}O'EZ>
a1 € R™ me) (initial weights) oo € R™ @) (terminal weights)

Ay € R™* ™ (transition weights)

Weighted Automata (WFA)

a 0. a 0. _ _
bo1 %0 bon 1] A _ [04 02
—@) w — |00 0.1 0.3
702 -0.6- Ab:

g0;3 _0.1 0.1_

» Class of WA parametrized by alphabet X and number of states n

A — <a‘11 “OO!{AO'}O'EZ>
a1 € R™ me) (initial weights) oo € R™ @) (terminal weights)

As € R™* ™ (transition weights)

» Computes a function fp : 2* — R

Weighted Automata (WFA)

a 0. a 0.1 - =
bo1 00 po o) A [04 02
o6 M= lool % |01 0.1
—(®) 0.0] - 1
oo = 0.1 0.3

1 0.2 06] Ap =
oo o 0.1 0.1

» Class of WA parametrized by alphabet X and number of states n

A — <a‘11 (X'OOv {AO'}O'EZ>
a1 € R™ me) (initial weights) oo € R™ @) (terminal weights)

Ay € R™* ™ (transition weights)

» Computes a function fp : 2* — R

fa(x) =falxi---x¢)

Examples of functions computed by WFAs

Generates infinite strings, computes probabilities of prefixes P[xX*]

Emission and transition are conditionally independent given state

a,0.3 0.6 a,0.5
o] =[0.3 0.3 0.4] b,0.7 b,0.5
xl =011 1]
Aq=0q-T
"0 07 03
T=|0 075 025
0 04 06
03 0 O
Oa=| 0 09 0
0 0 05 b,0.1

HMMs

Examples of functions computed by WFAs

Compute conditional probabilities Ply[x] = & TAY «s, for pairs
(x,y) € (£ x A)*, must have [x| = |y]
Can also assume models factorized like in HMM

«; =1[0.3 0 0.7]
-
. =11 1]
02 04 O
A= 0 o0 1
0 075 0

FSTs

Forward-Backward Mappings

Forward-Backward Mappings

Any WA A defines forward and backward maps

Forward-Backward Mappings

Any WA A defines forward and backward maps ws)

Forward-Backward Mappings

Any WA A defines forward and backward maps ms) xa, Pa : 2° — R"

Forward-Backward Mappings

Any WA A defines forward and backward maps ms) xa, Ba : 2° — R™

such that for any splitting x = p - s one has

Forward-Backward Mappings

Any WA A defines forward and backward maps ms) xa, Pa : 2° — R"

such that for any splitting x = p - s one has

Forward-Backward Mappings

Any WA A defines forward and backward maps ms) xa, Pa : 2° — R"

such that for any splitting x = p - s one has

“A(p)_r — O‘IAP1 e Ap,

Forward-Backward Mappings

Any WA A defines forward and backward maps ms) xa, Pa : 2° — R"

such that for any splitting x = p - s one has

“A(p)_r — O‘IAP1 e Ap,
BA(S)T = Asl v Ast;‘xoo

Forward-Backward Mappings

Any WA A defines forward and backward maps ms) xa, Pa : 2° — R"

such that for any splitting x = p - s one has

“A(p)_r — O‘IAP1 e Ap,
BA(S)T Asy o As, Koo
fa(x) = xa(p) ' Bals)

Forward-Backward Mappings

Any WA A defines forward and backward maps ms) xa, Pa : 2° — R"

such that for any splitting x = p - s one has

“A(p)_r — O‘IAP1 e Ap,
BA(S)T Asy o As, Koo
fa(x) = xa(p) ' Bals)

Example, for HMMs:

Forward-Backward Mappings

Any WA A defines forward and backward maps ms) xa, Pa : 2° — R"

such that for any splitting x = p - s one has

“A(p)_r — O‘IAP1 e Ap,
BA(S)T = As; Asy Koo
fa(x) = xa(p) ' Bals)

Example, for HMMs:

{

Forward-Backward Mappings

Any WA A defines forward and backward maps ms) xa, Pa : 2° — R"

such that for any splitting x = p - s one has

O(A(p)—r — CXIAP1 e Ap,
ﬁA(S)T Asy o As, Koo
fa(x) = xa(p) ' Bals)

Example, for HMMs:

[xa(p)li =Plp, h41 =1

Forward-Backward Mappings

Any WA A defines forward and backward maps ms) xa, Pa : 2° — R"

such that for any splitting x = p - s one has

O(A(p)—r — CXIAP1 e Ap,
ﬁA(S)T = As; Asy Koo
fa(x) = xa(p) ' Bals)

Example, for HMMs:

Forward-Backward Mappings

Any WA A defines forward and backward maps ms) xa, Pa : 2° — R"

such that for any splitting x = p - s one has

O(A(p)—r — CXIAP1 e Ap,

ﬁA(S)T = As; Asy Koo
fa(x) = xa(p)' Bals)
Example, for HMMs: Consequences:
[xa(p)li =Plp, h41 =1
[Ba(s)li =Pls | h =1]

Forward-Backward Mappings

Any WA A defines forward and backward maps ms) xa, Pa : 2° — R"

such that for any splitting x = p - s one has

O(A(p)—r — CXIAP1 e Ap,
ﬁA(S)T Asy o As, Koo
fa(x) = xa(p) ' Bals)

Consequences:

{

Example, for HMMs:

Forward-Backward Mappings

Any WA A defines forward and backward maps ms) xa, Pa : 2° — R"

such that for any splitting x = p - s one has

O(A(p)—r — CXIAP1 o Apy
BA(S)T = As; Asy Koo
fa(x) = xa(p) ' Bals)

Example, for HMMs: Consequences:

{4

A s can be recovered from
fa(pos), xa(p), and Ba(s):

Forward-Backward Mappings

Any WA A defines forward and backward maps ms) xa, Pa : 2° — R"

such that for any splitting x = p - s one has

O(A(p)—r — CXIAP1 e Ap,
ﬁA(S)T Asy o As, Koo
fa(x) = xa(p) ' Bals)

Consequences:

{4

Example, for HMMs:

A s can be recovered from
fa(pos), xa(p), and Ba(s):

fa(pos) = aa(p) Ay Bal(s)

The Hankel Matrix

The Hankel Matrix

The Hankel matrixof f: 2* — R is

The Hankel Matrix

The Hankel matrix of f: 2* - R isﬁ

The Hankel Matrix

The Hankel matrixof f:2* - R isﬁ Hf c]RZ*XZ*

The Hankel Matrix

The Hankel matrix of f: Z* — R ismm) Hy¢ € RZ*XZ*

For p,s € L™, entries are defined by

The Hankel Matrix

The Hankel matrixof f:2* - R isﬁ Hf c]RZ*XZ*

For p,s € L™, entries are defined by =>

The Hankel Matrix

The Hankel matrix of f: 2* - R isﬁ

For p,s € I*, entries are defined by m)

Hf € R %

He(p,s) =f(p -s)

The Hankel Matrix

The Hankel matrix of f: 2* =5 R isﬁ

For p,s € I*, entries are defined by m)

H € RZ*XZ*

He(p,s) =f(p -s)

e

The Hankel Matrix

The Hankel matrix of f: £* - Rismm) Hyf € R

For p,s € L™, entries are defined byﬂ Hf (P S) — f(p . S)

The Hankel Matrix

The Hankel matrix of f: £* - Rismm) Hyf € R

For p,s € L™, entries are defined byﬁ Hf (P S) — f(p . S)

Very redundant
representation

The Hankel Matrix

The Hankel matrix of f: 2* =5 R isﬁ

For p,s € L*, entries are defined by ﬁ

Very redundant
representation

we will work with

finite sub-blocks of H

H € RZ*XZ*

He(p,s) =f(p -s)

Hankel Matrix of a WFA

Hankel Matrix of a WFA

Schitzenberger's Theorem

Hankel Matrix of a WFA
Schiitzenberger's Theorem mmm)

Hankel Matrix of a WFA
Schiitzenberger's Theorem mmm)

Theorem: rank(H¢) =n < f = fo with minimal A of size n

Hankel Matrix of a WFA
Schiitzenberger's Theorem mmm)

Theorem: rank(H¢) =n < f = fo with minimal A of size n

Remarks (<)

Hankel Matrix of a WFA
Schiitzenberger's Theorem mmm)

Theorem: rank(H¢) =n < f = fo with minimal A of size n

Remarks (<)

Write F = op (£*) T € RE™X™ and B = B4 (Z*) € R™*%
Note Hf =F-B
Then, rank(H¢) =n

Hankel Matrix of a WFA
Schiitzenberger's Theorem mmm)

Theorem: rank(H¢) =n < f = fo with minimal A of size n

Remarks (<)

Write F = op (£*) T € RE™X™ and B = B4 (Z*) € R™*%
Note Hf =F-B
Then, rank(H¢) =n

Remarks (=)

Hankel Matrix of a WFA
Schiitzenberger's Theorem mmm)

Theorem: rank(H¢) =n < f = fo with minimal A of size n

Remarks (<)

Write F = aq (Z*) T € RE"™™ and B = B4 (Z£*) € RW<*
Note Hf =F-B
Then, rank(H¢) = n

Remarks (=)

Assume rank(Hyf) =n
Take rank factorization H¢ = F-B with F € R="*™ and B € R™**"
A WA that computes f can be constructed using F and B

Low-rank Hankel and Operators

Low-rank Hankel and Operators

HO' c RZ*XZ* Fe RZ*XTL AO‘ = Rnxn = Rnx}:*
S
[i [i S
® ® [. [®)
— [[o] . ®
P [P @] @] @] o o [. @]
f(‘pl...pt.g.sl...st,): o(irApl...Apt AO‘ Asl St,(xoo
(0.4 [P) T B‘(:)

Low-rank Hankel and Operators

HO' c RZ*XZ* Fe RZ*XTI AO‘ = Rnxn = Rnx}:*

S

<
°
I

<

o

o

o
—
e o o
e o o
e o o
—]
—
e o o

Spectral Method

Spectral Method

Idea: Use SVD decomposition to obtain a factorization of H

» Choose a basis: sets of prefixes P and suffixes 8

» Obtain H and H over basis (P, 8)
» Compute compact SVD as H = UAV T with

UeR”™™ AeR™™ VeRY™

» Construct the WA using F=UA and B=V:

» A = FTH,VT foralloce L
» o =H(A,)BT, XKoo = FTH(-, A)

Spectral Method

Idea: Use SVD decomposition to obtain a factorization of H

» Choose a basis: sets of prefixes P and suffixes 8

» Obtain H and H over basis (P, 8)
» Compute compact SVD as H = UAV T with

UeR”™™ AeR™™ VeRY™

» Construct the WA using F=UA and B=V:

» Ag =F H;VT forallc e X
» o =H(A,)BT, XKoo = FTH(-, A)

Properties
» Easy to implement: just linear algebra
» Fast to compute: O(max{|P|, |S[}®)

» Noise tolerant: H ~ H and l’—\l(r ~ Hy implies /2\0 ~ Ag

Spectral Method

Choice of Preffix-Suffix Basis (P, 8)
» Should satisfy that rank(Hy«xs+) = rank(Hpyg)

» P=8S=2XU{A} (Hsu et al COLT-09)
» all prefixes/suffixes in the training data

» most frequent ones (Balle et al MLJ-13)
» feature-based equivalence classes (Cohen et al NAACL-13)

Observable Statistics in H and H

» The WA can be recovered from

» String probabilities P[x]
» Prefix probabilities P[xX*] (Hsu et al COLT-09)
» Substring expectations E[lw|,]

» See (Balle et al MLJ-13) for details

Parameter of the method

» A dimension n: controls complexity of the WA family

Experiment: PoS-Tag Sequence Models

74|. ? pectral, X Dasis === |
Spectral, basis k=25 st
SpeCtTaL basis k=50 s
72 Spectral, basis k=100 ===ap=== |
Spectral, basis k=300 s
3 Spectral, basis k=500 =il
s 70 § Unigram s |
2 Bﬁ!’am am——)
© s e
T 68 p-- S
L] 2
-g 66 - ————ee - ‘\‘\“.. “ I
o & ‘."
; 64 . ‘\\‘\“‘\\ \““ """"
\ ..-.-:-.- v -Oﬂ-,n'ﬁ.-.';? ,,,,,,,, ’¢ “““ g PERREE gttt
> S Y D (LTS By) 4 o®
(2720 TS S—— 7 VRPN ""'T".:' ':]'.'TW""T-’."" L LT
60

Number of States

PTB sequences of simplified PoS tags (Petrov et al 2010)
Configuration: expectations on frequent substrings

Metric: error rate on predicting next symbol in test sequences

Experiment: PoS-Tag Sequence Models

70
68 p--
g 66 k-
Qo
&
. b4
o
L
©
5 62
; !
pectral, SIS m——
60 Spectral, basis k=500 =i =TT AT
UI"IIgram ------
58 ' e—
Number of States

Comparison with a bigram baseline and EM
Metric: error rate on predicting next symbol in test sequences
At training, the Spectral Method is > 100 faster than EM

Classical Spectral: Summary

Classical Spectral: Summary

Learning Setting:

* Considers stochastic functions
* Assumes there is a model that generates sequences
* We can sample from this model

Classical Spectral: Summary

Learning Setting:

* Considers stochastic functions
* Assumes there is a model that generates sequences
* We can sample from this model

Unknown
PWFA

Classical Spectral: Summary

Learning Setting:

* Considers stochastic functions
* Assumes there is a model that generates sequences
* We can sample from this model

Unknown
PWFA

— Samples

Classical Spectral: Summary

Learning Setting:

* Considers stochastic functions
* Assumes there is a model that generates sequences
* We can sample from this model

Unknown Estimate
PWFA [Samples ' Hankel

[

Typically
involves estimating
expectations

Classical Spectral: Summary

Learning Setting:

* Considers stochastic functions
* Assumes there is a model that generates sequences
* We can sample from this model

Unknown . Samples — Estimate we) Algebraic

PWFA Hankel Opera’[ions
Typically Model

involves estimating

) Parameters
expectations

Classical Spectral: Summary

Learning Setting:

* Considers stochastic functions
* Assumes there is a model that generates sequences
* We can sample from this model

Unknown . Samples — Estimate we) Algebraic

PWFA Hankel Opera’[ions
Nice Theoretical , ﬂ
Guarantees Typically Model

involves estimating

) Parameters
expectations

Classical Spectral: Limitations

Classical Spectral: Limitations

* Necessary statistics are hard to estimate
* Insome cases we can not directly estimate the Hankel from samples

eg. Learning a function that is not a distribution
Learning a PCFG when we don’t have derivations
Learning transducers when we don’t have alignments

Classical Spectral: Limitations

* Necessary statistics are hard to estimate
* Insome cases we can not directly estimate the Hankel from samples:

eg. Learning a function that is not a distribution
Learning a PCFG when we don’t have derivations
Learning transducers when we don’t have alignments

It would be better not to have to assume that
samples are generated by some model !!

Classical Spectral: Limitations

* Necessary statistics are hard to estimate
* In some cases we can not directly estimate the Hankel from samples:

eg. Learning a function that is not a distribution
Learning a PCFG when we don’t have derivations
Learning transducers when we don’t have alignments

It would be better not to have to assume that
samples are generated by some model !!

training samples

G ‘most similar’

Z*

Outline

Spectral Learning of WFA

Hankel-Based Optimization
for Structured Prediction

Outline

Spectral Learning of WFA

Hankel-Based Optimization
for Structured Prediction

Outline

Spectral Learning of WFA

Hankel-Based Optimization
for Structured Prediction

WD | Sequence Tagging

Sequence Tagging

output: h | p - x p a X m X
input: h 1 p p o p o a m u
Fully Observable Models Latent-variable Models

U——U— - Oy U i UD
QERCOENC)) - U
S @

+ Making predictions is tractable + Hidden layer provides more

.. expressivi
+ Learning is convex P ty

: — Making predicitons is not tractable
— Performance crucially depends on &P

features — Learning is non-convex (this paper)

Learning Structured Predictors with Latent Variables

Desiderata:
» Expressive scoring functions
» Tractable prediction function
» Effective regularizer

» Convex training procedure

Main |Idea: Change of Representation + Relaxation

» Problem Formulation

» Scoring functions computed by Input-Output OOMs
» Piecewise Prediction and Loss Function

» Solving the Learning Problem

» Spectral trick:
optimize over parameters of f — optimize low-rank matrix H

» Relax low-rank constraint using nuclear norm of H

» Recover parameters of f from H using the spectral method

Scoring Functions Computed by 10-OOM

Latent Score O(x, Yy, h):

v

Model: A : {«x, 3, {AL})

Number of states: n

T

H t(he-1, he) B(hr)

t= Initital Weights: o € R™
Final Weights: 3 € R™
Observable Operators Ay € R™*™

v

v

v

Scoring Function Fa (x, y):

v

Y 0(xy.h)=a’ AJL. AT B

» Expressive Function Family — e.g. it includes HMIM

» Making Predictions (i.e. maximizing F(x,y)) — NP-hard

Piecewise Prediction and Loss for |IO-OOM

Approximation: F¥ (x,y):

T={k-1) » Factor size: k
Z FA(Xt:t-f-k—lryL:H-k—l)
-1 » Sum k—grams
» Task loss: L(y, z)
Loss Li(x,y,Fa): e.g. hamming distance

max[F3 (x,z) — FX (x,y) + 1(y, 2))

» Prediction and Loss Function — computed in O(T|Y|*)
using the Viterbi Algorithm

Discrete Regularizer for |I0-OOM

Learning Problem:

Function class (I0-OOM): &

m
argmin Z Ly (xY, yi, Fa) +T|Al)|> Training Examples: (x*,y*)
AT i1 Loss Function: L

Regularizer — number of states: |A]

Trade-off constant: T

» k > 2 — Non-convex dependence of L on parameters of A

» Ly involves polynomials of order k + 3

Optimization Strategy

» Ly convex on values of A — optimization over (X x Y)¥ values

» Three challenges

1. Table of values — must correspond to valid 10-OOM
2. Regularizer over table — must correspond to #states of |I0-OOM
3. Recover parameters of A from this table

Optimization Strategy

» L) convex on values of A — optimization over (X x Y)* values

» Three challenges

1. Table of values — must correspond to valid [0-OOM
2. Regularizer over table — must correspond to #states of |0-OOM
3. Recover parameters of A from this table

Solution: the Spectral Trick

loss function

l

training . L‘;\Y;t;?:k . Hankel Spectral

. ——-
set Estimation matrix Method

|O-O0OM and Hankel Matrices

&
2
__
>
K%}
b’
s

X =

RZBENEEEEE
ZXEEEEEEE
2 EEOEEEEE
2 I [N
ZEEEEEEE
um.......
nnb,w..-.-..
so [2 B 2 [[
ey [
bAv
....-..
SHEEEREREN
mw..-.-..
S HEEEEEE
ZXHANEERERN
XEEEEEEE
EAEEEEEN
RXEDEEEEN
-0 [[[[[[
-< [[8 B E
=0 | OO0 88O
o |O0O08EEE
=2 || OO EE [
=< [[[2 [B
- [| [[0 0 [5 5

wuw gl g olo ol o>

{a,b,cj Y =1{0 O}

<>HEE
<HEEE
-« [DA

-0 D O0OEEO
=< [0 B A
> O00080
-« OO0
o« | E = =

Wwu gl oolodl g

X

0p)
Q
O
b
©
=
I
-
©
L
g
-
©
=
O
<
S

|O-OOM and Hankel Matrices

{a,b,c} Y ={, 0O}

X =

220
22
=2 R
=< I [[
SN EE
S I
5o [1
sSIC]
X
e
s [H I 0
e
SR TP
>4
22|
o <>

o<

S 192
s>

o>
g

=l [(-

[
[

[

I v -
/=

=

| [[[[O (O B [O [

| [|
S I U [S Iy ey
N Oy oy |

|] |

|] O |

| I [|
1
1
]
|

1
T
T

|
= B
B
=
B

==

|

il [0 [
<o (] i
-<|_I51 [0 [[E[E

O
-o [L
< [Ef] I
ol | ER
> [E I EEEE
oo [EE]

vw gl gl oled o o

Fundamental Theorem:

Hankel Structure:

F is realized by an n-state |O-OOM

——
H has rank at most n for every basis

» Equality constraints

» Low-rank constraints

Max-Margin Completion of Hankel Matrices

Optimization with rank regularization:

m

]j;%ﬂ?)i'g) ; Li(x', y* H) + T rank(H) » Set of Ha_nkel Matrices over
- some basis: H(P, S)
Convex relaxation: » Rank regularizer: rank(H)
» Nuclear norm relaxation: ||H]||

m
argmin Z Li(x' yY H) + T|[H|]+
HeH(P,S) (=

» Optimization almost equivalent — we search over |O-OOM that can
be recovered from H € H(P, S)

» Once we solve for H we can recover parameters using the spectral
technique

Estimation of Hankel Matrices via Convex Optimization

FOBOS Algorithm: Minimization of L(H) + T||H||.
» Initialize: Hg = 0
» while t < MaxIter do

» Set G to a subgradient of [(H) at H;
Set Hiig5 = Hy — %Gt

Calculate the SVD of H o5 = ULV’
Define a diagonal matrix L’ such that o, = max|[o; — v, 0]
set Ht+1 = UZ/VT

end while

v

v

v

v

Spectral Recovery
using the method by (Hsu et al. 2009)

» Spectral Algorithm for |[O-OOM

» Assume F is realized by a minimal n-state |IO-OOM A
» We are given a basis (P, S) such that H has rank n

» We are given corresponding Hp

» To recover parameters of A:

» Perform SVD to get H = ULV’
» Define Ag = (HV)THgV

» Typical spectral algorithms assume that we can estimate H

» In contrast, we regard H as an optimization variable in a loss
minimization procedure

Experiments

» Task: Phonetic Transcription (UCI "Nettalk” Dataset)

@ p - L - h | p - x p a t x m x s
a p p | e h I+ p p o p o t a m u s
[Y 87.5
No Regularization
9 k- - SRR S — ——— . — Spectral Max Margin ==
< -:x‘f—""" — T~ P —
"_-" - E 87
7 88 ' z
8 &
o T 865 -
= 86 =
. 3
S Y
< 84 — 2 86
z No Regularization — 3
E 2 K Avg. Perceptron «=we= i -
z CRF ==awims @ 855
T Spectral IO HMM s =
80 L2 Max Margin ~—#- ha =
i Mﬂ § 85 -
'sf | e e st ..."uunmn-unnmmlmu.'ml e A
18 prod . i i
500 1K 2K 5K 10K 15K 84.5

Training Samples

New Regularization for Factorized Linear Models

New Regularization for Factorized Linear Models

Feature Function

Yt—1Ytye+1 = ABC

11 B
Cbabc;ABC(X, y, t) — i Xt—1XtXt+1 = abc
O otherwise

feature vector
d(x,y, t) e RXPxIYP

parameter vector

w e RIXPxIYP

New Regularization for Factorized Linear Models

Feature Function

Yt—1YtYt+1 = ABC

11 B
d)abc;ABC(X, y, t) — i Xt—1XtXt+1 = abc
O otherwise

Scoring function

feature vector
d)(x, Y, t) =]R|X|3X|Y|3

parameter vector
w e RIXEx|YP?

Ax,y) = 25 wio(x,y, t)) D W(Xe—1, Xt, Xt+1; Yt—1, Yt, Yt+1)

New Regularization for Factorized Linear Models

Feature Function

feature vector

Scoring function

11 B
d)abc;ABC(X, y, t) — i Xt—1XtXt+1 = abc
O otherwise

Yi-1YytYis1 = ABC | d(x,y,t) e RXPxIVP

parameter vector
w e RIXPx|Y]?

Ax,y) = 25 wio(x,y, t)) D W(Xe—1, Xt, Xt+1; Yt—1, Yt, Yt+1)

Think of parameter
as a vector

— l; 1o regularization

New Regularization for Factorized Linear Models

Feature Function

feature vector

Scoring function

11 B
d)abc;ABC(X, y, t) — i Xt—1XtXt+1 = abc
O otherwise

Yi-1YytYis1 = ABC | d(x,y,t) e RXPxIVP

parameter vector
w e RIXEx|YP?

Ax,y) = 25 wio(x,y, t)) D W(Xe—1, Xt, Xt+1; Yt—1, Yt, Yt+1)

Think of parameter
as a vector

Directly from multiclass prediction

— 11 |, regularization

New Regularization for Factorized Linear Models

Feature Function feature vector
Yi-1YtYir1 = ABC | d(x,y,t) e RXPxIYP

11 B
d)abc;ABC(X, y, t) — i Xt—1XtXt+1 = abc
O otherwise

parameter vector
w e RIXEx|YP?

Scoring function

Ax,y) = 25 wio(x,y, t)) D W(Xe—1, Xt, Xt+1; Yt—1, Yt, Yt+1)

Think of parameter o
as a vector —> 11 12 regularization

Directly from multiclass prediction

VA/ Think of parameter Spectral
as a matrix mmmm) regqularization

New Regularization for Factorized Linear Models

Feature Function

Yt—1YtYt+1 = ABC

11 B
d)abc;ABC(X, y, t) — i Xt—1XtXt+1 = abc
O otherwise

Scoring function

feature vector
d)(x, Y, t) =]R|X|3X|Y|3

parameter vector
w e RIXEx|YP?

Ax,y) = 25 wio(x,y, t)) D W(Xe—1, Xt, Xt+1; Yt—1, Yt, Yt+1)

Think of parameter

Directly from multiclass prediction

as a vector —> 11 12 regularization

VA/ Think of parameter Spectral
as a matrix mmmm) regqularization

Specifically designed for structured prediction

Spectral Trick:
Change of Representation

Spectral Trick:
Change of Representation

Learning
parameters of
latent-state
models

Spectral Trick:
Change of Representation

Problem
reduction
Learning — Solving
parameters of systems of
latent-state polynomial
models equations

Spectral Trick:
Change of Representation

Problem Problem
reduction reduction
Learning — Solving sy Finding 2 lO.W_
parameters of systems of rank m.atnx
latent-state polynomial under I|r'1ear
models equations constraints

Learning
parameters of
latent-state
models

Problem
reduction

Spectral Trick:

Change of Representation

o

Solving
systems of
polynomial
equations

Problem Problem
reduction relaxation
wemw, Finding alow- | ms) Finding a low
rank matrix nuclear-norm
under linear matr.ix under
constraints linear
constraints

Spectral Trick:
Change of Representation

Problem Problem Problem
reduction reduction relaxation
- Finding a low
- — : wemm) Finding a low- | m)
Learning Solving : : nuclear-norm
rank matr
parameters of systems of
. under line
latent-state polynomial . What are we
. constraint .
models equations loosing??

Take-home message: Fundamental ideas behind spectral learning have
a wide range of applicability for structured prediction

Thanks!

