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Introduction Algorithms Random Sharding Natural Tasks Conclusion

Big Data

• Data can be characterized as big by
• large size of training set,
• high dimensionality of feature representation of data.

• Not all datasets advertised as “large” meet both requirements
(e.g. Learning-to-Rank Challenges at Yahoo! and Microsoft
work on hundreds of features for tens of thousands of queries)

• Our application scenario is Statistical Machine Translation
(SMT), using billions of features and training examples.
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Large Scale Learning

• Learning problem is large scale if
• training data cannot be stored in RAM (Langford on

http://hunch.net/?p=330, 2008),
• time constraint requires that algorithms scale at worst linearly

with number of examples (Bottou & Bousquet NIPS’07).
• Solutions:

• Online learning for linear scaling in training sample size
(Bottou & Le Cun NIPS’04),

• combined with feature selection for memory efficient feature
representation (Langford et al. JMLR’09),

• combined with parallelization and averaging for parallel
acceleration and reduced variance at asymptotic online
learning guarantees (Zinkevich et al. NIPS’10) .

• We add another dimension: Multi-task learning.
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Multi-Task Learning

• Goal: A number of statistical models need to be estimated
simultaneously from data belonging to different tasks.

• Examples:
• OCR of handwritten characters from different writers: Exploit

commonalities on pixel- or stroke-level shared between writers.
• LTR from search engine query logs from different countries:

Some queries are country-specific (“football”), most preference
rankings are shared across countries.

• Idea:
• Learn a shared model that takes advantage of commonalities

among tasks, without neglecting individual knowledge.
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Our Application: Learning from Big Data in SMT

• Machine learning theory and practice suggests benefits from
using expressive feature representations and from tuning
on large training samples.

• Discriminative training in SMT has mostly been content with
tuning small sets of dense features on small development
data (Och NAACL’03).

• Notable exceptions using larger feature and training sets:
• Liang et al. ACL’06: 1.5M features, 67K parallel sentences.
• Tillmann and Zhang ACL’06: 35M feats, 230K sents.
• Blunsom et al. ACL’08: 7.8M feats, 100K sents.
• Simianer, Riezler, Dyer ACL’12: 4.7M feats, 1.6M sents.
• Flanigan, Dyer, Carbonell NAACL’13: 28.8M feats, 1M sents.
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Our Approach: Multi-Task Distributed SGD

• Distribute work and share information!
• Online learning via Stochastic Gradient Descent optimization.
• Distributed learning using Hadoop/MapReduce or

SunGridEngine.
• Feature selection via `1/`2 block norm regularization on

features across multiple tasks.
• Pooling baseline:

• Concatenate data from all tasks into one big pool.
• Becomes infeasible very quickly.

• Independent modeling baseline :
• Independent training of task specific models.
• Does not share any knowledge across tasks.
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Related Work

• Online learning:
• We deploy pairwise ranking perceptron (Shen & Joshi

JMLR’05)
• and margin perceptron (Collobert & Bengio ICML’04).

• Distributed learning:
• Without feature selection, our algorithm reduces to Iterative

Mixing (McDonald et al. NAACL’10),
• which itself is related to Bagging (Breiman JMLR’96) if shards

are treated as random samples.
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Related Work

• `1/`2 regularization:
• Related to group-Lasso approaches which use mixed norms

(Yuan & Lin JRSS’06), hierarchical norms (Zhao et al. Annals
Stats’09), structured norms (Martins et al. EMNLP’11).

• Difference: Norms and proximity operators are applied to
groups of features in single regression or classification task –
multi-task learning groups features orthogonally by tasks.

• Closest relation to Obozinski et al. StatComput’10: Our
algorithm is weight-based backward feature elimination variant
of their gradient-based forward feature selection algorithm.
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OL Framework: Pairwise Ranking Perceptron

• Preference pairs xj = (x(1)
j , x(2)

j ) where x(1)
j is ordered above

x(2)
j w.r.t. sentence-wise BLEU (Nakov et al. COLING’12).

• Hinge loss-type objective

lj(w) = (−〈w, x̄j 〉)+

where x̄j = x(1)
j − x(2)

j , (a)+ = max(0, a) , w ∈ IRD is a weight
vector, and 〈·, ·〉 denotes the standard vector dot product.

• Ranking perceptron by stochastic subgradient descent:

∇lj(w) =

{
−x̄j if 〈w, x̄j〉 ≤ 0,

0 else.
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OL framework: Margin Perceptron

• Hinge loss-type objective

lj(w) = (1− 〈w, x̄j 〉)+

• Stochastic subgradient descent:

∇lj(w) =

{
−x̄j if 〈w, x̄j〉 < 1,

0 else.

• Margin term controls capacity, but results in more updates.

• Collobert & Bengio (ICML’04) argue that this justifies not using
an explicit regularization (as for example in an SGD version of
the SVM (Shalev-Shwartz et al. ICML’07)).
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MTL Framework: `1/`2 Block Norm Regularization
• Data points {(xzn, yzn), z = 1, . . . ,Z , n = 1, . . . ,Nz},

sampled from Pz on X × Y (z = task; n = data point).
• Objective:

min
W

∑
z,n

ln(wz) + λ||W||1,2

• where W = (wd
z )z,d is a Z -by-D matrix W = (wd

z )z,d of
D-dimensional row vectors wz and Z -dimensional column
vectors wd of weights associated with feature d across tasks.

• Weighted `1/`2 norm:

λ||W||1,2 = λ

D∑
d=1

||wd ||2

• Each `2 norm of a weight column wd represents the relevance
of the corresponding feature across tasks.
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`1/`2 Regularization Explained
w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

wz1 [ 6 4 0 0 0 ] [ 6 4 0 0 0 ]
wz2 [ 0 0 3 0 0 ] [ 3 0 0 0 0 ]
wz3 [ 0 0 0 2 3 ] [ 2 3 0 0 0 ]

column `2 norm: 6 4 3 2 3 7 5 0 0 0
`1 sum: ⇒ 18 ⇒ 12

• `1 sum of `2 norms encourages several feature columns wd to
be 0 and others to have high weights across tasks.

• Algorithm idea:
• Contribution to loss reduction must outweigh regularizer

penalty in order to activate feature by non-zero weight.
• Weight-based feature elimination criterion:

If ||wd ||2 ≤ λ, set W[z][d ] = 0,∀z.

• Implementation by threshold on K features or by threshold λ.
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Multi-Task Learning Algorithm

Algorithm 1 Multi-task Distributed SGD
Get data for Z tasks, each including S sentences;
distribute to machines.
Initialize v← 0.
for epochs t ← 0 . . . T − 1: do

for all tasks z ∈ {1 . . . Z}: parallel do
Perform task-specific learning

end for
Stack weights W← [w1,t,S,0| . . . |wZ ,t,S,0]

T

Perform `1/`2 regularization
end for
return v
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Implementation as Feature Selection Algorithm

Algorithm 2 Multi-task Distributed SGD
Get data for Z tasks, each including S sentences;
distribute to machines.
Initialize v← 0.
for epochs t ← 0 . . . T − 1: do

for all tasks z ∈ {1 . . . Z}: parallel do
wz,t,0,0 ← v
for all sentences i ∈ {0 . . .S − 1}: do

Decode i th input with wz,t,i,0.
for all pairs j ∈ {0 . . .P − 1}: do

wz,t,i,j+1 ← wz,t,i,j − η∇lj(wz,t,i,j )
end for
wz,t,i+1,0 ← wz,t,i,P

end for
end for
Stack weights W← [w1,t,S,0| . . . |wZ ,t,S,0]

T

Select top K feature columns of W by `2 norm
for k ← 1 . . .K do

v[k ] = 1
Z

Z∑
z=1

W[z][k ]

end for
end for
return v
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Implementation as Adaptive Path-Following Algorithm

Algorithm 3 Path-Following Multi-task Distributed SGD
Get data for Z tasks, each including S sentences; distribute to machines.
Initialize v← 0; λ0, λmin, ε.
for epochs t ← 0 . . . T − 1: do

for all tasks z ∈ {1 . . . Z}: parallel do
Perform task-specific learning

end for
Stack weights W← [w1,t,S,0| . . . |wZ ,t,S,0]

T

for feature columns d ∈ {1 . . .D} in W: do
if ||wd ||2 ≤ λt then

v[d] = 0
else

v[d] = 1
Z

Z∑
z=1

W[z][d]

end if
end for
Set λt+1 = min{λt ,

∑
z,i,j (lz,i,j (vt−1)−lz,i,j (vt ))

ε
}

if λt+1 < λmin then
break

end if
end for
return v
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SMT using Synchronous Context-Free Grammars

(1) X → X1 hat X2 versprochen; X1 promised X2

(2) X → X1 hat mir X2 versprochen;
X1 promised me X2

(3) X → X1 versprach X2; X1 promised X2

• Hierarchical phrase-based translation (Chiang CL’07),
formalizes translation rules as productions of synchronous
context-free grammar (SCFG).

• Features in discriminative training:
• Rule identifiers for SCFG productions

Examples: rule (1), (2) and (3)
• Rule n-gram features in source and target

Examples: “X hat”, “hat X ”, “X versprochen”
• Rule shape features

Examples: (NT, term∗, NT, term∗; NT, term∗, NT) for (1), (2);
(NT, term∗, NT; NT, term∗, NT) for rule (3).
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Experiment I: Random Sharding on Large Parallel Data

• Idea: Take advantage of inherent efficiency (and
effectiveness) of multi-task learning.

• Define tasks as random shards of data,
• either by sharding once or by re-sharding after each epoch.

• Advantage:
• Hadoop/MapReduce framework offers parallelization by data

sharding.
• Feature selection by `1/`2 block norm regularization on shards

iteratively cuts feature space to feasible size.

• See Simianer, Riezler, Dyer ACL’12.
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Data

News Commentary(nc)
train-nc lm-train-nc dev-nc devtest-nc test-nc

Sentences 132,753 180,657 1057 1064 2007
Tokens de 3,530,907 – 27,782 28,415 53,989
Tokens en 3,293,363 4,394,428 26,098 26,219 50,443

Rule Count 14,350,552 (1G) – 2,322,912 2,320,264 3,274,771

Europarl(ep)
train-ep lm-train-ep dev-ep devtest-ep test-ep

Sentences 1,655,238 2,015,440 2000 2000 2000
Tokens de 45,293,925 – 57,723 56,783 59,297
Tokens en 45,374,649 54,728,786 58,825 58,100 60,240

Rule Count 203,552,525 (31.5G) – 17,738,763 17,682,176 18,273,078

News Crawl(crawl)
dev-crawl test-crawl10 test-crawl11

Sentences 2051 2489 3003
Tokens de 49,848 64,301 76,193
Tokens en 49,767 61,925 74,753

Rule Count 9,404,339 11,307,304 12,561,636
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SMT Setup

• cdec (Dyer et al. ACL’10) framework for decoding and
induction of SCFGs.

• SCFG per-sentence grammars are stored on disk instead of
in memory (Lopez EMNLP’07), extracted by leave-one-out
(Zollmann and Sima’an JACL’05) for training-set tuning.

• Scale:
• Data are split into shards holding about 1,000 sentences,

corresponding to dev set size.
• On Hadoop/MapReduce cluster for 300 parallel jobs this

required 2,290 shards for ep data set.
• 5M active features without feature selection on ep data set.
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Results on News Commentary (nc) data

Algorithm Tuning set Features #Features test-nc

Single-task SGD
dev-nc default 12 28.0

dev-nc +id,ng,shape 180k 28.15

Multi-task SGD train-nc +id,ng,shape 100k 28.81

• Scaling from 12 to 180K features on dev set does not help.

• Scaling to full feature- and training-set does help (+0.8 BLEU).

• Statistical significance assessed by Approximate
Randomization (Noreen’89).
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Results on Europarl (ep) and News Crawl (crawl) data
Algorithm Tuning set Features #Features test-ep

Single-task SGD
dev-ep default 12 26.42

dev-ep +id,ng,shape 300k 28.37

Multi-task SGD train-ep +id,ng,shape 100k 28.62

Alg. Tuning set Features #Feats test-crawl10 test-crawl11

ST
dev-crawl default 12 15.39 14.43
dev-crawl +id,ng,shape 300k 17.8 16.83

MT train-ep +id,ng,shape 100k 19.12 17.33

• Scaling up feature sets helps even for dev-set tuning.
• On large scale tuning set only Multi-task SGD is feasible.
• Additional gains of 0.5 to 1.3 BLEU by scaling to large tuning

set on out-of-domain news crawl test data.
21 / 33



Introduction Algorithms Random Sharding Natural Tasks Conclusion

Experiments II: Random vs. Natural Tasks

• Research Question:
• As shown, multi-task learning can be used as general

regularization technique on random shards.
• Can multi-task learning benefit from natural task structure in

the data, where shared and individual knowledge is properly
balanced?

• See Simianer & Riezler WMT’13.
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Data

A Human Necessities
B Performing Operations, Transporting
C Chemistry, Metallurgy
D Textiles, Paper
E Fixed Constructions
F Mechanical Engineering, Lighting,

Heating, Weapons
G Physics
H Electricity

• International Patent Classification (IPC) categorizes patents
hierarchically into eight sections, 120 classes, 600
subclasses, down to 70,000 subgroups at the leaf level.

• Typically, a patent belongs to more than one section, with one
section chosen as main classification.

• Eight top classes/sections used to define natural tasks.
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SMT and Learning Setup

• SCFG framework using sparse local features (as above).
• Learning algorithms:

• Baselines:
• MERT (Kumar et al. ACL’09)
• Single-task perceptron w/ and w/o `1 regularization with clipping

(Carpenter 2008)
• Single-task margin perceptron (Collobert & Bengio ICML’04).

• Multi-task tuning using standard and margin perceptron.
• Tuning methods with random components (MERT, random

(re)sharding) were repeated 3 times and BLEU scores
averaged.
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Train/dev/test splits

• 1.2M parallel sentences from patent domain for training1.

• Development and test sets of 2,000 sentences from each of
sections A to H for independent tuning and testing.

• Pooled development and test sets containing 2,000
sentences with all sections evenly represented.

• Pooled-cat development set for tuning on concatenation of
data from all sections.

1http://www.cl.uni-heidelberg.de/statnlpgroup/pattr
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MERT Baseline w/ 12 Dense Features

single-task tuning

indep. 0 pooled 1 pooled-cat 2

pooled test – 51.18 51.22

A 54.92 0255.27 055.17
B 51.53 51.48 0151.69
C 1256.31 255.90 55.74
D 49.94 050.33 050.26
E 149.19 48.97 149.13
F 1251.26 51.02 51.12
G 149.61 49.44 49.55
H 49.38 49.50 0149.67

average test 51.52 51.49 51.54

• Neither tuning on pooled or pooled-cat improves over indep..

• x⊂{0,1,2}BLEU denotes statistical significance of pairwise test.
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Single-Task Perceptron w/ `1 Regularization
single-task tuning

indep. 0 pooled 1 pooled-cat 2

pooled test – 50.75 1 52.08

A 1 55.11 54.32 01 55.94
B 1 52.61 50.84 1 52.57
C 56.18 56.11 01 56.75
D 1 50.68 49.48 01 51.22
E 1 50.27 48.69 1 50.01
F 1 51.68 50.71 1 51.95
G 1 49.90 49.06 01 50.51
H 1 50.48 49.16 1 50.53

average test 52.11 51.05 52.44

model size 430,092.5 457,428 1,574,259

• Improvements over MERT, mostly on pooled-cat tuning set.

• 1.5M features make serial tuning on pooled-cat infeasible.

• Overfitting effect on small pooled data.
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Single- and Multi-Task Perceptron
single-task tuning multi-task tuning

indep. 0 pooled 1 pooled-cat 2 IPC 3 sharding 4 resharding 5

pooled test – 51.33 1 51.77 12 52.56 12 52.54 12 52.60

A 54.79 54.76 01 55.31 012 56.35 012 56.22 012 56.21
B 12 52.45 51.30 1 52.19 012 52.78 0123 52.98 012 52.96
C 2 56.62 56.65 1 56.12 01245 57.76 012 57.30 012 57.44
D 1 50.75 49.88 1 50.63 01245 51.54 012 51.33 012 51.20
E 1 49.70 49.23 01 49.92 012 50.51 012 50.52 012 50.38
F 1 51.60 51.09 1 51.71 012 52.28 012 52.43 012 52.32
G 1 49.50 49.06 01 49.97 012 50.84 012 50.88 012 50.74
H 1 49.77 49.50 01 50.64 012 51.16 012 51.07 012 51.10

average test 51.90 51.42 52.06 52.90 52.84 52.79

model size 366,869.4 448,359 1,478,049 100,000 100,000 100,000

• Multi-task tuning improves BLEU over all single-task runs.

• Also more efficient due to iterative feature selection.

• Difference between natural and random tasks inconclusive.
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Single- and Multi-Task Margin Perceptron
single-task tuning multi-task tuning

indep. 0 pooled 1 pooled-cat 2 IPC 3 sharding 4 resharding 5

pooled test – 51.33 1 52.58 12 52.98 12 52.95 12 52.99

A 1 56.09 55.33 1 55.92 0124556.78 012 56.62 012 56.53
B 1 52.45 51.59 1 52.44 01253.31 012 53.35 012 53.21
C 1 57.20 56.85 01 57.54 0157.46 1 57.42 1 57.43
D 1 50.51 50.18 01 51.38 0124552.14 0125 51.82 012 51.66
E 1 50.27 49.36 01 50.72 012451.13 012 50.89 012 51.02
F 1 52.06 51.20 01 52.61 0124553.07 012 52.80 012 52.87
G 1 50.00 49.58 01 50.90 0124551.36 012 51.19 012 51.11
H 1 50.57 49.80 01 51.32 01251.57 012 51.62 01 51.47

average test 52.39 51.74 52.85 53.35 53.21 53.16

model size 423,731.5 484,483 1,697,398 100,000 100,000 100,000

• Single-task runs beat standard perceptron w/ and w/o `1.

• Regularization by margin and multi-task learning adds up.

• Best result is nearly 2 BLEU points better than MERT.
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Conclusion

• Multi-task learning for SMT is efficient due to online learning,
parallelization and feature selection,

• but also effective in terms of BLEU improvements over
single-task learning.

• Multi-task learning is adaptive due to path-following in
regularization.

• Question: Can task definition be adapted to problem as
well?

• Natural task definition show nominal (not statistically
significant) advantage.

• Future work: Optimize clustering of IPC subclasses for
multi-task learning in SMT.
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IPC

IPC: 8 sections, 120 classes, 600 subclasses, 70,000 subgroups:
Is there a natural or useful task definition for multi-task SMT?
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Code

• dtrain code is part of cdec:

https://github.com/redpony/cdec.
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Thanks for your attention!
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