
Learning with Big Data I:
Divide and Conquer

lti

lti ablc

25 July 2013 – LxMLS	

Chris Dyer

No data like more data!	

(Banko and Brill, ACL 2001)
(Brants et al., EMNLP 2007)

Training Instances

Problem	

#(t) ~ n0 × 2t/(2 years)~
Moore’s law (~ power/CPU)

#(t) ~ m0 × 3.2t/(2 years)~
Hard disk capacity

We can represent more data than we
can centrally process ... and this will

only get worse in the future.

Solution	
•  Partition training data into subsets

o  Core concept: data shards
o  Algorithms that work primarily “inside” shards and communicate

infrequently

•  Alternative solutions
o  Reduce data points by instance selection
o  Dimensionality reduction / compression

•  Related problems
o  Large numbers of dimensions (horizontal partitioning)
o  Large numbers of related tasks

•  every Gmail user has his own opinion about what is spam
•  Stefan Riezler’s talk tomorrow

Outline	
•  MapReduce
•  Design patterns for MapReduce

•  Batch Learning Algorithms on MapReduce
•  Distributed Online Algorithms

+ simple, distributed programming models
cheap commodity clusters

= data-intensive computing for all

MapReduce

Divide and Conquer	
“Work”	

w1	 w2	 w3	

r1	 r2	 r3	

“Result”	

“worker
”	

“worker
”	

“worker
”	

Partition

Combine

It’s a bit more complex…	
Message Passing

P1 P2 P3 P4 P5

Shared Memory

P1 P2 P3 P4 P5

M
em

or
y

Different programming models

Different programming constructs
mutexes, conditional variables, barriers, …
masters/slaves, producers/consumers, work queues, …

Fundamental issues
scheduling, data distribution, synchronization,
inter-process communication, robustness, fault
tolerance, …

Common problems
livelock, deadlock, data starvation, priority inversion…
dining philosophers, sleeping barbers, cigarette smokers, …

Architectural issues
Flynn’s taxonomy (SIMD, MIMD, etc.),
network typology, bisection bandwidth
UMA vs. NUMA, cache coherence

The reality: programmer shoulders the burden
of managing concurrency…

Source: Ricardo Guimarães Herrmann

Typical Problem	
•  Iterate over a large number of records
•  Extract something of interest from each
•  Shuffle and sort intermediate results
•  Aggregate intermediate results
•  Generate final output

Key idea: functional abstraction for these two operations

Map

Reduce

g g g g g

f f f f f Map

Fold

Map

Reduce

MapReduce	
•  Programmers specify two functions:

map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
o  All values with the same key are reduced together

•  Usually, programmers also specify:
partition (k’, number of partitions) → partition for k’
o  Often a simple hash of the key, e.g. hash(k’) mod n
o  Allows reduce operations for different keys in parallel
combine(k’,v’) → <k’,v’>
o  “Mini-reducers” that run in memory after the map phase
o  Optimizes to reduce network traffic & disk writes

•  Implementations:
o  Google has a proprietary implementation in C++
o  Hadoop is an open source implementation in Java

map	map	 map	 map	

Shuffle and Sort: aggregate values by keys	

reduce	 reduce	 reduce	

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 9

a 1 5 b 2 7 c 2 3 6 9

r1 s1 r2 s2 r3 s3

MapReduce Runtime	
•  Handles scheduling

o  Assigns workers to map and reduce tasks

•  Handles “data distribution”
o  Moves the process to the data

•  Handles synchronization
o  Gathers, sorts, and shuffles intermediate data

•  Handles faults
o  Detects worker failures and restarts

•  Everything happens on top of a distributed FS (later)

“Hello World”: Word
Count	

Map(String input_key, String input_value):
 // input_key: document name
 // input_value: document contents
 for each word w in input_values:
 EmitIntermediate(w, "1");

Reduce(String key, Iterator intermediate_values):
 // key: a word, same for input and output
 // intermediate_values: a list of counts
 int result = 0;
 for each v in intermediate_values:
 result += ParseInt(v);
 Emit(AsString(result));

split 0
split 1
split 2
split 3
split 4

worker

worker

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

(1) fork (1) fork (1) fork

(2) assign map
(2) assign reduce

(3) read
(4) local write

(5) remote read
(6) write

Input
files

Map
phase

Intermediate files
(on local disk)

Reduce
phase

Output
files

Redrawn from Dean and Ghemawat (OSDI 2004)

How do we get data to the
workers?	

Compute Nodes

NAS

SAN

What’s the problem here?

Distributed File System	
•  Don’t move data to workers… Move workers to the

data!
o  Store data on the local disks for nodes in the cluster
o  Start up the workers on the node that has the data local

•  Why?
o  Not enough RAM to hold all the data in memory
o  Disk access is slow, disk throughput is good

•  A distributed file system is the answer
o  GFS (Google File System)
o  HDFS for Hadoop (= GFS clone)

GFS: Assumptions	
•  Commodity hardware over “exotic” hardware
•  High component failure rates

o  Inexpensive commodity components fail all the time

•  “Modest” number of HUGE files
•  Files are write-once, mostly appended to

o  Perhaps concurrently

•  Large streaming reads over random access
•  High sustained throughput over low latency

GFS slides adapted from material by Dean et al.

GFS: Design Decisions	
•  Files stored as chunks

o  Fixed size (64MB)

•  Reliability through replication
o  Each chunk replicated across 3+ chunkservers

•  Single master to coordinate access, keep
metadata
o  Simple centralized management

•  No data caching
o  Little benefit due to large data sets, streaming reads

•  Simplify the API
o  Push some of the issues onto the client

Redrawn from Ghemawat et al. (SOSP 2003)

Application

GSF Client

GFS master
File namespace

/foo/bar
chunk 2ef0

GFS chunkserver

Linux file system

…

GFS chunkserver

Linux file system

…

(file name, chunk index)

(chunk handle, chunk location)

Instructions to chunkserver

Chunkserver state
(chunk handle, byte range)

chunk data

Master’s Responsibilities	
•  Metadata storage
•  Namespace management/locking
•  Periodic communication with chunkservers
•  Chunk creation, replication, rebalancing
•  Garbage collection

Questions?

MapReduce “killer app”:
Graph Algorithms

Graph Algorithms: Topics	
•  Introduction to graph algorithms and graph

representations
•  Single Source Shortest Path (SSSP) problem

o  Refresher: Dijkstra’s algorithm
o  Breadth-First Search with MapReduce

•  PageRank

What’s a graph?	
•  G = (V,E), where

o  V represents the set of vertices (nodes)
o  E represents the set of edges (links)
o  Both vertices and edges may contain additional information

•  Different types of graphs:
o  Directed vs. undirected edges
o  Presence or absence of cycles
o  …

Some Graph Problems	
•  Finding shortest paths

o  Routing Internet traffic and UPS trucks

•  Finding minimum spanning trees
o  Telco laying down fiber

•  Finding Max Flow
o  Airline scheduling

•  Identify “special” nodes and communities
o  Breaking up terrorist cells, spread of swine/avian/… flu

•  Bipartite matching
o  Monster.com, Match.com

•  And of course... PageRank

Representing Graphs	
•  G = (V, E)

o  A poor representation for computational purposes

•  Two common representations
o  Adjacency matrix
o  Adjacency list

Adjacency Matrices	
Represent a graph as an n x n square matrix M

o  n = |V|
o  Mij = 1 means a link from node i to j

1 2 3 4
1 0 1 0 1
2 1 0 1 1
3 1 0 0 0
4 1 0 1 0

1	

2	

3	

4	

Adjacency Lists	
Take adjacency matrices… and throw away all the

zeros

1 2 3 4
1 0 1 0 1
2 1 0 1 1
3 1 0 0 0
4 1 0 1 0

1: 2, 4
2: 1, 3, 4
3: 1
4: 1, 3

Adjacency Lists: Critique	
•  Advantages:

o  Much more compact representation
o  Easy to compute over outlinks
o  Graph structure can be broken up and distributed

•  Disadvantages:
o  Much more difficult to compute over inlinks

Single Source Shortest
Path	

•  Problem: find shortest path from a source node to
one or more target nodes

•  First, a refresher: Dijkstra’s Algorithm

Dijkstra’s Algorithm
Example	

0	

∞	

∞	

∞	

∞	

10

5

2 3

2

1

9

7

4 6

Example from CLR

Dijkstra’s Algorithm
Example	

0	

10	

5	

∞	

∞	

10

5

2 3

2

1

9

7

4 6

Example from CLR

Dijkstra’s Algorithm
Example	

0	

8	

5	

14	

7	

10

5

2 3

2

1

9

7

4 6

Example from CLR

Dijkstra’s Algorithm
Example	

0	

8	

5	

13	

7	

10

5

2 3

2

1

9

7

4 6

Example from CLR

Dijkstra’s Algorithm
Example	

0	

8	

5	

9	

7	

10

5

2 3

2

1

9

7

4 6

Example from CLR

Dijkstra’s Algorithm
Example	

0	

8	

5	

9	

7	

10

5

2 3

2

1

9

7

4 6

Example from CLR

Single Source Shortest
Path	

•  Problem: find shortest path from a source node to
one or more target nodes

•  Single processor machine: Dijkstra’s Algorithm
•  MapReduce: parallel Breadth-First Search (BFS)

Finding the Shortest Path	
•  First, consider equal edge weights
•  Solution to the problem can be defined inductively
•  Here’s the intuition:

o  DistanceTo(startNode) = 0
o  For all nodes n directly reachable from startNode,

DistanceTo(n) = 1

o  For all nodes n reachable from some other set of nodes S, DistanceTo(n) =
1 + min(DistanceTo(m), m ∈ S)

From Intuition to
Algorithm	

•  A map task receives
o  Key: node n
o  Value: D (distance from start), points-to (list of nodes reachable from n)

•  ∀p ∈ points-to: emit (p, D+1)
•  The reduce task gathers possible distances to a

given p and selects the minimum one

Multiple Iterations
Needed	

•  This MapReduce task advances the “known
frontier” by one hop
o  Subsequent iterations include more reachable nodes as frontier advances
o  Multiple iterations are needed to explore entire graph
o  Feed output back into the same MapReduce task

•  Preserving graph structure:
o  Problem: Where did the points-to list go?
o  Solution: Mapper emits (n, points-to) as well

Visualizing Parallel BFS	
1	

2	 2	

2	
3	

3	

3	
3	

4	

4	

Termination	
•  Does the algorithm ever terminate?

o  Eventually, all nodes will be discovered, all edges will be considered (in a
connected graph)

•  When do we stop?

Weighted Edges	
•  Now add positive weights to the edges
•  Simple change: points-to list in map task includes a

weight w for each pointed-to node
o  emit (p, D+wp) instead of (p, D+1) for each node p

•  Does this ever terminate?
o  Yes! Eventually, no better distances will be found. When distance is the

same, we stop
o  Mapper should emit (n, D) to ensure that “current distance” is carried into

the reducer

Comparison to Dijkstra	
•  Dijkstra’s algorithm is more efficient

o  At any step it only pursues edges from the minimum-cost path inside the
frontier

•  MapReduce explores all paths in parallel
o  Divide and conquer
o  Throw more hardware at the problem

General Approach	
•  MapReduce is adept at manipulating graphs

o  Store graphs as adjacency lists

•  Graph algorithms with for MapReduce:
o  Each map task receives a node and its outlinks
o  Map task compute some function of the link structure, emits value with

target as the key
o  Reduce task collects keys (target nodes) and aggregates

•  Iterate multiple MapReduce cycles until some
termination condition
o  Remember to “pass” graph structure from one iteration to next

Random Walks Over the
Web	

•  Model:
o  User starts at a random Web page
o  User randomly clicks on links, surfing from page to page

•  PageRank = the amount of time that will be spent
on any given page

PageRank: Defined	
Given page x with in-bound links t1…tn, where

o  C(t) is the out-degree of t
o  α is probability of random jump
o  N is the total number of nodes in the graph

∑
=

−+⎟
⎠

⎞
⎜
⎝

⎛=
n

i i

i

tC
tPR

N
xPR

1)(
)()1(1)(αα

X	

t1	

t2	

tn	
…

Computing PageRank	
•  Properties of PageRank

o  Can be computed iteratively
o  Effects at each iteration is local

•  Sketch of algorithm:
o  Start with seed PRi values
o  Each page distributes PRi “credit” to all pages it links to
o  Each target page adds up “credit” from multiple in-bound links to

compute PRi+1

o  Iterate until values converge

PageRank in MapReduce	
Map: distribute PageRank “credit” to link targets

...

Reduce: gather up PageRank “credit” from multiple sources
to compute new PageRank value

Iterate until
convergence

PageRank: Issues	
•  Is PageRank guaranteed to converge? How

quickly?
•  What is the “correct” value of α, and how sensitive is

the algorithm to it?
•  What about dangling links?
•  How do you know when to stop?

Graph algorithms in
MapReduce	

•  General approach
o  Store graphs as adjacency lists (node, points-to, points-to …)
o  Mappers receive (node, points-to*) tuples
o  Map task computes some function of the link structure
o  Output key is usually the target node in the adjacency list representation
o  Mapper typically outputs the graph structure as well

•  Iterate multiple MapReduce cycles until some
convergence criterion is met

Questions?

MapReduce Algorithm Design

Managing Dependencies	
•  Remember: Mappers run in isolation

o  You have no idea in what order the mappers run
o  You have no idea on what node the mappers run
o  You have no idea when each mapper finishes

•  Tools for synchronization:
o  Ability to hold state in reducer across multiple key-value pairs
o  Sorting function for keys
o  Partitioner
o  Cleverly-constructed data structures

Motivating Example	
•  Term co-occurrence matrix for a text collection

o  M = N x N matrix (N = vocabulary size)
o  Mij: number of times i and j co-occur in some context

(for concreteness, let’s say context = sentence)

•  Why?
o  Distributional profiles as a way of measuring semantic distance
o  Semantic distance useful for many language processing tasks

“You shall know a word by the company it keeps” (Firth, 1957)

e.g., Mohammad and Hirst (EMNLP, 2006)

MapReduce: Large
Counting Problems	

•  Term co-occurrence matrix for a text collection
= specific instance of a large counting problem
o  A large event space (number of terms)
o  A large number of events (the collection itself)
o  Goal: keep track of interesting statistics about the events

•  Basic approach
o  Mappers generate partial counts
o  Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First Try: “Pairs”	
•  Each mapper takes a sentence:

o  Generate all co-occurring term pairs
o  For all pairs, emit (a, b) → count

•  Reducers sums up counts associated with these
pairs

•  Use combiners!

Note: in these slides, we donate a key-value pair as k → v

“Pairs” Analysis	
•  Advantages

o  Easy to implement, easy to understand

•  Disadvantages
o  Lots of pairs to sort and shuffle around (upper bound?)

Another Try: “Stripes”	
•  Idea: group together pairs into an associative array

•  Each mapper takes a sentence:
o  Generate all co-occurring term pairs
o  For each term, emit a → { b: countb, c: countc, d: countd … }

•  Reducers perform element-wise sum of associative
arrays

(a, b) → 1
(a, c) → 2
(a, d) → 5
(a, e) → 3
(a, f) → 2

a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

a → { b: 1, d: 5, e: 3 }
a → { b: 1, c: 2, d: 2, f: 2 }
a → { b: 2, c: 2, d: 7, e: 3, f: 2 }

+

“Stripes” Analysis	
•  Advantages

o  Far less sorting and shuffling of key-value pairs
o  Can make better use of combiners

•  Disadvantages
o  More difficult to implement
o  Underlying object is more heavyweight
o  Fundamental limitation in terms of size of event space

Cluster size: 38 cores
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3),
which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

Relative frequency
estimates	

•  How do we compute relative frequencies from
counts?

•  Why do we want to do this?
•  How do we do this with MapReduce?

∑
==

'
)',(count
),(count

)(count
),(count)|(

B
BA
BA

A
BAABP

P(B|A): “Pairs” 	

•  For this to work:
o  Must emit extra (a, *) for every bn in mapper
o  Must make sure all a’s get sent to same reducer (use partitioner)
o  Must make sure (a, *) comes first (define sort order)
o  Must hold state in reducer across different key-value pairs

(a, b1) → 3
(a, b2) → 12
(a, b3) → 7
(a, b4) → 1
…

(a, *) → 32

(a, b1) → 3 / 32
(a, b2) → 12 / 32
(a, b3) → 7 / 32
(a, b4) → 1 / 32
…

Reducer holds this value in memory

P(B|A): “Stripes” 	

•  Easy!
o  One pass to compute (a, *)
o  Another pass to directly compute f(B|A)

a → {b1:3, b2 :12, b3 :7, b4 :1, … }

Synchronization in
MapReduce	

•  Approach 1: turn synchronization into an ordering
problem
o  Sort keys into correct order of computation
o  Partition key space so that each reducer gets the appropriate set of

partial results
o  Hold state in reducer across multiple key-value pairs to perform

computation

o  Illustrated by the “pairs” approach

•  Approach 2: construct data structures that “bring
the pieces together”
o  Each reducer receives all the data it needs to complete the computation
o  Illustrated by the “stripes” approach

Issues and Tradeoffs	
•  Number of key-value pairs

o  Object creation overhead
o  Time for sorting and shuffling pairs across the network
o  In Hadoop, every object emitted from a mapper is written to disk

•  Size of each key-value pair
o  De/serialization overhead

•  Combiners make a big difference!
o  RAM vs. disk and network
o  Arrange data to maximize opportunities to aggregate partial results

Questions?

Batch Learning Algorithms in MR

Batch Learning
Algorithms	

•  Expectation maximization
o  Gaussian mixtures / k-means
o  Forward-backward learning for HMMs

•  Gradient-ascent based learning
o  Computing (gradient, objective) using MapReduce
o  Optimization questions

MR Assumptions	
•  E-step (expensive)

o  Compute posterior distribution over latent variable
o  In the case of k-means, that’s the class label, given the data and the

parameters

•  M-step
o  Solving an optimization problem given the posteriors over latent variables
o  K-means, HMMs, PCFGs: analytic solutions
o  Not always the case

•  When is this assumption appropriate?

Compute the posterior distribution over the latent variables y and
the current parameters

E step (mappers)

M step (reducer)

EM Algorithms in
MapReduce	

✓(t)

✓(t+1) argmax

✓
L(x,E[y])

E[y] = p(y | x,✓(t))

Compute the posterior distribution over the latent variables y and
the current parameters

EM Algorithms in
MapReduce	

✓(t)

Cluster labels Data points

✓(t+1) argmax

✓
L(x,E[y])

E[y] = p(y | x,✓(t))

E step (mappers)

M step (reducer)

Compute the posterior distribution over the latent variables y and
the current parameters

EM Algorithms in
MapReduce	

✓(t)

State sequence Words

✓(t+1) argmax

✓
L(x,E[y])

E[y] = p(y | x,✓(t))

E step (mappers)

M step (reducer)

Compute the expected log likelihood with respect to the
conditional distribution of the latent variables with respect to the
observed data.

E step

Expectations are just sums of function evaluation over an event
times that event’s probability: perfect for MapReduce!

Mappers compute model likelihood given small pieces of the
training data (scale EM to large data sets!)

EM Algorithms in
MapReduce	

E[y] = p(y | x,✓(t))

M step

The solution to this problem depends on the parameterization
used. For HMMs, PCFGs with multinomial parameterizations, this is
just computing the relative frequency.

EM Algorithms in
MapReduce	

✓(t+1) argmax

✓
L(x,E[y])

•  Easy!
o  One pass to compute (a, *)
o  Another pass to directly compute f(B|A)

a → {b1:3, b2 :12, b3 :7, b4 :1, … }

Challenges	
•  Each iteration of EM is one MapReduce job
•  Mappers require the current model parameters

o  Certain models may be very large
o  Optimization: any particular piece of the training data probably depends

on only a small subset of these parameters

•  Reducers may aggregate data from many
mappers
o  Optimization: Make smart use of combiners!

Log-‐‑linear Models	
•  NLP’s favorite discriminative model:

•  Applied successfully to classificiation, POS tagging,
parsing, MT, word segmentation, named entity
recognition, LM…
o  Make use of millions of features (hi’s)
o  Features may overlap
o  Global optimum easily reachable, assuming no latent variables

Exponential Models in
MapReduce	

•  Training is usually done to maximize likelihood
(minimize negative llh), using first-order methods
o  Need an objective and gradient with respect to the parameterizes that

we want to optimize

Exponential Models in
MapReduce	

•  How do we compute these in MapReduce?

As seen with EM: expectations map nicely onto the MR paradigm.

Each mapper computes two quantities: the LLH of a
training instance <x,y> under the current model and the
contribution to the gradient.

Exponential Models in
MapReduce	

•  What about reducers?

The objective is a single value – make sure to use a combiner!

The gradient is as large as the feature space – but may be quite
sparse. Make use of sparse vector representations!

Exponential Models in
MapReduce	

•  After one MR pair, we have an objective and
gradient

•  Run some optimization algorithm
o  LBFGS, gradient descent, etc…

•  Check for convergence
•  If not, re-run MR to compute a new objective and

gradient

Challenges	
•  Each iteration of training is one MapReduce job
•  Mappers require the current model parameters
•  Reducers may aggregate data from many

mappers
•  Optimization algorithm (LBFGS for example) may

require the full gradient
o  This is okay for millions of features
o  What about billions?
o  …or trillions?

Case study:
statistical machine translation

Statistical Machine
Translation	

•  Conceptually simple:
(translation from foreign f into English e)

•  Difficult in practice!
•  Phrase-Based Machine Translation (PBMT) :

o  Break up source sentence into little pieces (phrases)
o  Translate each phrase individually

)()|(maxargˆ ePefPe
e

=

Dyer et al. (Third ACL Workshop on MT, 2008)

Maria no dio una bofetada a la bruja verde

Mary not

did not

no

did not give

give a slap to the witch green

slap

slap

a slap

to the

to

the

green witch

the witch

by

Example from Koehn (2006)

i saw the small table
vi la mesa pequeña

(vi, i saw)
(la mesa pequeña, the small table)
… Parallel Sentences

Word Alignment Phrase Extraction

he sat at the table
the service was good

Target-Language Text

Translation
Model	

Language
Model	

Decoder	

Foreign Input Sentence English Output Sentence
Más de vino, por favor! More wine, please!

Training Data

MT Architecture	

The Data Bo]leneck	

i saw the small table
vi la mesa pequeña

(vi, i saw)
(la mesa pequeña, the small table)
… Parallel Sentences

Word Alignment Phrase Extraction

he sat at the table
the service was good

Target-Language Text

Translation
Model	

Language
Model	

Decoder	

Foreign Input Sentence English Output Sentence
maria no daba una bofetada a la bruja verde mary did not slap the green witch

Training Data

MT Architecture	
There are MapReduce Implementations of
these two components!

Alignment with HMMs	

Mary slapped the green witch

Mary deu um tapa a bruxa verde
1 2 3 4 5 6 7

Vogel et al. (1996)

Alignment with HMMs	

1	 4	 5	 7	 6	

Mary slapped the green witch

Mary deu um tapa a bruxa verde
1 2 3 4 5 6 7

Alignment with HMMs	
•  Emission parameters: translation probabilities
•  States: words in source sentence
•  Transition probabilities: probability of jumping +1, +2,

+3, -1, -2, etc.
•  Alternative parameterization of state probabilities:

o  Uniform (“Model 1”)
o  Independent of previous alignment decision, dependent only on global

position in sentence (“Model 2”)
o  Many other models…

•  This is still state-of-the-art in Machine Translation
•  How many parameters are there?

HMM Alignment: Giza	

Single-core commodity server

HMM Alignment:
MapReduce	

38 processor cluster

Single-core commodity server

HMM Alignment:
MapReduce	

38 processor cluster

1/38 Single-core commodity server

Online Learning Algorithms in MR

Online Learning Algorithms	
•  MapReduce is a batch processing system

o  Associativity used to factor large computations into subproblems that can
be solved

o  Once job is running, processes are independent

•  Online algorithms
o  Great deal of research currently in ML
o  Theory: strong convergence, mistake guarantees
o  Practice: rapid convergence
o  Good (empirical) performance on nonconvex problems
o  Problems

•  Parameter updates made sequentially after each training instance
•  Theoretical analysis rely on sequential model of computation
•  How do we parallelize this?

Review: Perceptron	

Collins (2002), Rosenblatt (1957)

Review: Perceptron	

Collins (2002), Rosenblatt (1957)

Assume separability	

Algorithm 1: Parameter Mixing	
•  Inspired by the averaged perceptron, let’s run P

perceptrons on shards of the data
•  Return the average parameters

Return average parameters from P runs

McDonald, Hall, & Mann (NAACL, 2010)

Full Data

Shard 1 Shard 2

Shard 1 Shard 2

Processor 1 Processor 2

A]empt 1: Parameter Mixing	
•  Unfortunately…
•  Theorem (proof by counterexample). For any training set

T separable by margin γ, ParamMix does not
necessarily return a separating hyperplane.

Perceptron	 Avg. Perceptron	
Serial	 85.8	 88.8	
1/P -‐‑ serial	 75.3	 76.6	
ParamMix	 81.5	 81.6	

Researchers at Carnegie Mellon University in Pittsburgh,
PA, have put together an iOS app, DrawAFriend, …

Algorithm 2: Iterative Mixing	
•  Rather than mixing parameters just once, mix after

each epoch (pass through a shard)
•  Redistribute parameters and use them as a starting

point on next epoch

Algorithm 2: Analysis	
•  Theorem. The weighted number of mistakes has is

bound (like the sequential perceptron) by
o  The worst-case number of epochs (through the full data) is the same as

the sequential perceptron
o  With non-uniform mixing, it is possible to obtain a speedup of P

Perceptron	 Avg. Perceptron	
Serial	 85.8	 88.8	
1/P -‐‑ serial	 75.3	 76.6	
ParamMix	 81.5	 81.6	
IterParamMix	 87.9	 88.1	

Algorithm 2: Empirical	

Summary	
•  Two approaches to learning

o  Batch: process the entire dataset and make a single update
o  Online: sequential updates

•  Online learning is hard to realize in a distributed
(parallelized) environment
o  Parameter mixing approaches offer a theoretically sound solution with

practical performance guarantees
o  Generalizations to log-loss and MIRA loss have also been explored
o  Conceptually some workers have “stale parameters” that eventually

(after a number of synchronizations) reflect the true state of the learner

•  Other challenges (next couple of days)
o  Large numbers of parameters (randomized representations)
o  Large numbers of related tasks (multitask learning)

Obrigado!	

