Review of Probability Theory

Mário A. T. Figueiredo

Instituto Superior Técnico \& Instituto de Telecomunicações

> Lisboa, Portugal

LxMLS: Lisbon Machine Learning School

$$
\text { July 22, } 2014
$$

Probability theory

Probability theory

- The study of probability has roots in games of chance (dice, cards, ...)

Probability theory

- The study of probability has roots in games of chance (dice, cards, ...)
- Great names of science: Cardano, Fermat, Pascal, Laplace, Kolmogorov, Bernoulli, Poisson, Cauchy, Boltzman, de Finetti, ...

Probability theory

- The study of probability has roots in games of chance (dice, cards, ...)
- Great names of science: Cardano, Fermat, Pascal, Laplace, Kolmogorov, Bernoulli, Poisson, Cauchy, Boltzman, de Finetti, ...
- Natural tool to model uncertainty, information, knowledge, belief, ...

Probability theory

- The study of probability has roots in games of chance (dice, cards, ...)
- Great names of science: Cardano, Fermat, Pascal, Laplace, Kolmogorov, Bernoulli, Poisson, Cauchy, Boltzman, de Finetti, ...
- Natural tool to model uncertainty, information, knowledge, belief, ...
- ...thus also learning, decision making, inference, ...

What is probability?

- Classical definition: $\mathbb{P}(A)=\frac{N_{A}}{N}$
...with N mutually exclusive equally likely outcomes, N_{A} of which result in the occurrence of A.

Example: $\mathbb{P}($ randomly drawn card is $\mathbf{\$})=13 / 52$.
Example: $\mathbb{P}($ getting 1 in throwing a fair die $)=1 / 6$.

What is probability?

- Classical definition: $\mathbb{P}(A)=\frac{N_{A}}{N}$
...with N mutually exclusive equally likely outcomes, N_{A} of which result in the occurrence of A.

Example: $\mathbb{P}($ randomly drawn card is $\boldsymbol{\$})=13 / 52$.
Example: $\mathbb{P}($ getting 1 in throwing a fair die $)=1 / 6$.

- Frequentist definition: $\mathbb{P}(A)=\lim _{N \rightarrow \infty} \frac{N_{A}}{N}$
...relative frequency of occurrence of A in infinite number of trials.

What is probability?

- Classical definition: $\mathbb{P}(A)=\frac{N_{A}}{N}$
...with N mutually exclusive equally likely outcomes, N_{A} of which result in the occurrence of A.

Example: $\mathbb{P}($ randomly drawn card is $\boldsymbol{\$})=13 / 52$.
Example: $\mathbb{P}($ getting 1 in throwing a fair die $)=1 / 6$.

- Frequentist definition: $\mathbb{P}(A)=\lim _{N \rightarrow \infty} \frac{N_{A}}{N}$
...relative frequency of occurrence of A in infinite number of trials.
- Subjective probability: $\mathbb{P}(A)$ is a degree of belief. de Finetti, 1930s ...gives meaning to \mathbb{P} ("tomorrow will rain").

Key concepts: Sample space and events

- Sample space $\mathcal{X}=$ set of possible outcomes of a random experiment. Examples:
- Tossing two coins: $\mathcal{X}=\{H H, T H, H T, T T\}$
- Roulette: $\mathcal{X}=\{1,2, \ldots, 36\}$
- Draw a card from a shuffled deck: $\mathcal{X}=\{A \boldsymbol{\phi}, 2 \boldsymbol{\phi}, \ldots, Q \diamond, K \diamond\}$.

Key concepts: Sample space and events

- Sample space $\mathcal{X}=$ set of possible outcomes of a random experiment. Examples:
- Tossing two coins: $\mathcal{X}=\{H H, T H, H T, T T\}$
- Roulette: $\mathcal{X}=\{1,2, \ldots, 36\}$
- Draw a card from a shuffled deck: $\mathcal{X}=\{A \boldsymbol{\&}, 2 \boldsymbol{\phi}, \ldots, Q \diamond, K \diamond\}$.
- An event is a subset of \mathcal{X}

Examples:

- "exactly one H in 2-coin toss": $A=\{T H, H T\} \subset\{H H, T H, H T, T T\}$.
- "odd number in the roulette": $B=\{1,3, \ldots, 35\} \subset\{1,2, \ldots, 36\}$.
- "drawn a \bigcirc card" : $C=\{A \circlearrowleft, 2 \bigcirc, \ldots, K \odot\} \subset\{A \&, \ldots, K \diamond\}$

Kolmogorov's Axioms for Probability

- Probability is a function that maps events A into the interval $[0,1]$. Kolmogorov's axioms for probability (1933):

Kolmogorov's Axioms for Probability

- Probability is a function that maps events A into the interval $[0,1]$. Kolmogorov's axioms for probability (1933):
- For any $A \subseteq \mathcal{X}, \mathbb{P}(A) \geq 0$

Kolmogorov's Axioms for Probability

- Probability is a function that maps events A into the interval $[0,1]$. Kolmogorov's axioms for probability (1933):
- For any $A \subseteq \mathcal{X}, \mathbb{P}(A) \geq 0$
- $\mathbb{P}(\mathcal{X})=1$

Kolmogorov's Axioms for Probability

- Probability is a function that maps events A into the interval $[0,1]$. Kolmogorov's axioms for probability (1933):
- For any $A \subseteq \mathcal{X}, \mathbb{P}(A) \geq 0$
- $\mathbb{P}(\mathcal{X})=1$
- If $A_{1}, A_{2} \ldots \subseteq \mathcal{X}$ are disjoint events, then $\mathbb{P}\left(\bigcup_{i} A_{i}\right)=\sum_{i} \mathbb{P}\left(A_{i}\right)$

Kolmogorov's Axioms for Probability

- Probability is a function that maps events A into the interval $[0,1]$. Kolmogorov's axioms for probability (1933):
- For any $A \subseteq \mathcal{X}, \mathbb{P}(A) \geq 0$
- $\mathbb{P}(\mathcal{X})=1$
- If $A_{1}, A_{2} \ldots \subseteq \mathcal{X}$ are disjoint events, then $\mathbb{P}\left(\bigcup_{i} A_{i}\right)=\sum_{i} \mathbb{P}\left(A_{i}\right)$
- From these axioms, many results can be derived. Examples:
- $\mathbb{P}(\emptyset)=0$
- $C \subset D \Rightarrow \mathbb{P}(C) \leq \mathbb{P}(D)$
- $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$
- $\mathbb{P}(A \cup B) \leq \mathbb{P}(A)+\mathbb{P}(B)$ (union bound)

Conditional Probability and Independence

- If $\mathbb{P}(B)>0, \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$ (conditional prob. of A given B)

Conditional Probability and Independence

- If $\mathbb{P}(B)>0, \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$ (conditional prob. of A given B)
- ...satisfies all of Kolmogorov's axioms:
- For any $A \subseteq \mathcal{X}, \mathbb{P}(A \mid B) \geq 0$
- $\mathbb{P}(\mathcal{X} \mid B)=1$
- If $A_{1}, A_{2}, \ldots \subseteq \mathcal{X}$ are disjoint, then

$$
\mathbb{P}\left(\bigcup_{i} A_{i} \mid B\right)=\sum_{i} \mathbb{P}\left(A_{i} \mid B\right)
$$

Conditional Probability and Independence

- If $\mathbb{P}(B)>0, \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$ (conditional prob. of A given B)
- ...satisfies all of Kolmogorov's axioms:
- For any $A \subseteq \mathcal{X}, \mathbb{P}(A \mid B) \geq 0$
- $\mathbb{P}(\mathcal{X} \mid B)=1$
- If $A_{1}, A_{2}, \ldots \subseteq \mathcal{X}$ are disjoint, then
$\mathbb{P}\left(\bigcup_{i} A_{i} \mid B\right)=\sum_{i} \mathbb{P}\left(A_{i} \mid B\right)$

- Events A, B are independent $(A \Perp B) \Leftrightarrow \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.

Conditional Probability and Independence

- If $\mathbb{P}(B)>0, \quad \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

Conditional Probability and Independence

- If $\mathbb{P}(B)>0, \quad \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Events A, B are independent $(A \Perp B) \Leftrightarrow \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.

Conditional Probability and Independence

- If $\mathbb{P}(B)>0, \quad \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Events A, B are independent $(A \Perp B) \Leftrightarrow \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.
- Relationship with conditional probabilities:

$$
A \Perp B \Leftrightarrow \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A) \mathbb{P}(B)}{\mathbb{P}(B)}=\mathbb{P}(A)
$$

Conditional Probability and Independence

- If $\mathbb{P}(B)>0, \quad \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Events A, B are independent $(A \Perp B) \Leftrightarrow \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.
- Relationship with conditional probabilities:

$$
A \Perp B \Leftrightarrow \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A) \mathbb{P}(B)}{\mathbb{P}(B)}=\mathbb{P}(A)
$$

- Example: $\mathcal{X}=$ " 52 cards", $A=\{3 \bigcirc, 3 \mathbf{2}, 3 \diamond, 3 \boldsymbol{\beta}\}$, and $B=$ "hearts"; $\mathbb{P}(A)=1 / 13, \mathbb{P}(B)=1 / 4$

$$
\mathbb{P}(A \cap B)=\mathbb{P}(\{3 \odot\})=\frac{1}{52}
$$

Conditional Probability and Independence

- If $\mathbb{P}(B)>0, \quad \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Events A, B are independent $(A \Perp B) \Leftrightarrow \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.
- Relationship with conditional probabilities:

$$
A \Perp B \Leftrightarrow \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A) \mathbb{P}(B)}{\mathbb{P}(B)}=\mathbb{P}(A)
$$

- Example: $\mathcal{X}=$ " 52 cards", $A=\{3 \bigcirc, 3 \mathbf{2}, 3 \diamond, 3 \boldsymbol{\beta}\}$, and $B=$ "hearts"; $\mathbb{P}(A)=1 / 13, \mathbb{P}(B)=1 / 4$

$$
\begin{aligned}
\mathbb{P}(A \cap B) & =\mathbb{P}(\{3 \varnothing\})=\frac{1}{52} \\
\mathbb{P}(A) \mathbb{P}(B) & =\frac{1}{13} \frac{1}{4}=\frac{1}{52}
\end{aligned}
$$

Conditional Probability and Independence

- If $\mathbb{P}(B)>0, \quad \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Events A, B are independent $(A \Perp B) \Leftrightarrow \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.
- Relationship with conditional probabilities:

$$
A \Perp B \Leftrightarrow \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A) \mathbb{P}(B)}{\mathbb{P}(B)}=\mathbb{P}(A)
$$

- Example: $\mathcal{X}=$ " 52 cards", $A=\{3 \bigcirc, 3 \boldsymbol{\uparrow}, 3 \diamond, 3 \boldsymbol{\uparrow}\}$, and $B=$ "hearts"; $\mathbb{P}(A)=1 / 13, \mathbb{P}(B)=1 / 4$

$$
\begin{aligned}
\mathbb{P}(A \cap B) & =\mathbb{P}(\{3 \bigcirc\})=\frac{1}{52} \\
\mathbb{P}(A) \mathbb{P}(B) & =\frac{1}{13} \frac{1}{4}=\frac{1}{52} \\
\mathbb{P}(A \mid B) & =\mathbb{P}\left({ }^{\prime \prime}{ }^{\prime \prime} \mid " \bigcirc \text { ") }\right)=\frac{1}{13}
\end{aligned}
$$

Bayes Theorem

- Law of total probability: if A_{1}, \ldots, A_{n} are a partition of \mathcal{X}

$$
\begin{aligned}
\mathbb{P}(B) & =\sum_{i} \mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right) \\
& =\sum_{i} \mathbb{P}\left(B \cap A_{i}\right)
\end{aligned}
$$

Bayes Theorem

- Law of total probability: if A_{1}, \ldots, A_{n} are a partition of \mathcal{X}

$$
\begin{aligned}
\mathbb{P}(B) & =\sum_{i} \mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right) \\
& =\sum_{i} \mathbb{P}\left(B \cap A_{i}\right)
\end{aligned}
$$

- Bayes' theorem: if A_{1}, \ldots, A_{n} are a partition of \mathcal{X}

$$
\mathbb{P}\left(A_{i} \mid B\right)=\frac{\mathbb{P}\left(B \cap A_{i}\right)}{\mathbb{P}(B)}=\frac{\mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)}{\sum_{i} \mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)}
$$

Random Variables

- A (real) random variable (RV) is a function: $X: \mathcal{X} \rightarrow \mathbb{R}$

Random Variables

- A (real) random variable (RV) is a function: $X: \mathcal{X} \rightarrow \mathbb{R}$

- Discrete RV: range of X is countable (e.g., \mathbb{N} or $\{0,1\}$)

Random Variables

- A (real) random variable (RV) is a function: $X: \mathcal{X} \rightarrow \mathbb{R}$

- Discrete RV: range of X is countable (e.g., \mathbb{N} or $\{0,1\}$)
- Continuous RV: range of X is uncountable (e.g., \mathbb{R} or $[0,1]$)

Random Variables

- A (real) random variable (RV) is a function: $X: \mathcal{X} \rightarrow \mathbb{R}$

- Discrete RV: range of X is countable (e.g., \mathbb{N} or $\{0,1\}$)
- Continuous RV: range of X is uncountable (e.g., \mathbb{R} or $[0,1]$)
- Example: number of head in tossing two coins, $\mathcal{X}=\{H H, H T, T H, T T\}$, $X(H H)=2, X(H T)=X(T H)=1, X(T T)=0$. Range of $X=\{0,1,2\}$.

Random Variables

- A (real) random variable (RV) is a function: $X: \mathcal{X} \rightarrow \mathbb{R}$

- Discrete RV: range of X is countable (e.g., \mathbb{N} or $\{0,1\}$)
- Continuous RV: range of X is uncountable (e.g., \mathbb{R} or $[0,1]$)
- Example: number of head in tossing two coins, $\mathcal{X}=\{H H, H T, T H, T T\}$, $X(H H)=2, X(H T)=X(T H)=1, X(T T)=0$. Range of $X=\{0,1,2\}$.
- Example: distance traveled by a tossed coin; range of $X=\mathbb{R}_{+}$.

Random Variables: Distribution Function

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in \mathcal{X}: X(\omega) \leq x\})$

Random Variables: Distribution Function

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in \mathcal{X}: X(\omega) \leq x\})$

- Example: number of heads in tossing 2 coins; range $(X)=\{0,1,2\}$.

Random Variables: Distribution Function

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in \mathcal{X}: X(\omega) \leq x\})$

- Example: number of heads in tossing 2 coins; range $(X)=\{0,1,2\}$.

- Probability mass function (discrete RV$): f_{X}(x)=\mathbb{P}(X=x)$,

$$
F_{X}(x)=\sum_{x_{i} \leq x} f_{X}\left(x_{i}\right)
$$

Important Discrete Random Variables

- Uniform: $X \in\left\{x_{1}, \ldots, x_{K}\right\}, \operatorname{pmf} f_{X}\left(x_{i}\right)=1 / K$.

Important Discrete Random Variables

- Uniform: $X \in\left\{x_{1}, \ldots, x_{K}\right\}, \operatorname{pmf} f_{X}\left(x_{i}\right)=1 / K$.
- Bernoulli RV: $X \in\{0,1\}$, pmf $f_{X}(x)=\left\{\begin{array}{cc}p & \Leftarrow x=1 \\ 1-p & \Leftarrow x=0\end{array}\right.$

Can be written compactly as $f_{X}(x)=p^{x}(1-p)^{1-x}$.

Important Discrete Random Variables

- Uniform: $X \in\left\{x_{1}, \ldots, x_{K}\right\}, \operatorname{pmf} f_{X}\left(x_{i}\right)=1 / K$.
- Bernoulli RV: $X \in\{0,1\}$, pmf $f_{X}(x)=\left\{\begin{array}{cc}p & \Leftarrow=1 \\ 1-p & \Leftarrow x=0\end{array}\right.$

Can be written compactly as $f_{X}(x)=p^{x}(1-p)^{1-x}$.

- Binomial RV: $X \in\{0,1, \ldots, n\}$ (sum on n Bernoulli RVs)

$$
f_{X}(x)=\operatorname{Binomial}(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{(n-x)}
$$

Important Discrete Random Variables

- Uniform: $X \in\left\{x_{1}, \ldots, x_{K}\right\}$, pmf $f_{X}\left(x_{i}\right)=1 / K$.
- Bernoulli RV: $X \in\{0,1\}$, pmf $f_{X}(x)=\left\{\begin{array}{cc}p & \Leftarrow x=1 \\ 1-p & \Leftarrow x=0\end{array}\right.$

Can be written compactly as $f_{X}(x)=p^{x}(1-p)^{1-x}$.

- Binomial RV: $X \in\{0,1, \ldots, n\}$ (sum on n Bernoulli RVs)

$$
f_{X}(x)=\operatorname{Binomial}(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{(n-x)}
$$

Binomial coefficients
(" n choose x "):

$$
\binom{n}{x}=\frac{n!}{(n-x)!x!}
$$

Random Variables: Distribution Function

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in \mathcal{X}: X(\omega) \leq x\})$

Random Variables: Distribution Function

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in \mathcal{X}: X(\omega) \leq x\})$

- Example: continuous RV with uniform distribution on $[a, b]$.

Random Variables: Distribution Function

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in \mathcal{X}: X(\omega) \leq x\})$

- Example: continuous RV with uniform distribution on $[a, b]$.

- Probability density function (pdf, continuous RV): $f_{X}(x)$

Random Variables: Distribution Function

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in \mathcal{X}: X(\omega) \leq x\})$

- Example: continuous RV with uniform distribution on $[a, b]$.

- Probability density function (pdf, continuous RV): $f_{X}(x)$

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) d u
$$

Random Variables: Distribution Function

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in \mathcal{X}: X(\omega) \leq x\})$

- Example: continuous RV with uniform distribution on $[a, b]$.

- Probability density function (pdf, continuous RV): $f_{X}(x)$

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) d u, \quad \mathbb{P}(X \in[c, d])=\int_{c}^{d} f_{X}(x) d x
$$

Random Variables: Distribution Function

- Distribution function: $F_{X}(x)=\mathbb{P}(\{\omega \in \mathcal{X}: X(\omega) \leq x\})$

- Example: continuous RV with uniform distribution on $[a, b]$.

- Probability density function (pdf, continuous RV): $f_{X}(x)$

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) d u, \quad \mathbb{P}(X \in[c, d])=\int_{c}^{d} f_{X}(x) d x, \quad \mathbb{P}(X=x)=0
$$

Important Continuous Random Variables

- Uniform: $f_{X}(x)=\operatorname{Uniform}(x ; a, b)=\left\{\begin{aligned} \frac{1}{b-a} & \Leftarrow x \in[a, b] \\ 0 & \Leftarrow x \notin[a, b]\end{aligned}\right.$ (previous slide).

Important Continuous Random Variables

- Uniform: $f_{X}(x)=\operatorname{Uniform}(x ; a, b)=\left\{\begin{aligned} \frac{1}{b-a} & \Leftarrow x \in[a, b] \\ 0 & \Leftarrow x \notin[a, b]\end{aligned}\right.$ (previous slide).
- Gaussian: $f_{X}(x)=\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

Important Continuous Random Variables

- Uniform: $f_{X}(x)=\operatorname{Uniform}(x ; a, b)=\left\{\begin{aligned} \frac{1}{b-a} & \Leftarrow x \in[a, b] \\ 0 & \Leftarrow x \notin[a, b]\end{aligned}\right.$ (previous slide).
- Gaussian: $f_{X}(x)=\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

- Exponential: $f_{X}(x)=\operatorname{Exp}(x ; \lambda)=\left\{\begin{aligned} \lambda e^{-\lambda x} & \Leftarrow x \geq 0 \\ 0 & \Leftarrow x<0\end{aligned}\right.$

Expectation of Random Variables

- Expectation: $\mathbb{E}(X)=\left\{\begin{array}{cl}\sum_{i} x_{i} f_{X}\left(x_{i}\right) & X \in\left\{x_{1}, \ldots x_{K}\right\} \subset \mathbb{R} \\ \int_{-\infty}^{\infty} x f_{X}(x) d x & X \text { continuous }\end{array}\right.$

Expectation of Random Variables

- Expectation: $\mathbb{E}(X)=\left\{\begin{array}{cl}\sum_{i} x_{i} f_{X}\left(x_{i}\right) & X \in\left\{x_{1}, \ldots x_{K}\right\} \subset \mathbb{R} \\ \int_{-\infty}^{\infty} x f_{X}(x) d x & X \text { continuous }\end{array}\right.$
- Example: Bernoulli, $f_{X}(x)=p^{x}(1-p)^{1-x}$, for $x \in\{0,1\}$.

$$
\mathbb{E}(X)=0(1-p)+1 p=p
$$

Expectation of Random Variables

- Expectation: $\mathbb{E}(X)=\left\{\begin{array}{cl}\sum_{i} x_{i} f_{X}\left(x_{i}\right) & X \in\left\{x_{1}, \ldots x_{K}\right\} \subset \mathbb{R} \\ \int_{-\infty}^{\infty} x f_{X}(x) d x & X \text { continuous }\end{array}\right.$
- Example: Bernoulli, $f_{X}(x)=p^{x}(1-p)^{1-x}$, for $x \in\{0,1\}$.

$$
\mathbb{E}(X)=0(1-p)+1 p=p
$$

- Example: Binomial, $f_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}$, for $x \in\{0, \ldots, n\}$.

$$
\mathbb{E}(X)=n p
$$

Expectation of Random Variables

- Expectation: $\mathbb{E}(X)=\left\{\begin{array}{cl}\sum_{i} x_{i} f_{X}\left(x_{i}\right) & X \in\left\{x_{1}, \ldots x_{k}\right\} \subset \mathbb{R} \\ \int_{-\infty}^{\infty} x f_{X}(x) d x & x \text { continuous }\end{array}\right.$
- Example: Bernoulli, $f_{X}(x)=p^{x}(1-p)^{1-x}$, for $x \in\{0,1\}$.

$$
\mathbb{E}(X)=0(1-p)+1 p=p
$$

- Example: Binomial, $f_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}$, for $x \in\{0, \ldots, n\}$.

$$
\mathbb{E}(X)=n p
$$

- Example: Gaussian, $f_{X}(x)=\mathcal{N}\left(x ; \mu, \sigma^{2}\right) . \quad \mathbb{E}(X)=\mu$.

Expectation of Random Variables

- Expectation: $\mathbb{E}(X)=\left\{\begin{array}{cl}\sum_{i} x_{i} f_{X}\left(x_{i}\right) & X \in\left\{x_{1}, \ldots x_{k}\right\} \subset \mathbb{R} \\ \int_{-\infty}^{\infty} x f_{X}(x) d x & x \text { continuous }\end{array}\right.$
- Example: Bernoulli, $f_{X}(x)=p^{x}(1-p)^{1-x}$, for $x \in\{0,1\}$.

$$
\mathbb{E}(X)=0(1-p)+1 p=p
$$

- Example: Binomial, $f_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}$, for $x \in\{0, \ldots, n\}$.

$$
\mathbb{E}(X)=n p
$$

- Example: Gaussian, $f_{X}(x)=\mathcal{N}\left(x ; \mu, \sigma^{2}\right) . \quad \mathbb{E}(X)=\mu$.
- Linearity of expectation:

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y) ; \quad \mathbb{E}(\alpha X)=\alpha \mathbb{E}(X), \quad \alpha \in \mathbb{R}
$$

Expectation of Functions of Random Variables

- $\mathbb{E}(g(X))=\left\{\begin{aligned} \sum_{i} g\left(x_{i}\right) f_{X}\left(x_{i}\right) & X \text { discrete, } g\left(x_{i}\right) \in \mathbb{R} \\ \int_{-\infty}^{\infty} g(x) f_{X}(x) d x & X \text { continuous }\end{aligned}\right.$

Expectation of Functions of Random Variables

- $\mathbb{E}(g(X))=\left\{\begin{aligned} \sum_{i} g\left(x_{i}\right) f_{X}\left(x_{i}\right) & X \text { discrete, } g\left(x_{i}\right) \in \mathbb{R} \\ \int_{-\infty}^{\infty} g(x) f_{X}(x) d x & X \text { continuous }\end{aligned}\right.$
- Example: variance, $\operatorname{var}(X)=\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)$

Expectation of Functions of Random Variables

- $\mathbb{E}(g(X))=\left\{\begin{aligned} \sum_{i} g\left(x_{i}\right) f_{X}\left(x_{i}\right) & x \text { discrete, } g\left(x_{i}\right) \in \mathbb{R} \\ \int_{-\infty}^{\infty} g(x) f_{X}(x) d x & x \text { continuous }\end{aligned}\right.$
- Example: variance, $\operatorname{var}(X)=\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$
- Example: Bernoulli variance, $\mathbb{E}\left(X^{2}\right)=\mathbb{E}(X)=p$

Expectation of Functions of Random Variables

- $\mathbb{E}(g(X))=\left\{\begin{aligned} \sum_{i} g\left(x_{i}\right) f_{X}\left(x_{i}\right) & x \text { discrete, } g\left(x_{i}\right) \in \mathbb{R} \\ \int_{-\infty}^{\infty} g(x) f_{X}(x) d x & x \text { continuous }\end{aligned}\right.$
- Example: variance, $\operatorname{var}(X)=\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$
- Example: Bernoulli variance, $\mathbb{E}\left(X^{2}\right)=\mathbb{E}(X)=p$, thus $\operatorname{var}(X)=p(1-p)$.

Expectation of Functions of Random Variables

- $\mathbb{E}(g(X))=\left\{\begin{aligned} \sum_{i} g\left(x_{i}\right) f_{X}\left(x_{i}\right) & x \text { discrete, } g\left(x_{i}\right) \in \mathbb{R} \\ \int_{-\infty}^{\infty} g(x) f_{X}(x) d x & x \text { continuous }\end{aligned}\right.$
- Example: variance, $\operatorname{var}(X)=\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$
- Example: Bernoulli variance, $\mathbb{E}\left(X^{2}\right)=\mathbb{E}(X)=p$, thus $\operatorname{var}(X)=p(1-p)$.
- Example: Gaussian variance, $\mathbb{E}\left((X-\mu)^{2}\right)=\sigma^{2}$.

Expectation of Functions of Random Variables

- $\mathbb{E}(g(X))=\left\{\begin{array}{cl}\sum_{i} g\left(x_{i}\right) f_{X}\left(x_{i}\right) & X \text { discrete, } g\left(x_{i}\right) \in \mathbb{R} \\ \int_{-\infty}^{\infty} g(x) f_{X}(x) d x & X \text { continuous }\end{array}\right.$
- Example: variance, $\operatorname{var}(X)=\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}$
- Example: Bernoulli variance, $\mathbb{E}\left(X^{2}\right)=\mathbb{E}(X)=p$, thus $\operatorname{var}(X)=p(1-p)$.
- Example: Gaussian variance, $\mathbb{E}\left((X-\mu)^{2}\right)=\sigma^{2}$.
- Probability as expectation of indicator, $\mathbf{1}_{A}(x)= \begin{cases}1 & x \in A \\ 0 & \Leftarrow x \notin A\end{cases}$

$$
\mathbb{P}(X \in A)=\int_{A} f_{X}(x) d x=\int \mathbf{1}_{A}(x) f_{X}(x) d x=\mathbb{E}\left(\mathbf{1}_{A}(X)\right)
$$

Two (or More) Random Variables

- Joint pmf of two discrete RVs: $\quad f_{X, Y}(x, y)=\mathbb{P}(X=x \wedge Y=y)$. Extends trivially to more than two RVs.

Two (or More) Random Variables

- Joint pmf of two discrete RVs: $\quad f_{X, Y}(x, y)=\mathbb{P}(X=x \wedge Y=y)$.

Extends trivially to more than two RV s.

- Joint pdf of two continuous RVs: $f_{X, Y}(x, y)$, such that

$$
\mathbb{P}((X, Y) \in A)=\iint_{A} f_{X, Y}(x, y) d x d y, \quad A \subset \mathbb{R}^{2}
$$

Extends trivially to more than two RVs.

Two (or More) Random Variables

- Joint pmf of two discrete RVs: $\quad f_{X, Y}(x, y)=\mathbb{P}(X=x \wedge Y=y)$.

Extends trivially to more than two RVs .

- Joint pdf of two continuous RVs: $f_{X, Y}(x, y)$, such that

$$
\mathbb{P}((X, Y) \in A)=\iint_{A} f_{X, Y}(x, y) d x d y, \quad A \subset \mathbb{R}^{2}
$$

Extends trivially to more than two RVs.

- Marginalization: $f_{Y}(y)=\left\{\begin{array}{cl}\sum_{x} f_{X, Y}(x, y), & \text { if } X \text { is discrete } \\ \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x, & \text { if } X \text { continuous }\end{array}\right.$

Two (or More) Random Variables

- Joint pmf of two discrete RVs: $\quad f_{X, Y}(x, y)=\mathbb{P}(X=x \wedge Y=y)$.

Extends trivially to more than two RVs .

- Joint pdf of two continuous RVs: $f_{X, Y}(x, y)$, such that

$$
\mathbb{P}((X, Y) \in A)=\iint_{A} f_{X, Y}(x, y) d x d y, \quad A \subset \mathbb{R}^{2}
$$

Extends trivially to more than two RVs.

- Marginalization: $f_{Y}(y)=\left\{\begin{array}{cl}\sum_{x} f_{X, Y}(x, y), & \text { if } X \text { is discrete } \\ \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x, & \text { if } X \text { continuous }\end{array}\right.$
- Independence:

$$
X \Perp Y \Leftrightarrow f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Two (or More) Random Variables

- Joint pmf of two discrete RVs: $\quad f_{X, Y}(x, y)=\mathbb{P}(X=x \wedge Y=y)$.

Extends trivially to more than two RVs .

- Joint pdf of two continuous RVs: $f_{X, Y}(x, y)$, such that

$$
\mathbb{P}((X, Y) \in A)=\iint_{A} f_{X, Y}(x, y) d x d y, \quad A \subset \mathbb{R}^{2}
$$

Extends trivially to more than two RVs.

- Marginalization: $f_{Y}(y)=\left\{\begin{array}{cc}\sum_{x} f_{X, Y}(x, y), & \text { if } X \text { is discrete } \\ \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x, & \text { if } X \text { continuous }\end{array}\right.$
- Independence:

$$
X \Perp Y \Leftrightarrow f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \underset{\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y) .}{\nLeftarrow}
$$

Conditionals and Bayes' Theorem

- Conditional pmf (discrete RVs):

$$
f_{X \mid Y}(x \mid y)=\mathbb{P}(X=x \mid Y=y)=\frac{\mathbb{P}(X=x \wedge Y=y)}{\mathbb{P}(Y=y)}=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

Conditionals and Bayes' Theorem

- Conditional pmf (discrete RVs):

$$
f_{X \mid Y}(x \mid y)=\mathbb{P}(X=x \mid Y=y)=\frac{\mathbb{P}(X=x \wedge Y=y)}{\mathbb{P}(Y=y)}=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

- Conditional pdf (continuous RVs): $f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$
...the meaning is technically delicate.

Conditionals and Bayes' Theorem

- Conditional pmf (discrete RVs):

$$
f_{X \mid Y}(x \mid y)=\mathbb{P}(X=x \mid Y=y)=\frac{\mathbb{P}(X=x \wedge Y=y)}{\mathbb{P}(Y=y)}=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

- Conditional pdf (continuous RVs): $f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$...the meaning is technically delicate.
- Bayes' theorem: $f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)} \quad$ (pdf or pmf).

Conditionals and Bayes' Theorem

- Conditional pmf (discrete RVs):

$$
f_{X \mid Y}(x \mid y)=\mathbb{P}(X=x \mid Y=y)=\frac{\mathbb{P}(X=x \wedge Y=y)}{\mathbb{P}(Y=y)}=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

- Conditional pdf (continuous RVs): $f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$...the meaning is technically delicate.
- Bayes' theorem: $f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)} \quad$ (pdf or pmf).
- Also valid in the mixed case (e.g., X continuous, Y discrete).

Joint, Marginal, and Conditional Probabilities: An Example

- A pair of binary variables $X, Y \in\{0,1\}$, with joint pmf:

$f_{X, Y}(x, y)$	$Y=0$	$Y=1$
$X=0$	$1 / 5$	$2 / 5$
$X=1$	$1 / 10$	$3 / 10$

Joint, Marginal, and Conditional Probabilities: An Example

- A pair of binary variables $X, Y \in\{0,1\}$, with joint pmf:

$f_{X, Y}(x, y)$	$Y=0$	$Y=1$
$X=0$	$1 / 5$	$2 / 5$
$X=1$	$1 / 10$	$3 / 10$

- Marginals: $f_{X}(0)=\frac{1}{5}+\frac{2}{5}=\frac{3}{5}$,

$$
f_{X}(1)=\frac{1}{10}+\frac{3}{10}=\frac{4}{10},
$$

$$
f_{Y}(0)=\frac{1}{5}+\frac{1}{10}=\frac{3}{10}, \quad f_{Y}(1)=\frac{2}{5}+\frac{3}{10}=\frac{7}{10} .
$$

Joint, Marginal, and Conditional Probabilities: An Example

- A pair of binary variables $X, Y \in\{0,1\}$, with joint pmf:

$f_{X, Y}(x, y)$	$Y=0$	$Y=1$
$X=0$	$1 / 5$	$2 / 5$
$X=1$	$1 / 10$	$3 / 10$

- Marginals: $f_{X}(0)=\frac{1}{5}+\frac{2}{5}=\frac{3}{5}$,
$f_{X}(1)=\frac{1}{10}+\frac{3}{10}=\frac{4}{10}$,

$$
f_{Y}(0)=\frac{1}{5}+\frac{1}{10}=\frac{3}{10}, \quad f_{Y}(1)=\frac{2}{5}+\frac{3}{10}=\frac{7}{10} .
$$

- Conditional probabilities:

$f_{X \mid Y}(x \mid y)$	$Y=0$	$Y=1$
$X=0$	$2 / 3$	$4 / 7$
$X=1$	$1 / 3$	$3 / 7$

$f_{Y \mid X}(y \mid x)$	$Y=0$	$Y=1$
$X=0$	$1 / 3$	$2 / 3$
$X=1$	$1 / 4$	$3 / 4$

An Important Multivariate RV: Multinomial

- Multinomial: $X=\left(X_{1}, \ldots, X_{K}\right), X_{i} \in\{0, \ldots, n\}$, such that $\sum_{i} X_{i}=n$,

$$
\begin{aligned}
& f_{X}\left(x_{1}, \ldots, x_{K}\right)=\left\{\begin{array}{cc}
\binom{n}{x_{1} x_{2} \cdots x_{K}} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{K}} & \Leftarrow \\
0 & \sum_{i} x_{i}=n \\
& \Leftarrow \sum_{i} x_{i} \neq n
\end{array}\right. \\
&\binom{n}{x_{1} x_{2} \cdots x_{K}}=\frac{n!}{x_{1}!x_{2}!\cdots x_{K}!}
\end{aligned}
$$

Parameters: $p_{1}, \ldots, p_{K} \geq 0$, such that $\sum_{i} p_{i}=1$.

An Important Multivariate RV: Multinomial

- Multinomial: $X=\left(X_{1}, \ldots, X_{K}\right), X_{i} \in\{0, \ldots, n\}$, such that $\sum_{i} X_{i}=n$,

$$
\begin{aligned}
& f_{X}\left(x_{1}, \ldots, x_{K}\right)=\left\{\begin{array}{cc}
\left(\begin{array}{c}
x_{1} x_{2} \cdots x_{K}
\end{array}\right) p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{K}} & \Leftarrow \sum_{i} x_{i}=n \\
0 & \Leftarrow \sum_{i} x_{i} \neq n
\end{array}\right. \\
& \text { Parameters: } p_{1}, \ldots, p_{K} \geq 0 \text {, such that } \sum_{i} p_{i}=1 .
\end{aligned}
$$

- Generalizes the binomial from binary to K-classes.

An Important Multivariate RV: Multinomial

- Multinomial: $X=\left(X_{1}, \ldots, X_{K}\right), X_{i} \in\{0, \ldots, n\}$, such that $\sum_{i} X_{i}=n$,

$$
\left.\left.\begin{array}{rl}
f_{X}\left(x_{1}, \ldots, x_{K}\right)= & \left\{\begin{array}{c}
\left(x_{1} x_{2}^{n} \cdots x_{K}\right)
\end{array}\right) p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{K}} \\
0 & \Leftarrow \sum_{i} x_{i}=n \\
& \Leftarrow \sum_{i} x_{i} \neq n
\end{array}\right\} \begin{array}{c}
n \\
x_{1} x_{2} \cdots x_{K}
\end{array}\right)=\frac{n!}{x_{1}!x_{2}!\cdots x_{K}!} .
$$

Parameters: $p_{1}, \ldots, p_{K} \geq 0$, such that $\sum_{i} p_{i}=1$.

- Generalizes the binomial from binary to K-classes.
- Example: tossing n independent fair dice, $p_{1}=\cdots=p_{6}=1 / 6$. $x_{i}=$ number of outcomes with i dots. Of course, $\sum_{i} x_{i}=n$.

An Important Multivariate RV: Gaussian

- Multivariate Gaussian: $X \in \mathbb{R}^{n}$,

$$
f_{X}(x)=\mathcal{N}(x ; \mu, C)=\frac{1}{\sqrt{\operatorname{det}(2 \pi C)}} \exp \left(-\frac{1}{2}(x-\mu)^{T} C^{-1}(x-\mu)\right)
$$

An Important Multivariate RV: Gaussian

- Multivariate Gaussian: $X \in \mathbb{R}^{n}$,

$$
f_{X}(x)=\mathcal{N}(x ; \mu, C)=\frac{1}{\sqrt{\operatorname{det}(2 \pi C)}} \exp \left(-\frac{1}{2}(x-\mu)^{T} C^{-1}(x-\mu)\right)
$$

- Parameters: vector $\mu \in \mathbb{R}^{n}$ and matrix $C \in \mathbb{R}^{n \times n}$. Expected value: $\mathbb{E}(X)=\mu$. Meaning of C : next slide.

An Important Multivariate RV: Gaussian

- Multivariate Gaussian: $X \in \mathbb{R}^{n}$,

$$
f_{X}(x)=\mathcal{N}(x ; \mu, C)=\frac{1}{\sqrt{\operatorname{det}(2 \pi C)}} \exp \left(-\frac{1}{2}(x-\mu)^{T} C^{-1}(x-\mu)\right)
$$

- Parameters: vector $\mu \in \mathbb{R}^{n}$ and matrix $C \in \mathbb{R}^{n \times n}$. Expected value: $\mathbb{E}(X)=\mu$. Meaning of C : next slide.

Covariance, Correlation, and all that...

- Covariance between two RVs:

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

Covariance, Correlation, and all that...

- Covariance between two RVs:

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

- Relationship with variance: $\operatorname{var}(X)=\operatorname{cov}(X, X)$.

Covariance, Correlation, and all that...

- Covariance between two RVs:

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

- Relationship with variance: $\operatorname{var}(X)=\operatorname{cov}(X, X)$.
- Correlation: $\operatorname{corr}(X, Y)=\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)} \sqrt{\operatorname{var(Y)}}} \in[-1,1]$

Covariance, Correlation, and all that...

- Covariance between two RVs:

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

- Relationship with variance: $\operatorname{var}(X)=\operatorname{cov}(X, X)$.
- Correlation: $\operatorname{corr}(X, Y)=\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)} \sqrt{\operatorname{var}(Y)}} \in[-1,1]$
- $X \Perp Y \Leftrightarrow f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$

Covariance, Correlation, and all that...

- Covariance between two RVs:

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

- Relationship with variance: $\operatorname{var}(X)=\operatorname{cov}(X, X)$.
- Correlation: $\operatorname{corr}(X, Y)=\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)} \sqrt{\operatorname{var}(Y)}} \in[-1,1]$
- $X \Perp Y \Leftrightarrow f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \stackrel{ }{\nRightarrow} \operatorname{cov}(X, Y)=0$.

Covariance, Correlation, and all that...

- Covariance between two RVs:

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

- Relationship with variance: $\operatorname{var}(X)=\operatorname{cov}(X, X)$.
- Correlation: $\operatorname{corr}(X, Y)=\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)} \sqrt{\operatorname{var(Y)}}} \in[-1,1]$
- $X \Perp Y \Leftrightarrow f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \stackrel{ }{\nLeftarrow} \operatorname{cov}(X, Y)=0$.
- Covariance matrix of multivariate $\mathrm{RV}, X \in \mathbb{R}^{n}$:

$$
\operatorname{cov}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))(X-\mathbb{E}(X))^{T}\right]=\mathbb{E}\left(X X^{T}\right)-\mathbb{E}(X) \mathbb{E}(X)^{T}
$$

Covariance, Correlation, and all that...

- Covariance between two RVs:

$$
\operatorname{cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

- Relationship with variance: $\operatorname{var}(X)=\operatorname{cov}(X, X)$.
- Correlation: $\operatorname{corr}(X, Y)=\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)} \sqrt{\operatorname{var}(Y)}} \in[-1,1]$
- $X \Perp Y \Leftrightarrow f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \stackrel{\Rightarrow}{\nLeftarrow} \operatorname{cov}(X, Y)=0$.
- Covariance matrix of multivariate $\mathrm{RV}, X \in \mathbb{R}^{n}$:

$$
\operatorname{cov}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))(X-\mathbb{E}(X))^{T}\right]=\mathbb{E}\left(X X^{T}\right)-\mathbb{E}(X) \mathbb{E}(X)^{T}
$$

- Covariance of Gaussian RV, $f_{X}(x)=\mathcal{N}(x ; \mu, C) \Rightarrow \operatorname{cov}(X)=C$

Statistical Inference

- Scenario: observed RV Y, depends on unknown variable(s) X. Goal: given an observation $Y=y$, infer X.

Statistical Inference

- Scenario: observed RV Y, depends on unknown variable(s) X. Goal: given an observation $Y=y$, infer X.
- Two main philosophies:

Frequentist: $X=x$ is fixed (not an RV), but unknown;
Bayesian: X is a random variable with pdf/pmf $f_{X}(x)$ (the prior); this prior expresses/formalizes knowledge about X.

Statistical Inference

- Scenario: observed RV Y, depends on unknown variable(s) X. Goal: given an observation $Y=y$, infer X.
- Two main philosophies:

Frequentist: $X=x$ is fixed (not an RV), but unknown;
Bayesian: X is a random variable with pdf/pmf $f_{X}(x)$ (the prior); this prior expresses/formalizes knowledge about X.

- In both philosophies, a central object is $f_{Y \mid X}(y \mid x)$ several names: likelihood function, observation model,...

Statistical Inference

- Scenario: observed RV Y, depends on unknown variable(s) X. Goal: given an observation $Y=y$, infer X.
- Two main philosophies:

Frequentist: $X=x$ is fixed (not an RV), but unknown;
Bayesian: X is a random variable with pdf/pmf $f_{X}(x)$ (the prior); this prior expresses/formalizes knowledge about X.

- In both philosophies, a central object is $f_{Y \mid X}(y \mid x)$ several names: likelihood function, observation model,...
- This in not statistical/machine learning! $f_{Y \mid X}(y \mid x)$ is assumed known.

Statistical Inference

- Scenario: observed RV Y, depends on unknown variable(s) X. Goal: given an observation $Y=y$, infer X.
- Two main philosophies:

Frequentist: $X=x$ is fixed (not an RV), but unknown;
Bayesian: X is a random variable with pdf/pmf $f_{X}(x)$ (the prior); this prior expresses/formalizes knowledge about X.

- In both philosophies, a central object is $f_{Y \mid X}(y \mid x)$
several names: likelihood function, observation model, ...
- This in not statistical/machine learning! $f_{Y \mid X}(y \mid x)$ is assumed known.
- In the Bayesian philosophy, all the knowledge about X is carried by

$$
f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)}=\frac{f_{Y, X}(y, x)}{f_{Y}(y)}
$$

...the posterior (or a posteriori) pdf/pmf.

Statistical Inference

- The posterior pdf/pmf $f_{X \mid Y}(x \mid y)$ has all the information/knowledge about X, given $Y=y$ (conditionality principle).

Statistical Inference

- The posterior pdf/pmf $f_{X \mid Y}(x \mid y)$ has all the information/knowledge about X, given $Y=y$ (conditionality principle).
- How to make an optimal "guess" \widehat{x} about X, given this information?

Statistical Inference

- The posterior pdf/pmf $f_{X \mid Y}(x \mid y)$ has all the information/knowledge about X, given $Y=y$ (conditionality principle).
- How to make an optimal "guess" \widehat{x} about X, given this information?
- Need to define "optimal": loss function: $L(\widehat{x}, x) \in \mathbb{R}_{+}$measures "loss" / "cost" incurred by "guessing" \widehat{x} if truth is x.

Statistical Inference

- The posterior pdf/pmf $f_{X \mid Y}(x \mid y)$ has all the information/knowledge about X, given $Y=y$ (conditionality principle).
- How to make an optimal "guess" \widehat{x} about X, given this information?
- Need to define "optimal": loss function: $L(\widehat{x}, x) \in \mathbb{R}_{+}$measures "loss" / "cost" incurred by "guessing" \hat{x} if truth is x.
- The optimal Bayesian decision minimizes the expected loss:

$$
\widehat{x}_{\text {Bayes }}=\arg \min _{\widehat{x}} \mathbb{E}[L(\widehat{x}, X) \mid Y=y]
$$

where

$$
\mathbb{E}[L(\widehat{x}, X) \mid Y=y]= \begin{cases}\int L(\widehat{x}, x) f_{X \mid Y}(x \mid y) d x, & \text { continuous (estimation) } \\ \sum_{x} L(\widehat{x}, x) f_{X \mid Y}(x \mid y), & \text { discrete (classification) }\end{cases}
$$

Classical Statistical Inference Criteria

- Consider that $X \in\{1, \ldots, K\}$ (discrete/classification problem).

Classical Statistical Inference Criteria

- Consider that $X \in\{1, \ldots, K\}$ (discrete/classification problem).
- Adopt the $0 / 1$ loss: $L(\widehat{x}, x)=0$, if $\widehat{x}=x$, and 1 otherwise.

Classical Statistical Inference Criteria

- Consider that $X \in\{1, \ldots, K\}$ (discrete/classification problem).
- Adopt the $0 / 1$ loss: $L(\widehat{x}, x)=0$, if $\widehat{x}=x$, and 1 otherwise.
- Optimal Bayesian decision:

$$
\begin{aligned}
\widehat{x}_{\text {Bayes }} & =\arg \min _{\widehat{x}} \sum_{x=1}^{K} L(\widehat{x}, x) f_{X \mid Y}(x \mid y) \\
& =\arg \min _{\widehat{x}}\left(1-f_{X \mid Y}(\widehat{x} \mid y)\right) \\
& =\arg \max _{\widehat{x}} f_{X \mid Y}(\widehat{x} \mid y) \equiv \widehat{x}_{\mathrm{MAP}}
\end{aligned}
$$

MAP = maximum a posteriori criterion.

Classical Statistical Inference Criteria

- Consider that $X \in\{1, \ldots, K\}$ (discrete/classification problem).
- Adopt the $0 / 1$ loss: $L(\widehat{x}, x)=0$, if $\widehat{x}=x$, and 1 otherwise.
- Optimal Bayesian decision:

$$
\begin{aligned}
\widehat{x}_{\text {Bayes }} & =\arg \min _{\widehat{x}} \sum_{x=1}^{K} L(\widehat{x}, x) f_{X \mid Y}(x \mid y) \\
& =\arg \min _{\widehat{x}}\left(1-f_{X \mid Y}(\widehat{x} \mid y)\right) \\
& =\arg \max _{\widehat{x}} f_{X \mid Y}(\widehat{x} \mid y) \equiv \widehat{x}_{M A P}
\end{aligned}
$$

$\mathrm{MAP}=$ maximum a posteriori criterion.

- Same criterion can be derived for continuous X, using $\lim _{\varepsilon \rightarrow 0} L_{\varepsilon}(\widehat{x}, x)$, where $L_{\varepsilon}(\widehat{x}, x)=0$, if $|\widehat{x}-x|<\varepsilon$, and 1 otherwise.

Classical Statistical Inference Criteria

- Consider the MAP criterion $\widehat{x}_{\text {MAP }}=\arg \max _{x} f_{X \mid Y}(x \mid y)$

Classical Statistical Inference Criteria

- Consider the MAP criterion $\widehat{x}_{\text {MAP }}=\arg \max _{x} f_{X \mid Y}(x \mid y)$
- From Bayes law:

$$
\widehat{x}_{\mathrm{MAP}}=\arg \max _{x} \frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)}=\arg \max _{x} f_{Y \mid X}(y \mid x) f_{X}(x)
$$

...only need to know posterior $f_{X \mid Y}(x \mid y)$ up to a normalization factor.

Classical Statistical Inference Criteria

- Consider the MAP criterion $\widehat{x}_{\text {MAP }}=\arg \max _{x} f_{X \mid Y}(x \mid y)$
- From Bayes law:

$$
\widehat{x}_{\mathrm{MAP}}=\arg \max _{x} \frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)}=\arg \max _{x} f_{Y \mid X}(y \mid x) f_{X}(x)
$$

...only need to know posterior $f_{X \mid Y}(x \mid y)$ up to a normalization factor.

- Also common to write: $\widehat{x}_{\text {MAP }}=\arg \max _{X} \log f_{Y \mid X}(y \mid x)+\log f_{X}(x)$

Classical Statistical Inference Criteria

- Consider the MAP criterion $\widehat{x}_{\text {MAP }}=\arg \max _{x} f_{X \mid Y}(x \mid y)$
- From Bayes law:

$$
\widehat{x}_{\mathrm{MAP}}=\arg \max _{x} \frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)}=\arg \max _{x} f_{Y \mid X}(y \mid x) f_{X}(x)
$$

...only need to know posterior $f_{X \mid Y}(x \mid y)$ up to a normalization factor.

- Also common to write: $\widehat{x}_{\text {MAP }}=\arg \max _{X} \log f_{Y \mid X}(y \mid x)+\log f_{X}(x)$
- If the prior if flat, $f_{X}(x)=C$, then,

$$
\widehat{x}_{\mathrm{MAP}}=\arg \max _{x} f_{Y \mid X}(y \mid x) \equiv \widehat{x}_{\mathrm{ML}}
$$

$M L=$ maximum likelihood criterion.

Statistical Inference: Example

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs: $Y=\left(Y_{1}, \ldots, Y_{n}\right)$, with $Y_{i} \in\{0,1\}$.
Common pmf $f_{Y_{i} \mid X}(y \mid x)=x^{y}(1-x)^{1-y}$, where $x \in[0,1]$.

Statistical Inference: Example

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs:
$Y=\left(Y_{1}, \ldots, Y_{n}\right)$, with $Y_{i} \in\{0,1\}$.
Common pmf $f_{Y_{i} \mid X}(y \mid x)=x^{y}(1-x)^{1-y}$, where $x \in[0,1]$.
- Likelihood function: $f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=\prod_{i=1}^{n} x^{y_{i}}(1-x)^{1-y_{i}}$

Log-likelihood function:

$$
\log f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=n \log (1-x)+\log \frac{x}{1-x} \sum_{i=1}^{n} y_{i}
$$

Statistical Inference: Example

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs:
$Y=\left(Y_{1}, \ldots, Y_{n}\right)$, with $Y_{i} \in\{0,1\}$.
Common pmf $f_{Y_{i} \mid X}(y \mid x)=x^{y}(1-x)^{1-y}$, where $x \in[0,1]$.
- Likelihood function: $f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=\prod_{i=1}^{n} x^{y_{i}}(1-x)^{1-y_{i}}$ Log-likelihood function:

$$
\log f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=n \log (1-x)+\log \frac{x}{1-x} \sum_{i=1}^{n} y_{i}
$$

- Maximum likelihood: $\widehat{x}_{M L}=\arg \max _{x} f_{Y \mid X}(y \mid x)=\frac{1}{n} \sum_{i=1}^{n} y_{i}$

Statistical Inference: Example

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs:
$Y=\left(Y_{1}, \ldots, Y_{n}\right)$, with $Y_{i} \in\{0,1\}$.
Common pmf $f_{Y_{i} \mid X}(y \mid x)=x^{y}(1-x)^{1-y}$, where $x \in[0,1]$.
- Likelihood function: $f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=\prod_{i=1}^{n} x^{y_{i}}(1-x)^{1-y_{i}}$ Log-likelihood function:

$$
\log f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=n \log (1-x)+\log \frac{x}{1-x} \sum_{i=1}^{n} y_{i}
$$

- Maximum likelihood: $\widehat{x}_{M L}=\arg \max _{x} f_{Y \mid X}(y \mid x)=\frac{1}{n} \sum_{i=1}^{n} y_{i}$
- Example: $n=10$, observed $y=(1,1,1,0,1,0,0,1,1,1), \widehat{x}_{\mathrm{ML}}=7 / 10$.

Statistical Inference: Example (Continuation)

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs.

Statistical Inference: Example (Continuation)

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
- Likelihood: $f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=\prod_{i=1}^{n} x^{y_{i}}(1-x)^{1-y_{i}}=x^{\sum_{i} y_{i}}(1-x)^{n-\sum_{i} y_{i}}$

Statistical Inference: Example (Continuation)

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
- Likelihood: $f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=\prod_{i=1}^{n} x^{y_{i}}(1-x)^{1-y_{i}}=x^{\sum_{i} y_{i}}(1-x)^{n-\sum_{i} y_{i}}$
- How to express knowledge that (e.g.) X is around $1 / 2$? Convenient choice: conjugate prior. Form of the posterior $=$ form of the prior.

Statistical Inference: Example (Continuation)

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
- Likelihood: $f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=\prod_{i=1}^{n} x^{y_{i}}(1-x)^{1-y_{i}}=x^{\sum_{i} y_{i}}(1-x)^{n-\sum_{i} y_{i}}$
- How to express knowledge that (e.g.) X is around $1 / 2$? Convenient choice: conjugate prior. Form of the posterior $=$ form of the prior.
- In our case, the Beta pdf $f_{X}(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \alpha, \beta>0$

Statistical Inference: Example (Continuation)

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
- Likelihood: $f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=\prod_{i=1}^{n} x^{y_{i}}(1-x)^{1-y_{i}}=x^{\sum_{i} y_{i}}(1-x)^{n-\sum_{i} y_{i}}$
- How to express knowledge that (e.g.) X is around $1 / 2$? Convenient choice: conjugate prior. Form of the posterior $=$ form of the prior.
- In our case, the Beta pdf
$f_{X}(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \quad \alpha, \beta>0$
- Posterior:
$f_{X \mid Y}(x \mid y)=x^{\alpha-1+\sum_{i} y_{i}}(1-x)^{\beta-1+n-\sum_{i} y_{i}}$

Statistical Inference: Example (Continuation)

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
- Likelihood: $f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=\prod_{i=1}^{n} x^{y_{i}}(1-x)^{1-y_{i}}=x^{\sum_{i} y_{i}}(1-x)^{n-\sum_{i} y_{i}}$
- How to express knowledge that (e.g.) X is around $1 / 2$? Convenient choice: conjugate prior. Form of the posterior $=$ form of the prior.
- In our case, the Beta pdf
$f_{X}(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \quad \alpha, \beta>0$
- Posterior:
$f_{X \mid Y}(x \mid y)=x^{\alpha-1+\sum_{i} y_{i}}(1-x)^{\beta-1+n-\sum_{i} y_{i}}$
- MAP: $\widehat{x}_{\text {MAP }}=\frac{\alpha+\sum_{i} y_{i}-1}{\alpha+\beta+n-2}$

Statistical Inference: Example (Continuation)

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
- Likelihood: $f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=\prod_{i=1}^{n} x^{y_{i}}(1-x)^{1-y_{i}}=x^{\sum_{i} y_{i}}(1-x)^{n-\sum_{i} y_{i}}$
- How to express knowledge that (e.g.) X is around $1 / 2$? Convenient choice: conjugate prior. Form of the posterior $=$ form of the prior.
- In our case, the Beta pdf

$$
f_{X}(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \quad \alpha, \beta>0
$$

- Posterior:

$$
f_{X \mid Y}(x \mid y)=x^{\alpha-1+\sum_{i} y_{i}}(1-x)^{\beta-1+n-\sum_{i} y_{i}}
$$

- MAP: $\widehat{x}_{\text {MAP }}=\frac{\alpha+\sum_{i} y_{i}-1}{\alpha+\beta+n-2}$
- Example: $\alpha=4, \beta=4, n=10$,

$$
\begin{aligned}
y= & (1,1,1,0,1,0,0,1,1,1) \\
& \widehat{x}_{\mathrm{MAP}}=0.625\left(\text { recall } \widehat{x}_{\mathrm{ML}}=0.7\right)
\end{aligned}
$$

Another Classical Statistical Inference Criterion

- Consider that $X \in \mathbb{R}$ (continuous/estimation problem).

Another Classical Statistical Inference Criterion

- Consider that $X \in \mathbb{R}$ (continuous/estimation problem).
- Adopt the squared error loss: $L(\widehat{x}, x)=(\widehat{x}-x)^{2}$

Another Classical Statistical Inference Criterion

- Consider that $X \in \mathbb{R}$ (continuous/estimation problem).
- Adopt the squared error loss: $L(\widehat{x}, x)=(\widehat{x}-x)^{2}$
- Optimal Bayesian decision:

$$
\begin{aligned}
\widehat{x}_{\text {Bayes }} & =\arg \min _{\widehat{x}} \mathbb{E}\left[(\widehat{x}-X)^{2} \mid Y=y\right] \\
& =\arg \min _{\widehat{x}} \widehat{x}^{2}-2 \widehat{x} \mathbb{E}[X \mid Y=y] \\
& =\mathbb{E}[X \mid Y=y] \equiv \widehat{x}_{\text {MMSE }}
\end{aligned}
$$

MMSE = minimum mean squared error criterion.

Another Classical Statistical Inference Criterion

- Consider that $X \in \mathbb{R}$ (continuous/estimation problem).
- Adopt the squared error loss: $L(\widehat{x}, x)=(\widehat{x}-x)^{2}$
- Optimal Bayesian decision:

$$
\begin{aligned}
\widehat{x}_{\text {Bayes }} & =\arg \min _{\widehat{x}} \mathbb{E}\left[(\widehat{x}-X)^{2} \mid Y=y\right] \\
& =\arg \min _{\widehat{x}} \widehat{x}^{2}-2 \widehat{x} \mathbb{E}[X \mid Y=y] \\
& =\mathbb{E}[X \mid Y=y] \equiv \widehat{x}_{\text {MMSE }}
\end{aligned}
$$

MMSE $=$ minimum mean squared error criterion.

- Does not apply to classification problems.

Back to the Bernoulli Example

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs.

Back to the Bernoulli Example

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
- Likelihood: $f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=\prod_{i=1}^{n} x^{y_{i}}(1-x)^{1-y_{i}}=x^{\sum_{i} y_{i}}(1-x)^{n-\sum_{i} y_{i}}$

Back to the Bernoulli Example

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
- Likelihood: $f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=\prod_{i=1}^{n} x^{y_{i}}(1-x)^{1-y_{i}}=x^{\sum_{i} y_{i}}(1-x)^{n-\sum_{i} y_{i}}$
- In our case, the Beta pdf
$f_{X}(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \alpha, \beta>0$

Back to the Bernoulli Example

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
- Likelihood: $f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=\prod_{i=1}^{n} x^{y_{i}}(1-x)^{1-y_{i}}=x^{\sum_{i} y_{i}}(1-x)^{n-\sum_{i} y_{i}}$
- In our case, the Beta pdf
$f_{X}(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \alpha, \beta>0$
- Posterior:
$f_{X \mid Y}(x \mid y)=x^{\alpha-1+\sum_{i} y_{i}}(1-x)^{\beta-1+n-\sum_{i} y_{i}}$

Back to the Bernoulli Example

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
- Likelihood: $f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=\prod_{i=1}^{n} x^{y_{i}}(1-x)^{1-y_{i}}=x^{\sum_{i} y_{i}}(1-x)^{n-\sum_{i} y_{i}}$
- In our case, the Beta pdf
$f_{X}(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \alpha, \beta>0$
- Posterior:
$f_{X \mid Y}(x \mid y)=x^{\alpha-1+\sum_{i} y_{i}}(1-x)^{\beta-1+n-\sum_{i} y_{i}}$
- MMSE: $\widehat{x}_{\text {MMSE }}=\frac{\alpha+\sum_{i} y_{i}}{\alpha+\beta+n}$

Back to the Bernoulli Example

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
- Likelihood: $f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=\prod_{i=1}^{n} x^{y_{i}}(1-x)^{1-y_{i}}=x^{\sum_{i} y_{i}}(1-x)^{n-\sum_{i} y_{i}}$
- In our case, the Beta pdf
$f_{X}(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \alpha, \beta>0$
- Posterior:
$f_{X \mid Y}(x \mid y)=x^{\alpha-1+\sum_{i} y_{i}}(1-x)^{\beta-1+n-\sum_{i} y_{i}}$
- MMSE: $\widehat{x}_{\text {MMSE }}=\frac{\alpha+\sum_{i} y_{i}}{\alpha+\beta+n}$
- Example: $\alpha=4, \beta=4, n=10$, $y=(1,1,1,0,1,0,0,1,1,1)$,

$\widehat{x}_{\text {MMSE }} \simeq 0.611$ (recall that $\widehat{x}_{\text {MAP }}=0.625, \widehat{x}_{\text {ML }}=0.7$)

Back to the Bernoulli Example

- Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
- Likelihood: $f_{Y \mid X}\left(y_{1}, \ldots, y_{n} \mid x\right)=\prod_{i=1}^{n} x^{y_{i}}(1-x)^{1-y_{i}}=x^{\sum_{i} y_{i}}(1-x)^{n-\sum_{i} y_{i}}$
- In our case, the Beta pdf
$f_{X}(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \alpha, \beta>0$
- Posterior:
$f_{X \mid Y}(x \mid y)=x^{\alpha-1+\sum_{i} y_{i}}(1-x)^{\beta-1+n-\sum_{i} y_{i}}$
- MMSE: $\widehat{x}_{\text {MMSE }}=\frac{\alpha+\sum_{i} y_{i}}{\alpha+\beta+n}$
- Example: $\alpha=4, \beta=4, n=10$, $y=(1,1,1,0,1,0,0,1,1,1)$,

$\widehat{x}_{\text {MMSE }} \simeq 0.611$ (recall that $\widehat{x}_{\text {MAP }}=0.625, \widehat{x}_{\text {ML }}=0.7$)
- Conjugate prior equivalent to "virtual" counts; often called "smoothing" in NLP and ML.

The Bernstein-Von Mises Theorem

- In the previous example, we had
$n=10, \quad y=(1,1,1,0,1,0,0,1,1,1)$, thus $\sum_{i} y_{i}=7$.
With a Beta prior with $\alpha=4$ and $\beta=4$, we had

$$
\widehat{x}_{\mathrm{ML}}=0.7, \quad \widehat{x}_{\mathrm{MAP}}=\frac{3+\sum_{i} y_{i}}{6+n}=0.625, \quad \widehat{x}_{\mathrm{MMSE}}=\frac{4+\sum_{i} y_{i}}{8+n} \simeq 0.611
$$

The Bernstein-Von Mises Theorem

- In the previous example, we had
$n=10, \quad y=(1,1,1,0,1,0,0,1,1,1)$, thus $\sum_{i} y_{i}=7$.
With a Beta prior with $\alpha=4$ and $\beta=4$, we had

$$
\widehat{x}_{\mathrm{ML}}=0.7, \quad \widehat{x}_{\mathrm{MAP}}=\frac{3+\sum_{i} y_{i}}{6+n}=0.625, \quad \widehat{x}_{\mathrm{MMSE}}=\frac{4+\sum_{i} y_{i}}{8+n} \simeq 0.611
$$

- Consider $n=100$, and $\sum_{i} y_{i}=70$, with the same $\operatorname{Beta}(4,4)$ prior

$$
\widehat{x}_{\mathrm{ML}}=0.7, \quad \widehat{x}_{\mathrm{MAP}}=\frac{73}{106} \simeq 0.689, \quad \widehat{x}_{\mathrm{MMSE}}=\frac{74}{108} \simeq 0.685
$$

... both Bayesian estimates are much closer to the ML.

The Bernstein-Von Mises Theorem

- In the previous example, we had
$n=10, \quad y=(1,1,1,0,1,0,0,1,1,1)$, thus $\sum_{i} y_{i}=7$.
With a Beta prior with $\alpha=4$ and $\beta=4$, we had

$$
\widehat{x}_{\mathrm{ML}}=0.7, \quad \widehat{x}_{\mathrm{MAP}}=\frac{3+\sum_{i} y_{i}}{6+n}=0.625, \quad \widehat{x}_{\mathrm{MMSE}}=\frac{4+\sum_{i} y_{i}}{8+n} \simeq 0.611
$$

- Consider $n=100$, and $\sum_{i} y_{i}=70$, with the same $\operatorname{Beta}(4,4)$ prior

$$
\widehat{x}_{\mathrm{ML}}=0.7, \quad \widehat{x}_{\mathrm{MAP}}=\frac{73}{106} \simeq 0.689, \quad \widehat{x}_{\mathrm{MMSE}}=\frac{74}{108} \simeq 0.685
$$

... both Bayesian estimates are much closer to the ML.

- This illustrates an important result in Bayesian inference: the Bernstein-Von Mises theorem; under (mild) conditions,

$$
\lim _{n \rightarrow \infty} \widehat{x}_{\mathrm{MAP}}=\lim _{n \rightarrow \infty} \widehat{x}_{\mathrm{MMSE}}=\widehat{x}_{\mathrm{ML}}
$$

message: if you have a lot of data, priors don't matter.

Important Inequalities

- Markov's ineqality: if $X \geq 0$ is an RV with expectation $\mathbb{E}(X)$, then

$$
\mathbb{P}(X>t) \leq \frac{\mathbb{E}(X)}{t}
$$

Important Inequalities

- Markov's ineqality: if $X \geq 0$ is an RV with expectation $\mathbb{E}(X)$, then

$$
\mathbb{P}(X>t) \leq \frac{\mathbb{E}(X)}{t}
$$

Simple proof:
$t \mathbb{P}(X>t)=\int_{t}^{\infty} t f_{X}(x) d x \leq \int_{t}^{\infty} x f_{X}(x) d x=\mathbb{E}(X)-\underbrace{\int_{0}^{t} x f_{X}(x) d x}_{\geq 0} \leq \mathbb{E}(X)$

Important Inequalities

- Markov's ineqality: if $X \geq 0$ is an RV with expectation $\mathbb{E}(X)$, then

$$
\mathbb{P}(X>t) \leq \frac{\mathbb{E}(X)}{t}
$$

Simple proof:
$t \mathbb{P}(X>t)=\int_{t}^{\infty} t f_{X}(x) d x \leq \int_{t}^{\infty} x f_{X}(x) d x=\mathbb{E}(X)-\underbrace{\int_{0}^{t} x f_{X}(x) d x}_{\geq 0} \leq \mathbb{E}(X)$

- Chebyshev's inequality: $\mu=\mathbb{E}(Y)$ and $\sigma^{2}=\operatorname{var}(Y)$, then

$$
\mathbb{P}(|X-\mu| \geq s) \leq \frac{\sigma^{2}}{s^{2}}
$$

...simple corollary of Markov's inequality, with $X=|Y-\mu|^{2}, \quad t=s^{2}$

More Important Inequalities

- Cauchy-Schwartz's inequality for RV s:

$$
\mathbb{E}(|X Y|) \leq \sqrt{\mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)}
$$

More Important Inequalities

- Cauchy-Schwartz's inequality for RVs:

$$
\mathbb{E}(|X Y|) \leq \sqrt{\mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)}
$$

- Recall that a real function g is convex if, for any x, y, and $\alpha \in[0,1]$

$$
g(\alpha x+(1-\alpha) y) \leq \alpha g(x)+(1-\alpha) g(y)
$$

More Important Inequalities

- Cauchy-Schwartz's inequality for RVs:

$$
\mathbb{E}(|X Y|) \leq \sqrt{\mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)}
$$

- Recall that a real function g is convex if, for any x, y, and $\alpha \in[0,1]$

$$
g(\alpha x+(1-\alpha) y) \leq \alpha g(x)+(1-\alpha) g(y)
$$

Jensen's inequality: if g is a real convex function, then

$$
g(\mathbb{E}(X)) \leq \mathbb{E}(g(X))
$$

More Important Inequalities

- Cauchy-Schwartz's inequality for RVs:

$$
\mathbb{E}(|X Y|) \leq \sqrt{\mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)}
$$

- Recall that a real function g is convex if, for any x, y, and $\alpha \in[0,1]$

$$
g(\alpha x+(1-\alpha) y) \leq \alpha g(x)+(1-\alpha) g(y)
$$

Jensen's inequality: if g is a real convex function, then

$$
g(\mathbb{E}(X)) \leq \mathbb{E}(g(X))
$$

Examples: $\mathbb{E}(X)^{2} \leq \mathbb{E}\left(X^{2}\right) \Rightarrow \operatorname{var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2} \geq 0$. $\mathbb{E}(\log X) \leq \log \mathbb{E}(X), \quad$ for X a positive RV .

Entropy and all that...

Entropy of a discrete RV $X \in\{1, \ldots, K\}: H(X)=-\sum_{x=1}^{K} f_{X}(x) \log f_{X}(x)$

Entropy and all that...

Entropy of a discrete RV $X \in\{1, \ldots, K\}: H(X)=-\sum_{x=1}^{K} f_{X}(x) \log f_{X}(x)$

- Positivity: $H(X) \geq 0$;

$$
H(X)=0 \Leftrightarrow f_{X}(i)=1, \text { for exactly one } i \in\{1, \ldots, K\}
$$

Entropy and all that...

Entropy of a discrete RV $X \in\{1, \ldots, K\}: H(X)=-\sum_{x=1}^{K} f_{X}(x) \log f_{X}(x)$

- Positivity: $H(X) \geq 0$;

$$
H(X)=0 \Leftrightarrow f_{X}(i)=1, \text { for exactly one } i \in\{1, \ldots, K\}
$$

- Upper bound: $H(X) \leq \log K$;

$$
H(X)=\log K \Leftrightarrow f_{X}(x)=1 / k, \text { for all } x \in\{1, \ldots, K\}
$$

Entropy and all that...

Entropy of a discrete RV $X \in\{1, \ldots, K\}: H(X)=-\sum_{x=1}^{K} f_{X}(x) \log f_{X}(x)$

- Positivity: $H(X) \geq 0$;

$$
H(X)=0 \Leftrightarrow f_{X}(i)=1, \text { for exactly one } i \in\{1, \ldots, K\}
$$

- Upper bound: $H(X) \leq \log K$;

$$
H(X)=\log K \Leftrightarrow f_{X}(x)=1 / k, \text { for all } x \in\{1, \ldots, K\}
$$

- Measure of uncertainty/randomness of X

Entropy and all that...

Entropy of a discrete $\mathrm{RV} X \in\{1, \ldots, K\}: H(X)=-\sum_{x=1}^{K} f_{X}(x) \log f_{X}(x)$

- Positivity: $H(X) \geq 0$;

$$
H(X)=0 \Leftrightarrow f_{X}(i)=1, \text { for exactly one } i \in\{1, \ldots, K\}
$$

- Upper bound: $H(X) \leq \log K$;

$$
H(X)=\log K \Leftrightarrow f_{X}(x)=1 / k, \text { for all } x \in\{1, \ldots, K\}
$$

- Measure of uncertainty/randomness of X

Continuous RV X, differential entropy: $h(X)=-\int f_{X}(x) \log f_{X}(x) d x$

Entropy and all that...

Entropy of a discrete RV $X \in\{1, \ldots, K\}$:

$$
H(X)=-\sum_{x=1}^{K} f_{X}(x) \log f_{X}(x)
$$

- Positivity: $H(X) \geq 0$;

$$
H(X)=0 \Leftrightarrow f_{X}(i)=1, \text { for exactly one } i \in\{1, \ldots, K\}
$$

- Upper bound: $H(X) \leq \log K$;

$$
H(X)=\log K \Leftrightarrow f_{X}(x)=1 / k, \text { for all } x \in\{1, \ldots, K\}
$$

- Measure of uncertainty/randomness of X

Continuous RV X, differential entropy: $h(X)=-\int f_{X}(x) \log f_{X}(x) d x$

- $h(X)$ can be positive or negative. Example, if $f_{X}(x)=\operatorname{Uniform}(x ; a, b), h(X)=\log (b-a)$.

Entropy and all that...

Entropy of a discrete RV $X \in\{1, \ldots, K\}$:

$$
H(X)=-\sum_{x=1}^{K} f_{X}(x) \log f_{X}(x)
$$

- Positivity: $H(X) \geq 0$;

$$
H(X)=0 \Leftrightarrow f_{X}(i)=1, \text { for exactly one } i \in\{1, \ldots, K\}
$$

- Upper bound: $H(X) \leq \log K$;

$$
H(X)=\log K \Leftrightarrow f_{X}(x)=1 / k, \text { for all } x \in\{1, \ldots, K\}
$$

- Measure of uncertainty/randomness of X

Continuous RV X, differential entropy: $h(X)=-\int f_{X}(x) \log f_{X}(x) d x$

- $h(X)$ can be positive or negative. Example, if $f_{X}(x)=\operatorname{Uniform}(x ; a, b), h(X)=\log (b-a)$.
- If $f_{X}(x)=\mathcal{N}\left(x ; \mu, \sigma^{2}\right)$, then $h(X)=\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)$.

Entropy and all that...

Entropy of a discrete RV $X \in\{1, \ldots, K\}$:

$$
H(X)=-\sum_{x=1}^{K} f_{X}(x) \log f_{X}(x)
$$

- Positivity: $H(X) \geq 0$;

$$
H(X)=0 \Leftrightarrow f_{X}(i)=1, \text { for exactly one } i \in\{1, \ldots, K\}
$$

- Upper bound: $H(X) \leq \log K$;

$$
H(X)=\log K \Leftrightarrow f_{X}(x)=1 / k, \text { for all } x \in\{1, \ldots, K\}
$$

- Measure of uncertainty/randomness of X

Continuous RV X, differential entropy: $h(X)=-\int f_{X}(x) \log f_{X}(x) d x$

- $h(X)$ can be positive or negative. Example, if $f_{X}(x)=\operatorname{Uniform}(x ; a, b), h(X)=\log (b-a)$.
- If $f_{X}(x)=\mathcal{N}\left(x ; \mu, \sigma^{2}\right)$, then $h(X)=\frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)$.
- If $\operatorname{var}(Y)=\sigma^{2}$, then $h(Y) \leq \frac{1}{2} \log \left(2 \pi e \sigma^{2}\right)$

Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

$$
D\left(f_{X} \| g_{X}\right)=\sum_{x=1}^{K} f_{X}(x) \log \frac{f_{X}(x)}{g_{X}(x)}
$$

Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

$$
D\left(f_{X} \| g_{X}\right)=\sum_{x=1}^{K} f_{X}(x) \log \frac{f_{X}(x)}{g_{X}(x)}
$$

Positivity: $D\left(f_{X} \| g_{X}\right) \geq 0$

$$
D\left(f_{X} \| g_{X}\right)=0 \Leftrightarrow f_{X}(x)=g_{X}(x), \text { for } x \in\{1, \ldots, K\}
$$

Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

$$
D\left(f_{X} \| g_{X}\right)=\sum_{x=1}^{K} f_{X}(x) \log \frac{f_{X}(x)}{g_{X}(x)}
$$

Positivity: $D\left(f_{X} \| g_{X}\right) \geq 0$

$$
D\left(f_{X} \| g_{X}\right)=0 \Leftrightarrow f_{X}(x)=g_{X}(x), \text { for } x \in\{1, \ldots, K\}
$$

KLD between two pdf:

$$
D\left(f_{X} \| g_{X}\right)=\int f_{X}(x) \log \frac{f_{X}(x)}{g_{X}(x)} d x
$$

Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

$$
D\left(f_{X} \| g_{X}\right)=\sum_{x=1}^{K} f_{X}(x) \log \frac{f_{X}(x)}{g_{X}(x)}
$$

Positivity: $D\left(f_{X} \| g_{X}\right) \geq 0$

$$
D\left(f_{X} \| g_{X}\right)=0 \Leftrightarrow f_{X}(x)=g_{X}(x), \text { for } x \in\{1, \ldots, K\}
$$

KLD between two pdf:

$$
D\left(f_{X} \| g_{X}\right)=\int f_{X}(x) \log \frac{f_{X}(x)}{g_{X}(x)} d x
$$

Positivity: $D\left(f_{X} \| g_{X}\right) \geq 0$

$$
D\left(f_{X} \| g_{X}\right)=0 \Leftrightarrow f_{X}(x)=g_{X}(x), \text { almost everywhere }
$$

Enjoy LxMLS 2014

