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Supervised Relation Extraction

[Cullota and Sorenson; 04, ...]

Predict relations between entities based on mentions

| |
Petrie, a London The Petrie Museum at
native, was a UCL preserves an
professor at UCL from| ' estimated 80,000
1892 to 1933. objects.
| |

Ferguson is a
historian at Harvard Ferguson is a

focusing on British and | professor at Harvard.
American Imperialism.

| S |

Andrew is a professor Andrew teaches
at Cambridge history at Cambridge

His great-nephew, Gl.)
Trevelyan, was a
noted historian at
Cambridge.
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Supervised Relation Extraction

[Cullota and Sorenson; 04, ...]

Predict relations between entities based on mentions

Humans employee(X,Y)
| | B
label text Petrie, a London The Petrie Museum at .

g native, was a UCL preserves an 1 -f'g’ —
professor at UCL from| ' estimated 80,000 P 8

1892 t0 1933. objects. x Train

| |
Ferguson is a Test S o
historian at Harvard | |Fergusonis a 1 R =
focusing on British and| | professor at Harvard. S 2
American Imperiali < b T
| == o
-5
Andrew is a professor Andrew teaches 1 ==
at Cambridge history at Cambrid% '§ g
v <O
|

His great-nephew, G. S S
Trevelyan, was a 2%
noted historian at O =
Cambridge. x =8
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Supervised Relation Extraction

[Cullota and Sorenson; 04, ...]

Rows ordered by entity pairs

Humans employee(X,Y)
| |
label text Petrie, a London The Petrie Museum at .

g native, was a UCL preserves an 1 -f'g’ —
professor at UCL from| ' estimated 80,000 P 8

1892 to 1933. objects. Train

__________________________________________________ o — b— e O B
Ferguson is a Test S o
historian at Harvard | |Fergusonis a 1 R =
focusing on British and| | professor at Harvard. S 2
American Imperialism. w T
q q‘)
S
Andrew is a professor Andrew teaches 1 ==
at Cambridge history at Cambridge '§ g
<O
I ——

His great-nephew, G. S S
Trevelyan, was a 2%
noted historian at O =
Cambridge. =8
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Supervised Relation Extraction

[Cullota and Sorenson; 04, ...]

Columns ordered by patterns

Humans employee(X,Y)
| |
label text Petrie, a London The Petrie Museum at CD.

g native, was a UCL preserves an 1 g=g
professor at UCL from || estimated 80,000 P 8

1892 to 1933. objects. Train

__________________________________________________ | —— — L

Ferguson is a Test S o
historian at Harvard ||| Ferguson is a 1 R =
focusing on British and||' professor at Harvard. S 2
American Imperialism. w T
| | ()
S
Andrew is a professor Andrew teaches 1 ==
at Cambridge history at Cambridge '§ g
<O
His great-nephew, G. %‘ o>
Trevelyan, was a z%
noted historian at =
Cambridge. =8
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Supervised Relation Extraction

[Cullota and Sorenson; 04, ...]

Fails for unseen patterns

Humans employee(X,Y)
| |
label text Petrie, a London The Petrie Museum at )

g native, was a UCL preserves an 1 ;GEJ —
professor at UCL from| ' estimated 80,000 P 8

1892 to 1933. objects. Train

| |

Ferguson is a Test S o
historian at Harvard | Ferguson is a 1 S ®
focusing on British and| | professor at Harvard. S 2
American Imperialism. b T
| == ()
S
Andrew is a professor Andrew teaches 1 % 5
at Cambridge history at Cambridge '§ g
<O
His great-nephew, G. S S
Trevelyan, was a ‘_ﬁ%
noted historian at O % S
Cambridge. x =S
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Supervised Relation Extraction

[Cullota and Sorenson; 04, ...]

Annotation costly...

Humans employee(X,Y)
| |
label text Petrie, a London The Petrie Museum at .

g native, was a UCL preserves an 1 -f'g’ —
professor at UCL from| ' estimated 80,000 P 8

1892 to 1933. «, | |objects. x Train

| |
Ferguson is a Test S o
historian at Harvard | |Fergusonis a 1 R =
focusing on British and| | professor at Harvard. S 2
American Imperialism. w T
| == ()
-5
Andrew is a professor Andrew teaches 1 ==
at Cambridge history at Cambridge '§ g
<O
|

His great-nephew, G. S S
Trevelyan, was a 2%
noted historian at O =
Cambridge. =8
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Distant Supervision

[Craven & Kumlien,99; Mintz et al.,09, Riedel et al., 10]

Let's leverage pre-existing databases B

Database employee(X,Y)

| |
Petrie, a London The Petrie Museum at labels text
native, was a UCL preserves an ) 1
professor at UCL from| ' estimated 80,000
_____________________________________________________________ 1892101933, & ||obects. |  Train
| S |
Ferguson is a Test
historian at Harvard | | Ferguson is a 1
focusing on British and | professor at Harvard.
American Imperialism.
| |
Andrew is a professor Andrew teaches 1
at Cambridge history at Cambridge
|
His great-nephew, G.
Trevelyan, was a
noted historian at O
Cambridge.
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Distant Supervision

[Riedel et al.,10; Hoffmann et al., 11, Surdeanu et al., 12]

but what if no such databases exist for a relation? .

Database teachesAt(X,Y)
| B | B
Petrie, a London The Petrie Museum at labels text
native, was a UCL preserves an ) ?
professor at UCL from| ' estimated 80,000 -
1892 to 1933. objects. Train
ey s T """""""""""""""""""""""""""""""""""""""""""""""""""""
Ferguson is a est
historian at Harvard Ferguson is a ?
focusing on British and | professor at Harvard. -
American Imperialism.
| B =
Andrew is a professor Andrew teaches ?
at Cambridge history at Cambridge -
|
His great-nephew, G.
Trevelyan, was a ?
noted historian at -
Cambridge.
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Distant Supervision

[Riedel et al.,10; Hoffmann et al., 11, Surdeanu et al., 12]

but what if no such databases exist for a relation? .

Database historianAt(X,Y)
| B | B
Petrie, a London The Petrie Museum at labels text
native, was a UCL preserves an ) ?
professor at UCL from| ' estimated 80,000 -
1892 to 1933. objects. Train
ey s T """""""""""""""""""""""""""""""""""""""""""""""""""""
Ferguson is a est
historian at Harvard Ferguson is a ?
focusing on British and | professor at Harvard. -
American Imperialism.
| B =
Andrew is a professor Andrew teaches ?
at Cambridge history at Cambridge -
|
His great-nephew, G.
Trevelyan, was a ?
noted historian at -
Cambridge.
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Distant Supervision

[Riedel et al.,10; Hoffmann et al., 11, Surdeanu et al., 12]

but what if no such databases exist for a relation? .

Database criticizes(X,Y)
| B | B
Petrie, a London The Petrie Museum at labels text
native, was a UCL preserves an ) ?
professor at UCL from| ' estimated 80,000 -
1892 to 1933. objects. Train
ey s T """""""""""""""""""""""""""""""""""""""""""""""""""""
Ferguson is a est
historian at Harvard Ferguson is a ?
focusing on British and | professor at Harvard. -
American Imperialism.
| B =
Andrew is a professor Andrew teaches ?
at Cambridge history at Cambridge -
|
His great-nephew, G.
Trevelyan, was a ?
noted historian at -
Cambridge.
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Universal Schemas



Matrix Representation

Convert problem into a matrix formulation

Database employee(X,Y)
| |
Petrie, a London The Petrie Museum at labels text
native, was a UCL preserves an ) 1
professor at UCL from| ' estimated 80,000
1892 to 1933. objects.
| |
Ferguson js a
historian at Harvard | |Ferguson is a 1
focusing on British and | professor at Harvard.
American Imperialism.
| |
Andrew is a professor Andrew teaches 1
at Cambridge history at Cambridge
|
His great-nephew, G.
Trevelyan, was a
noted historian at O
Cambridge.

22
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Matrix Representation

Columns correspond to patterns between mentions

X-is-historian-at-Y

Petrie, a London
native, was a
professor at UCL from
1892 to 1933.

=

The Petrie Museum at
UCL preserves an
estimated 80,000
objects.

| B

Ferguson is a
professor at Harvard.

| B

Andrew is a professor
at Cambridge

Database
labels text

Andrew teaches
history at Cambridge

employee(X,Y)

1

1
1
0
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Matrix Representation

Columns correspond to patterns between mentions

X-is-historian-at-Y  X-is-professor-at-Y Database employee(X,Y)
| B
The Petrie Museum at labels text
UCL preserves an )
estimated 80,000
objects.

1 Andrew teaches 1
history at Cambridge

24



Matrix Representation

Columns correspond to patterns between mentions B

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1 1
1 1 1
0
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Extending the Schema

So what about relations with no pre-existing databases?

X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y | /15 (o) dE 10400 €04

1 1 ?
1 1

?
1 1 ?
?
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Open Information Extraction

[Etzioni et al.,08]

Patterns become relations...

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y | /15 (o) dE 10400 €04

1 1 ?
1 1

?
1 1 ?
?
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Open Information Extraction

[Etzioni et al.,08]

and often correspond to your target relations

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y | /15 (o) dE 10400 €04

1 1 ?
1 1 ?
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Open Information Extraction

[Etzioni et al.,08]

...but no reasoning / generalization

X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y | i/l5ie)dl=10) A" {(X,Y)

1 1 ?
?
0 1 1 ?
?
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Pattern Clustering

[Lin & Pantel,01; Yates & Etzioni, 09, ...]

Find patterns with “similar meaning”

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

1 1
1 1

30



Pattern Clustering

[Lin & Pantel,01; Yates & Etzioni, 09, ...]

Clustering these into a latent relation...

1.
X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y | /15 (el dE1 0400 €04

1 1
1 1 1
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Pattern Clustering

[Lin & Pantel,01; Yates & Etzioni, 09, ...]

...assumes symmetry...

1.
X-is-historian-at-Y ¥ X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y [ /15701 dE1040 0.6 4,

1 1
1 1 1
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Pattern Clustering

[Lin & Pantel,01; Yates & Etzioni, 09, ...]

...assumes symmetry...

*
X-is-historian-at-Y ¥ X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y | o] oji=i501 7400 €04

1 1
1 1

_— e ) -
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Pattern Clustering

[Lin & Pantel,01; Yates & Etzioni, 09, ...]

...ignores Context.

1.
X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y | /15 (el dE1 0400 €04
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Pattern Clustering

[Lin & Pantel,01; Yates & Etzioni, 09, ...]

...ignores Context.

1.
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Relation Extraction

Recall that relation extraction fills in cells

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1
1 1 ?
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Universal Schema

Extend schema to the universe of all input relations .

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1
1 1 ?
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Reasoning with Universal Schema

Try to fill in all cells

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

? 1 1 ? 1

1

1 ?
? 1
?

? ?
? 1 ?
? ? ?
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Mutually Supportive

Reasoning about patterns helps structured relations

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1
1 1
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Mutually Supportive

Reasoning about patterns helps structured relations .

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1
1 1
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Mutually Supportive

Reasoning about patterns helps structured relations

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1
1 1

41



Models



Model N: Classifier

[Mintz et al 2009,...]

Standard supervised relation extractor ...

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 ()

O training data

P(Yers, = 1] )
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Model N: Classifier

[Mintz et al 2009,...]

Standard supervised relation extractor ...

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

o O —@

@ observed
O training data

PYerinp = ey )
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Model N: Classifier

[Mintz et al 2009,...]

Standard supervised relation extractor ...

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

® o @ @

@ observed @
O training data

(O parameter

p(yévfr?p — 1|fgr;1yp7 Wemp)
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Model N: Classifier

[Mintz et al 2009,...]

Standard supervised relation extractor ...

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

@ observed
O training data

(O parameter

P(Yernp = femps Wemp) o< exp[< foi,, Wemp >
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Model N: Classifier

... for each pattern

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

@ e e

@ observed
O training data

(O parameter

p(y;,'gf — 1‘ prof7 WPTOf) X exp[< £, rof’ Wprof >]
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Model F: Latent Feature (Factorization)

[Collins et al, 2001]

Per tuple latent feature vector

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

Z,y

@ observed
O training data

(O parameter

p(ygézf — 1‘Vx,y7 Wprof) X eXp[< VCC’y) Wprof >]
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Model F: Latent Feature (Factorization)

[Collins et al, 2001]

Per tuple latent feature vector

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

Z,y

@ observed
O training data ’

(O parameter

p(ygézf — 1‘Vx,y7 Wprof) X eXp[< VCC’y) Wprof >]
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Model F: Latent Feature (Factorization)

[Collins et al, 2001]

Per tuple latent feature vector

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

& ® ©

@ observed @
O training data ’

(O parameter

p(ygégf — 1‘Vx,y7 Wprof) X eXp[< V:C’yy Wprof >]
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Matrix Factorization: PCA

[Collins et al, 2001]

Natural parameters approximated by a low-rank matrix product

relations
relations
(7)) (7))
g ~ =
= 0 ~5 V X W
o o

LYy __ £,y r,y __ LY
Oty =< V7Y Wemp > p(yemp =1|...) xxexp Oy
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Matrix Factorization: PCA
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Natural parameters approximated by a low-rank matrix product

relations
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Matrix Factorization: PCA

[Collins et al, 2001]

Natural parameters approximated by a low-rank matrix product

relations
relations
(7)) (7))
g ~ =
= 0 ~5 V X W I
o o

LYy __ £,y r,y __ LY
Oty =< V7Y Wemp > p(yemp =1|...) xxexp Oy
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Benefit

We can leverage large body of scalable methods in collaborative filtering

movies

movies

w |

Customers
D
Ri
Customers
<
X

LYy __ £,y r,y __ LY
Oty =< V7Y Wemp > p(yemp =1|...) xxexp Oy
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Model F: Latent Feature (Factorization)

Pattern reasoning helps structured relations

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)
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Model F: Latent Feature (Factorization)

Pattern reasoning helps structured relations

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

O ©
© VAO
@/ ©

0 @ ©
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Model F: Latent Feature (Factorization)

Pattern reasoning helps structured relations

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

O]
©

olo

O]
o)
(w)

0 @ ©
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Model F: Latent Feature (Factorization)

Pattern reasoning helps structured relations

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

b
o)
(w)
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Model F: Latent Feature (Factorization)

Pattern reasoning helps structured relations

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

©
©

O

©
o -
® O ¢
(W)
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Model F: Latent Feature (Factorization)

Pattern reasoning helps structured relations

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

© ©
© © -
o W
(W)

oloNo

© O
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dh

Model F: Latent Feature (Factorization)

Pattern reasoning helps structured relations

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

O} © O
© - O

© @ e
O,
@\:
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Model E: Selectional Preferences

Relations have entity type restriction

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

PAEH)
(&, &)
(&, A
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Model E: Selectional Preferences

Relations have entity type restriction

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

PAEH)
(&, &)
&P 0 0 0
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Model E: Selectional Preferences

Argument Slot 1 weight vector ...

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

1

) ocexp[< v W >+ < v wl e >



Model E: Selectional Preferences

... dot-product with feature vector of entity 1

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

1

) o exp(< VE WL e >+ < v wl e >



Model E: Selectional Preferences

Argument Slot 2 weight vector ...

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

L > 4 < vY w?

...) ocexp[< v, WL W ot >
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Model E: Selectional Preferences

... dot-product with feature vector of entity 2

X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

1

o) o exp(< VT WL e >+ < v wE e >



Combinations

models capture different aspects of the data, combine them (e.g., NF)

P(Wers, = 1]...) ocexp|< £ wh o>+ < V"”’y,wgmp > |

emp’ '’ emp
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Training



Negative Data

Usually unavailable or sparse, so...

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1
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Sample Unobserved Cells as Negative

Can work...

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1
1 1 0
1 1
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Subsample

but often does not

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1
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Subsample

and you need to sample a lot (wasting resources)

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

0 1 1 0 1

1 1 0 0
0 1 0 1
1 0
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Implicit Feedback

Often users only click/view/buy items, or not, but no rating

User 1 User 2 User 3 User 4 User 5

1 1 1
1 1

ltem 1

ltem 2

- N
.
-
ltem 4 ltem 3
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Ranking
[Rendle et al.,09]

for all (observed,not observed) pairs in column: prob(o) > prob(n)

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1
0.9 1

0.95 1 1
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Ranking
[Rendle et al.,09]

for all (observed,not observed) pairs in a column: prob(o) > prob(n)

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1
0.9 1

0.85 1 1
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Ranking
[Rendle et al.,09]

Train by maximizing a LogLikelihood variant

X-is-historian-at-Y

maxz Z Z log[o(6%Y — 6% ¥")]

0 9 r T(ZB,y) _'T(CU Y )
0.85 for example: Hf’y =< v w, >
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Ranking
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Train by maximizing a LogLikelihood variant
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Training: Stochastic Gradient Descent

[Rendle et al.,09]

Sample observed fact...

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1

76



Training: Stochastic Gradient Descent

[Rendle et al.,09]

Sample unobserved cell for same relation

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1
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Training: Stochastic Gradient Descent

[Rendle et al.,09]

Estimate current beliefs and gradient, update parameters accordingly

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1
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Training: Stochastic Gradient Descent

[Rendle et al.,09]

Estimate current beliefs and gradient, update parameters accordingly

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1

79



Evaluation



Setup

patterns

Observed Patterns and Relations

....................................................................................................................................................................................................................................................................................................................

Observed Patterns

4k
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Baseline: Mintz 2009

Learn to map patterns to Freebase

patterns

Observed Patterns
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Baseline: Yao 2011

use pattern clusters as additional features

patterns
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Baseline: Surdenau 2012

State-of-the-Art Multi-label Model

patterns

Observed Patterns
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Model N

Like Mintz, but also predicts patterns

patterns

85



Model F, E, NF, NFE ...

Information Flow Between relations

patterns

86



Evaluation (Structured)

[Mintz 09; Yao 11; Surdenau 12]

Evaluate average precision per Freebase relation.
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Evaluate average precision per Freebase relation.

Relation

employee
containedby

parents

Weighted MAP
MAP
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Evaluation (Structured)

[Mintz 09; Yao 11; Surdenau 12]

Evaluate average precision per Freebase relation.

Relation MIO9
employee 0.67
containedby 0.48
parents 0.24

Weighted MAP 0.48
MAP 0.32
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Evaluation (Structured)

[Mintz 09; Yao 11; Surdenau 12]

Evaluate average precision per Freebase relation.

Relation MI09 YA11 SU12
employee 0.67 0.64 0.70
containedby 0.48 0.51 0.54
parents 0.24 0.27 0.58
Weighted MAP 0.48 0.52 0.57

MAP 0.32 0.42 0.56
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Evaluation (Structured)

[Mintz 09; Yao 11; Surdenau 12]

Evaluate average precision per Freebase relation.

Relation MI09 YA11 SU12 N+F+E
employee 0.67 0.64 0.70 0.79
containedby 0.48 0.51 0.54 0.69
parents 0.24 0.27 0.58 0.39
Weighted MAP 0.48 0.52 0.57 0.69

MAP 0.32 0.42 0.56 0.63
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Evaluation (Structured)

[Mintz 09; Yao 11; Surdenau 12]

Averaged 11 point precision recall curve

Averaged 11-point Precision/Recall

Precision

0.2 |

0.1

Recall
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Evaluation (Structured)

[Mintz 09; Yao 11; Surdenau 12]
Averaged 11 point precision recall curve

Averaged 11-point Precision/Recall

SU12 ——

S 06} . - —%— ]
G ~45 minutes to train our models N
c% 0.5 | NF —3
r

0.4 |

0.3 |

0.2 |

0.1 1

0 0.2 0.4 0.6 0.8 1

Recall
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Evaluation (Structured)

Precision Recall curve for works_written

Recall/Precision

Precision

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall
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Setup

Evaluate Freebase relations

patterns

....................................................................................................................................................................................................................................................................................................................
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Evaluation (Patterns)

[Mintz 09; Yao 11; Surdenau 12]

Averaged 11 point precision recall curve

Averaged 11-point Precision/Recall

Precision

Recall
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Conclusion

» Challenge: Relations w/o preexisting databases
» Solution: Extraction in Universal Schemas with ...

... Patterns-based + Structured Relations

Latent Feature models support information flow...
... and outperform classifiers to get ...

... State-of-the-art results

92



Thanks!
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Ranking
[Rendle et al.,09]

Train by maximizing a LL variant

X-is-historian-at-Y

\ffn\?XZ Z Z log|o(0r,2,y — Or,27,y)]

09 ror(z,y) r(z’,y’)
\/ .
0.85 for example: Hr,x,y = V77 W, >
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Model F: Latent Feature (Factorization)

Pattern reasoning helps structured relations

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

O ©
© VAO
@/ ©

0 @ ©
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Model F: Latent Feature (Factorization)

Pattern reasoning helps structured relations

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

O]
©

olo
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(w)

0 @ ©
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Model F: Latent Feature (Factorization)

Pattern reasoning helps structured relations

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

b
o)
(w)
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Model F: Latent Feature (Factorization)

Pattern reasoning helps structured relations

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

©
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©
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® O ¢
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Model F: Latent Feature (Factorization)

Pattern reasoning helps structured relations

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

© ©
© © -
o W
(W)

oloNo

© O
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Model F: Latent Feature (Factorization)

Pattern reasoning helps structured relations

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

O} © O
© - O

© @ e
O,
@\:

100



Baseline: Mintz 2009

Learn to map patterns to Freebase

patterns

Observed Patterns
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Baseline: Yao 2011

use pattern clusters as additional features

patterns
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Baseline: Surdenau 2012

State-of-the-Art Multi-label Model

patterns

Observed Patterns
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Model N

Like Mintz, but also predicts patterns

patterns
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Model F, E, NF, NFE ...

Information Flow Between relations

patterns
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Training



Negative Data

Usually unavailable or sparse, so...

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1
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Sample Unobserved Cells as Negative

Can work...

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1
1 1 0
1 1
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Subsample

but often does not (and wastes resources)

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1
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Subsample

and you need to sample a lot (wasting resources)

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

0 1 1 0 1

1 1 0 0
0 1 0 1
1 0
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Ranking
[Rendle et al.,09]

for all (observed,not observed) pairs in column: prob(o) > prob(n)

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1
0.9 1

0.95 1 1
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Training: Stochastic Gradient Descent

[Rendle et al.,09]

Sample observed fact...

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1
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Training: Stochastic Gradient Descent

[Rendle et al.,09]

Sample unobserved cell for same relation

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1
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Training: Stochastic Gradient Descent

[Rendle et al.,09]

Estimate current beliefs and gradient, update parameters accordingly

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1
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Training: Stochastic Gradient Descent

[Rendle et al.,09]

Estimate current beliefs and gradient, update parameters accordingly

X-is-historian-at-Y  X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1
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