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Columns ordered by patterns
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Fails for unseen patterns
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Annotation costly...
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Let’s leverage pre-existing databases

[Craven & Kumlien,99; Mintz et al.,09, Riedel et al., 10] 

Distant Supervision
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but what if no such databases exist for a relation?

[Riedel et al.,10; Hoffmann et al., 11, Surdeanu et al., 12] 

Distant Supervision
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Petrie, a London 
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professor at UCL from 
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The Petrie Museum at 
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but what if no such databases exist for a relation?

[Riedel et al.,10; Hoffmann et al., 11, Surdeanu et al., 12] 
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but what if no such databases exist for a relation?

[Riedel et al.,10; Hoffmann et al., 11, Surdeanu et al., 12] 
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Universal Schemas



Convert problem into a matrix formulation

Matrix Representation
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employee(X,Y)

Petrie, a London 
native, was a 
professor at UCL from 
1892 to 1933. 

The Petrie Museum at 
UCL preserves an 
estimated 80,000 
objects.

1
Ferguson is a 
historian at Harvard 
focusing on British and 
American Imperialism. 

Ferguson is a 
professor at Harvard. 1
Andrew is a professor 
at Cambridge

Andrew teaches 
history at Cambridge 1

0

Database 
labels text

His great-nephew, G. 
Trevelyan, was a 
noted historian at 
Cambridge.

http://en.wikipedia.org/wiki/University_of_Cambridge
http://en.wikipedia.org/wiki/University_of_Cambridge


Columns correspond to patterns between mentions

Matrix Representation

Database 
labels text

X-is-historian-at-Y employee(X,Y)

Petrie, a London 
native, was a 
professor at UCL from 
1892 to 1933. 

The Petrie Museum at 
UCL preserves an 
estimated 80,000 
objects.

1

1 Ferguson is a 
professor at Harvard. 1
Andrew is a professor 
at Cambridge

Andrew teaches 
history at Cambridge 1

1 0

23



Columns correspond to patterns between mentions

Matrix Representation

24

Database 
labels text

X-is-historian-at-Y X-is-professor-at-Y employee(X,Y)

1
The Petrie Museum at 
UCL preserves an 
estimated 80,000 
objects.

1

1 1 1

1 Andrew teaches 
history at Cambridge 1

1 0



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1 1

1 1 1

1 0

Columns correspond to patterns between mentions

Matrix Representation

25



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y historianAt(X,Y)

1 1 ?

1 1 ?

1 1 ?

1 ?

So what about relations with no pre-existing databases?

Extending the Schema

26



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y historianAt(X,Y)

1 1 ?

1 1 ?

1 1 ?

1 ?

Patterns become relations...

[Etzioni et al.,08]

Open Information Extraction

27



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y historianAt(X,Y)

1 1 ?
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1 ?

and often correspond to your target relations

[Etzioni et al.,08]

Open Information Extraction
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y historianAt(X,Y)

1 1 ?

1 1 ?

0 1 1 ?

1 ?

...but no reasoning / generalization

[Etzioni et al.,08]

Open Information Extraction
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y historianAt(X,Y)

1 1 ?
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1 1 ?
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Find patterns with “similar meaning”

[Lin & Pantel,01; Yates & Etzioni, 09, ...]

Pattern Clustering

30



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y historianAt(X,Y)

1 1

1 1 1

1 1 1

1 1

Clustering these into a latent relation... 

[Lin & Pantel,01; Yates & Etzioni, 09, ...]

Pattern Clustering
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y historianAt(X,Y)
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...assumes symmetry...

[Lin & Pantel,01; Yates & Etzioni, 09, ...]

Pattern Clustering
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...assumes symmetry...

[Lin & Pantel,01; Yates & Etzioni, 09, ...]

Pattern Clustering
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1 1
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...ignores Context.

[Lin & Pantel,01; Yates & Etzioni, 09, ...]

Pattern Clustering
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y historianAt(X,Y)

1 1

1 1 1

0 1 0
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...ignores Context.

[Lin & Pantel,01; Yates & Etzioni, 09, ...]

Pattern Clustering
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1 ?

1 1 ?

1 ?

Recall that relation extraction fills in cells

Relation Extraction 
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1 ?

1 1 ?

1 ?

Extend schema to the universe of all input relations

Universal Schema

37



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

? 1 1 ? 1

1 1 ? ? ?

? 1 ? 1 ?

1 ? ? ? ?

Try to fill in all cells

Reasoning with Universal Schema

38



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1

1 1

1 0

Reasoning about patterns helps structured relations

Mutually Supportive

39



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1

1 1

1 0

Reasoning about patterns helps structured relations

Mutually Supportive
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1

1 1

1 0.9 0.8

Reasoning about patterns helps structured relations

Mutually Supportive

41



Models



p(yx,yemp = 1|fx,yemp,wemp) / exp[< fx,yemp,wemp >]

X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

Standard supervised relation extractor ...

[Mintz et al 2009,...]

Model N: Classifier

43
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Model N: Classifier
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

... for each pattern

Model N: Classifier

47
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1

Per tuple latent feature vector

[Collins et al, 2001]

Model F: Latent Feature (Factorization)

48
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Natural parameters approximated by a low-rank matrix product 

[Collins et al, 2001]

Matrix Factorization: PCA
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⇡ ⇥

We can leverage large body of scalable methods in collaborative filtering 

Benefit
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1

Pattern reasoning helps structured relations

Model F: Latent Feature (Factorization)
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Pattern reasoning helps structured relations

Model F: Latent Feature (Factorization)
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Pattern reasoning helps structured relations

Model F: Latent Feature (Factorization)
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Pattern reasoning helps structured relations

Model F: Latent Feature (Factorization)
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X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

Relations have entity type restriction

Model E: Selectional Preferences

60
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X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

0 0 0

Relations have entity type restriction

Model E: Selectional Preferences
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X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

1

1

Argument Slot 1 weight vector ... 

Model E: Selectional Preferences
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X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

1

1

... dot-product with feature vector of entity 1

Model E: Selectional Preferences
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X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

1

1

Argument Slot 2 weight vector ... 

Model E: Selectional Preferences
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X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y

1

1

... dot-product with feature vector of entity 2

Model E: Selectional Preferences
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models capture different aspects of the data, combine them (e.g., NF)

Combinations

66
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1

1 1

1

Usually unavailable or sparse, so...

Negative Data
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1 0

1 1

1

Can work...

Sample Unobserved Cells as Negative
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1

0 1 1

1

but often does not 

Subsample
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

0 1 1 0 1

1 1 0 0

0 1 0 1

1 0 0

and you need to sample a lot (wasting resources)

Subsample
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User 1 User 2 User 3 User 4 User 5

1 1 1

1 1

1 1

1

Often users only click/view/buy items, or not, but no rating

Implicit Feedback 
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

0.9 1

0.95 1 1

1

for all (observed,not observed) pairs in column: prob(o) > prob(n) 

[Rendle et al.,09]

Ranking
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

0.9 1

0.85 1 1

1

for all (observed,not observed) pairs in a column: prob(o) > prob(n) 

[Rendle et al.,09]

Ranking

74
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1

1 1

1

Sample observed fact... 

[Rendle et al.,09]

Training: Stochastic Gradient Descent
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1

1 1

1

Sample unobserved cell for same relation 

[Rendle et al.,09]

Training: Stochastic Gradient Descent
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

0.8 1 1

1 1

1 1

1 0.9

Estimate current beliefs and gradient, update parameters accordingly

[Rendle et al.,09]

Training: Stochastic Gradient Descent
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

0.85 1 1

1 1

1 1

1 0.80

Estimate current beliefs and gradient, update parameters accordingly

[Rendle et al.,09]

Training: Stochastic Gradient Descent
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Learn to map patterns to Freebase

Baseline: Mintz 2009
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use pattern clusters as additional features

Baseline: Yao 2011
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Observed Patterns and Relations

Observed Patterns



State-of-the-Art Multi-label Model

Baseline: Surdenau 2012
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Like Mintz, but also predicts patterns

Model N
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Information Flow Between relations

Model F, E, NF, NFE ...
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Evaluate average precision per Freebase relation. 

[Mintz 09; Yao 11; Surdenau 12]

Evaluation (Structured)
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Averaged 11 point precision recall curve

[Mintz 09; Yao 11; Surdenau 12]

Evaluation (Structured)

88

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

Pr
ec

is
io

n

Recall

Averaged 11-point Precision/Recall

SU12
N
F

NF
NFE



Averaged 11 point precision recall curve

[Mintz 09; Yao 11; Surdenau 12]

Evaluation (Structured)
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Precision Recall curve for works_written

Evaluation (Structured)
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Evaluate Freebase relations

Setup
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patterns
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[Mintz 09; Yao 11; Surdenau 12]

Evaluation (Patterns)

91



Conclusion

• Challenge: Relations w/o preexisting databases
• Solution: Extraction in Universal Schemas with ...
• ... Patterns-based + Structured Relations
• Latent Feature models support information flow...
• ... and outperform classifiers to get ...
• ... State-of-the-art results
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Thanks!
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X-is-historian-at-Y

0.9

0.85

1

Train by maximizing a LL variant

[Rendle et al.,09]

Ranking
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1

Pattern reasoning helps structured relations

Model F: Latent Feature (Factorization)
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Pattern reasoning helps structured relations
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Learn to map patterns to Freebase

Baseline: Mintz 2009
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use pattern clusters as additional features

Baseline: Yao 2011

102

patterns

?Extract Pattern Clusters

Observed Patterns and Relations

Observed Patterns



State-of-the-Art Multi-label Model

Baseline: Surdenau 2012
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Like Mintz, but also predicts patterns

Model N
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Information Flow Between relations

Model F, E, NF, NFE ...
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Training



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1

1 1

1

Usually unavailable or sparse, so...

Negative Data

107



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1 0

1 1

1

Can work...

Sample Unobserved Cells as Negative
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1

0 1 1

1

but often does not (and wastes resources)

Subsample
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

0 1 1 0 1

1 1 0 0

0 1 0 1

1 0 0

and you need to sample a lot (wasting resources)

Subsample

110



X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

0.9 1

0.95 1 1

1

for all (observed,not observed) pairs in column: prob(o) > prob(n) 

[Rendle et al.,09]

Ranking
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1

1 1

1

Sample observed fact... 

[Rendle et al.,09]

Training: Stochastic Gradient Descent
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

1 1 1

1 1

1 1

1

Sample unobserved cell for same relation 

[Rendle et al.,09]

Training: Stochastic Gradient Descent
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

0.8 1 1

1 1

1 1

1 0.9

Estimate current beliefs and gradient, update parameters accordingly

[Rendle et al.,09]

Training: Stochastic Gradient Descent
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X-is-historian-at-Y X-is-professor-at-Y X-museum-at-Y X-teaches-history-at-Y employee(X,Y)

0.85 1 1

1 1

1 1

1 0.80

Estimate current beliefs and gradient, update parameters accordingly

[Rendle et al.,09]

Training: Stochastic Gradient Descent
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