Modeling Morphologically Rich Languages

Chris Dyer

25 July 2013 – LxMLS

Two kinds of language processing

- Natural language as input
 - Output space
 - Primarily determined by task: language identification, parsing, part-of-speech tagging, topic modeling, authorship identification, sentiment analysis, information extraction
 - Can be relatively low dimensional is this email important or not?
 - Input space
 - Words, sentences, documents, or entire corpora

Two kinds of language processing

- Natural language as output
 - Output space
 - Sentences (rarely entire documents or corpora)
 - Always relatively high dimensional
 How many grammatical sentences are there?
 How many English/Russian/Portuguese words are there?
 - Input space
 - Determined by task: *speech recognition, summarization, translation, "generation"*

Two kinds of language processing

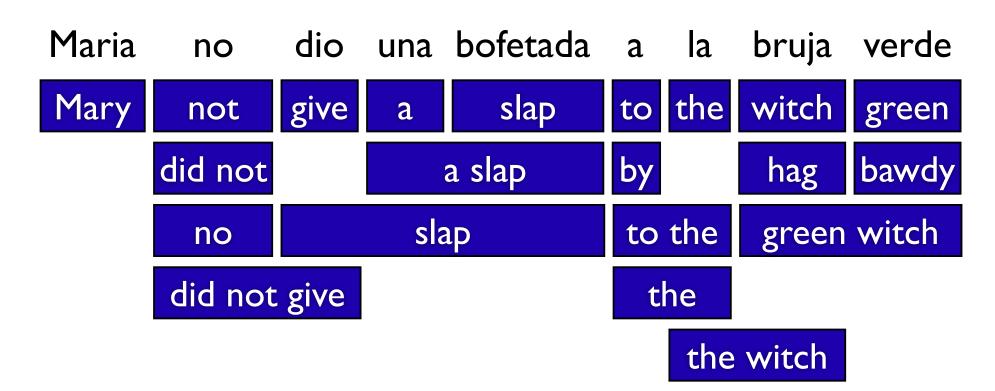
- Natural language as output
 - Output space
 - Sentences (rarely entire documents or corpora)
 - Always relatively high dimensional
 How many grammatical sentences are there?
 How many English/Russian/Portuguese words are there?
 - Input space
 - Determined by task: *speech recognition, summarization, translation,* "generation"

$$\hat{y} = \arg \max_{y \in \text{English}} p(y \mid \text{portugues})$$

$$\hat{y} = \arg \max_{y \in \text{English}} p(y \mid \text{portugues})$$

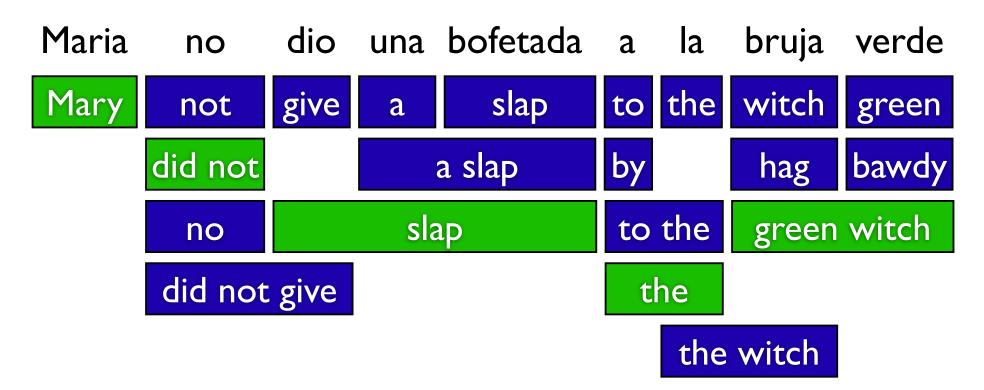
Maria no dio una bofetada a la bruja verde

$$\hat{y} = \arg \max_{y \in \text{English}} p(y \mid \text{português})$$



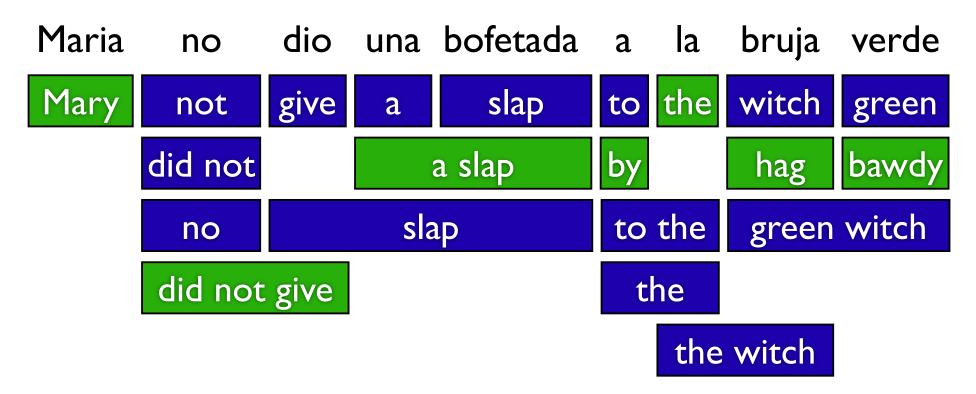
Adapted from Koehn (2006)

$$\hat{y} = \arg \max_{y \in \text{English}} p(y \mid \text{português})$$

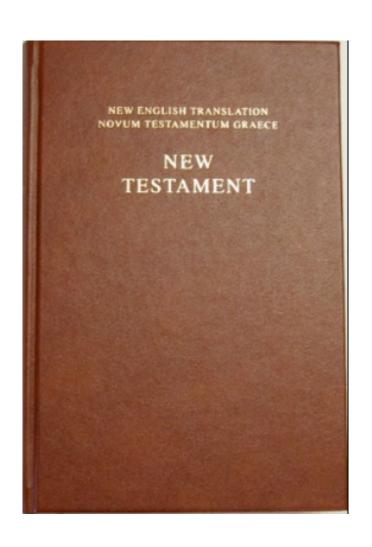


Adapted from Koehn (2006)

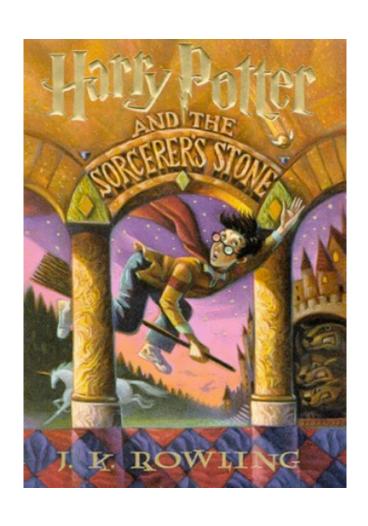
$$\hat{y} = \arg \max_{y \in \text{English}} p(y \mid \text{português})$$

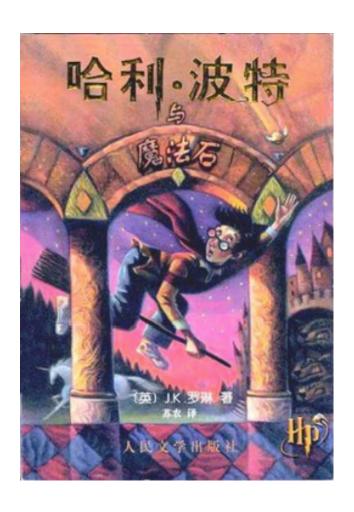


Adapted from Koehn (2006)









						CLASSIC SOUPS	Sm.	Lg.
方	燉 第	4	3	57.		House Chicken Soup (Chicken, Celery,		
						Potato, Onion, Carrot)	1.50	2.75
雞	飯	:	20	58.		Chicken Rice Soup		3.25
雞	菱面	:	書	59.		Chicken Noodle Soup		3.25
鹰	東:	r :	吞	60.		Cantonese Wonton Soup	1.50	2.75
苦	茄鱼	F :	3	61.		Tomato Clear Egg Drop Soup	1.65	2.95
雲	呑	:	書	62.		Regular Wonton Soup		2.10
験	辣	:	-	63.	è	Hot & Sour Soup	1.10	2.10
委	モ	;	暑	64.		Egg Drop Soup	1.10	2.10
雲	季	:	毒	65.		Egg Drop Wonton Mix	1.10	2.10
豆	腐り	£ :	*	66.		Tofu Vegetable Soup		3.50
雞	玉乡	K :	書	67.		Chicken Corn Cream Soup	NA	3.50
糠	肉玉	米:	昜	68.		Crab Meat Corn Cream Soup	NA	3.50
海	鮮	:	多	69 .		Seafood Soup		3.50

					CLASSIC SOUPS	Sm.	Lg.
ታ	燉	雞		57.	House Chicken Soup (Chicken, Celery,		
					Potato, Onion, Carrot)	1.50	2.75
雞	Ê	反	20	58.	Chicken Rice Soup		3.25
雞	麥	<u> </u>	書	59.	Chicken Noodle Soup		3.25
廣	東	孪	吞	60.	Cantonese Wonton Soup	1.50	2.75
番	茄	季	3	61.	Tomato Clear Egg Drop Soup	1.65	2.95
雲	ŧ	Ś	渗	62.	Regular Wonton Soup		2.10
験	羌	東	湯	63. ₹	Hot & Sour Soup	1.10	2.10
季	Ť	Ė	害	64.	Egg Drop Soup	1.10	2.10
雲	-1	F	*	65.	Egg Drop Wonton Mix	1.10	2.10
豆	腐	茱	*	66.	Tofu Vegetable Soup		3.50
雞	<u>Ŧ</u>	米	湯	67.	Chicken Corn Cream Soup	NA	3.50
Agg.	肉王	、米	湯	68.	Crab Meat Corn Cream Soup	NA	3.50
海	4	¥	書	69.	Seafood Soup		3.50

				CLASSIC SOUPS Sm.	Lg.
秀	燉 雞	3	57.	House Chicken Soup (Chicken, Celery,	
				Potato, Onion, Carrot)	2.75
雞	飯	2	58.	Chicken Rice Soup	3.25
雞鹰	麵	毒	59.	Chicken Noodle Soup	3.25
廣	東雲	呑	60.	Cantonese Wonton Soup1.50	2.75
畫	茄蛋	湯	61.	Tomato Clear Egg Drop Soup1.65	2.95
靊	呑	害	62.	Regular Wonton Soup1.10	2.10
験	辣	*	63. ₹	Hot & Sour Soup	2.10
蛋	往	害	64.	Egg Drop Soup	2.10
李	香	暑	65.	Egg Drop Wonton Mix	2.10
豆	腐 菜	*	66.	Tofu Vegetable SoupNA	3.50
雞	玉 米	斋	67.	Chicken Corn Cream SoupNA	3.50
A54	肉玉米	湯	68.	Crab Meat Corn Cream SoupNA	3.50
海	鮮	害	69.	Seafood SoupNA	3.50

Model form: naïve multinomials

е	p
the	0.0001
and	0.0001
a	0.0001
dog	0.8
dogs	0.18
canine	0.01
cat	0.0001
cats	0.0001
walk	0.0001
walks	0.0001
walked	0.0001

е	p
the	0.0001
and	0.0001
a	0.0001
dog	0.0001
dogs	0.0001
canine	0.0001
cat	0.75
cats	0.24
walk	0.0001
walks	0.0001
walked	0.0001
•••	

 $p(\cdot \mid c\tilde{a}o)$ $p(\cdot \mid gato)$ $p(\cdot \mid andar)$

e	p
the	0.0001
and	0.0001
а	0.0001
dog	0.0001
dogs	0.0001
canine	0.0001
cat	0.0001
cats	0.0001
walk	0.33
walks	0.33
walked	0.33
•••	

Naïve multinomials: problem?

 $p(\cdot \mid andar)$

е	p
the	0.0001
and	0.0001
а	0.0001
dog	0.0001
dogs	0.0001
canine	0.0001
cat	0.0001
cats	0.0001
walk	0.33
walks	0.33
walked	0.33

Naïve multinomials: problem?

- The vocabularies of languages have regularities
 - (English doesn't have many)
 - Russian, Finnish, Turkish have
 LOTS more regularities
- Can our models exploit such regularities? YES.
- Do we need this in the world of big data? YES.

 $p(\cdot \mid andar)$

p
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.33
0.33
0.33

Outline

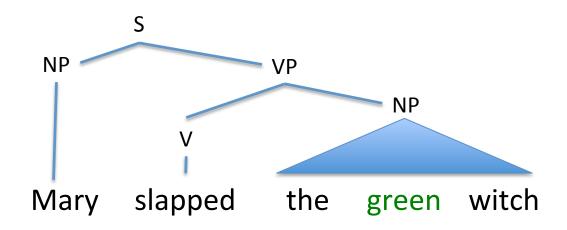
- Introduction to statistical translation
- Introduction to morphology
- Modeling morphologically rich translation
- Aside: Unsupervised morphology
- Experiments

Outline

- Introduction to statistical translation
- Introduction to morphology
- Modeling morphologically rich translation
- Aside: Unsupervised morphology
- Experiments

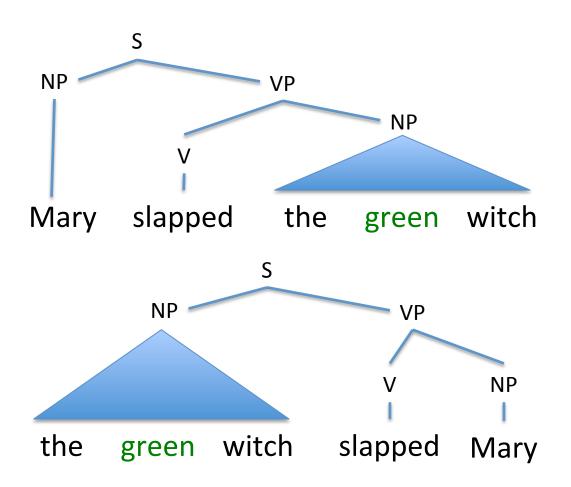
Expressing Grammatical Relations

English uses syntactic structure to express grammatical relations like argumentation and modification



Expressing Grammatical Relations

English uses syntactic structure to express grammatical relations like argumentation and modification



Some Russian Data

Мери	ударила	зеленую	ведьму
mary	udarila	zelenuyu	ved'mu
MARY	SLAPPED	GREEN	WITCH
зеленую	ведьму	ударила	Мери
zelenuyu	ved'mu	udarila	mary
GREEN	WITCH	SLAPPED	MARY
ударила	зеленую	ведьму	Мери
udarila	zelenuyu	ved'mu	mary
SLAPPED	GREEN	WITCH	MARY

Some Russian Data

Мери	ударила	зеленую	ведьму
mary	udar ila	zelen <mark>uyu</mark>	ved'm <mark>u</mark>
MARY	SLAPPED	GREEN	WITCH

зеленую	ведьму	ударила	Мери
zelenuyu	veď m u	udar ila	mary
GREEN	WITCH	SLAPPED	MARY

ударила	зеленую	ведьму	Мери
udarila	zelen <mark>uyu</mark>	ved'm <mark>u</mark>	mary
SLAPPED	GREEN	WITCH	MARY

Morphology instead of syntax

Russian uses morphological inflection to express the same grammatical relations.

Morphology instead of syntax

Russian uses morphological inflection to express the same grammatical relations.

Here are a few things that different languages use inflectional morphology for:

- Tense
- Mood
- Aspect
- Negation
- Voice
- Ability
- Applicativity

- Factivity
- Definiteness
- Agreement
- Gender
- Spatial relations
- Person
- Number

- The part-of-speech of the stem determines the required/possible inflections
 - English nouns express number (singual vs. plural) cat/cats
 - Portuguese adjectives express number and gender louco/louca/loucos/loucas

Inflection can express multiple grammatical features

```
{+ACC,+DAT,+NOM,+ERG} x {+FUT,+PAST} x ...
```

- With a single morpheme (fusional languages)
 Indo-European [Russian, Portuguese, Hindi, Greek]
- With ~one morpheme per feature (agglutinative languages)
 - Turkish, Finnish, Hungarian, Basque, Japanese

Underlying forms

– Example: walk +PROG

– Example: sing +PAST

– Example: k-t-b +FUT+1P+DUAL+IND

Underlying forms

– Example: walk +PROG

– Example: sing +PAST

— Example: k-t-b +FUT+1P+DUAL+IND

Surface realization ("exponence")

Concatenation

Prefixes, suffixes, circumfixes, infixes Add — ing to a verb to express + PROG

Ablaut

Change vowel (usually) template of stem Change /i/ to /a/ to express +PAST

Reduplication

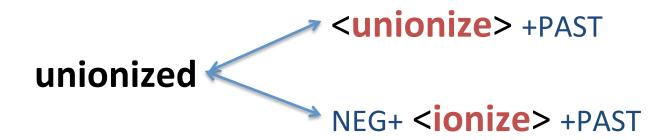
Repeat the first syllable of the word to express +PLURAL

Morphological Analysis

Decompose an inflected word into its stem(s) and inflectional morphemes

Morphological Analysis

- Decompose an inflected word into its stem(s) and inflectional morphemes
- Two approaches
 - Rule-based morphological analyzer
 - Computationally tractable with finite-state transducers
 - In general: one word-to-many analyses mapping
 - Use statistical model to **disambiguate** analyses **in context**



Morphological Analysis

- Decompose an inflected word into its stem(s) and inflectional morphemes
- Two approaches
 - Rule-based morphological analyzer
 - Computationally tractable with finite-state transducers
 - In general: one word-to-many analyses mapping
 - Use statistical model to **disambiguate** analyses **in context**
 - Morphology light: segment word into morphemes
 - Challenges: allomorphy, nonconcatenative morphology analyzed = <analyze>+d or <analyz>+ed? sang = ???
 - Good unsupervised algorithms (we give one later)

Outline

- Introduction to statistical translation
- Introduction to morphology
- Modeling morphologically rich translation
- Aside: Unsupervised morphology
- Experiments

Task: Translate into a MRL

 Given English, generate {Russian, Swahili, Hebrew, ...}

This is an important problem!

- Lots of information published in English
- Lots of people who would prefer to read it in other languages

Model desiderata

- Words with common stems should share statistical strength
- Source syntactic context should be used to predict inflection
- Inflection should be modeled using features (+MASC+PL is more similar to +MASC+SING than to +FEM+SING)

Model desiderata

- Words with common stems should share statistical strength
- Source syntactic context should be used to predict inflection
- Inflection should be modeled using features (+MASC+PL is more similar to +MASC+SING than to +FEM+SING)

$$\sigma\star\mu=f$$
Stem Inflection Inflected word

$$p(\sigma, \mu \mid \text{context}) = \\ p(\sigma \mid \text{context}) \times p(\mu \mid \sigma, \text{context})$$

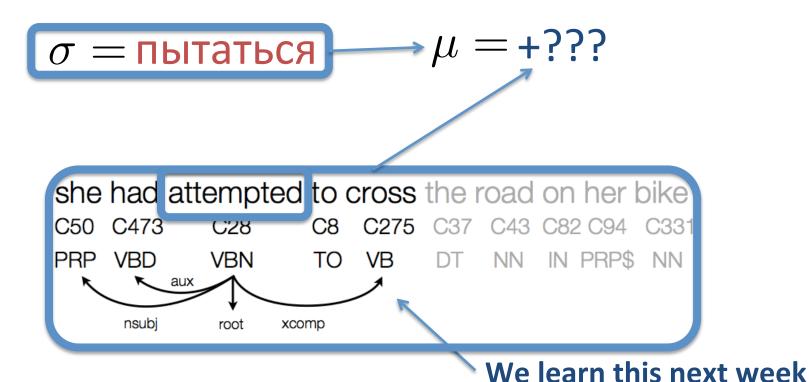
she had attempted to cross the road on her bike

 $\sigma=$ пытаться she had attempted to cross the road on her bike

$$\sigma =$$
 пытаться $\mu = +???$

she had attempted to cross the road on her bike

$$\sigma=$$
 ПЫТАТЬСЯ $\mu=+???$ she had attempted to cross the road on her bike C50 C473 C28 C8 C275 C37 C43 C82 C94 C331 PRP VBD VBN TO VB DT NN IN PRP\$ NN



Inflection Model: Logistic Regression

$$p(\mu \mid \mathbf{x}) = \frac{\exp \boldsymbol{w}^{\top} \boldsymbol{f}(\mu, \mathbf{x})}{\sum_{\mu'} \exp \boldsymbol{w}^{\top} \boldsymbol{f}(\mu', \mathbf{x})}$$

Features of x

Parent of the source is NNS

Source word is **VBD**

Source word has 3 dependents

Source word is attempted

Source word is the object of a verb

Source word -1 is would

Inflection Model: Logistic Regression

$$p(\mu \mid \mathbf{x}) = \frac{\exp \boldsymbol{w}^{\top} \boldsymbol{f}(\mu, \mathbf{x})}{\sum_{\mu'} \exp \boldsymbol{w}^{\top} \boldsymbol{f}(\mu', \mathbf{x})}$$

Features of x

Parent of the source is NNS

Source word is **VBD**

Source word has 3 dependents

Source word is attempted

Source word is the object of a verb

Source word -1 is would

```
Ω ={
     +IND+PAST+SING+FEM+MED+PERF,
     +IND+FUT+SING+FEM+MED,
     +IND+PAST+PL+FEM+MED,
     +IND+PAST+SING+MASC+MED,
     +IND+PAST+PL+MASC+MED,
}
```

Inflection Model: Logistic Regression

$$p(\mu \mid \mathbf{x}) = \frac{\exp \boldsymbol{w}^{\top} \boldsymbol{f}(\mu, \mathbf{x})}{\sum_{\mu'} \exp \boldsymbol{w}^{\top} \boldsymbol{f}(\mu', \mathbf{x})}$$

Features of x

Features of μ =

Parent of the source is NNS

Source word is **VBD**

Source word has 3 dependents

Source word is attempted

Source word is the object of a verb

Source word -1 is would

+IND+PAST+SING+FEM+MED+PERF

+IND

+PAST

+SING

+FEM

+MED

+PERF

Inflection Model

$$p(\mu \mid \mathbf{x}) = rac{\exp\left[f(\mathbf{x})^{ op} \mathbf{W} g(\mu) + g(\mu)^{ op} \mathbf{V} g(\mu)
ight]}{Z(\mathbf{x})}$$
 $f(\mathbf{x})$
 $g(\mu)$
Parent of the source is NNS
Source word is VBD
Source word has 3 dependents
Source word is attempted
Source word -1 is would
 $f(\mathbf{x})$
Find the source of the source is NNS
 $f(\mathbf{x})$
 $f(\mathbf{x}$

Inflection Model – Feature Space

Linear in
$$\boldsymbol{f}'(\mu,\mathbf{x}) = \boldsymbol{f}(\mathbf{x})\boldsymbol{g}(\mu)^{\top}$$

	+ACC	+NOM	+DAT	+SG	+PL	+MASC	•••
Parent_NN	$\boldsymbol{\mathcal{X}}$	$\boldsymbol{\mathcal{X}}$	$\boldsymbol{\mathcal{X}}$	X	X	X	
Parent_NNS	X	X	X	\boldsymbol{x}	X	\boldsymbol{x}	•••
Parent_VBD	X	X	$\boldsymbol{\mathcal{X}}$	\boldsymbol{x}	X	\boldsymbol{x}	•••
Parent_VBG	X	X	X	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	•••
Left_NN	$\boldsymbol{\mathcal{X}}$	\boldsymbol{x}	$\boldsymbol{\mathcal{X}}$	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	•••
Left_NNS	X	$\boldsymbol{\mathcal{X}}$	$\boldsymbol{\mathcal{X}}$	\boldsymbol{x}	X	\boldsymbol{x}	•••
Left_VBD	X	X	$\boldsymbol{\mathcal{X}}$	\boldsymbol{x}	X	\boldsymbol{x}	•••
•••	•••	•••	•••		•••	•••	

Infection Model: Training

- Training data extracted from parallel corpus
 - Morphologically analyze and disambiguate target side of parallel corpus
 - Syntactic analysis of English source
 - Align words
 - Every word pair in the parallel corpus becomes a training instance for the inflection model
- Stochastic gradient descent, LBFGS, etc.

Outline

- Introduction to statistical translation
- Introduction to morphology
- Modeling morphologically rich translation
- Aside: Unsupervised morphology
- Experiments

Aside: Unsupervised Morphology

- Morphological analyzers may not exist for a language we want to translate into
- We would like to be able to use unsupervised morphological analysis
 - We assume words decompose concatenatively
 - We require the model to distinguish between the stem and non-stem parts of the word

Unsupervised Morphology

- Bayesian methods are effective
 - there are very nice nonparametric solutions to the problem (Goldwater & Griffiths, Johnson et al)
 - Nonparametrics can be slow, so we are going to introduce a slightly simpler parametric model

Grammar: M^*MM^*

Unsupervised Morphology

1. Sample morpheme distributions from symmetric Dirichlet distributions: $\theta_p \sim \mathrm{Dir}_{|M|}(\alpha_p)$ for prefixes, $\theta_t \sim \mathrm{Dir}_{|M|}(\alpha_t)$ for stems, and $\theta_s \sim \mathrm{Dir}_{|M|}(\alpha_s)$ for suffixes.

Hyperparameters: $lpha_p, lpha_t, lpha_s$

By setting $0 \ll \alpha_p, \alpha_t \ll \alpha_s \ll 1$ we find we learn the high-entropy stem part of the word reliably.

Sampling representation:

Unsupervised Morphology: Features

• For defining output features $\ m{g}(\mu)$ we use:

prefix suffix
$$\dots -3 | -2 | -1$$
 STEM $+1 | +2 | +3 \dots$

Prefix[-1][wa]

Prefix[-2][ki]

Prefix[-3][wa]

Outline

- Introduction to statistical translation
- Introduction to morphology
- Modeling morphologically rich translation
- Aside: Unsupervised morphology
- Experiments

Back to translation

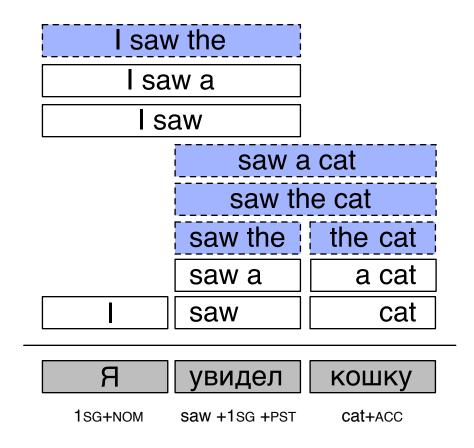
How might this sentence be translated?

Back to translation

I saw a

What about *I saw the cat*?

"Synthetic Translation Options"



Data

- English—Russian
 - Supervised morphological analyzer
 - Unsupervised morphological analyzer
 - 150k sentence pairs
- English—Hebrew
 - Unsupervised morphological analyzer only
 - 134k sentence pairs
- English—Swahili
 - Unsupervised morphological analyzer only
 - 15k sentence pairs

Intrinsic Evaluation: Quantitative

		acc.	ppl.	$ \Omega_{\sigma} $	
		N	64.1%	3.46	9.16
Supervised	Russian	V	63.7%	3.41	20.12
		Α	51.5%	6.24	19.56
		M	73.0%	2.81	9.14
		avg	63.1%	3.98	14.49
Unsup.	Russian	all	71.2%	2.15	4.73
	Hebrew	all	85.5%	1.49	2.55
	Swahili	all	78.2%	2.09	11.46

Intrinsic Evaluation: Qualitative

Russian supervised

Verb: 1st Person

child(nsubj)=I child(nsubj)=we

Verb: Future tense

child(aux)=MD child(aux)=wil]

Noun: Animate

source=animals/victims/...

Noun: Feminine gender

source=obama/economy/...

Noun: Dative case parent(iobj)

Adjective: Genitive case grandparent (poss)

Hehrew

Suffix ים (masculine plural) parent=NNS after=NNS

Prefix & (first person sing. + future)
child(nsubj)=I child(aux)='ll

Prefix > (preposition like/as) child(prep)=IN parent=as

Suffix ' (possesive mark)

before=my child(poss)=my

Suffix ה (feminine mark)

child(nsubj)=she before=she

Prefix שכ (when)

before=when before=WRB

Swahili

Prefix li (past)

source=VBD source=VBN

Prefix *nita* (1st person sing. + future) child(aux) child(nsubj)=I

Prefix ana (3rd person sing. + present)

source=VBZ

Prefix wa (3rd person plural)

before=they child(nsubj)=NNS

Suffix tu (1st person plural)

child(neuhi)-she before=she

Prefix ha (negative tense)

source=no after=not

- Highly weighted features learned in training
 - Many highly interpretable features
 - Semantics for inflection?

Extrinsic Evaluation: Translation

Synthetic translation options

- Create default phrase table
- Create synthetic translation options
 - Create "stemmed" target phrase table
 - For the sentence being translated,
 - For every stem in phrase table, predict MAP inflected form using source context
 - Add resulting phrase (features: stem translation probability, inflection probability, synthetic indicator)

Language modeling

- N-grams don't work well in MRLs
- Add a secondary "Brown Cluster" LM
- More interesting approaches, but that's another talk

Extrinsic Evaluation: Translation

	EN→RU	EN→HE	EN→SW
Baseline	14.7 ± 0.1	15.8±0.3	18.3 ± 0.1
+Class LM	15.7 ± 0.1	16.8 ± 0.4	18.7 ± 0.2
+Synthetic			
unsupervised	16.2 ± 0.1	17.6 ± 0.1	19.0 ± 0.1
supervised	16.7 ± 0.1		<u> </u>

Summary

Morphology matters

- Big data is big, but not limitless
- English is **not** typologically representative but most of our models were developed with!
- Rule-based morphology is good, but imperfect unsupervised morphology can work well
- The "output feature" formulation of LR is flexible and easy to implement
 - Next stop: unsupervised learning of feature representations (just another partial derivative!)

Obrigado!

Victor Chahuneau Eva Schlinger Yulia Tsvetkov Noah A. Smith

