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No  data  like  more  data!	


(Banko and Brill, ACL 2001) 
(Brants et al., EMNLP 2007) 

Training Instances 



Problem	


#(t) ~ n0 × 2t/(2 years)~
Moore’s law (~ power/CPU)

#(t) ~ m0 × 3.2t/(2 years)~
Hard disk capacity

We can represent more data than we 
can centrally process ... and this will 

only get worse in the future.



Solution	

•  Partition training data into subsets 

o  Core concept: data shards 
o  Algorithms that work primarily “inside” shards and communicate 

infrequently 

•  Alternative solutions 
o  Reduce data points by instance selection 
o  Dimensionality reduction / compression 

•  Related problems 
o  Large numbers of dimensions (horizontal partitioning) 
o  Large numbers of related tasks 

•  every Gmail user has his own opinion about what is spam 
•  Stefan Riezler’s talk tomorrow 



Outline	

•  MapReduce 
•  Design patterns for MapReduce 

•  Batch Learning Algorithms on MapReduce 
•  Distributed Online Algorithms 



+ simple, distributed programming models  
cheap commodity clusters 

= data-intensive computing for all 

MapReduce 



Divide  and  Conquer	

“Work”	
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It’s  a  bit  more  complex…	

Message Passing 

P1 P2 P3 P4 P5 

Shared Memory 

P1 P2 P3 P4 P5 

M
em
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Different programming models 

Different programming constructs 
mutexes, conditional variables, barriers, … 
masters/slaves, producers/consumers, work queues, … 

Fundamental issues 
scheduling, data distribution, synchronization, 
inter-process communication, robustness, fault 
tolerance, … 

Common problems 
livelock, deadlock, data starvation, priority inversion… 
dining philosophers, sleeping barbers, cigarette smokers, … 

Architectural issues 
Flynn’s taxonomy (SIMD, MIMD, etc.), 
network typology, bisection bandwidth 
UMA vs. NUMA, cache coherence  

The reality: programmer shoulders the burden 
of managing concurrency… 



Source: Ricardo Guimarães Herrmann 



Typical  Problem	

•  Iterate over a large number of records 
•  Extract something of interest from each 
•  Shuffle and sort intermediate results 
•  Aggregate intermediate results 
•  Generate final output 

Key idea: functional abstraction for these two operations 

Map 

Reduce 
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MapReduce	

•  Programmers specify two functions: 

map (k, v) → <k’, v’>* 
reduce (k’, v’) → <k’, v’>* 
o  All values with the same key are reduced together 

•  Usually, programmers also specify: 
partition (k’, number of partitions ) → partition for k’ 
o  Often a simple hash of the key, e.g. hash(k’) mod n 
o  Allows reduce operations for different keys in parallel 
combine(k’,v’) → <k’,v’> 
o  “Mini-reducers” that run in memory after the map phase 
o  Optimizes to reduce network traffic & disk writes 

•  Implementations: 
o  Google has a proprietary implementation in C++ 
o  Hadoop is an open source implementation in Java 



map	
map	
 map	
 map	


Shuffle  and  Sort:  aggregate  values  by  keys	


reduce	
 reduce	
 reduce	


k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 9 

a 1 5 b 2 7 c 2 3 6 9 

r1 s1 r2 s2 r3 s3 



MapReduce  Runtime	

•  Handles scheduling 

o  Assigns workers to map and reduce tasks 

•  Handles “data distribution” 
o  Moves the process to the data 

•  Handles synchronization 
o  Gathers, sorts, and shuffles intermediate data 

•  Handles faults 
o  Detects worker failures and restarts 

•  Everything happens on top of a distributed FS (later) 



“Hello  World”:  Word  
Count	


Map(String input_key, String input_value): 
     // input_key: document name 
     // input_value: document contents 
     for each word w in input_values: 
          EmitIntermediate(w, "1"); 
 
Reduce(String key, Iterator intermediate_values): 
     // key: a word, same for input and output 
     // intermediate_values: a list of counts 
     int result = 0; 
     for each v in intermediate_values: 
          result += ParseInt(v); 
          Emit(AsString(result)); 
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Redrawn from Dean and Ghemawat (OSDI 2004) 



How  do  we  get  data  to  the  
workers?	


Compute Nodes 

NAS 

SAN 

What’s the problem here? 



Distributed  File  System	

•  Don’t move data to workers… Move workers to the 

data! 
o  Store data on the local disks for nodes in the cluster 
o  Start up the workers on the node that has the data local 

•  Why? 
o  Not enough RAM to hold all the data in memory 
o  Disk access is slow, disk throughput is good 

•  A distributed file system is the answer 
o  GFS (Google File System) 
o  HDFS for Hadoop (= GFS clone) 



GFS:  Assumptions	

•  Commodity hardware over “exotic” hardware 
•  High component failure rates 

o  Inexpensive commodity components fail all the time 

•  “Modest” number of HUGE files 
•  Files are write-once, mostly appended to 

o  Perhaps concurrently 

•  Large streaming reads over random access 
•  High sustained throughput over low latency 

GFS slides adapted from material by Dean et al. 



GFS:  Design  Decisions	

•  Files stored as chunks 

o  Fixed size (64MB) 

•  Reliability through replication 
o  Each chunk replicated across 3+ chunkservers 

•  Single master to coordinate access, keep 
metadata 
o  Simple centralized management 

•  No data caching 
o  Little benefit due to large data sets, streaming reads 

•  Simplify the API 
o  Push some of the issues onto the client 



Redrawn from Ghemawat et al. (SOSP 2003) 

Application 
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Linux file system 
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(file name, chunk index) 

(chunk handle, chunk location) 

Instructions to chunkserver 

Chunkserver state 
(chunk handle, byte range) 

chunk data 



Master’s  Responsibilities	

•  Metadata storage 
•  Namespace management/locking 
•  Periodic communication with chunkservers 
•  Chunk creation, replication, rebalancing 
•  Garbage collection 



Questions? 



MapReduce “killer app”: 
Graph Algorithms 



Graph  Algorithms:  Topics	

•  Introduction to graph algorithms and graph 

representations 
•  Single Source Shortest Path (SSSP) problem 

o  Refresher: Dijkstra’s algorithm 
o  Breadth-First Search with MapReduce 

•  PageRank 



What’s  a  graph?	

•  G = (V,E), where 

o  V represents the set of vertices (nodes) 
o  E represents the set of edges (links) 
o  Both vertices and edges may contain additional information 

•  Different types of graphs: 
o  Directed vs. undirected edges 
o  Presence or absence of cycles 
o  … 



Some  Graph  Problems	

•  Finding shortest paths 

o  Routing Internet traffic and UPS trucks 

•  Finding minimum spanning trees 
o  Telco laying down fiber 

•  Finding Max Flow 
o  Airline scheduling 

•  Identify “special” nodes and communities 
o  Breaking up terrorist cells, spread of swine/avian/… flu 

•  Bipartite matching 
o  Monster.com, Match.com 

•  And of course... PageRank 



Representing  Graphs	

•  G = (V, E) 

o  A poor representation for computational purposes 

•  Two common representations 
o  Adjacency matrix 
o  Adjacency list 



Adjacency  Matrices	

Represent a graph as an n x n square matrix M 

o  n = |V| 
o  Mij = 1 means a link from node i to j 

1 2 3 4 
1 0 1 0 1 
2 1 0 1 1 
3 1 0 0 0 
4 1 0 1 0 

1	


2	


3	


4	




Adjacency  Lists	

Take adjacency matrices… and throw away all the 

zeros 

1 2 3 4 
1 0 1 0 1 
2 1 0 1 1 
3 1 0 0 0 
4 1 0 1 0 

1: 2, 4 
2: 1, 3, 4 
3: 1 
4: 1, 3 



Adjacency  Lists:  Critique	

•  Advantages: 

o  Much more compact representation 
o  Easy to compute over outlinks 
o  Graph structure can be broken up and distributed 

•  Disadvantages: 
o  Much more difficult to compute over inlinks 



Single  Source  Shortest  
Path	


•  Problem: find shortest path from a source node to 
one or more target nodes 

•  First, a refresher: Dijkstra’s Algorithm 



Dijkstra’s  Algorithm  
Example	
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Dijkstra’s  Algorithm  
Example	
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Dijkstra’s  Algorithm  
Example	
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Single  Source  Shortest  
Path	


•  Problem: find shortest path from a source node to 
one or more target nodes 

•  Single processor machine: Dijkstra’s Algorithm 
•  MapReduce: parallel Breadth-First Search (BFS) 



Finding  the  Shortest  Path	

•  First, consider equal edge weights 
•  Solution to the problem can be defined inductively 
•  Here’s the intuition: 

o  DistanceTo(startNode) = 0 
o  For all nodes n directly reachable from startNode,  

DistanceTo(n) = 1 

o  For all nodes n reachable from some other set of nodes S, DistanceTo(n) = 
1 + min(DistanceTo(m), m ∈ S) 



From  Intuition  to  
Algorithm	


•  A map task receives 
o  Key: node n 
o  Value: D (distance from start), points-to (list of nodes reachable from n) 

•  ∀p ∈ points-to: emit (p, D+1) 
•  The reduce task gathers possible distances to a 

given p and selects the minimum one 



Multiple  Iterations  
Needed	


•  This MapReduce task advances the “known 
frontier” by one hop 
o  Subsequent iterations include more reachable nodes as frontier advances 
o  Multiple iterations are needed to explore entire graph 
o  Feed output back into the same MapReduce task 

•  Preserving graph structure: 
o  Problem: Where did the points-to list go? 
o  Solution: Mapper emits (n, points-to) as well 



Visualizing  Parallel  BFS	

1	


2	
 2	


2	

3	


3	


3	

3	


4	


4	




Termination	

•  Does the algorithm ever terminate? 

o  Eventually, all nodes will be discovered, all edges will be considered (in a 
connected graph) 

•  When do we stop? 



Weighted  Edges	

•  Now add positive weights to the edges 
•  Simple change: points-to list in map task includes a 

weight w for each pointed-to node 
o  emit (p, D+wp) instead of (p, D+1) for each node p 

•  Does this ever terminate? 
o  Yes! Eventually, no better distances will be found. When distance is the 

same, we stop 
o  Mapper should emit (n, D) to ensure that “current distance” is carried into 

the reducer 



Comparison  to  Dijkstra	

•  Dijkstra’s algorithm is more efficient  

o  At any step it only pursues edges from the minimum-cost path inside the 
frontier 

•  MapReduce explores all paths in parallel 
o  Divide and conquer 
o  Throw more hardware at the problem 



General  Approach	

•  MapReduce is adept at manipulating graphs 

o  Store graphs as adjacency lists 

•  Graph algorithms with for MapReduce: 
o  Each map task receives a node and its outlinks 
o  Map task compute some function of the link structure, emits value with 

target as the key 
o  Reduce task collects keys (target nodes) and aggregates 

•  Iterate multiple MapReduce cycles until some 
termination condition 
o  Remember to “pass” graph structure from one iteration to next 



Random  Walks  Over  the  
Web	


•  Model: 
o  User starts at a random Web page 
o  User randomly clicks on links, surfing from page to page 

•  PageRank = the amount of time that will be spent 
on any given page 



PageRank:  Defined	

Given page x with in-bound links t1…tn, where 

o  C(t) is the out-degree of t 
o  α is probability of random jump 
o  N is the total number of nodes in the graph 
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Computing  PageRank	

•  Properties of PageRank 

o  Can be computed iteratively 
o  Effects at each iteration is local 

•  Sketch of algorithm: 
o  Start with seed PRi values 
o  Each page distributes PRi “credit” to all pages it links to 
o  Each target page adds up “credit” from multiple in-bound links to 

compute PRi+1 

o  Iterate until values converge 



PageRank  in  MapReduce	

Map: distribute PageRank “credit” to link targets 

... 

Reduce: gather up PageRank “credit” from multiple sources 
to compute new PageRank value 

Iterate until 
convergence 



PageRank:  Issues	

•  Is PageRank guaranteed to converge? How 

quickly? 
•  What is the “correct” value of α, and how sensitive is 

the algorithm to it? 
•  What about dangling links? 
•  How do you know when to stop? 



Graph  algorithms  in  
MapReduce	


•  General approach 
o  Store graphs as adjacency lists (node, points-to, points-to …) 
o  Mappers receive (node, points-to*) tuples 
o  Map task computes some function of the link structure 
o  Output key is usually the target node in the adjacency list representation 
o  Mapper typically outputs the graph structure as well 

•  Iterate multiple MapReduce cycles until some 
convergence criterion is met 



Questions? 



MapReduce Algorithm Design 



Managing  Dependencies	

•  Remember: Mappers run in isolation 

o  You have no idea in what order the mappers run 
o  You have no idea on what node the mappers run 
o  You have no idea when each mapper finishes 

•  Tools for synchronization: 
o  Ability to hold state in reducer across multiple key-value pairs 
o  Sorting function for keys 
o  Partitioner 
o  Cleverly-constructed data structures 



Motivating  Example	

•  Term co-occurrence matrix for a text collection 

o  M = N x N matrix (N = vocabulary size) 
o  Mij: number of times i and j co-occur in some context  

(for concreteness, let’s say context = sentence) 

•  Why? 
o  Distributional profiles as a way of measuring semantic distance 
o  Semantic distance useful for many language processing tasks 

“You shall know a word by the company it keeps” (Firth, 1957) 

e.g., Mohammad and Hirst (EMNLP, 2006) 



MapReduce:  Large  
Counting  Problems	


•  Term co-occurrence matrix for a text collection 
= specific instance of a large counting problem 
o  A large event space (number of terms) 
o  A large number of events (the collection itself) 
o  Goal: keep track of interesting statistics about the events 

•  Basic approach 
o  Mappers generate partial counts 
o  Reducers aggregate partial counts 

How do we aggregate partial counts efficiently? 



First  Try:  “Pairs”	

•  Each mapper takes a sentence: 

o  Generate all co-occurring term pairs 
o  For all pairs, emit (a, b) → count 

•  Reducers sums up counts associated with these 
pairs 

•  Use combiners! 

Note: in these slides, we donate a key-value pair as k → v 



“Pairs”  Analysis	

•  Advantages 

o  Easy to implement, easy to understand 

•  Disadvantages 
o  Lots of pairs to sort and shuffle around (upper bound?) 



Another  Try:  “Stripes”	

•  Idea: group together pairs into an associative array 

•  Each mapper takes a sentence: 
o  Generate all co-occurring term pairs 
o  For each term, emit a → { b: countb, c: countc, d: countd … } 

•  Reducers perform element-wise sum of associative 
arrays 

(a, b) → 1  
(a, c) → 2  
(a, d) → 5  
(a, e) → 3  
(a, f) → 2  

a → { b: 1, c: 2, d: 5, e: 3, f: 2 } 

a → { b: 1,         d: 5, e: 3 } 
a → { b: 1, c: 2, d: 2,         f: 2 } 
a → { b: 2, c: 2, d: 7, e: 3, f: 2 } 

+ 



“Stripes”  Analysis	

•  Advantages 

o  Far less sorting and shuffling of key-value pairs 
o  Can make better use of combiners 

•  Disadvantages 
o  More difficult to implement 
o  Underlying object is more heavyweight 
o  Fundamental limitation in terms of size of event space 



Cluster size: 38 cores 
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), 
which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed) 



Relative  frequency  
estimates	


•  How do we compute relative frequencies from 
counts? 

•  Why do we want to do this? 
•  How do we do this with MapReduce? 

∑
==

'
)',(count
),(count

)(count
),(count)|(

B
BA
BA

A
BAABP



P(B|A):  “Pairs”  	


•  For this to work: 
o  Must emit extra (a, *) for every bn in mapper 
o  Must make sure all a’s get sent to same reducer (use partitioner) 
o  Must make sure (a, *) comes first (define sort order) 
o  Must hold state in reducer across different key-value pairs 

(a, b1) → 3  
(a, b2) → 12  
(a, b3) → 7 
(a, b4) → 1  
… 

(a, *) → 32  

(a, b1) → 3 / 32  
(a, b2) → 12 / 32 
(a, b3) → 7 / 32 
(a, b4) → 1 / 32 
… 

Reducer holds this value in memory 



P(B|A):  “Stripes”  	


•  Easy! 
o  One pass to compute (a, *) 
o  Another pass to directly compute f(B|A) 

a →  {b1:3, b2 :12, b3 :7, b4 :1, … } 



Synchronization  in  
MapReduce	


•  Approach 1: turn synchronization into an ordering 
problem 
o  Sort keys into correct order of computation 
o  Partition key space so that each reducer gets the appropriate set of 

partial results 
o  Hold state in reducer across multiple key-value pairs to perform 

computation 

o  Illustrated by the “pairs” approach 

•  Approach 2: construct data structures that “bring 
the pieces together” 
o  Each reducer receives all the data it needs to complete the computation 
o  Illustrated by the “stripes” approach 



Issues  and  Tradeoffs	

•  Number of key-value pairs 

o  Object creation overhead 
o  Time for sorting and shuffling pairs across the network 
o  In Hadoop, every object emitted from a mapper is written to disk 

•  Size of each key-value pair 
o  De/serialization overhead 

•  Combiners make a big difference! 
o  RAM vs. disk and network 
o  Arrange data to maximize opportunities to aggregate partial results 



Questions? 



Batch Learning Algorithms in MR 



Batch  Learning  
Algorithms	


•  Expectation maximization 
o  Gaussian mixtures / k-means 
o  Forward-backward learning for HMMs 

•  Gradient-ascent based learning 
o  Computing (gradient, objective) using MapReduce 
o  Optimization questions 

















MR  Assumptions	

•  E-step (expensive) 

o  Compute posterior distribution over latent variable 
o  In the case of k-means, that’s the class label, given the data and the 

parameters 

•  M-step 
o  Solving an optimization problem given the posteriors over latent variables 
o  K-means, HMMs, PCFGs: analytic solutions 
o  Not always the case 

•  When is this assumption appropriate? 



Compute the posterior distribution over the latent variables y and 
the current parameters 

E step (mappers) 

M step (reducer) 

EM  Algorithms  in  
MapReduce	


✓(t)

✓(t+1)  argmax

✓
L(x,E[y])

E[y] = p(y | x,✓(t))



Compute the posterior distribution over the latent variables y and 
the current parameters 

EM  Algorithms  in  
MapReduce	


✓(t)

Cluster labels Data points 

✓(t+1)  argmax

✓
L(x,E[y])

E[y] = p(y | x,✓(t))

E step (mappers) 

M step (reducer) 



Compute the posterior distribution over the latent variables y and 
the current parameters 

EM  Algorithms  in  
MapReduce	


✓(t)

State sequence Words 

✓(t+1)  argmax

✓
L(x,E[y])

E[y] = p(y | x,✓(t))

E step (mappers) 

M step (reducer) 



Compute the expected log likelihood with respect to the 
conditional distribution of the latent variables with respect to the 
observed data. 

E step 

Expectations are just sums of function evaluation over an event 
times that event’s probability: perfect for MapReduce! 

Mappers compute model likelihood given small pieces of the 
training data (scale EM to large data sets!) 

EM  Algorithms  in  
MapReduce	


E[y] = p(y | x,✓(t))



M step 

The solution to this problem depends on the parameterization 
used. For HMMs, PCFGs with multinomial parameterizations, this is 
just computing the relative frequency. 

EM  Algorithms  in  
MapReduce	


✓(t+1)  argmax

✓
L(x,E[y])

•  Easy! 
o  One pass to compute (a, *) 
o  Another pass to directly compute f(B|A) 

a →  {b1:3, b2 :12, b3 :7, b4 :1, … } 



Challenges	

•  Each iteration of EM is one MapReduce job 
•  Mappers require the current model parameters 

o  Certain models may be very large 
o  Optimization: any particular piece of the training data probably depends 

on only a small subset of these parameters 

•  Reducers may aggregate data from many 
mappers 
o  Optimization: Make smart use of combiners! 



Log-­‐‑linear  Models	

•  NLP’s favorite discriminative model: 

•  Applied successfully to classificiation, POS tagging, 
parsing, MT, word segmentation, named entity 
recognition, LM… 
o  Make use of millions of features (hi’s) 
o  Features may overlap 
o  Global optimum easily reachable, assuming no latent variables 



Exponential  Models  in  
MapReduce	


•  Training is usually done to maximize likelihood 
(minimize negative llh), using first-order methods 
o  Need an objective and gradient with respect to the parameterizes that 

we want to optimize 



Exponential  Models  in  
MapReduce	


•  How do we compute these in MapReduce? 

As seen with EM: expectations map nicely onto the MR paradigm. 

Each mapper computes two quantities: the LLH of a 
training instance <x,y> under the current model and the 
contribution to the gradient. 



Exponential  Models  in  
MapReduce	


•  What about reducers? 

The objective is a single value – make sure to use a combiner! 

The gradient is as large as the feature space – but may be quite 
sparse.  Make use of sparse vector representations! 



Exponential  Models  in  
MapReduce	


•  After one MR pair, we have an objective and 
gradient 

•  Run some optimization algorithm 
o  LBFGS, gradient descent, etc… 

•  Check for convergence 
•  If not, re-run MR to compute a new objective and 

gradient 



Challenges	

•  Each iteration of training is one MapReduce job 
•  Mappers require the current model parameters 
•  Reducers may aggregate data from many 

mappers 
•  Optimization algorithm (LBFGS for example) may 

require the full gradient 
o  This is okay for millions of features 
o  What about billions? 
o  …or trillions? 



Case study:  
statistical machine translation 



Statistical  Machine  
Translation	


•  Conceptually simple: 
(translation from foreign f into English e) 

•  Difficult in practice! 
•  Phrase-Based Machine Translation (PBMT) : 

o  Break up source sentence into little pieces (phrases) 
o  Translate each phrase individually 

)()|(maxargˆ ePefPe
e

=

Dyer et al. (Third ACL Workshop on MT, 2008) 



Maria no dio una bofetada a la bruja verde 

Mary not 

did not 

no 

did not give 

give a slap to the witch green 

slap 

slap 

a slap 

to the 

to 

the 

green witch 

the witch 

by 

Example from Koehn (2006) 



i saw the small table 
vi la mesa pequeña 

(vi, i saw) 
(la mesa pequeña, the small table) 
… Parallel Sentences 

Word Alignment Phrase Extraction 

he sat at the table 
the service was good 

Target-Language Text 

Translation  
Model	


Language  
Model	


Decoder	


Foreign Input Sentence English Output Sentence 
Más de vino, por favor! More wine, please! 

Training Data 

MT  Architecture	




The  Data  Bo]leneck	




i saw the small table 
vi la mesa pequeña 

(vi, i saw) 
(la mesa pequeña, the small table) 
… Parallel Sentences 

Word Alignment Phrase Extraction 

he sat at the table 
the service was good 

Target-Language Text 

Translation  
Model	


Language  
Model	


Decoder	


Foreign Input Sentence English Output Sentence 
maria no daba una bofetada a la bruja verde mary did not slap the green witch 

Training Data 

MT  Architecture	

There are MapReduce Implementations of 
these two components! 



Alignment  with  HMMs	


Mary slapped the green witch 

Mary deu um tapa a bruxa verde 
1 2 3 4 5 6 7 

Vogel et al. (1996) 



Alignment  with  HMMs	


1	
 4	
 5	
 7	
 6	


Mary slapped the green witch 

Mary deu um tapa a bruxa verde 
1 2 3 4 5 6 7 



Alignment  with  HMMs	

•  Emission parameters: translation probabilities 
•  States: words in source sentence 
•  Transition probabilities: probability of jumping +1, +2, 

+3, -1, -2, etc. 
•  Alternative parameterization of state probabilities: 

o  Uniform (“Model 1”) 
o  Independent of previous alignment decision, dependent only on global 

position in sentence (“Model 2”) 
o  Many other models… 

•  This is still state-of-the-art in Machine Translation 
•  How many parameters are there? 



HMM  Alignment:  Giza	


Single-core commodity server 



HMM  Alignment:  
MapReduce	


38 processor cluster 

Single-core commodity server 



HMM  Alignment:  
MapReduce	


38 processor cluster 

1/38 Single-core commodity server 



Online Learning Algorithms in MR 



Online  Learning  Algorithms	

•  MapReduce is a batch processing system 

o  Associativity used to factor large computations into subproblems that can 
be solved 

o  Once job is running, processes are independent 

•  Online algorithms 
o  Great deal of research currently in ML 
o  Theory: strong convergence, mistake guarantees 
o  Practice: rapid convergence 
o  Good (empirical) performance on nonconvex problems 
o  Problems 

•  Parameter updates made sequentially after each training instance 
•  Theoretical analysis rely on sequential model of computation 
•  How do we parallelize this? 



Review:  Perceptron	


Collins (2002), Rosenblatt (1957) 



Review:  Perceptron	


Collins (2002), Rosenblatt (1957) 



Assume  separability	




Algorithm  1:  Parameter  Mixing	

•  Inspired by the averaged perceptron, let’s run P 

perceptrons on shards of the data 
•  Return the average parameters 

Return average parameters from P runs 

McDonald, Hall, & Mann (NAACL, 2010) 





Full Data 

Shard 1 Shard 2 



Shard 1 Shard 2 

Processor 1 Processor 2 



A]empt  1:  Parameter  Mixing	

•  Unfortunately… 
•  Theorem (proof by counterexample). For any training set 

T separable by margin γ,  ParamMix does not 
necessarily return a separating hyperplane. 

Perceptron	
 Avg.  Perceptron	

Serial	
 85.8	
 88.8	

1/P  -­‐‑  serial	
 75.3	
 76.6	

ParamMix	
 81.5	
 81.6	


Researchers at Carnegie Mellon University in Pittsburgh, 
PA, have put together an iOS app, DrawAFriend, … 



Algorithm  2:  Iterative  Mixing	

•  Rather than mixing parameters just once, mix after 

each epoch (pass through a shard) 
•  Redistribute parameters and use them as a starting 

point on next epoch 



Algorithm  2:  Analysis	

•  Theorem. The weighted number of mistakes has is 

bound (like the sequential perceptron) by 
o  The worst-case number of epochs (through the full data) is the same as 

the sequential perceptron 
o  With non-uniform mixing, it is possible to obtain a speedup of P 

Perceptron	
 Avg.  Perceptron	

Serial	
 85.8	
 88.8	

1/P  -­‐‑  serial	
 75.3	
 76.6	

ParamMix	
 81.5	
 81.6	

IterParamMix	
 87.9	
 88.1	




Algorithm  2:  Empirical	




Summary	

•  Two approaches to learning 

o  Batch: process the entire dataset and make a single update 
o  Online: sequential updates 

•  Online learning is hard to realize in a distributed 
(parallelized) environment 
o  Parameter mixing approaches offer a theoretically sound solution with 

practical performance guarantees 
o  Generalizations to log-loss and MIRA loss have also been explored 
o  Conceptually some workers have “stale parameters” that eventually 

(after a number of synchronizations) reflect the true state of the learner 

•  Other challenges (next couple of days) 
o  Large numbers of parameters (randomized representations) 
o  Large numbers of related tasks (multitask learning) 



Obrigado!	



