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Structured Prediction

» We want to learn functions over structured objects:

» from sequences to reals (e.g. sequence classification)
» from pairs of sequences to reals (e.g. sequence tagging)
» from pairs of sequences and trees to reals (e.g. NLP parsing)

» Stochastic Functions: 0 < f(x) <1land }  yf(x)=1

» Use these models to make predictions: argmax, f(x)




| atent State Models

» Consider a sequence abaccb

f(abaccbh) = x¢(ab) - B¢(acch)
= af(ab) - Aq - Br(ceb)
= a¢(aba) - Ac - Be(cb)
where:

» n is the dimension of the model
» of maps prefixes to R™

» 3+ maps suffixes to R™

» A is a bilinear operator in R™*™

» F: functions computed by WFAs (HMMs is a subclass)
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f(abaccbh) = x¢(ab) - B¢(acch)
= af(ab) - Aq - P(cchb)
= a¢(aba) - Ac - Be(cb)
where:

» n is the dimension of the model
» of maps prefixes to R™

» 3+ maps suffixes to R™

» A is a bilinear operator in R™*™

» F: functions computed by WFAs (HMMs is a subclass)

» Finding f € F: Estimate o, P and Ag from S
» EM

» Many ways of expressing the same f € F
» Algebraic Methods
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» Class of WA parametrized by alphabet X and number of states n

A — <a‘11 (X'OOv {AO'}O'EZ>
a1 € R™ me) (initial weights) oo € R™ @) (terminal weights)

Ay € R™* ™ (transition weights)

» Computes a function fp : 2* — R

fa(x) =falxi---x¢)




Examples of functions computed by WFAs

Generates infinite strings, computes probabilities of prefixes P[xX*]

Emission and transition are conditionally independent given state

a,0.3 0.6 a,0.5
o] =[0.3 0.3 0.4] b,0.7 b,0.5
xl =011 1]
Aq=0q-T
"0 07 03
T=|0 075 025
0 04 06
03 0 O
Oa=| 0 09 0
0 0 05 b,0.1

HMMs




Examples of functions computed by WFAs

Compute conditional probabilities Ply[x] = & TAY «s, for pairs
(x,y) € (£ x A)*, must have [x| = |y]
Can also assume models factorized like in HMM

«; =1[0.3 0 0.7]
-
. =11 1]
02 04 O
A= 0 o0 1
0 075 0

FSTs
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Forward-Backward Mappings

Any WA A defines forward and backward maps ms) xa, Pa : 2° — R"

such that for any splitting x = p - s one has

O(A(p)—r — CXIAP1 e Ap,
ﬁA(S)T Asy o As, Koo
fa(x) = xa(p) ' Bals)

Consequences:

{4

Example, for HMMs:

A s can be recovered from
fa(pos), xa(p), and Ba(s):

fa(pos) = aa(p) Ay Bal(s)
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The Hankel Matrix

The Hankel matrix of f: 2* =5 R isﬁ

For p,s € L*, entries are defined by ﬁ

Very redundant
representation

we will work with

finite sub-blocks of H

H € RZ*XZ*

He(p,s) =f(p -s)
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Hankel Matrix of a WFA
Schiitzenberger's Theorem mmm)

Theorem: rank(H¢) =n < f = fo with minimal A of size n

Remarks (<)

Write F = aq (Z*) T € RE"™™ and B = B4 (Z£*) € RW<*
Note Hf =F-B
Then, rank(H¢) = n

Remarks (=)

Assume rank(Hyf) =n
Take rank factorization H¢ = F-B with F € R="*™ and B € R™**"
A WA that computes f can be constructed using F and B
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Low-rank Hankel and Operators

HO' c RZ*XZ* Fe RZ*XTI AO‘ = Rnxn = Rnx}:*

S

<
°
I

<

o

o

o
—
e o o
e o o
e o o
— ]
—
e o o




Spectral Method



Spectral Method

Idea: Use SVD decomposition to obtain a factorization of H

» Choose a basis: sets of prefixes P and suffixes 8

» Obtain H and H over basis (P, 8)
» Compute compact SVD as H = UAV T with

UeR”™™  AeR™™  VeRY™

» Construct the WA using F=UA and B=V:

» A = FTH,VT foralloce L
» o =H(A, )BT, XKoo = FTH(-, A)




Spectral Method

Idea: Use SVD decomposition to obtain a factorization of H

» Choose a basis: sets of prefixes P and suffixes 8

» Obtain H and H over basis (P, 8)
» Compute compact SVD as H = UAV T with

UeR”™™  AeR™™  VeRY™

» Construct the WA using F=UA and B=V:

» Ag =F H;VT forallc e X
» o =H(A, )BT, XKoo = FTH(-, A)

Properties
» Easy to implement: just linear algebra
» Fast to compute: O(max{|P|, |S[}®)

» Noise tolerant: H ~ H and l’—\l(r ~ Hy implies /2\0 ~ Ag




Spectral Method

Choice of Preffix-Suffix Basis (P, 8)
» Should satisfy that rank(Hy«xs+) = rank(Hpyg)

» P=8S=2XU{A} (Hsu et al COLT-09)
» all prefixes/suffixes in the training data

» most frequent ones (Balle et al MLJ-13)
» feature-based equivalence classes (Cohen et al NAACL-13)

Observable Statistics in H and H

» The WA can be recovered from

» String probabilities P[x]
» Prefix probabilities P[xX*] (Hsu et al COLT-09)
» Substring expectations E[lw|,]

» See (Balle et al MLJ-13) for details

Parameter of the method

» A dimension n: controls complexity of the WA family




Experiment: PoS-Tag Sequence Models
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Metric: error rate on predicting next symbol in test sequences




Experiment: PoS-Tag Sequence Models
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Comparison with a bigram baseline and EM
Metric: error rate on predicting next symbol in test sequences
At training, the Spectral Method is > 100 faster than EM
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Classical Spectral: Summary

Learning Setting:

* Considers stochastic functions
* Assumes there is a model that generates sequences
* We can sample from this model

Unknown . Samples — Estimate we)  Algebraic

PWFA Hankel Opera’[ions
Nice Theoretical , ﬂ
Guarantees Typically Model

involves estimating

) Parameters
expectations
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Classical Spectral: Limitations

* Necessary statistics are hard to estimate
* In some cases we can not directly estimate the Hankel from samples:

eg. Learning a function that is not a distribution
Learning a PCFG when we don’t have derivations
Learning transducers when we don’t have alignments

It would be better not to have to assume that
samples are generated by some model !!

training samples

G ‘most similar’

Z*
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Sequence Tagging

output: h | p - x p a X m X
input: h 1 p p o p o a m u
Fully Observable Models Latent-variable Models

U——U— - Oy U i UD
QERCOENC) ) - U
S @

+ Making predictions is tractable + Hidden layer provides more

.. expressivi
+ Learning is convex P ty

: — Making predicitons is not tractable
— Performance crucially depends on &P

features — Learning is non-convex (this paper)




Learning Structured Predictors with Latent Variables

Desiderata:
» Expressive scoring functions
» Tractable prediction function
» Effective regularizer

» Convex training procedure




Main |Idea: Change of Representation + Relaxation

» Problem Formulation

» Scoring functions computed by Input-Output OOMs
» Piecewise Prediction and Loss Function

» Solving the Learning Problem

» Spectral trick:
optimize over parameters of f — optimize low-rank matrix H

» Relax low-rank constraint using nuclear norm of H

» Recover parameters of f from H using the spectral method




Scoring Functions Computed by 10-OOM

Latent Score O(x, Yy, h):

v

Model: A : {«x, 3, {AL})

Number of states: n

T

H t(he-1, he) B(hr)

t= Initital Weights: o € R™
Final Weights: 3 € R™
Observable Operators Ay € R™*™

v

v

v

Scoring Function Fa (x, y):

v

Y 0(xy.h)=a’ AJL. AT B

» Expressive Function Family — e.g. it includes HMIM

» Making Predictions (i.e. maximizing F(x,y)) — NP-hard




Piecewise Prediction and Loss for |IO-OOM

Approximation: F¥ (x,y):

T={k-1) » Factor size: k
Z FA(Xt:t-f-k—lryL:H-k—l)
-1 » Sum k—grams
» Task loss: L(y, z)
Loss Li(x,y,Fa): e.g. hamming distance

max[F3 (x,z) — FX (x,y) + 1(y, 2))

» Prediction and Loss Function — computed in O(T|Y|*)
using the Viterbi Algorithm




Discrete Regularizer for |I0-OOM

Learning Problem:

Function class (I0-OOM): &

m
argmin Z Ly (xY, yi, Fa) +T|Al)|> Training Examples: (x*,y*)
AT i1 Loss Function: L

Regularizer — number of states: |A]

Trade-off constant: T

» k > 2 — Non-convex dependence of L on parameters of A

» Ly involves polynomials of order k + 3




Optimization Strategy

» Ly convex on values of A — optimization over (X x Y)¥ values

» Three challenges

1. Table of values — must correspond to valid 10-OOM
2. Regularizer over table — must correspond to #states of |I0-OOM
3. Recover parameters of A from this table




Optimization Strategy

» L) convex on values of A — optimization over (X x Y)* values

» Three challenges

1. Table of values — must correspond to valid [0-OOM
2. Regularizer over table — must correspond to #states of |0-OOM
3. Recover parameters of A from this table

Solution: the Spectral Trick

loss function

l

training . L‘;\Y;t;?:k . Hankel Spectral

. ——-
set Estimation matrix Method




|O-O0OM and Hankel Matrices
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|O-OOM and Hankel Matrices
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Fundamental Theorem:

Hankel Structure:

F is realized by an n-state |O-OOM

——
H has rank at most n for every basis

» Equality constraints

» Low-rank constraints




Max-Margin Completion of Hankel Matrices

Optimization with rank regularization:

m

]j;%ﬂ?)i'g) ; Li(x', y* H) + T rank(H) » Set of Ha_nkel Matrices over
- some basis: H(P, S)
Convex relaxation: » Rank regularizer: rank(H)
» Nuclear norm relaxation: ||H]||

m
argmin Z Li(x' yY H) + T|[H|]+
HeH(P,S) (=

» Optimization almost equivalent — we search over |O-OOM that can
be recovered from H € H(P, S)

» Once we solve for H we can recover parameters using the spectral
technique




Estimation of Hankel Matrices via Convex Optimization

FOBOS Algorithm: Minimization of L(H) + T||H||.
» Initialize: Hg = 0
» while t < MaxIter do

» Set G to a subgradient of [ (H) at H;
Set Hiig5 = Hy — %Gt

Calculate the SVD of H o5 = ULV’
Define a diagonal matrix L’ such that o, = max|[o; — v, 0]
set Ht+1 = UZ/VT

end while

v

v

v

v




Spectral Recovery
using the method by (Hsu et al. 2009)

» Spectral Algorithm for |[O-OOM

» Assume F is realized by a minimal n-state |IO-OOM A
» We are given a basis (P, S) such that H has rank n

» We are given corresponding Hp

» To recover parameters of A:

» Perform SVD to get H = ULV’
» Define Ag = (HV)THgV

» Typical spectral algorithms assume that we can estimate H

» In contrast, we regard H as an optimization variable in a loss
minimization procedure




Experiments

» Task: Phonetic Transcription (UCI "Nettalk” Dataset)
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New Regularization for Factorized Linear Models

Feature Function

Yt—1YtYt+1 = ABC

11 B
d)abc;ABC(X, y, t) — i Xt—1XtXt+1 = abc
O otherwise

Scoring function

feature vector
d)(x, Y, t) = ]R|X|3X|Y|3

parameter vector
w e RIXEx|YP?

Ax,y) = 25 wio(x,y, t) ) D W(Xe—1, Xt, Xt+1; Yt—1, Yt, Yt+1)

Think of parameter

Directly from multiclass prediction

as a vector —> 11 12 regularization

VA/  Think of parameter Spectral
as a matrix mmmm)  regqularization

Specifically designed for structured prediction
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Spectral Trick:

Change of Representation

o

Solving
systems of
polynomial
equations

Problem Problem
reduction relaxation
wemw, Finding alow- | ms ) Finding a low
rank matrix nuclear-norm
under linear matr.ix under
constraints linear
constraints




Spectral Trick:
Change of Representation

Problem Problem Problem
reduction reduction relaxation
- Finding a low
- — : wemm) Finding a low- | m )
Learning Solving : : nuclear-norm
rank matr
parameters of systems of
. under line
latent-state polynomial . What are we
. constraint .
models equations loosing??




Take-home message: Fundamental ideas behind spectral learning have
a wide range of applicability for structured prediction

Thanks!




