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Day 0

Basic Tutorials

In this class we will introduce several fundamental concepts needed further ahead. We start with an introduc-
tion to Python, the programming language we will use in the lab sessions, and to Matplotlib and Numpy, two
modules for plotting and scientific computing in Python, respectively. Afterwards, we present several notions
on probability theory and linear algebra. Finally, we focus on numerical optimization.

The goal of this class is to give you the basic knowledge for you to understand the following lectures. We
will not enter in too much detail in any of the topics.

0.1 Python

0.1.1 Python Basics

Running Python code

We will start by creating and running a dummy program in Python which simply prints the “Hello World!”
message to the standard output (this is usually the first program you code when learning a new programming
language).

There are two main ways in which you can run code in Python:

From a file – Create a file named yourfile.py and write your program in it, using your favorite text editor:

print 'Hello World!'

After saving and closing the file, you can run your code by calling:

python yourfile.py

in the command line. This will run the program and display the message “Hello World!”. After, the
control will return to the command line.

In the interactive command line – Start the interactive command line in Python using the command python.
After this, you can run Python code by simply writing it and pressing enter. In our lab sessions, we will
use Python in interactive mode several times. The standard Python interface is not very friendly, though.
IPython, which stands for interactive Python, is an improved Python shell. It saves your command history
between sessions, has basic auto-complete, and has internal support for interacting with graphs through
matplotlib. IPython is also designed to facilitate running parallel code on clusters of machines, but we
will not make use of that functionality.

To run IPython, simply type ipython on your command line1. For interactive numeric use, the --pylab
flag imports numpy and matplotlib (the two libraries we will extensively use in the lab sessions) for you
and sets up interactive graphs:

IPython --pylab

1Note that in some systems, e.g. Linux, you may need to run the command lower-cased.
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You can then run Python commands in the IPython command line

In[]: print "Hello, World!"
Out[]: Hello, World!

but you can also run Python code written into a file.

In[]: run ./yourfile.py
Out[]: Hello, World!

Keep in mind that you can easily switch between these two modes. You can quickly test commands in the
command line directly and e.g. inspect variables. Larger sections of code can be stored and run from files.

Help and Documentation

There are several ways to get help on IPython:

• Adding a question mark to the end of a function or variable and pressing Enter brings up associated doc-
umentation. Unfortunately, not all packages are well documented. Numpy and matplotlib are pleasant
exceptions;

• help(’print’) gets the online documentation for the print keyword;

• help(), enters the help system.

• When at the help system, type q to exit.

For more information on IPython (Pérez and Granger, 2007), check the website: http://ipython.scipy.
org/moin/

Exiting

Exit IPython by typing exit() or quit() (or typing CTRL-D).

0.1.2 Python by Example

Data Structures

In Python, you can create lists of items with the following syntax:

countries = ['Portugal','Spain','United Kingdom']

A string should be surrounded with apostrophes (’). You can access a list with the following:

• len(L), which returns the number of items in L;

• L[i], which returns the item at index i (the first item has index 0);

• L[i:j], which returns a new list, containing all the items between indexes i and j− 1, inclusive.

Exercise 0.1 Use L[i:j] to return the countries in the Iberian Peninsula.
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Loops and Indentation

A loop allows a section of code to be repeated a certain number of times, until a stop condition is reached. For
instance, when the list you are iterating has reached its end or when a variable has reached a certain value (in
this case, you should not forget to update the value of that variable inside the code of the loop). In Python you
have while and for loop statements. The following two example programs output exactly the same using
both statements: the even numbers from 2 to 8.

i = 2
while i < 10:

print i
i += 2

for i in range(2,10,2):
print i

You can copy and run this from the IPython command line. Alternatively you can write this into your
yourfile.py file an run it as well. Notice something? It is possible that the code did not act as expected
or maybe an error message popped up. This brings us to an important aspect of Python: indentation. In-
dentation is the number of blank spaces at the leftmost of each command. This is how Python differentiates
between blocks of commands inside and outside a statement, e.g. while, for or other. All commands within
a statement have the same number of blank spaces at their leftmost. For instance, consider the following code:

a=1
while a <= 3:

print a
a += 1

and its output:

1
2
3

Exercise 0.2 Can you then predict the output of the following code?:

a=1
while a <= 3:

print a
a += 1

Bear in mind that indentation is often the main source of errors when starting to work with Python. Try to
get used to it as quickly as possible. It is also recommendable that you use a text editor that can display all
characters e.g. blank space, tabs, since these characters can be visually similar but are considered different by
Python. One of the most common mistakes by newcomers to Python is to have their files indented with spaces
on some lines and with tabs on other lines. Visually it might appear that all lines have proper indentation, but
you will get an IndentationError message if you try it.

Control Flow

The if statement allows to control the flow of your program. The next program outputs a greeting that
depends on the time of the day.
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hour = 16
if hour < 12:

print 'Good morning!'
elif hour >= 12 and hour < 20:

print 'Good afternoon!'
else:

print 'Good evening!'

Functions

A function is a block of code that can be reused to perform a similar action. The following is a function in
Python.

def greet(hour):
if hour < 12:

print 'Good morning!'
elif hour >= 12 and hour < 20:

print 'Good afternoon!'
else:

print 'Good evening!'

You can write this command into IPython interactive command line directly or write them into a file and
run the file in IPython. Once you do this the function will be available for you to use. Call the function
greet with different hours of the day (for example, type greet(16)) and see that the program will greet you
accordingly.

Exercise 0.3 Note that the previous code allows the hour to be less than 0 or more than 24. Change the code in order to
indicate that the hour given as input is invalid. Your output should be something like:

greet(50)
Invalid hour: it should be between 0 and 24.
greet(-5)
Invalid hour: it should be between 0 and 24.

Profiling

If you are interested in checking the performance of your program, you can use the command %prun in
IPython (this is an IPython-only feature). For example:

def myfunction(x):
...

%prun myfunction(22)

The output of the %prun command will show the following information for each function that was called
during the execution of your code:

• ncalls: The number of times this function was called. If this function was used recursively, the output
will be two numbers; the first one counts the total function calls with recursions included, the second
one excludes recursive calls.

• tottime: Total time spent in this function, excluding the time spent in other functions called from within
this function.

• percall: Same as tottime, but divided by the number of calls.
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• cumtime: Same as tottime, but including the time spent in other functions called from within this
function.

• percall: Same as cumtime, but divided by the number of calls.

• filename:lineno(function): Tells you where this function was defined.

Debugging in Python

During the lab sessions we will use the previously described IPython iterative command line which allows
you to execute a script, command by command. This should limit the need for debugging tools. However,
there will be situations in which we will use and extend modules that involve more elaborated code and
statements, like classes and nested functions. Although desirable, it should not be necessary for you to fully
understand the whole code to carry out the exercises. It will suffice to understand the algorithm as explained
in the theoretical part of the class and the local context of the part of the code where we will be working.

The simplest way to do this is to run the code and stop the execution at a given point (called break-point)
to get a quick glimpse of the variable structures and to inspect the execution flow of your program. For that,
you can use the ipdb module.

In the following example, we use this module to inspect the greet function:

def greet(hour):
if hour < 12:

print 'Good morning!'
elif hour >= 12 and hour < 20:

print 'Good afternoon!'
else:

import ipdb;ipdb.set_trace()
print 'Good evening!'

Load the new definition of the function into IPython by writting this code in a file and running it. Now,
if you try greet(50) the code execution should stop at the place where you located the break-point (that
is, in the print ’Good evening!’ statement). You can now run new commands or inspect variables.
For this purpose there are a number of commands you can use. The complete list can be found at http:
//docs.python.org/library/pdb.html, but we provide here a short table with the most useful:

(h)elp Starts the help menu
(p)rint Prints a variable
(p)retty(p)rint Prints a variable, with line break (useful for lists)
(n)ext line Jumps to next line
(s)tep Jumps inside of the function we stopped at
c(ont(inue)) Continues execution until finding breakpoint or finishing
(r)eturn Continues execution until current function returns
b(reak) n Sets a breakpoint in in line n
l(ist) [n], [m] Prints 11 lines around current line. Optionally starting in line n or between lines n, m
w(here) Shows which function called the function we are in, and upwards (stack2)
u(p) Goes one level up the stack (frame of the function that called the function we are on)
d(down) Goes one level down the stack
blank Repeat the last command
expression Executes the python expression as if it was in current frame

Table 1: Basic pdb/ipdb commands, parentheses indicates abbreviation

So getting back to our example, we can type n(ext) once to execute the line we stopped at

ipdb> n
> ./lxmls-toolkit/yourfile.py(8)greet()

7 import ipdb;ipdb.set_trace()
----> 8 print 'Good evening!'

2Note that since we are inside the IPython command line, the IPython functions will also appear at the top.
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Now we can inspect the variable hour using the p(retty)p(rint) option

ipdb> pp hour
50

From here we could keep advancing with the n(ext) option or set a b(reak) point and type c(ontinue) to
jump to a new position. We could also execute any python expression which is valid in the current frame
(the function we stopped at). This is particularly useful to find out why code crashes, as we can try different
alternatives without the need to restart the code again.

0.1.3 Exceptions

Occasionaly, a syntactically correct code statement may produce an error when an attempt is made to execute
it. These kind of errors are called exceptions in Python. For example, try executing the following:

10/0

A ZeroDivisionError exception was raised, and no output was returned. Exceptions can also be forced
to occur by the programmer, with customized error messages (for a complete list of built-in exceptions, see
http://docs.python.org/2/library/exceptions.html).

raise ValueError("Invalid input value.")

Exercise 0.4 Rewrite the code in Exercise 0.3 in order to raise a ValueError exception when the hour is less than 0 or
more than 24.

Handling of exceptions is made with the try statement:

while True:
try:

x = int(raw_input("Please enter a number: ")
break

except ValueError:
print "Oops! That was no valid number. Try again..."

It works by first executing the try clause. If no exception occurs, the except clause is skipped; if an exception
does occur, and if its type matches the the exception named in the except keyword, the except clause is executed;
otherwise, the exception is raised and execution is oborted (if it is not caught by outer try statements).

Extending basic Functionalities with Modules

In Python you can load new functionalities into the language by using the import, from and as keywords.
For example we can load the numpy module as

import numpy as np

then we can run the following on the IPython command line

np.var?
np.random.normal?

The import will make the numpy tools available through the alias np. This shorter alias prevents the code
from getting too long if we load lots of modules. The first command will display the help for the method
numpy.var using the previously commented symbol ?. Note that in order to display the help you need the
full name of the function including the module name or alias. Modules have also submodules that can be
accessed the same way, as shown in the second example.
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0.1.4 Matplotlib – Plotting in Python

Matplotlib3 is a plotting library for Python. It supports 2D and 3D plots of various forms. It can show them
interactively or save them to a file (several output formats are supported).

import numpy as np
import matplotlib.pyplot as plt

X = np.linspace(-4, 4, 1000)

plt.plot(X, X**2*np.cos(X**2))
plt.savefig("simple.pdf")

Exercise 0.5 Try running the following on IPython, which will introduce you to some of the basic numeric and plotting
operations.

# This will import the numpy library
# and give it the np abbreviation
import numpy as np

# This will import the plotting library
import matplotlib.pyplot as plt

# Linspace will return 1000 points,
# evenly spaced between -4 and +4
X = np.linspace(-4, 4, 1000)

# Y[i] = X[i]**2
Y = X**2

# Plot using a red line ('r')
plt.plot(X, Y, 'r')

# arange returns integers ranging from -4 to +4
# (the upper argument is excluded!)
Ints = np.arange(-4,5)

# We plot these on top of the previous plot
# using blue circles (o means a little circle)
plt.plot(Ints, Ints**2, 'bo')

# You may notice that the plot is tight around the line
# Set the display limits to see better
plt.xlim(-4.5,4.5)
plt.ylim(-1,17)
plt.show()

0.1.5 Numpy – Scientific Computing with Python

Numpy4 is a library for scientific computing with Python.

Multidimensional Arrays

The main object of numpy is the multidimensional array. A multidimensional array is a table with all elements
of the same type and can have several dimensions. Numpy provides various functions to access and manipu-
late multidimensional arrays. In one dimensional arrays, you can index, slice, and iterate as you can with lists.
In a two dimensional array M, you can use perform these operations along several dimensions.

3http://matplotlib.org/
4http://www.numpy.org/
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• M[i,j], to access the item in the ith row and jth column;

• M[i:j,:], to get the all the rows between the ith and j− 1th;

• M[:,i], to get the ith column of M.

Again, as it happened with the lists, the first item of every column and every row has index 0.

import numpy as np
A = np.array([

[1,2,3],
[2,3,4],
[4,5,6]])

A[0,:] # This is [1,2,3]
A[0] # This is [1,2,3] as well

A[:,0] # this is [1,2,4]

A[1:,0] # This is [ [2], [4] ]. Why?
# Because it is the same as A[1:n,0] where n is the size of the array.

Mathematical Operations

There are many helpful functions in numpy. For basic mathematical operations, we have np.log, np.exp,
np.cos,. . . with the expected meaning. These operate both on single arguments and on arrays (where they
will behave element wise).

import matplotlib.pyplot as plt
import numpy as np

X = np.linspace(0, 4 * np.pi, 1000)
C = np.cos(X)
S = np.sin(X)

plt.plot(X, C)
plt.plot(X, S)

Other functions take a whole array and compute a single value from it. For example, np.sum, np.mean,. . . These
are available as both free functions and as methods on arrays.

import numpy as np

A = np.arange(100)

# These two lines do exactly the same thing
print np.mean(A)
print A.mean()

C = np.cos(A)
print C.ptp()

Exercise 0.6 Run the above example and lookup the ptp function/method (use the ? functionality in IPython).

Exercise 0.7 Consider the following approximation to compute an integral

∫ 1

0
f (x)dx ≈

999

∑
i=0

f (i/1000)
1000

.

Use numpy to implement this for f (x) = x2. You should not need to use any loops. Note that integer division in
Python 2.x returns the floor division (use floats – e.g. 5.0/2.0 – to obtain rationals). The exact value is 1/3. How close
is the approximation?
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0.2 Essential Linear Algebra

Linear Algebra provides a compact way of representing and operating on sets of linear equations.

4x1 −5x2 = −13

−2x1 +3x2 = 9

This is a system of linear equations in 2 variables. In matrix notation we can write the system more com-
pactly as

Ax = b

with

A =

[
4 −5
−2 3

]
, b =

[
−13

9

]

0.2.1 Notation

We use the following notation:

• By A ∈ Rm×n, we denote a matrix with m rows and n columns, where the entries of A are real numbers.

• By x ∈ Rn, we denote a vector with n entries. A vector can also be thought of as a matrix with n rows
and 1 column, known as a column vector. A row vector — a matrix with 1 row and n columns is denoted
as xT , the transpose of x.

• The ith element of a vector x is denoted xi

x =


x1
x2
...

xn

 .

Exercise 0.8 In the rest of the school we will represent both matrices and vectors as numpy arrays. You can create arrays
in different ways, one possible way is to create an array of zeros.

import numpy as np
m = 3
n = 2
a = np.zeros([m,n])
print a
[[ 0. 0.]
[ 0. 0.]
[ 0. 0.]]

You can check the shape and the data type of your array using the following commands:

print a.shape
(3, 2)
print a.dtype.name
float64

This shows you that “a” is an 3*2 array of type float64. By default, arrays contain 64 bit5 floating point numbers. You
can specify the particular array type by using the keyword dtype.

a = np.zeros([m,n],dtype=int)
print a.dtype
int64

5On your computer, particularly if you have an older computer, int might denote 32 bits integers
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You can also create arrays from lists of numbers:

a = np.array([[2,3],[3,4]])
print a
[[2 3]
[3 4]]

There are many more ways to create arrays in numpy and we will get to see them as we progress in the classes.

0.2.2 Some Matrix Operations and Properties

• Product of two matrices A ∈ Rm×n and B ∈ Rn×p is the matrix C = AB ∈ Rm×p, where

Cij =
n

∑
k=1

AikBkj.

Exercise 0.9 You can multiply two matrices by looping over both indexes and multiplying the individual entries.

a = np.array([[2,3],[3,4]])
b = np.array([[1,1],[1,1]])
a_dim1, a_dim2 = a.shape
b_dim1, b_dim2 = b.shape
c = np.zeros([a_dim1,b_dim2])
for i in xrange(a_dim1):

for j in xrange(b_dim2):
for k in xrange(a_dim2):

c[i,j] += a[i,k]*b[k,j]
print c

This is, however, cumbersome and inefficient. Numpy supports matrix multiplication with the dot function:

d = np.dot(a,b)
print d

Important note: with numpy, you must use dot to get matrix multiplication, the expression a * b denotes
element-wise multiplication.

• Matrix multiplication is associative: (AB)C = A(BC).

• Matrix multiplication is distributive: A(B + C) = AB + AC.

• Matrix multiplication is (generally) not commutative : AB 6= BA.

• Given two vectors x, y ∈ Rn the product xTy, called inner product or dot product, is given by

xTy ∈ R =
[

x1 x2 . . . xn
]


y1
y2
...

yn

 =
n

∑
i=1

xiyi.

a = np.array([1,2])
b = np.array([1,1])
np.dot(a,b)
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• Given vectors x ∈ Rm and y ∈ Rn, the outer product xyT ∈ Rm×n is a matrix whose entries are given by
(xyT)ij = xiyj,

xyT ∈ Rm×n =


x1
x2
...

xn

 [ y1 y2 . . . yn
]
=


x1y1 x1y2 . . . x1yn
x2y1 x2y2 . . . x2yn

...
...

. . .
...

xmy1 xmy2 . . . xmyn

 .

np.outer(a,b)
array([[1, 1],

[2, 2]])

• The identity matrix, denoted I ∈ Rn×n, is a square matrix with ones on the diagonal and zeros every-
where else. That is,

Iij =

{
1 i = j
0 i 6= j

It has the property that for all A ∈ Rn×n, AI = A = IA.

I = np.eye(2)
x = np.array([2.3, 3.4])

print I
print np.dot(I,x)

[[ 1., 0.],
[ 0., 1.]]
[2.3, 3.4]

• A diagonal matrix is a matrix where all non-diagonal elements are 0.

• The transpose of a matrix results from “’flipping” the rows and columns. Given a matrix A ∈ Rm×n, the
transpose AT ∈ Rn×m is the n×m matrix whose entries are given by (AT)ij = Aji.

Also, (AT)T = A; (AB)T = BT AT ; (A + B)T = AT + BT

In numpy, you can access the transpose of a matrix as the T attribute:

A = np.array([ [1, 2], [3, 4] ])
print A.T

• A square matrix A ∈ Rn×n is symmetric if A = AT .

• The trace of a square matrix A ∈ Rn×n is the sum of the diagonal elements, tr(A) =
n
∑

i=1
Aii

0.2.3 Norms

The norm of a vector is informally the measure of the “length” of the vector. The commonly used Euclidean
or `2 norm is given by

‖x‖2 =

√
n

∑
i=1

x2
i .

• More generally, the `p norm of a vector x ∈ Rn, where p ≥ 1 is defined as
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‖x‖p =

(
n

∑
i=1
|xi|p

)1/p

.

Note: `1 norm : ‖x‖1 =
n
∑

i=1
|xi| `∞ norm : ‖x‖∞ = maxi|xi| .

0.2.4 Linear Independence, Rank, and Orthogonal Matrices

A set of vectors {x1, x2, . . . , xn} ⊂ Rm is said to be (linearly) independent if no vector can be represented as a
linear combination of the remaining vectors. Conversely, if one vector belonging to the set can be represented
as a linear combination of the remaining vectors, then the vectors are said to be linearly dependent. That is, if

xj = ∑
i 6=j

αixi

for some j ∈ {1, . . . , n} and some scalar values α1, . . . , αi−1, αi+1, . . . , αn ∈ R.

• The rank of a matrix is the number of linearly independent columns, which is always equal to the number
of linearly independent rows.

• For A ∈ Rm×n, rank(A) ≤min(m, n). If rank(A) =min(m, n), then A is said to be full rank.

• For A ∈ Rm×n, rank(A)=rank(AT).

• For A ∈ Rm×n, B ∈ Rn×p, rank(AB) ≤min(rank(A),rank(B)).

• For A, B ∈ Rm×n, rank(A + B) ≤ rank(A) + rank(B).

• Two vectors x, y ∈ Rn are orthogonal if xTy = 0. A square matrix U ∈ Rn×n is orthogonal if all its
columns are orthogonal to each other and are normalized (‖x‖2 = 1), It follows that

UTU = I = UUT .

0.3 Probability Theory

Probability is the mathematical language for quantifying uncertainty. The sample space X is the set of possible
outcomes of an experiment. Events are subsets of X.

Example 0.1 (discrete space) Let H denote “heads” and T denote “tails.” If we toss a coin twice, then X = {HH, HT, TH, TT}.
The event that the first toss is heads is A = {HH, HT}.

Sample space can also be continuous (eg., X = R). The union of events A and B is defined as A
⋃

B = {ω ∈
X | ω ∈ A ∨ ω ∈ B}. If A1, . . ., An is a sequence of sets then

n⋃
i=1

Ai = {ω ∈ X | ω ∈ Ai for at least one i}. We

say that A1, . . ., An are disjoint or mutually exclusive if Ai ∩ Aj = ∅ whenever i 6= j.

We want to assign a real number P(A) to every event A, called the probability of A. We also call P a
probability distribution or probability measure.

Definition 0.1 A function P that assigns a real number P(A) to each event A is a probability distribu-
tion or a probability measure if it satisfies the three following axioms:

Axiom 1: P(A) ≥ 0 for every A
Axiom 2: P(X) = 1
Axiom 3: If A1, . . ., An are disjoint then

P

(
n⋃

i=1

Ai

)
=

n

∑
i=1

P(Ai).
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One can derive many properties of P from these axioms:

P(∅) = 0

A ⊆ B ⇒ P(A) ≤ P(B)

0 ≤ P(A) ≤ 1

P(A′) = 1− P(A) (A’ is the complement of A)

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

A ∩ B = φ ⇒ P (A ∪ B) = P(A) + P(B).

An important case is when events are independent, this is also a usual approximation which lends several
practical advantages for the computation of the joint probability.

Definition 0.2 Two events A and B are independent if

P(AB) = P(A)P(B) (1)

often denoted as A ⊥⊥ B. A set of events {Ai : i ∈ I} is independent if

P

⋂
i∈J

Ai

 = ∏
i∈J

P(Ai)

for every finite subset J of I.

For events A and B, where P(B) > 0, the conditional probability of A given that B has occurred is defined
as:

P(A|B) = P(AB)
P(B)

. (2)

Events A and B are independent if and only if P(A|B) = P(A). This follows from the definitions of
independence and conditional probability.

A preliminary result that forms the basis for the famous Bayes’ theorem is the law of total probability which
states that if A1, . . . , Ak is a partition of X, then for any event B,

P(B) =
k

∑
i=1

P(B|Ai)P(Ai). (3)

Using Equations 2 and 3, one can derive the Bayes’ theorem.

Theorem 0.1 (Bayes’ Theorem) Let A1, . . . Ak be a partition of X such that P(Ai) > 0 for each i. If
P(B) > 0 then, for each i = 1, . . . , k,

P(Ai|B) =
P(B|Ai)P(Ai)

∑j P(B|Aj)P(Aj)
. (4)

Remark 0.1 P(Ai) is called the prior probability of Ai and P(Ai|B) is the posterior probability of Ai.

Remark 0.2 In Bayesian Statistical Inference, the Bayes’ theorem is used to compute the estimates of distribution pa-
rameters from data. Here, prior is the initial belief about the parameters, likelihood is the distribution function of the
parameter (usually trained from data) and posterior is the updated belief about the parameters.

0.3.1 Probability distribution functions

A random variable is a mapping X : X→ R that assigns a real number X(ω) to each outcome ω. Given a ran-
dom variable X, an important function called the cumulative distributive function (or distribution function)
is defined as:

Definition 0.3 The cumulative distribution function CDF FX : R → [0, 1] of a random variable X is defined by
FX(x) = P(X ≤ x).
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The CDF is important because it captures the complete information about the random variable. The CDF
is right-continuous, non-decreasing and is normalized (limx→−∞F(x) = 0 and limx→∞F(x) = 1).

Example 0.2 (discrete CDF) Flip a fair coin twice and let X be the random variable indicating the number of heads.
Then P(X = 0) = P(X = 2) = 1/4 and P(X = 1) = 1/2. The distribution function is

FX(x) =


0 x < 0

1/4 0 ≤ x < 1
3/4 1 ≤ x < 2

1 x ≥ 2.

Definition 0.4 X is discrete if it takes countable many values {x1, x2, . . .}. We define the probability function or
probability mass function for X by

fX(x) = P(X = x).

Definition 0.5 A random variable X is continuous if there exists a function fX such that fX ≥ 0 for all x,
∞∫
−∞

fX(x)dx = 1 and for every a ≤ b

P(a < X < b) =
b∫

a

fX(x)dx. (5)

The function fX is called the probability density function (PDF). We have that

FX(x) =
x∫

−∞

fX(t)dt

and fX(x) = F
′
X(x) at all points x at which FX is differentiable.

A discussion of a few important distributions and related properties:

0.3.2 Bernoulli

The Bernoulli distribution is a discrete probability distribution that takes value 1 with the success probability
p and 0 with the failure probability q = 1 − p. A single Bernoulli trial is parametrized with the success
probability p, and the input k ∈ {0, 1} (1=success, 0=failure), and can be expressed as

f (k; p) = pkq1−k = pk(1− p)1−k

0.3.3 Binomial

The probability distribution for the number of successes in n Bernoulli trials is called a Binomial distribution,
which is also a discrete distribution. The Binomial distribution can be expressed as exactly j successes is

f (j, n; p) =
(

n
j

)
pjqn−j =

(
n
j

)
pj(1− p)n−j

where n is the number of Bernoulli trials with probability p of success on each trial.

0.3.4 Categorical

The Categorical distribution (often conflated with the Multinomial distribution, in fields like Natural Lan-
guage Processing) is another generalization of the Bernoulli distribution, allowing the definition of a set of
possible outcomes, rather than simply the events “success” and “failure” defined in the Bernoulli distribution.
Considering a set of outcomes indexed from 1 to n, the distribution takes the form of

f (xi; p1, ..., pn) = pi.
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where parameters p1, ..., pn is the set with the occurrence probability of each outcome. Note that we must
ensure that ∑n

i=1 pi = 1, so we can set pn = 1−∑n−1
i=1 pi.

0.3.5 Multinomial

The Multinomial distribution is a generalization of the Binomial distribution and the Categorical distribution,
since it considers multiple outcomes, as the Categorial distribution, and multiple trials, as in the Binomial
distribution. Considering a set of outcomes indexed from 1 to n, the vector x1, ..., xn, where xi indicates the
number of times the event with index i occurs, follows the Multinomial distribution

f (x1, ..., xn; p1, ..., pn) =
n!

x1!...xn!
px1

1 ...pxn
n .

Where parameters p1, ..., pn represent the occurrence probability of the respective outcome.

0.3.6 Gaussian Distribution

A very important theorem in probability theory is the Central Limit Theorem. The Central Limit Theorem
states that, under very general conditions, if we sum a very large number of mutually independent random
variables, then the distribution of the sum can be closely approximated by a certain specific continuous density
called the normal (or Gaussian) density. The normal density function with parameters µ and σ is defined as
follows:

fX(x) =
1√
2πσ

e−(x−µ)2/2σ2
, −∞ < x < ∞.

Figure 1: Normal density for two sets of parameter values.

Figure 1 compares a plot of normal density for the cases µ = 0 and σ = 1, and µ = 0 and σ = 2.

0.3.7 Maximum Likelihood Estimation

Until now we assumed that, for every distribution, the parameters θ are known and are used when we calculate
p(x|θ). There are some cases where the values of the parameters are easy to infer, such as the probability p of
getting a head using a fair coin, used on a Bernoulli or Binomial distribution. However, in many problems,
these values are complex to define and it is more viable to estimate the parameters using the data x. For
instance, in the example above with the coin toss, if the coin is somehow tampered to have a biased behavior,
rather than examining the dynamics or the structure of the coin to infer a parameter for p, a person could
simply throw the coin n times, count the number of heads h and set p = h

n . By doing so, the person is using
the data x to estimate θ.

With this in mind, we will now generalize this process by defining the probability p(θ|x) as the probability
of the parameter θ, given the data x. This probability is called likelihood L(θ|x) and measures how well the
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parameter θ models the data x. The likelihood can be defined in terms of the distribution f as

L(θ|x1, ..., xn) =
n

∏
i=1

f (xi|θ)

where x1, ..., xn are independently and identically distributed (i.i.d.) samples.
To understand this concept better, we go back to the tampered coin example again. Suppose that we throw

the coin 5 times and get the sequence [1,1,1,1,1] (1=head, 0=tail). Using the Bernoulli distribution (see Sec-
tion 0.3.2) f to model this problem, we get the following likelihood values:

• L(0, x) = f (1, 0)5 = 05 = 0

• L(0.2, x) = f (1, 0.2)5 = 0.25 = 0.00032

• L(0.4, x) = f (1, 0.4)5 = 0.45 = 0.01024

• L(0.6, x) = f (1, 0.6)5 = 0.65 = 0.07776

• L(0.8, x) = f (1, 0.8)5 = 0.85 = 0.32768

• L(1, x) = f (1, 1)5 = 15 = 1

If we get the sequence [1,0,1,1,0] instead, the likelihood values would be:

• L(0, x) = f (1, 0)3 f (0, 0)2 = 03 × 12 = 0

• L(0.2, x) = f (1, 0.2)3 f (0, 0.2)2 = 0.23 × 0.82 = 0.00512

• L(0.4, x) = f (1, 0.4)3 f (0, 0.4)2 = 0.43 × 0.62 = 0.02304

• L(0.6, x) = f (1, 0.6)3 f (0, 0.6)2 = 0.63 × 0.42 = 0.03456

• L(0.8, x) = f (1, 0.8)3 f (0, 0.8)2 = 0.83 × 0.22 = 0.02048

• L(1, x) = f (1, 1)5 = 13 × 02 = 0

We can see that the likelihood is the highest when the distribution f with parameter p is the best fit for the
observed samples. Thus, the best estimate for p according to x would be the value for which L(p, x) is the
highest.

The value of the parameter θ with the highest likelihood is called maximum likelihood estimate (MLE)
and is defined as

θ̂mle = argmaxθL(θ|x)

Finding this for our example is relatively easy, since we can simply derivate the likelihood function to find
the absolute maximum. For the sequence [1,0,1,1,0], the likelihood would be given as

L(p, x) = f (1, p)3 f (0, p)2 = p3(1− p)2

And the MLE estimate would be given by:

δL(p, x)
δp

= 0

which resolves to
pmle = 0.6

Exercise 0.10 Over the next couple of exercises we will make use of the Galton dataset, a dataset of heights of fathers
and sons from the 1877 paper that first discussed the “regression to the mean” phenomenon. This dataset has 928 pairs
of numbers.

• Use the load() function in the galton.py file to load the dataset. The file is located under the lxmls/readers
folder. Type the following in your Python interpreter:

import galton as galton
GaltonData = galton.load()
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• What are the mean height and standard deviation of all the people in the sample? What is the mean height of the
fathers and of the sons?

• Plot a histogram of all the heights (you might want to use the plt.hist function and the ravel method on
arrays).

• Plot the height of the father versus the height of the son.

• You should notice that there are several points that are exactly the same (e.g., there are 21 pairs with the values 68.5
and 70.2). Use the ? command in ipython to read the documentation for the numpy.random.randn function
and add random jitter (i.e., move the point a little bit) to the points before displaying them. Does your impression
of the data change?

0.3.8 Conjugate Priors

Definition 0.6 let F = { fX(x|s), s ∈ X} be a class of likelihood functions; let P be a class of probability (density or
mass) functions; if, for any x, any pS(s) ∈ P, and any fX(x|s) ∈ F, the resulting a posteriori probability function
pS(s|x) = fX(x|s)pS(s) is still in P, then P is called a conjugate family, or a family of conjugate priors, for F.

0.4 Numerical optimization

Most problems in machine learning require minimization/maximization of functions (likelihoods, risk, energy,
entropy, etc.,). Let x∗ be the value of x which minimizes the value of some function f (x). Mathematically, this
is written as

x∗ = arg min
x

f (x)

In a few special cases, we can solve this minimization problem analytically in closed form (solving for
optimal x∗ in ∇x f (x∗) = 0), but in most cases it is too cumbersome (or impossible) to solve these equations
analytically, and they must be tackled numerically. In this section we will cover some basic notions of numer-
ical optimization. The goal is to provide the intuitions behind the methods that will be used in the rest of the
school. There are plenty of good textbooks in the subject that you can consult for more information (Nocedal
and Wright, 1999; Bertsekas et al., 1995; Boyd and Vandenberghe, 2004).

The most common way to solve the problems when no closed form solution is available is to resort to an
iterative algorithm. In this Section, we will see some of these iterative optimization techniques. These iterative
algorithms construct a sequence of points x(0), x(1), . . . ∈ domain( f ) such that hopefully xt = x∗ after a number
of iterations. Such a sequence is called the minimizing sequence for the problem.

0.4.1 Convex Functions

One important property of a function f (x) is whether it is a convex function (in the shape of a bowl) or a
non-convex function. Figures 2 and 3 show an example of a convex and a non-convex function. Convex
functions are particularly useful since you can guarantee that the minimizing sequence converges to the true
global minimum of the function, while in non-convex functions you can only guarantee that it will reach a
local minimum.

Intuitively, imagine dropping a ball on either side of Figure 2, the ball will role to the bottom of the bowl
independently from where it is dropped. This is the main benefit of a convex function. On the other hand, if
you drop a ball from the left side of Figure 3 it will reach a different position than if you drop a ball from its
right side. Moreover, dropping it from the left side will lead you to a much better (i.e., lower) place than if you
drop the ball from the right side. This is the main problem with non-convex functions: there are no guarantees
about the quality of the local minimum you find.

More formally, some concepts to understand about convex functions are:
A line segment between points x1 and x2: contains all points such that

x = θx1 + (1− θ)x2

where 0 ≤ θ ≤ 1.
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Figure 2: Illustration of a convex function. The line segment between any two points on the graph lies entirely
above the curve.

Figure 3: Illustration of a non-convex function. Note the line segment intersecting the curve.

A convex set contains the line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ θ ≤ 1 ⇒ θx1 + (1− θ)x2 ∈ C

A function f : Rn → R is a convex function if the domain of f is a convex set and

f (θx + (1− θ)y) ≤ θ f (x) + (1− θ) f (y)

for all x, y ∈ domain of f , 0 ≤ θ ≤ 1

0.4.2 Derivative and Gradient

The derivative of a function is a measure of how the function varies with its input variables. Given an interval
[a, b] one can compute how the function varies within that interval by calculating the average slope of the
function in that interval.

f (b)− f (a)
b− a

(6)

The derivative can be seen as the limit as the interval goes to zero, and it gives us the slope of the function at
that point.

∂ f
∂x

= lim
h=0

f (x + h)− f (x)
h

(7)

Table 2 shows derivatives of some functions that we will be using during the school.
An important rule of derivation is the chain rule. Consider h = f ◦ g, and u = g(x), then:

∂h
∂x

=
∂ f
∂u
· ∂g

∂x
(8)

Example 0.3 Consider the function h(x) = exp(x2), this can be decomposed as h(x) = f (g(x)) = f (u) = exp(u),
where u = g(x) = x2 and has derivative ∂h

∂x = ∂ f
∂u ·

∂u
∂x = exp(u) · 2x = exp(x2) · 2x
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Function f (x) Derivative ∂ f
∂x

x2 2x
xn nxn−1

log(x) 1
x

exp(x) exp(x)
1
x − 1

x2

Table 2: Some derivative examples

Exercise 0.11 Consider the function f (x) = x2 and its derivative ∂ f
∂x . Look at the derivative of that function at points [-

2,0,2], draw the tangent to the graph in that point ∂ f
∂x (−2) = −4, ∂ f

∂x (0) = 0, and ∂ f
∂x (2) = 4. For example, the tangent

equation for x = −2 is y = −4x− b, where b = f (−2). The following code plots the function and the derivatives on
those points using matplotlib (See Figure 4).

a = np.arange(-5,5,0.01)
f_x = np.power(a,2)
plt.plot(a,f_x)

plt.xlim(-5,5)
plt.ylim(-5,15)

k= np.array([-2,0,2])
plt.plot(k,k**2,"bo")
for i in k:

plt.plot(a, (2*i)*a - (i**2))

Figure 4: Illustration of the gradient of the function f (x2) at three different points x = [−2, 0.2]. Note that at
point x = 0 the gradient is zero which corresponds to the minimum of the function.

The gradient of a function is a generalization of the derivative concept we just saw before for several
dimensions. Lets assume we have a function f (x) where x ∈ R2, so x can be seen as a pair x = x1, x2. Then,
the gradient measures the slope of the function in both directions: ∇x f (x) = [ ∂ f

∂x1
, ∂ f

∂x2
].

0.4.3 Gradient Based Methods

Gradient based methods are probably the most common methods used for finding the minimizing sequence
for a given function. The methods used in this class will make use of the function value f (x) as well as the
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gradient of the function ∇x f (x). The simplest method is the Gradient descent method, an unconstrained
first-order optimization algorithm.

The intuition of this method is as follows: You start at a given point x0 and compute the gradient at that
point ∇x0 f (x). You then take a step of length η on the direction of the negative gradient to find a new point:
x1 = x0 − η∇x0 f (x). Then, you compute the gradient at this new point, ∇x1 f (x), and take a step of length η
on the direction of the negative gradient to find a new point: x2 = x1 − η∇x1 f (x). You proceed until you have
reached a minimum (local or global). Recall from the previous subsection that you can identify the minimum
by testing if the norm of the gradient is zero: ||∇ f (x)|| = 0.

There are several practical concerns even with this basic algorithm to ensure both that the algorithm con-
verges (reaches the minimum) and that it does so in a fast way (by fast we mean the number of function and
gradient evaluations).

• Step Size η A first question is how to find the step length η. One condition is that eta should guarantee
sufficient decrease in the function value. We will not cover these methods here but the most common
ones are Backtracking line search or the Wolf Line Search (Nocedal and Wright, 1999).

• Descent Direction A second problem is that using the negative gradient as direction can lead to a very
slow convergence. Different methods that change the descent direction by multiplying the gradient by
a matrix β have been proposed that guarantee a faster convergence. Two notable methods are the Con-
jugate Gradient (CG) and the Limited Memory Quasi Newton methods (LBFGS) (Nocedal and Wright,
1999).

• Stopping Criteria Finally, it will normally not be possible to reach full convergence either because it will
be too slow, or because of numerical issues (computers cannot perform exact arithmetic). So normally
we need to define a stopping criteria for the algorithm. Three common criteria (that are normally used
together) are: a maximum number of iterations; the gradient norm be smaller than a given threshold
||∇ f (x)|| ≤ η1, or the normalized difference in the function value be smaller than a given threshold
| f (xt)− f (xt−1)|

max(| f (xt)|,| f (xt−1)|)
≤ η2

Algorithm 1 shows the general gradient based algorithm. Note that for the simple gradient descent al-
gorithm β is the identity matrix and the descent direction is just the negative gradient of the function, β =
−∇ f (x). Figure 5 shows an illustration of the gradient descent algorithm.

Algorithm 1 Gradient Descent
1: given a starting point x0, i = 0
2: repeat
3: Compute step size η
4: Compute descent direction −β∇ f (xi).
5: xi+1 ← xi − ηβ∇ f (xi)
6: i← i + 1
7: until stopping criterion is satisfied.

Exercise 0.12 Consider the function f (x) = (x + 2)2 − 16 exp
(
−(x− 2)2). Make a function that computes the

function value given x.

def get_y(x):
return (x+2)**2 - 16*np.exp(-((x-2)**2))

Draw a plot around x ∈ [−8, 8].

x = np.arange(-8,8,0.001)
y = map(lambda u: get_y(u),x)
plt.plot(x,y)
plt.show()

Calculate the derivative of the function f (x), implement the function get grad(x).
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Figure 5: Illustration of gradient descent. The blue circles correspond to contours of the function (each blue
circle is a set of points which have the same function value), while the red lines correspond to steps taken in
the negative gradient direction.

def get_grad(x):
return (2*x+4)-16*(-2*x + 4)*np.exp(-((x-2)**2))

Use the method gradient descent to find the minimum of this function. Convince yourself that the code is doing the
proper thing. Look at the constants we defined. Note, that we are using a simple approach to pick the step size (always
have the value step size) which is not necessarily correct.

def gradient_descent(start_x,func,grad):
# Precision of the solution
prec = 0.0001
#Use a fixed small step size
step_size = 0.1
#max iterations
max_iter = 100
x_new = start_x
res = []
for i in xrange(max_iter):

x_old = x_new
#Use beta egual to -1 for gradient descent
x_new = x_old - step_size * get_grad(x_new)
f_x_new = get_y(x_new)
f_x_old = get_y(x_old)
res.append([x_new,f_x_new])
if(abs(f_x_new - f_x_old) < prec):

print "change in function values too small, leaving"
return np.array(res)

print "exceeded maximum number of iterations, leaving"
return np.array(res)
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Run the gradient descent algorithm starting from x0 = −8 and plot the minimizing sequence.

x_0 = -8
res = gradient_descent(x_0,get_y,get_grad)
plt.plot(res[:,0],res[:,1],'+')
plt.show()

Figure 6: Example of running gradient descent starting on point x0 = −8 for function f (x) = (x + 2)2 −
16 exp

(
−(x− 2)2). The function is represented in blue, while the points of the minimizing sequence are dis-

played as green plus signs.

Figure 6 shows the resulting minimizing sequence. Note that the algorithm converged to a minimum, but since the
function is not convex it converged only to a local minimum.

Now try the same exercise starting from the initial point x0 = 8.

x_0 = 8
res = gradient_descent(x_0,get_y,get_grad)
plot(res[:,0],res[:,1],'+')

Figure 7 shows the resulting minimizing sequence. Note that now the algorithm converged to the global minimum.
However, note that to get to the global minimum the sequence of points jumped from one side of the minimum to the other.
This is a consequence of using a wrong step size (in this case too large). Repeat the previous exercise changing both the
values of the step-size and the precision. What do you observe?
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Figure 7: Example of running gradient descent starting on point x0 = 8 for function f (x) = (x + 2)2 −
16 exp

(
−(x− 2)2). The function is represented in blue, while the points of the minimizing sequence are dis-

played as green plus signs.

During this school we will rely on the numerical optimization methods provided by Scipy (scientific com-
puting library in python), which are very efficient implementations.

0.5 Python Exercises

0.5.1 Numpy and Matplotlib

Exercise 0.13 1. Consider the function f (x) = (x + 2)2 − 16 exp
(
−(x− 2)2). Draw a plot around the x ∈

[−8, 8] region.

2. What is ∂ f
∂x ?

3. Use gradient descent to find a local minimum starting from x0 = −4 and x0 = +4, with η = .01. Plot all of the
intermediate estimates that you obtain in the same plot.

import numpy as np
import matplotlib.pyplot as plt
X = np.linspace(-8, 8, 1000)
Y = (X+2)**2 - 16*np.exp(-((X-2)**2))

# derivative of the function f
def get_Y_dev(x):

return (2*x+4)-16*(-2*x + 4)*np.exp(-((x-2)**2))
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def grad_desc(start_x, eps, prec):
'''
runs the gradient descent algorithm and returns the list of estimates

example of use grad_desc(X, 0.01, 0.00001)
'''
x_new = start_x
x_old = start_x + prec * 2
res = [x_new]
while abs(x_old-x_new) > prec:

x_old = x_new
x_new = x_old - eps * get_Y_dev(x_new)
res.append(x_new)

return np.array(res)

Over the next couple of exercises we will make use of the Galton dataset, a dataset of heights of fathers and
sons from the 1877 paper that first discussed the “regression to the mean” phenomenon.

Exercise 0.14 • Use the load() function in the galton.py file to load the dataset.

• What are the mean height and standard deviation of all the people in the sample? What is the mean height of the
fathers and of the sons?

• Plot a histogram of all the heights (you might want to use the plt.hist function and the ravel method on
arrays).

• Plot the height of the father versus the height of the son.

• You should notice that there are several points that are exactly the same (e.g., there are 21 pairs with the values 68.5
and 70.2). Use the ? command in ipython to read the documentation for the numpy.random.rand function
and add random jitter (i.e., move the point a little bit) to the points before displaying them. Does your impression
of the data change?

Exercise 0.15 Consider the linear regression problem (ordinary least squares), with a single response variable

y = xTw + ε

The linear regression problem is, given a set {y(i)}i of samples of y and the corresponding x(i) vectors, estimate w
to minimise the sum of the ε variables. Traditionally this is solved analytically to obtain a closed form solution (although
this is not the way in which it should be computed, linear algebra packages have an optimised solver, with numpy,
use numpy.linalg.lstsq).

Alternatively, we can define the error function for each possible w:

e(w) = ∑
i

(
x(i)

T
w− y(i)

)2
.

1. Derive the gradient of the error ∂e
∂wj

.

2. Implement a solver based on this for two dimensional problems (i.e., w ∈ R2).

3. Use this method on the Galton dataset from the previous exercise to estimate the relationship between father and
son’s height. Try two formulas

s = f w1 + ε, (9)

where s is the son’s height, and f is the father heights; and

s = f w1 + 1w0 + ε (10)

where the input variable is now two dimensional: ( f , 1). This allows the intercept to be non-zero.

4. Plot the regression line you obtain with the points from the previous exercise.

5. Use the np.linalg.lstsq function and compare to your solution.
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0.5.2 Debugging

Exercise 0.16 Use the debugger to debug the buggy.py script which attempts to repeatedly perform the following
computation:

1. Start x0 = 0

2. Iterate

(a) x′t+1 = xt + r, where r is a random variable.

(b) if x′t+1 >= 1., then stop.

(c) if x′t+1 <= 0., then xt+1 = 0

(d) else xt+1 = x′t+1.

3. Return the number of iterations.

Having repeated this computation a number of times, the programme prints the average. Unfortunately, the program
has a few bugs, which you need to fix.
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Day 1

Classification

This day will serve as an introduction to machine learning. We recall some fundamental concepts about deci-
sion theory and classification. We also present some widely used models and algorithms and try to provide
the main motivation behind them. There are several textbooks that provide a thorough description of some
of the concepts introduced here: for example, Mitchell (1997), Duda et al. (2001), Schölkopf and Smola (2002),
Joachims (2002), Bishop (2006), Manning et al. (2008), to name just a few. The concepts that we introduce in this
chapter will be revisited in later chapters, where the same algorithms and models will be adapted to structured
inputs and outputs. For now, we concern only with multi-class classification (with just a few classes).

Today’s assignment

The assignment of today’s class is to implement a classifier called Naı̈ve Bayes, and use it to perform sentiment
analysis on a corpus of book reviews from Amazon.

1.1 Notation

In what follows, we denote by X our input set (also called observation set) and by Y our output set. We will make
no assumptions about the set X, which can be continuous or discrete. In this lecture, we consider classification
problems, where Y = {c1, . . . , cK} is a finite set, consisting of K classes (also called labels). For example, X can be
a set of documents in natural language, and Y a set of topics, the goal being to assign a topic to each document.

We use upper-case letters for denoting random variables, and lower-case letters for value assignments to
those variables: for example,

• X is a random variable taking values on X,

• Y is a random variable taking values on Y,

• x ∈ X and y ∈ Y are particular values for X and Y.

We consider events such as X = x, Y = y, etc.
For simplicity reasons, throughout this lecture we will use modified notation and let P(y) denote the prob-

ability associated with the event Y = y (instead of PY(Y = y)). Also, joint and conditional probabilities are
denoted as P(x, y) , PX,Y(X = x ∧ Y = y) and P(x|y) , PX|Y(X = x | Y = y), respectively. From the laws of
probabilities:

P(x, y) = P(y|x)P(x) = P(x|y)P(y), (1.1)

for all x ∈ X and y ∈ Y.
Quantities that are predicted or estimated from the data will be appended a hat-symbol: for example,

estimations of the probabilities above are denoted as P̂(y), P̂(x, y) and P̂(y|x); and a prediction of an output
will be denoted ŷ.

We assume that a training dataset D is provided which consists of M input-output pairs (called examples or
instances):

D = {(x1, y1), . . . , (xM, yM)} ⊆ X× Y. (1.2)

The goal of (supervised) machine learning is to use the training dataset D to learn a function h (called a
classifier) that maps from X to Y: this way, given a new instance x ∈ X (test example), the machine makes a
prediction ŷ by evaluating h on x, i.e., ŷ = h(x).
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1.2 Generative Classifiers: Naı̈ve Bayes

If we knew the true distribution P(X, Y), the best possible classifier (called Bayes optimal) would be one which
predicts according to

ŷ = arg max
y∈Y

P(y|x)

= arg max
y∈Y

P(x, y)
P(x)

=† arg max
y∈Y

P(x, y)

= arg max
y∈Y

P(y)P(x|y), (1.3)

where in † we used the fact that P(x) is constant with respect to y.
Generative classifiers try to estimate the probability distributions P(Y) and P(X|Y), which are respectively

called the class prior and the class conditionals. They assume that the data are generated according to the follow-
ing generative story (independently for each m = 1, . . . , M):

1. A class ym ∼ P(Y) is drawn from the class prior distribution;

2. An input xm ∼ P(X|Y = ym) is drawn from the corresponding class conditional.

Figure 1.1 shows an example of the Bayes optimal decision boundary for a toy example with K = 2 classes,
M = 100 points, class priors P(y1) = P(y2) = 0.5, and class conditionals P(x|yi) given by 2-D Gaussian
distributions with the same variance but different means.

Figure 1.1: Example of a dataset together with the corresponding Bayes optimal decision boundary. The input
set consists in points in the real plane, X = R, and the output set consists of two classes (Red and Blue).
Training points are represented as squares, while test points are represented as circles.
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1.2.1 Training and Inference

Training a generative model amounts to estimating the probabilities P(Y) and P(X|Y) using the dataset D,
yielding estimates P̂(y) and P̂(x|y). This estimation is usually called training or learning.

After we are done training, we are given a new input x ∈ X, and we want to make a prediction according
to

ŷ = arg max
y∈Y

P̂(y)P̂(x|y), (1.4)

using the estimated probabilities. This is usually called inference or decoding.
We are left with two important problems:

1. How should the distributions P̂(Y) and P̂(X|Y) be “defined”? (i.e., what kind of independence assump-
tions should they state, or how should they factor?)

2. How should parameters be estimated from the training data D?

The first problem strongly depends on the application at hand. Quite often, there is a natural decomposition
of the input variable X into J components,

X = (X1, . . . , XJ). (1.5)

The naı̈ve Bayes method makes the following assumption: X1, . . . , XJ are conditionally independent given the
class. Mathematically, this means that

P(X|Y) =
J

∏
j=1

P(Xj|Y). (1.6)

Note that this independence assumption greatly reduces the number of parameters to be estimated (degrees of
freedom) from O(exp(J)) to O(J), hence estimation of P̂(X|Y) becomes much simpler, as we shall see. It also
makes the overall computation much more efficient for large J and it decreases the risk of overfitting the data.
On the other hand, if the assumption is over-simplistic it may increase the risk of under-fitting.

For the second problem, one of the simplest ways to solve it is using maximum likelihood estimation, which
aims to maximize the probability of the training sample, assuming that each point was generated indepen-
dently. This probability (call it P(D)) factorizes as

P(D) =
M

∏
m=1

P(xm, ym)

=
M

∏
m=1

P(ym)
J

∏
j=1

P(xm
j |ym). (1.7)

1.2.2 Example: Multinomial Naı̈ve Bayes for Document Classification

We now consider a more realistic scenario where the naı̈ve Bayes classifier may be applied. Suppose that the
task is document classification: X is the set of all possible documents, and Y = {y1, . . . , yK} is a set of classes for
those documents. Let V = {w1, . . . , wJ} be the vocabulary, i.e., the set of words that occur in some document.

A very popular document representation is through a “bag-of-words”: each document is seen as a collec-
tion of words along with their frequencies; word ordering is ignored. We are going to see that this is equivalent
to a naı̈ve Bayes assumption with the multinomial model. We associate to each class a multinomial distribution,
which ignores word ordering, but takes into consideration the frequency with which each word appears in a
document. For simplicity, we assume that all documents have the same length L.1 Each document x is as-
sumed to have been generated as follows. First, a class y is generated according to P(y). Then, x is generated
by sequentially picking words from V with replacement. Each word wj is picked with probability P(wj|y). For
example, the probability of generating a document x = wj1 . . . wjL (i.e., a sequence of L words wj1 , . . . , wjL ) is

P(x|y) =
L

∏
l=1

P(wjl |y) =
J

∏
j=1

P(wj|y)nj(x), (1.8)

1We can get rid of this assumption by defining a distribution on the document length. Everything stays the same if that distribution is
uniform up to a maximum document length.
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where nj(x) is the number of occurrences of word wj in document x.
Hence, the assumption is that word occurrences (tokens) are independent given the class. The parameters

that need to be estimated are P̂(y1), . . . , P̂(yK), and P̂(wj|yk) for j = 1, . . . , J and k = 1, . . . , K. Given a training
sample D = {(x1, y1), . . . , (xM, yM)}, denote by Ik the indices of those instances belonging to the kth class. The
maximum likelihood estimates of the quantities above are:

P̂(yk) =
|Ik|
M

, P̂(wj|yk) =
∑m∈Ik

nj(xm)

∑J
i=1 ∑m∈Ik

ni(xm)
. (1.9)

In words: the class priors’ estimates are their relative frequencies (as before), and the class-conditional word
probabilities are the relative frequencies of those words across documents with that class.

1.3 Assignment

With the previous theoretical background, you will be able to solve today’s assignment.

Exercise 1.1 In this exercise we will use the Amazon sentiment analysis data (Blitzer et al., 2007), where the goal is to
classify text documents as expressing a positive or negative sentiment (i.e., a classification problem with two classes).
We are going to focus on book reviews. To load the data, type:

import lxmls.readers.sentiment_reader as srs
import lxmls.classifiers.naive_bayes as nb

scr = srs.SentimentCorpus("books")

This will load the data in a bag-of-words representation where rare words (occurring less than 5 times in the training
data) are removed.

1. Implement the Naı̈ve Bayes algorithm. Open the file multinomial naive bayes.py, which is inside the
classifiers folder. In the MultinomialNaiveBayes class you will find the train method. We have
already placed some code in that file to help you get started.

2. After implementing, run Naı̈ve Bayes with the multinomial model on the Amazon dataset (sentiment classification)
and report results both for training and testing:

import lxmls.classifiers.multinomial_naive_bayes as mnbb

mnb = mnbb.MultinomialNaiveBayes()
params_nb_sc = mnb.train(scr.train_X,scr.train_y)
y_pred_train = mnb.test(scr.train_X,params_nb_sc)
acc_train = mnb.evaluate(scr.train_y, y_pred_train)
y_pred_test = mnb.test(scr.test_X,params_nb_sc)
acc_test = mnb.evaluate(scr.test_y, y_pred_test)
print "Multinomial Naive Bayes Amazon Sentiment Accuracy train: %f test: %f"%(

acc_train,acc_test)

3. Observe that words that were not observed at training time cause problems at test time. Why? To solve this
problem, apply a simple add-one smoothing technique: replace the expression in Eq. 1.9 for the estimation of the
conditional probabilities by

P̂(wj|ck) =
1 + ∑m∈Ik

nj(xm)

J + ∑J
i=1 ∑m∈Ik

ni(xm)
.

where J is the number of distinct words.

This is a widely used smoothing strategy which has a Bayesian interpretation: it corresponds to choosing a uniform
prior for the word distribution on both classes, and to replace the maximum likelihood criterion by a maximum a
posteriori approach. This is a form of regularization, preventing the model from overfitting on the training data.
See e.g. Manning and Schütze (1999); Manning et al. (2008) for more information. Report the new accuracies.
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1.4 Discriminative Classifiers

In the previous sections we discussed generative classifiers, which require us to model the class prior and class
conditional distributions (P(Y) and P(X|Y), respectively). Recall, however, that a classifier is any function
which maps objects x ∈ X onto classes y ∈ Y. While it’s often useful to model how the data was generated, it’s
not required. Classifiers that do not model these distributions are called discriminative classifiers.

1.4.1 Features

For the purpose of understanding discriminative classifiers, it is useful to think about each x ∈ X as an abstract
object which is subject to a set of descriptions or measurements, which are called features. A feature is simply a
real number that describes the value of some property of x. For example, in the previous section, the features
of a document were the number of times each word wj appeared in it.

Let g1(x), . . . , gJ(x) be J features of x. We call the vector

g(x) = (g1(x), . . . , gJ(x)) (1.10)

a feature vector representation of x. The map g : X→ RJ is called a feature mapping.
In NLP applications, features are often binary-valued and result from evaluating propositions such as:

g1(x) ,
{

1, if sentence x contains the word Ronaldo
0, otherwise.

(1.11)

g2(x) ,
{

1, if all words in sentence x are capitalized
0, otherwise.

(1.12)

g3(x) ,
{

1, if x contains any of the words amazing, excellent or :-)
0, otherwise.

(1.13)

In this example, the feature vector representation of the sentence ”Ronaldo shoots and scores an amazing
goal!” would be g(x) = (1, 0, 1).

In multi-class learning problems, rather than associating features only with the input objects, it is useful
to consider joint feature mappings f : X× Y → RD. In that case, the joint feature vector f (x, y) can be seen as a
collection of joint input-output measurements. For example:

f1(x, y) ,
{

1, if x contains Ronaldo, and topic y is sport
0, otherwise.

(1.14)

f2(x, y) ,
{

1, if x contains Ronaldo, and topic y is politics
0, otherwise.

(1.15)

A very simple form of defining a joint feature mapping which is often employed is via:

f (x, y) , g(x)⊗ ey

= (0, . . . , 0, g(x)︸︷︷︸
yth slot

, 0, . . . , 0) (1.16)

where g(x) ∈ RJ is a input feature vector, ⊗ is the Kronecker product ([a ⊗ b]ij = aibj) and ey ∈ RK, with
[ey]c = 1 iff y = c, and 0 otherwise. Hence f (x, y) ∈ RJ×K.

1.4.2 Inference

Linear classifiers are very popular in natural language processing applications. They make their decision based
on the rule:

ŷ = arg max
y∈Y

w · f (x, y). (1.17)

where

• w ∈ RD is a weight vector;

• f (x, y) ∈ RD is a feature vector;
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• w · f (x, y) = ∑D
d=1 wd fd(x, y) is the inner product between w and f (x, y).

Hence, each feature fd(x, y) has a weight wd and, for each class y ∈ Y, a score is computed by linearly combin-
ing all the weighted features. All these scores are compared, and a prediction is made by choosing the class
with the largest score.

Remark 1.1 With the design above (Eq. 1.16), and decomposing the weight vector as w = (wc1 , . . . , wcK ), we have that

w · f (x, y) = wy · g(x). (1.18)

In words: each class y ∈ Y gets its own weight vector wy, and one defines a input feature vector g(x) that only looks at
the input x ∈ X. This representation is very useful when features only depend on input x since it allows a more compact
representation. Note that the number of features is normally very large.

Remark 1.2 The multinomial naı̈ve Bayes classifier described in the previous section is an instance of a linear classifier.
Recall that the naı̈ve Bayes classifier predicts according to ŷ = arg maxy∈Y P̂(y)P̂(x|y). Taking logs, in the multinomial
model for document classification this is equivalent to:

ŷ = arg max
y∈Y

log P̂(y) + log P̂(x|y)

= arg max
y∈Y

log P̂(y) +
J

∑
j=1

nj(x) log P̂(wj|y)

= arg max
y∈Y

wy · g(x), (1.19)

where

wy =
(
by, log P̂(w1|y), . . . , log P̂(wJ |y)

)
by = log P̂(y)

g(x) = (1, n1(x), . . . , nJ(x)). (1.20)

Hence, the multinomial model yields a prediction rule of the form

ŷ = arg max
y∈Y

wy · g(x). (1.21)

1.4.3 Online Discriminative Algorithms

We now discuss two discriminative classification algorithms. These two algorithms are called online (or stochas-
tic) algorithms because they only process one data point (in our example, one document) at a time. Algorithms
which look at the whole dataset at once are called offline, or batch algorithms, and will be discussed later.

Perceptron

The perceptron (Rosenblatt, 1958) is perhaps the oldest algorithm used to train a linear classifier. The perceptron
works as follows: at each round, it takes an element x from the dataset, and uses the current model to make
a prediction. If the prediction is correct, nothing happens. Otherwise, the model is corrected by adding the
feature vector w.r.t. the correct output and subtracting the feature vector w.r.t. the predicted (wrong) output.
Then, it proceeds to the next round.

Alg. 2 shows the pseudo-code of the perceptron algorithm. As it can be seen, it is remarkably simple; yet it
often reaches a very good performance, often better than the Naı̈ve Bayes, and usually not much worse than
maximum entropy models or SVMs (which will be described in the following section). 2

A weight vector w defines a separating hyperplane if it classifies all the training data correctly, i.e., if ym =
arg maxy∈Y w · f (xm, y) hold for m = 1, . . . , M. A dataset D is separable if such a weight vector exists (in general,
w is not unique). A very important property of the perceptron algorithm is the following: if D is separable,
then the number of mistakes made by the perceptron algorithm until it finds a separating hyperplane is finite.
This means that if the data are separable, the perceptron will eventually find a separating hyperplane w.

There are other variants of the perceptron (e.g., with regularization) which we omit for brevity.

2Actually, we are showing a more robust variant of the perceptron, which averages the weight vector as a post-processing step.
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Algorithm 2 Averaged perceptron
1: input: dataset D, number of rounds R
2: initialize t = 0, wt = 0
3: for r = 1 to R do
4: Ds = shuffle(D)
5: for i = 1 to M do
6: m = Ds(i)
7: t = t + 1
8: take training pair (xm, ym) and predict using the current model:

ŷ← arg max
y′∈Y

wt · f (xm, y′)

9: update the model: wt+1 ← wt + f (xm, ym)− f (xm, ŷ)
10: end for
11: end for
12: output: the averaged model ŵ← 1

t ∑t
i=1 wi

Exercise 1.2 We provide an implementation of the perceptron algorithm in the class Perceptron (file perceptron.py).

1. Run the following commands to generate a simple dataset similar to the one plotted on Figure 1.1:

sd = sds.SimpleDataSet(nr_examples=100, g1 = [[-1,-1],1], g2 = [[1,1],1], balance=0.
5, split=[0.5,0,0.5])

2. Run the perceptron algorithm on the simple dataset previously generated and report its train and test set accuracy:

import lxmls.classifiers.perceptron as percc

perc = percc.Perceptron()
params_perc_sd = perc.train(sd.train_X,sd.train_y)
y_pred_train = perc.test(sd.train_X,params_perc_sd)
acc_train = perc.evaluate(sd.train_y, y_pred_train)
y_pred_test = perc.test(sd.test_X,params_perc_sd)
acc_test = perc.evaluate(sd.test_y, y_pred_test)
print "Perceptron Simple Dataset Accuracy train: %f test: %f"%(acc_train,acc_test)

3. Plot the decision boundary found:

fig,axis = sd.add_line(fig,axis,params_perc_sd,"Perceptron","blue")

Change the code to save the intermediate weight vectors, and plot them every five iterations. What do you observe?

4. Run the perceptron algorithm on the Amazon dataset.

Margin Infused Relaxed Algorithm (MIRA)

The MIRA algorithm (Crammer and Singer, 2002; Crammer et al., 2006) has achieved very good performance
in NLP problems. Recall that the Perceptron takes an input pattern and, if its prediction is wrong, adds the
quantity [ f (xm, ym)− f (xm, ŷ)] to the weight vector. MIRA changes this by adding ηt[ f (xm, ym)− f (xm, ŷ)] to
the weight vector. The difference is the step size ηt, which depends on the iteration t.

There is a theoretical basis for this algorithm, which we now briefly explain. At each round t, MIRA updates
the weight vector by solving the following optimization problem:

32



Algorithm 3 MIRA
1: input: dataset D, parameter λ, number of rounds R
2: initialize t = 0, wt = 0
3: for r = 1 to R do
4: Ds = shuffle(D)
5: for i = 1 to M do
6: m = Ds(i)
7: t = t + 1
8: take training pair (xm, ym) and predict using the current model:

ŷ← arg max
y′∈Y

wt · f (xm, y′)

9: compute loss: `t = wt · f (xm, ŷ)−wt · f (xm, ym) + ρ(ŷ, ym)

10: compute stepsize: ηt = min
{

λ−1, `t

‖ f (xm ,ym)− f (xm ,ŷ)‖2

}
11: update the model: wt+1 ← wt + ηt( f (xm, ym)− f (xm, ŷ))
12: end for
13: end for
14: output: the averaged model ŵ← 1

t ∑t
i=1 wi

wt+1 ← arg min
w,ξ

ξ + λ
2 ‖w−wt‖2 (1.22)

s.t. w · f (xm, ym) ≥ w · f (xm, ŷ) + 1− ξ (1.23)

ξ ≥ 0, (1.24)

where ŷ = arg maxy′∈Y wt · f (xm, y′) is the prediction using the model with weight vector wt. By inspecting
Eq. 1.22 we see that MIRA attempts to achieve a tradeoff between conservativeness (penalizing large changes
from the previous weight vector via the term λ

2 ‖w − wt‖2) and correctness (by requiring, through the con-
straints, that the new model wt+1 “separates” the true output from the prediction with a margin (although
slack ξ ≥ 0 is allowed).3 Note that, if the prediction is correct (ŷ = ym) the solution of the problem Eq. 1.22
leaves the weight vector unchanged (wt+1 = wt). This quadratic programming problem has a closed form
solution:4

wt+1 ← wt + ηt( f (xm, ym)− f (xm, ŷ)),

with

ηt = min
{

λ−1,
wt · f (xm, ŷ)−wt · f (xm, ym) + ρ(ŷ, ym)

‖ f (xm, ym)− f (xm, ŷ)‖2

}
,

where ρ : Y× Y → R+ is a non-negative cost function, such that ρ(ŷ, y) is the cost incurred by predicting ŷ
when the true output is y; we assume ρ(y, y) = 0 for all y ∈ Y. For simplicity, we focus here on the 0/1-cost
(but keep in mind that other cost functions are possible):

ρ(ŷ, y) =
{

1 if ŷ 6= y
0 otherwise.

(1.25)

MIRA is depicted in Alg. 3. For other variants of MIRA, see Crammer et al. (2006).

Exercise 1.3 Implement the MIRA algorithm (Hint: use the perceptron algorithm as a starting point and modify it as
necessary). Do this by creating a file Mira.py and implement class Mira. Then, repeat the perceptron exercise now
using MIRA, for several values of λ:

import lxmls.classifiers.mira as mirac

mira = mirac.Mira()
mira.regularizer = 1.0 # This is lambda
params_mira_sd = mira.train(sd.train_X,sd.train_y)

3The intuition for this large margin separation is the same for support vector machines, which will be discussed in §1.4.4.
4Note that the perceptron updates are identical, except that we always have ηt = 1.
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y_pred_train = mira.test(sd.train_X,params_mira_sd)
acc_train = mira.evaluate(sd.train_y, y_pred_train)
y_pred_test = mira.test(sd.test_X,params_mira_sd)
acc_test = mira.evaluate(sd.test_y, y_pred_test)
print "Mira Simple Dataset Accuracy train: %f test: %f"%(acc_train,acc_test)
fig,axis = sd.add_line(fig,axis,params_mira_sd,"Mira","green")

params_mira_sc = mira.train(scr.train_X,scr.train_y)
y_pred_train = mira.test(scr.train_X,params_mira_sc)
acc_train = mira.evaluate(scr.train_y, y_pred_train)
y_pred_test = mira.test(scr.test_X,params_mira_sc)
acc_test = mira.evaluate(scr.test_y, y_pred_test)
print "Mira Amazon Sentiment Accuracy train: %f test: %f"%(acc_train,acc_test)

Compare the results achieved and separating hiperplanes found.

1.4.4 Batch Discriminative Classifiers

As we have mentioned, the perceptron and MIRA algorithms are called online or stochastic because they look
at one data point at a time. We now describe two discriminative classifiers which look at all points at once;
these are called offline or batch algorithms.

Maximum Entropy Classifiers

The notion of entropy in the context of Information Theory (Shannon, 1948) is one of the most significant ad-
vances in mathematics in the twentieth century. The principle of maximum entropy (which appears under
different names, such as “maximum mutual information” or “minimum Kullback-Leibler divergence”) plays
a fundamental role in many methods in statistics and machine learning (Jaynes, 1982). 5 The basic rationale
is that choosing the model with the highest entropy (subject to constraints that depend on the observed data)
corresponds to making the fewest possible assumptions regarding what was unobserved, making uncertainty
about the model as large as possible.

For example, if we throw a die and want to estimate the probability of its outcomes, the distribution with
the highest entropy would be the uniform distribution (each outcome having of probability a 1/6). Now
suppose that we are only told that outcomes {1, 2, 3} occurred 10 times in total, and {4, 5, 6} occurred 30 times
in total, then the principle of maximum entropy would lead us to estimate P(1) = P(2) = P(3) = 1/12 and
P(1) = P(2) = P(3) = 1/4 (i.e., outcomes would be uniform within each of the two groups).6

This example could be presented in a more formal way. Suppose that we want to use binary features to
represent the outcome of the die throw. We use two features: f123(x, y) = 1 if and only if y ∈ {1, 2, 3}, and
f456(x, y) = 1 if and only if y ∈ {4, 5, 6}. Our observations state that in 40 throws, we observed f123 10 times
(25%) and f456 30 times (75%). The maximum entropy principle states that we want to find the parameters
w of our model, and consequently the probability distribution Pw(Y|X), which makes f123 have an expected
value of 0.25 and f456 have an expected value of 0.75. These constraints, E[ f123] = 0.25 and E[ f456] = 0.75, are
known as first moment matching constraints.7

An important fundamental result, which we will not prove here, is that the maximum entropy distribution
Pw(Y|X) under first moment matching constraints is a log-linear model. 8 It has the following parametric form:

Pw(y|x) = exp(w · f (x, y))
Z(w, x)

(1.26)

The denominator in Eq. 1.26 is called the partition function:

Z(w, x) = ∑
y′∈Y

exp(w · f (x, y′)). (1.27)

5For an excellent textbook on Information Theory, we recommend Cover et al. (1991).
6For an introduction of maximum entropy models, along with pointers to the literature, see http://www.cs.cmu.edu/˜aberger/

maxent.html.
7In general, these constraints mean that feature expectations under that distribution 1

M ∑m EY∼Pw [ f (xm, Y)] must match the observed
relative frequencies 1

M ∑m f (xm, ym).
8Also called a a Boltzmann distribution, or an exponential family of distributions.
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An important property of the partition function is that the gradient of its logarithm equals the feature expec-
tations:

∇w log Z(w, x) = Ew[ f (x, Y)]

= ∑
y′∈Y

Pw(y′|x) f (x, y′). (1.28)

The average conditional log-likelihood is:

L(w;D) =
1
M

log Pw(y1, . . . , yM|x1, . . . , xM)

=
1
M

log
M

∏
m=1

Pw(ym|xm)

=
1
M

M

∑
m=1

log Pw(ym|xm)

=
1
M

M

∑
m=1

(w · f (xm, ym)− log Z(w, xm)) . (1.29)

We try to find the parameters w that maximize the log-likelihood L(w;D); to avoid overfitting, we add a
regularization term that penalizes values of w that have a high magnitude. The optimization problem becomes:

ŵ = arg max
w

L(w;D)− λ

2
‖w‖2

= arg min
w

−L(w;D) +
λ

2
‖w‖2. (1.30)

Here we use the squared L2-norm as the regularizer,9 but other norms are possible. The scalar λ ≥ 0 controls
the amount of regularization. Unlike the naı̈ve Bayes examples, this optimization problem does not have
a closed form solution in general; hence we need to resort to numerical optimization (see section 0.4). Let
Fλ(w;D) = −L(w;D) + λ

2 ‖w‖2 be the objective function in Eq. 1.30. This function is convex, which implies
that a local optimum of Eq. 1.30 is also a global optimum. Fλ(w;D) is also differentiable: its gradient is

∇wFλ(w;D) =
1
M

M

∑
m=1

(− f (xm, ym) +∇w log Z(w, xm)) + λw

=
1
M

M

∑
m=1

(− f (xm, ym) + Ew[ f (xm, Y)]) + λw. (1.31)

A batch gradient method to optimize Eq. 1.30 is shown in Alg. 4. Essentially, Alg. 4 iterates through the
following updates until convergence:

wt+1 ← wt − ηt∇wFλ(wt;D)

= (1− ληt)wt + ηt
1
M

M

∑
m=1

( f (xm, ym)− Ew[ f (xm, Y)]) . (1.32)

Convergence is ensured for suitable stepsizes ηt. Monotonic decrease of the objective value can also be ensured
if ηt is chosen with a suitable line search method, such as Armijo’s rule (Nocedal and Wright, 1999). In practice,
more sophisticated methods exist for optimizing Eq. 1.30, such as conjugate gradient or L-BFGS. The latter is
an example of a quasi-Newton method, which only requires gradient information, but uses past gradients to
try to construct second order (Hessian) approximations.

In large-scale problems (very large M) batch methods are slow. Online or stochastic optimization are at-
tractive alternative methods. Stochastic gradient methods make “noisy” gradient updates by considering only
a single instance at the time. The resulting algorithm, called Stochastic Gradient Descent (SGD) is shown as
Alg. 5. At each round t, an instance m(t) is chosen, either randomly (stochastic variant) or by cycling through
the dataset (online variant). The stepsize sequence must decrease with t: typically, ηt = η0t−α for some η0 > 0

9In a Bayesian perspective, this corresponds to choosing independent Gaussian priors p(wd) ∼ N(0; 1/λ2) for each dimension of the
weight vector.
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Algorithm 4 Batch Gradient Descent for Maximum Entropy
1: input: D, λ, number of rounds T,

learning rate sequence (ηt)t=1,...,T
2: initialize w1 = 0
3: for t = 1 to T do
4: for m = 1 to M do
5: take training pair (xm, ym) and compute conditional probabilities using the current model, for each

y′ ∈ Y:

Pwt(y′|xm) =
exp(wt · f (xm, y′))

Z(w, x)

6: compute the feature vector expectation:

Ew[ f (xm, Y)] = ∑
y′∈Y

Pwt(y′|xm) f (xm, y′)

7: end for
8: choose the stepsize ηt using, e.g., Armijo’s rule
9: update the model:

wt+1 ← (1− ληt)wt + ηt M−1
M

∑
m=1

( f (xm, ym)− Ew[ f (xm, Y)])

10: end for
11: output: ŵ← wT+1

and α ∈ [1, 2], tuned in a development partition or with cross-validation.

Exercise 1.4 We provide an implementation of the L-BFGS algorithm for training maximum entropy models in the class
MaxEnt batch, as well as an implementation of the SGD algorithm in the class MaxEnt online.

1. Train a maximum entropy model using L-BFGS on the Simple data set (try different values of λ). Compare the
results with the previous methods. Plot the decision boundary.

import lxmls.classifiers.max_ent_batch as mebc

me_lbfgs = mebc.MaxEnt_batch()
me_lbfgs.regularizer = 1.0
params_meb_sd = me_lbfgs.train(sd.train_X,sd.train_y)
y_pred_train = me_lbfgs.test(sd.train_X,params_meb_sd)
acc_train = me_lbfgs.evaluate(sd.train_y, y_pred_train)
y_pred_test = me_lbfgs.test(sd.test_X,params_meb_sd)
acc_test = me_lbfgs.evaluate(sd.test_y, y_pred_test)
print "Max-Ent batch Simple Dataset Accuracy train: %f test: %f"%(acc_train,acc_test

)

fig,axis = sd.add_line(fig,axis,params_meb_sd,"Max-Ent-Batch","orange")

2. Train a maximum entropy model using L-BFGS, on the Amazon dataset (try different values of λ) and report
training and test set accuracy. What do you observe?

params_meb_sc = me_lbfgs.train(scr.train_X,scr.train_y)
y_pred_train = me_lbfgs.test(scr.train_X,params_meb_sc)
acc_train = me_lbfgs.evaluate(scr.train_y, y_pred_train)
y_pred_test = me_lbfgs.test(scr.test_X,params_meb_sc)
acc_test = me_lbfgs.evaluate(scr.test_y, y_pred_test)
print "Max-Ent Batch Amazon Sentiment Accuracy train: %f test: %f"%(acc_train,

acc_test)
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Algorithm 5 SGD for Maximum Entropy
1: input: D, λ, number of rounds T,

learning rate sequence (ηt)t=1,...,T
2: initialize w1 = 0
3: for t = 1 to T do
4: choose m = m(t) randomly
5: take training pair (xm, ym) and compute conditional probabilities using the current model, for each y′ ∈

Y:

Pwt(y′|xm) =
exp(wt · f (xm, y′))

Z(w, x)

6: compute the feature vector expectation:

Ew[ f (xm, Y)] = ∑
y′∈Y

Pwt(y′|xm) f (xm, y′)

7: update the model:
wt+1 ← (1− ληt)wt + ηt ( f (xm, ym)− Ew[ f (xm, Y)])

8: end for
9: output: ŵ← wT+1

3. Now, fix λ = 1.0 and train with SGD (you might try to adjust the initial step). Compare the objective values
obtained during training with those obtained with L-BFGS. What do you observe?

import lxmls.classifiers.max_ent_online as meoc

me_sgd = meoc.MaxEnt_online()
me_sgd.regularizer = 1.0
params_meo_sc = me_sgd.train(scr.train_X,scr.train_y)
y_pred_train = me_sgd.test(scr.train_X,params_meo_sc)
acc_train = me_sgd.evaluate(scr.train_y, y_pred_train)
y_pred_test = me_sgd.test(scr.test_X,params_meo_sc)
acc_test = me_sgd.evaluate(scr.test_y, y_pred_test)
print "Max-Ent Online Amazon Sentiment Accuracy train: %f test: %f"%(acc_train,

acc_test)

Support Vector Machines

Support vector machines are also a discriminative approach, but they are not a probabilistic model at all. The
basic idea is that, if the goal is to accurately predict outputs (according to some cost function), we should focus
on that goal in the first place, rather than trying to estimate a probability distribution (P(Y|X) or P(X, Y)),
which is a more difficult problem. As Vapnik (1995) puts it, “do not solve an estimation problem of interest by
solving a more general (harder) problem as an intermediate step.”

We next describe the primal problem associated with multi-class support vector machines (Crammer and
Singer, 2002), which is of primary interest in natural language processing. There is a significant amount of liter-
ature about Kernel Methods (Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004) mostly focused
on the dual formulation. We will not discuss non-linear kernels or this dual formulation here.10

Consider ρ(y′, y) as a non-negative cost function, representing the cost of assigning a label y′ when the
correct label was y. For simplicity, we focus here on the 0/1-cost defined by Equation 1.25 (but keep in mind
that other cost functions are possible). The hinge loss11 is the function

`(w; x, y) = max
y′∈Y

[
w · f (x, y′)−w · f (x, y) + ρ(y′, y)

]
. (1.33)

10The main reason why we prefer to discuss the primal formulation with linear kernels is that the resulting algorithms run in linear time
(or less), while known kernel-based methods are quadratic with respect to M. In large-scale problems (large M) the former are thus more
appealing.

11The hinge loss for the 0/1 cost is sometimes defined as `(w; x, y) = max{0, maxy′ 6=y w · f (x, y′)−w · f (x, y) + 1}. Given our definition
of ρ(ŷ, y), note that the two definitons are equivalent.
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Algorithm 6 Stochastic Subgradient Descent for SVMs
1: input: D, λ, number of rounds T,

learning rate sequence (ηt)t=1,...,T
2: initialize w1 = 0
3: for t = 1 to T do
4: choose m = m(t) randomly
5: take training pair (xm, ym) and compute the “cost-augmented prediction” under the current model:

ỹ = arg max
y′∈Y

wt · f (xm, y′)−wt · f (xm, ym) + ρ(y′, y)

6: update the model:
wt+1 ← (1− ληt)wt + ηt ( f (xm, ym)− f (xm, ỹ))

7: end for
8: output: ŵ← wT+1

Note that the objective of Eq. 1.33 becomes zero when y′ = y. Hence, we always have `(w; x, y) ≥ 0. Moreover,
if ρ is the 0/1 cost, we have `(w; x, y) = 0 if and only if the weight vector is such that the model makes a correct
prediction with a margin greater than 1: i.e., w · f (x, y) ≥ w · f (x, y′) + 1 for all y′ 6= y. Otherwise, a positive
loss is incurred. The idea behind this formulation is that not only do we want to make a correct prediction, but
we want to make a confident prediction; this is why we have a loss unless the prediction is correct with some
margin.

Support vector machines (SVM) tackle the following optimization problem:

ŵ = arg min
w

M

∑
m=1

`(w; xm, ym) +
λ

2
‖w‖2, (1.34)

where we also use the squared L2-norm as the regularizer. For the 0/1-cost, the problem in Eq. 1.34 is equiva-
lent to:

arg min
w,ξ

∑M
m=1 ξm + λ

2 ‖w‖2 (1.35)

s.t. w · f (xm, ym) ≥ w · f (xm, ỹm) + 1− ξm, ∀m, ỹm ∈ Y \ {ym}. (1.36)

Geometrically, we are trying to choose the linear classifier that yields the largest possible separation margin,
while we allow some violations, penalizing the amount of slack via extra variables ξ1, . . . , ξm. There is now a
trade-off: increasing the slack variables ξm makes it easier to satisfy the constraints, but it will also increase the
value of the cost function.

Problem 1.34 does not have a closed form solution. Moreover, unlike maximum entropy models, the ob-
jective function in 1.34 is non-differentiable, hence smooth optimization is not possible. However, it is still
convex, which ensures that any local optimum is the global optimum. Despite not being differentiable, we can
still define a subgradient of the objective function (which generalizes the concept of gradient), which enables us
to apply subgradient-based methods. A stochastic subgradient algorithm for solving Eq. 1.34 is illustrated as
Alg. 6. The similarity with maximum entropy models (Alg. 5) is striking: the only difference is that, instead of
computing the feature vector expectation using the current model, we compute the feature vector associated
with the cost-augmented prediction using the current model.

A variant of this algorithm was proposed by Shalev-Shwartz et al. (2007) under the name Pegasos, with ex-
cellent properties in large-scale settings. Other algorithms and software packages for training SVMs that have
become popular are SVMLight (http://svmlight.joachims.org) and LIBSVM (http://www.csie.
ntu.edu.tw/˜cjlin/libsvm/), which allow non-linear kernels. These will generally be more suitable for
smaller datasets, where high accuracy optimization can be obtained without much computational effort.

Remark 1.3 Note the similarity between the stochastic (sub-)gradient algorithms (Algs. 5–6) and the online algorithms
seen above (perceptron and MIRA).

Exercise 1.5 Implement the SVM primal algorithm (Hint: look at the models implemented earlier, you should only need
to change a few lines of code). Do this by creating a file SVM.py and implement class SVM. Then, repeat the MaxEnt
exercise now using SVMs, for several values of λ:

38

http://svmlight.joachims.org
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/


import lxmls.classifiers.svm as svmc

svm = svmc.SVM()
svm.regularizer = 1.0 # This is lambda
params_svm_sd = svm.train(sd.train_X,sd.train_y)
y_pred_train = svm.test(sd.train_X,params_svm_sd)
acc_train = svm.evaluate(sd.train_y, y_pred_train)
y_pred_test = svm.test(sd.test_X,params_svm_sd)
acc_test = svm.evaluate(sd.test_y, y_pred_test)
print "SVM Online Simple Dataset Accuracy train: %f test: %f"%(acc_train,acc_test)

fig,axis = sd.add_line(fig,axis,params_svm_sd,"SVM","orange")

params_svm_sc = svm.train(scr.train_X,scr.train_y)
y_pred_train = svm.test(scr.train_X,params_svm_sc)
acc_train = svm.evaluate(scr.train_y, y_pred_train)
y_pred_test = svm.test(scr.test_X,params_svm_sc)
acc_test = svm.evaluate(scr.test_y, y_pred_test)
print "SVM Online Amazon Sentiment Accuracy train: %f test: %f"%(acc_train,acc_test)

Compare the results achieved and separating hiperplanes found.

1.5 Comparison

Table 1.1 provides a high-level comparison among the different algorithms discussed in this chapter.

Naive Bayes Perceptron MIRA MaxEnt SVMs
Generative/Discriminative G D D D D
Performance if true model Bad Fair (may Good Good Good
not in the hipothesis class not converge)
Performance if features overlap Fair Good Good Good Good
Training Closed Form Easy Easy Fair Fair
Hyperparameters to tune 1 (smoothing) 0 1 1 1

Table 1.1: Comparison among different algorithms.

Exercise 1.6 • Using the simple dataset run the different algorithms varying some characteristics of the data: like
the number of points, variance (hence separability), class balance. Use function run all classifiers in file lab-
s/run all classifiers.py which receives a dataset and plots all decisions boundaries and accuracies. What can you
say about the methods when the amount of data increases? What about when the classes become too unbalanced?

1.6 Final remarks

Some implementations of the discussed algorithms are available on the Web:

• SVMLight: http://svmlight.joachims.org

• LIBSVM: http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

• Maximum Entropy: http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html

• MALLET: http://mallet.cs.umass.edu/.
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Day 2

Sequence Models

In this class, we relax the assumption that the data points are independently and identically distributed (i.i.d.)
by moving to a scenario of structured prediction, where the inputs are assumed to have temporal or spacial
dependencies. We start by considering sequential models, which correspond to a chain structure: for instance,
the words in a sentence. In this lecture, we will use part-of-speech tagging as our example task.

We start by defining the notation for this lecture in Section 2.1. Afterwards, in section 2.2, we focus on
the well known Hidden Markov Models and in Section 2.3 we describe how to estimate its parameters from
labeled data. In Section 2.4 we explain the inference algorithms (Viterbi and Forward-Backward) for sequence
models. These inference algorithms will be fundamental for the rest of this lecture, as well as for the next
lecture on discriminative training of sequence models. In Section 2.6 we describe the task of Part-of-Speech
tagging, and how the Hidden Markov Models are suitable for this task. Finally, in Section 2.7 we address
unsupervised learning of Hidden Markov Models through the Expectation Maximization algorithm.

Today’s assignment

The assignment of today’s class is to implement one inference algorithm for Hidden Markov Models, used to
find the most likely hidden state sequence given an observation sequence.

2.1 Notation

In what follows, we assume a finite set of observation labels, Σ := {w1, . . . , wJ}, and a finite set of state labels,
Λ := {c1, . . . , cK}. We denote by Σ∗, Λ∗ the two infinite sets of sequences obtained by grouping the elements
of each label set including repetitions and the empty string ε1. Elements of Σ∗ and Λ∗ are strings of observations
and strings of states, respectively. Throughout this class, we assume our input set is X = Σ∗, and our output
set is Y = Λ∗. In other words, our inputs are observation sequences, x = x1x2 . . . xN , for some N ∈ N, where
each xi ∈ Σ; given such an x, we seek the corresponding state sequence, y = y1y2 . . . yN , where each yi ∈ Λ.
We also consider two special states: the start symbol, which starts the sequence, and the stop symbol, which
ends the sequence.

Moreover, in this lecture we will assume two scenarios:

1. Supervised learning. We will train models from a sample set of paired observation and state sequences,
DL := {(x1, y1), . . . , (xM, yM)} ⊆ X× Y.

2. Unsupervised learning. We will train models from the set of observations only, DU := {x1, . . . , xM} ⊆ X.

Our notation is summarized in Table 2.1.

2.2 Hidden Markov Models

Hidden Markov Models (HMMs) are one of the most common sequence probabilistic models, and have been
applied to a wide variety of tasks. HMMs are particular instances of directed probabilistic graphical models (or
Bayesian networks) which have a chain topology. In a Bayesian network, every random variable is represented

1More formally, we say Σ∗ := {ε} ∪ Σ ∪ Σ2 ∪ . . . and Λ∗ := {ε} ∪Λ ∪Λ2 ∪ . . . is the Kleene closure of each of the two sets above.
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Notation
DL training set (including labeled data)
DU training set (unlabeled data only)
M number of training examples
x = x1 . . . xN observation sequence
y = y1 . . . yN state sequence
N length of the sequence
xi observation at position i in the sequence, i ∈ {1, . . . , N}
yi state at position i in the sequence, i ∈ {1, . . . , N}
Σ observation set
J number of distinct observation labels
wj particular observation, j ∈ {1, . . . , J}
Λ state set
K number of distinct state labels
ck particular state, k ∈ {1, . . . , K}

Table 2.1: General notation used in this class

as a node in a graph, and the edges in the graph are directed and represent probabilistic dependencies between
the random variables. For an HMM, the random variables are divided into two sets, the observed variables,
X = X1 . . . XN , and the hidden variables Y = Y1 . . . YN . In the HMM terminology, the observed variables are
called observations, and the hidden variables are called states. The states are generated according to a first order
Markov process, in which the ith state Yi depends only of the previous state Yi−1. Two special states are the
start symbol, which starts the sequence, and the stop symbol, which ends the sequence. In addition, states
emit observation symbols. In an HMM, it is assumed that all observations are independent given the states
that generated them.

As you may find out with today’s assignment, implementing the inference routines of the HMM can be
challenging. We start with a small and very simple (also very unrealistic!) example. The idea is that you may
compute the desired quantities by hand and check if your implementation yields the correct result.

Example 2.1 Consider a person who is only interested in four activities: walking in the park (walk), shopping (shop),
cleaning the apartment (clean) and playing tennis (tennis). Also, consider that the choice of what the person does on
a given day is determined exclusively by the weather on that day, which can be either rainy or sunny. Now, supposing
that we observe what the person did on a sequence of days, the question is: can we use that information to predict the
weather on each of those days? To tackle this problem, we assume that the weather behaves as a discrete Markov chain:
the weather on a given day depends only on the weather on the previous day. The entire system can be described as an
HMM.

For example, assume we are asked to predict the weather conditions on two different sequences of days. During these
two sequences, we observed the person performing the following activities:

• “walk walk shop clean”

• “clean walk tennis walk”

This will be our test set.
Moreover, and in order to train our model, we are given access to three different sequences of days, containing both

the activities performed by the person and the weather on those days, namely:

• “walk/rainy walk/sunny shop/sunny clean/sunny”

• “walk/rainy walk/rainy shop/rainy clean/sunny”

• “walk/sunny shop/sunny shop/sunny clean/sunny”

This will be our training set.
Figure 2.2 shows the HMM model for the first sequence of the training set, which already includes the start and

stop symbols. The notation is summarized in Table 2.2.

Exercise 2.1 Load the simple sequence dataset. From the ipython command line create a simple sequence object and look
at the training and test set.
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STOPSTART

rainy sunny sunny sunny

walk walk shop clean

Figure 2.1: Diagram showing the conditional independence relations of the HMM. As an example, the variables
are the values of the first sentence of the training set of the simple sequence.

HMM Notation
x observed sequence “walk walk shop clean”
N = 4 observation length
i position in the sentence: i ∈ {1 . . . N}
Σ = {walk,shop,clean,tennis} observation set
j index into the observation set j ∈ {1, . . . , J}
Xi = wj observation at position i has value wj
Λ = {rainy,sunny} state set
k index into state set k ∈ {1, . . . , K}
Yi = ck state at position i has value ck

Table 2.2: HMM notation for the simple example.

>>> import lxmls.readers.simple_sequence as ssr
>>> simple = ssr.SimpleSequence()
>>> print simple.train
[walk/rainy walk/sunny shop/sunny clean/sunny , walk/rainy walk/rainy shop/rainy clean/

sunny , walk/sunny shop/sunny shop/sunny clean/sunny ]
>>> print simple.test
[walk/rainy walk/sunny shop/sunny clean/sunny , clean/sunny walk/sunny tennis/sunny walk/

sunny ]

Get in touch with the classes used to store the sequences, you will need this for the next exercise. Note that each label is
internally stored as a number. This number can be used as index of an array to store information regarding that label.

>>> for sequence in simple.train.seq_list:
print sequence

walk/rainy walk/sunny shop/sunny clean/sunny
walk/rainy walk/rainy shop/rainy clean/sunny
walk/sunny shop/sunny shop/sunny clean/sunny
>>> for sequence in simple.train.seq_list:

print sequence.x
[0, 0, 1, 2]
[0, 0, 1, 2]
[0, 1, 1, 2]
>>> for sequence in simple.train.seq_list:

print sequence.y
[0, 1, 1, 1]
[0, 0, 0, 1]
[1, 1, 1, 1]

The probability distributions P(Yi|Yi−1) are called transition probabilities; the distributions P(Y1|Y0 = start)
are the initial probabilities, and P(YN+1 = stop|YN) the final probabilities.2 Finally, the distributions P(Xi|Yi) are

2Note that the initial and final probabilities are asymmetric.
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called emission probabilities.
A first order HMM model has the following independence assumptions over the joint distribution P(X =

x, Y = y):

• Independence of previous states. The probability of being in a given state at position i only depends on
the state of the previous position i− 1. Formally,

P(Yi = yi|Yi−1 = yi−1, Yi−2 = yi−2, . . . , Y1 = y1) = P(Yi = yi|Yi−1 = yi−1)

defining a first order Markov chain.3

• Homogeneous transition. The probability of making a transition from state cl to state ck is independent
of the particular position in the sequence. That is, for all i, t ∈ {1, . . . , N},

P(Yi = ck|Yi−1 = cl) = P(Yt = ck|Yt−1 = cl)

• Observation independence. The probability of observing Xi = xi at position i is fully determined by the
state Yi at that position. Formally,

P(Xi = xi|Y1 = y1, . . . , Yi = yi, . . . , YN = yN) = P(Xi = xi|Yi = yi)

This probability is independent of the particular position so, for every i and t, we can write:

P(Xi = wj|Yi = ck) = P(Xt = wj|Yt = ck)

These conditional independence assumptions are crucial to allow efficient inference, as it will be described.
The distributions that define the HMM model are summarized in Table 2.3. For each one of them we will

use a short notation to simplify the exposition.

HMM distributions
Name probability distribution short notation array size
initial probability P(Y1 = ck|Y0 = start) Pinit(ck|start) K
transition probability P(Yi = ck|Yi−1 = cl) Ptrans(ck|cl) K× K
final probability P(YN+1 = stop|YN = ck) Pfinal(stop|ck) K
emission probability P(Xi = wj|Yi = ck) Pemiss(wj|ck) J × K

Table 2.3: HMM probability distributions.

The joint distribution can be expressed as:

P(X1 = x1, . . . , XN = xN , Y1 = y1, . . . , YN = yN) =

Pinit(y1|start)×
(

N−1

∏
i=1

Ptrans(yi+1|yi)

)
× Pfinal(stop|yN)×

N

∏
i=1

Pemiss(xi|yi), (2.1)

which for the example of Figure 2.1 is:

P(X1 = x1, . . . , X4 = x4, Y1 = y1, . . . , Y4 = y4) =

Pinit(rainy|start)× Ptrans(sunny|rainy)× Ptrans(sunny|sunny)× Ptrans(sunny|sunny)×
Pfinal(stop|sunny)× Pemiss(walk|rainy)× Pemiss(walk|sunny)× Pemiss(shop|sunny)
×Pemiss(clean|sunny). (2.2)

In the next section we turn our attention to estimating the different probability distributions of the model.

3The order of the Markov chain depends on the number of previous positions taken into account. The remainder of the exposition can
be easily extended to higher order HMMs, giving the model more generality, but making inference more expensive.
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2.3 Finding the Maximum Likelihood Parameters

One important problem in HMMs is to estimate the model parameters, i.e., the distributions depicted in Ta-
ble 2.3. We will refer to the set of all these parameters as θ. In a supervised setting, the HMM model is trained
to maximize the joint log-likelihood of the data. Given a dataset DL, the objective being optimized is:

arg max
θ

M

∑
m=1

log Pθ(X = xm, Y = ym), (2.3)

where Pθ(X = xm, Y = ym) is given by Eq. 2.1.
In some applications (e.g. speech recognition) the observation variables are continuous, hence the emission

distributions are real-valued (e.g. mixtures of Gaussians). In our case, both the state set and the observation
set are discrete (and finite), therefore we use multinomial distributions for the emission and transition prob-
abilities. Multinomial distributions are attractive for several reasons: first of all, they are easy to implement;
secondly, the maximum likelihood estimation of the parameters has a simple closed form. The parameters are
just normalized counts of events that occur in the corpus (the same as the Naı̈ve Bayes from previous class).

Given our labeled corpus DL, the estimation process consists of counting how many times each event occurs
in the corpus and normalize the counts to form proper probability distributions. Let us define the following
quantities, called sufficient statistics, that represent the counts of each event in the corpus:

Initial Counts : Cinit(ck) =
M

∑
m=1

1(ym
1 = ck); (2.4)

Transition Counts : Ctrans(ck, cl) =
M

∑
m=1

N

∑
i=2

1(ym
i = ck ∧ ym

i−1 = cl); (2.5)

Final Counts : Cfinal(ck) =
M

∑
m=1

1(ym
N = ck); (2.6)

Emission Counts : Cemiss(wj, ck) =
M

∑
m=1

N

∑
i=1

1(xm
i = wj ∧ ym

i = ck); (2.7)

Here ym
i , the underscript denotes the state index position for a given sequence, and the superscript denotes the

sequence index in the dataset, and the same applies for the observations. Note that 1 is an indicator function
that has the value 1 when the particular event happens, and zero otherwise. In other words, the previous
equations go through the training corpus and count how often each event occurs. For example, Eq. 2.5 counts
how many times ck follows state cl . Therefore, Ctrans(sunny,rainy) contains the number of times that a sunny
day followed a rainy day.

After computing the counts, one can perform some sanity checks to make sure the implementation is cor-
rect. Summing over all entries of each count table we should observe the following:

• Initial Counts: – Should sum to the number of sentences: ∑K
k=1 Cinit(ck) = M

• Transition/Final Counts: – Should sum to the number of tokens: ∑K
k,l=1 Ctrans(ck, cl) + ∑K

k=1 Cfinal(ck) =
MN

• Observation Counts: – Should sum to the number of tokens: ∑J
j=1 ∑K

k=1 Cemiss(wj, ck) = MN.

Using the sufficient statistics (counts) the parameter estimates are:

Pinit(ck|start) =
Cinit(ck)

∑K
l=1 Cinit(cl)

(2.8)

Pfinal(stop|cl) =
Cfinal(cl)

∑K
k=1 Ctrans(ck, cl) + Cfinal(cl)

(2.9)

Ptrans(ck|cl) =
Ctrans(ck, cl)

∑K
p=1 Ctrans(cp, cl) + Cfinal(cl)

(2.10)

Pemiss(wj|ck) =
Cemiss(wj, ck)

∑J
q=1 Cemiss(wq, ck)

(2.11)
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Exercise 2.2 The provided function train supervised from the hmm.py file implements the above parameter estimates.
Run this function given the simple dataset above and look at the estimated probabilities. Are they correct? You can also
check the variables ending in counts instead of probs to see the raw counts (for example, typing hmm.initial counts
will show you the raw counts of initial states). How are the counts related to the probabilities?

>>> import lxmls.sequences.hmm as hmmc
>>> hmm = hmmc.HMM(simple.x_dict, simple.y_dict)
>>> hmm.train_supervised(simple.train)
>>> print "Initial Probabilities:", hmm.initial_probs
[ 0.66666667 0.33333333]
>>> print "Transition Probabilities:", hmm.transition_probs
[[ 0.5 0. ]
[ 0.5 0.625]]

>>> print "Final Probabilities:", hmm.final_probs
[ 0. 0.375]
>>> print "Emission Probabilities", hmm.emission_probs
[[ 0.75 0.25 ]
[ 0.25 0.375]
[ 0. 0.375]
[ 0. 0. ]]

2.4 Decoding a Sequence

Given the learned parameters and a new observation sequence x = x1 . . . xN , we want to find the sequence of
hidden states y∗ = y∗1 . . . y∗N that “best” explains it. This is called the decoding problem. There are several ways
to define what we mean by the “best” y∗, depending on our goal: for instance, we may want to minimize the
probability of error on each hidden variable Yi, or we may want to find the best assignment to the sequence
Y1 . . . YN as a whole. Therefore, finding the best sequence can be accomplished through different approaches:

• A first approach, normally called posterior decoding or minimum risk decoding, consists in picking the
highest state posterior for each position i in the sequence:

y∗i = arg max
yi∈Λ

P(Yi = yi|X1 = x1, . . . , XN = xN). (2.12)

Note, however, that this approach does not guarantee that the sequence y∗ = y∗1 . . . y∗N will be a valid
sequence of the model. For instance, there might be a transition between two of the best state posteriors
with probability zero.

• A second approach, called Viterbi decoding, consists in picking the best global hidden state sequence:

y∗ = arg max
y=y1 ...yN

P(Y1 = y1, . . . , YN = yN |X1 = x1, . . . , XN = xN)

= arg max
y=y1 ...yN

P(Y1 = y1, . . . , YN = yN , X1 = x1, . . . , XN = xN). (2.13)

Both approaches (which will be explained in Sections 2.4.2 and 2.4.3, respectively) rely on dynamic pro-
gramming and make use of the independence assumptions of the HMM model. Moreover, they use an alter-
native representation of the HMM called a trellis.

A trellis unfolds all possible states for each position and it makes explicit the independence assumption:
each position only depends on the previous position. Here, each column represents a position in the sequence
and each row represents a possible state. Figure 2.2 shows the trellis for the particular example in Figure 2.1.

Considering the trellis representation, note that we can include the following information:

• an initial probability to the arrows that depart from the start symbol;

• a final probability to the arrows that reach the stop symbol;

• a transition probability to the remaining arrows; and,
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Figure 2.2: Trellis representation of the HMM in Figure 2.1, for the observation sequence “walk walk shop
clean”, where each hidden variable can take the values rainy or sunny.

• an emission probability to each circle, which is the probability that the observed symbol is emitted by that
particular state.

For convenience, we will be working with log-probabilities, rather than probabilities.4 Therefore, if we
associate to each circle and arrow in the trellis a score that corresponds to the log-probabilities above, and if we
define the score of a path connecting the start and stop symbols as the sum of the scores of the circles and
arrows it traverses, then the goal of finding the most likely sequence of states (Viterbi decoding) corresponds
to finding the path with the highest score.

The trellis scores are given by the following expressions:

• For each state ck:

scoreinit(ck) = log Pinit(Y1 = ck|start). (2.14)

• For each position i ∈ 1, . . . , N − 1 and each pair of states ck and cl :

scoretrans(i, ck, cl) = log Ptrans(Yi+1 = ck|Yi = cl). (2.15)

• For each state cl (verify equation: remove i from score?):

scorefinal(i, cl) = log Pfinal(stop|YN = cl). (2.16)

• For each position i ∈ 1, . . . , N and state ck:

scoreemiss(i, ck) = log Pemiss(Xi = xi|Yi = ck). (2.17)

In the next exercise, you will compute the trellis scores.

Exercise 2.3 Convince yourself that the score of a path in the trellis (summing over the scores above) is equivalent to the
log-probability log P(X = x, Y = y), as defined in Eq. 2.2. Use the given function compute scores on the first training
sequence and confirm that the values are correct. You should get the same values as presented below.

>>> initial_scores, transition_scores, final_scores, emission_scores = hmm.compute_scores
(simple.train.seq_list[0])

>>> print initial_scores
[-0.40546511 -1.09861229]
>>> print transition_scores
[[[-0.69314718 -inf]

[-0.69314718 -0.47000363]]

[[-0.69314718 -inf]
[-0.69314718 -0.47000363]]

[[-0.69314718 -inf]
[-0.69314718 -0.47000363]]]

>>> print final_scores
[ -inf -0.98082925]

4This will be motivated further in Section 2.4.1, where we describe how operations can be performed efficiently in the log-domain.
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>>> print emission_scores
[[-0.28768207 -1.38629436]
[-0.28768207 -1.38629436]
[-1.38629436 -0.98082925]
[ -inf -0.98082925]]

Note that scores which are −∞ (-inf) correspond to zero-probability events.

2.4.1 Computing in log-domain

We will see that the decoding algorithms will need to multiply twice as many probability terms as the length
N of the sequence. This may cause underflowing problems when N is large, since the nested multiplication of
numbers smaller than 1 may easily become smaller than the machine precision. To avoid that problem, Rabiner
(1989) presents a scaled version of the decoding algorithms that avoids this problem. An alternative, which
is widely used, is computing in the log-domain. That is, instead of manipulating probabilities, manipulate
log-probabilities (the scores presented above). Every time we need to multiply probabilities, we can sum their
log-representations, since:

log(exp(a)× exp(b)) = a + b. (2.18)

Sometimes, we need to add probabilities. In the log domain, this requires us to compute

log(exp(a) + exp(b)) = a + log(1 + exp(b− a)), (2.19)

where we assume that a is smaller than b.

Exercise 2.4 Look at the module sequences/log domain.py. This module implements a function logsum pair(logx,
logy) to add two numbers represented in the log-domain; it returns their sum also represented in the log-domain. The
function logsum(logv) sums all components of an array represented in the log-domain. This will be used later in our
decoding algorithms. To observe why this is important, type the following:

>>> import numpy as np
>>> a = np.random.rand(10)
>>> np.log(sum(np.exp(a)))
2.8397172643228661
>>> np.log(sum(np.exp(10*a)))
10.121099917705818
>>> np.log(sum(np.exp(100*a)))
93.159220940569128
>>> np.log(sum(np.exp(1000*a)))
inf
>>> from lxmls.sequences.log_domain import *
>>> logsum(a)
2.8397172643228665
>>> logsum(10*a)
10.121099917705818
>>> logsum(100*a)
93.159220940569114
>>> logsum(1000*a)
925.88496219586864

2.4.2 Posterior Decoding

Posterior decoding consists in picking state with the highest posterior for each position in the sequence inde-
pendently; for each i = 1, . . . , N:

y∗i = arg max
yi∈Λ

P(Yi = yi|X = x). (2.20)

The sequence posterior distribution is the probability of a particular hidden state sequence given that we have
observed a particular sequence. Moreover, we will be interested in two other posteriors distributions: the state
posterior distribution, corresponding to the probability of being in a given state in a certain position given the
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observed sequence; and the transition posterior distribution, which is the probability of making a particular
transition, from position i to i + 1, given the observed sequence. They are formally defined as follows:

Sequence Posterior : P(Y = y|X = x) =
P(X = x, Y = y)

P(X = x)
; (2.21)

State Posterior : P(Yi = yi|X = x); (2.22)

Transition Posterior : P(Yi+1 = yi+1, Yi = yi|X = x). (2.23)

To compute the posteriors, a first step is to be able to compute the likelihood of the sequence P(X = x),
which corresponds to summing the probability of all possible hidden state sequences.

Likelihood : P(X = x) = ∑
y∈ΛN

P(X = x, Y = y). (2.24)

The number of possible hidden state sequences is exponential in the length of the sequence (|Λ|N), which
makes the sum over all of them hard. In our simple example, there are 24 = 16 paths, which we can actually
explicitly enumerate and calculate their probability using Equation 2.1. But this is as far as it goes: for example,
for Part-of-Speech tagging with a small tagset of 12 tags and a medium size sentence of length 10, there are
1210 = 61917364224 such paths. Yet, we must be able to compute this sum (sum over y ∈ ΛN) to compute
the above likelihood formula; this is called the inference problem. For sequence models, there is a well known
dynamic programming algorithm, the Forward-Backward (FB) algorithm, which allows the computation to
be performed in linear time,5 by making use of the independence assumptions.

The FB algorithm relies on the independence of previous states assumption, which is illustrated in the trellis
view by having arrows only between consecutive states. The FB algorithm defines two auxiliary probabilities,
the forward probability and the backward probability.

Forward Probability : forward(i, ck) = P(Yi = ck, X1 = x1, . . . , Xi = xi) (2.25)

The forward probability represents the probability that in position i we are in state Yi = ck and that we have
observed x1, . . . , xi up to that position. The forward probability is defined by the following recurrence rule:

forward(1, ck) = Pinit(ck|start)× Pemiss(x1|ck) (2.26)

forward(i, ck) =

(
∑

cl∈Λ
Ptrans(ck|cl)× forward(i− 1, cl)

)
× Pemiss(xi|ck) (2.27)

forward(N + 1,stop) = ∑
cl∈Λ

Pfinal(stop|cl)× forward(N, cl). (2.28)

Using the forward trellis one can compute the likelihood simply as:

P(X = x) = forward(N + 1,stop). (2.29)

Although the forward probability is enough to calculate the likelihood of a given sequence, we will also
need the backward probability to calculate the state posteriors. The backward probability is similar to the
forward probability, but operates in the inverse direction. It represents the probability of observing xi+1, . . . , xN
from position i + 1 up to N, given that at position i we are at state Yi = cl :

Backward Probability : backward(i, cl) = P(Xi+1 = xi+1, . . . , XN = xN |Yi = cl). (2.30)

The backward recurrence is given by:

backward(N, cl) = Pfinal(stop|cl) (2.31)

backward(i, cl) = ∑
ck∈Λ

Ptrans(ck|cl)× backward(i + 1, ck)× Pemiss(xi+1|ck) (2.32)

backward(0,start) = ∑
ck∈Λ

Pinit(ck|start)× backward(1, ck)× Pemiss(x1|ck). (2.33)

5The runtime is linear with respect to the sequence length. More precisely, the runtime is O(N|Λ|2). A naive enumeration would cost
O(|Λ|N).
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Algorithm 7 Forward-Backward algorithm
1: input: sequence x1, . . . , xN , scores Pinit, Ptrans, Pfinal, Pemiss
2: Forward pass: Compute the forward probabilities
3: Initialization
4: for ck ∈ Λ do
5: forward(1, ck) = Pinit(ck|start)× Pemiss(x1|ck)
6: end for
7: for i = 2 to N do
8: for ck ∈ Λ do

9: forward(i, ck) =

(
∑

cl∈Λ
Ptrans(ck|cl)× forward(i− 1, cl)

)
× Pemiss(xi|ck)

10: end for
11: end for
12: Backward pass: Compute the backward probabilities
13: Initialization
14: for cl ∈ Λ do
15: backward(N, cl) = Pfinal(stop|cl)
16: end for
17: for i = N − 1 to 1 do
18: backward(i, cl) = ∑

ck∈Λ
Ptrans(ck|cl)× backward(i + 1, ck)× Pemiss(xi+1|ck)

19: end for
20: output: The forward and backward probabilities.

Using the backward trellis one can compute the likelihood simply as:.

P(X = x) = backward(0,start). (2.34)

Moreover, with the forward and backward probabilities, we can compute the likelihood of a given sequence
using any position i in the sequence as follows:

P(X = x) = ∑
ck∈Λ

P(X1 = x1, . . . , XN = xN , Yi = ck)

= ∑
ck∈Λ

P(X1 = x1, . . . , Xi = xi, Yi = ck)︸ ︷︷ ︸
forward(i,ck)

× P(Xi+1 = xi+1, . . . , XN = xN |Yi = ck)︸ ︷︷ ︸
backward(i,ck)

= ∑
ck∈Λ

forward(i, ck)× backward(i, ck). (2.35)

This equation will work for any choice of i. Although redundant, this fact is useful when implementing
an HMM as a sanity check that the computations are being performed correctly, since one can compute this
expression for several i; they should all yield the same value.

Algorithm 7 shows the pseudo code for the forward backward algorithm.

Exercise 2.5 Run the provided forward-backward algorithm on the first train sequence. Observe that both the forward
and the backward passes give the same log-likelihood.

>>> log_likelihood, forward = hmm.decoder.run_forward(initial_scores, transition_scores,
final_scores, emission_scores)

>>> print 'Log-Likelihood =', log_likelihood
Log-Likelihood = -5.06823232601
>>> log_likelihood, backward = hmm.decoder.run_backward(initial_scores, transition_scores

, final_scores, emission_scores)
>>> print 'Log-Likelihood =', log_likelihood
Log-Likelihood = -5.06823232601

Given the forward and backward probabilities, one can compute both the state and transition posteriors
(you can hint why by looking at the term inside the sum in Eq. 2.35).
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Figure 2.3: A graphical representation of the components in the state and transition posteriors. Recall that the
observation sequence is “walk walk shop clean”.

State Posterior : P(Yi = yi|X = x) =
forward(i, yi)× backward(i, yi)

P(X = x)
; (2.36)

Transition Posterior : P(Yi = yi, Yi+1 = yi+1|X = x) =

forward(i, yi)× Ptrans(yi+1|yi)× Pemiss(xi+1|yi+1)× backward(i + 1, yi+1)

P(X = x)
. (2.37)

A graphical representation of these posteriors is illustrated in Figure 2.3. On the left it is shown that
forward(i, yi)× backward(i, yi) returns the sum of all paths that contain the state yi, weighted by P(X = x);
on the right we can see that forward(i, yi)× Ptrans(yi+1|yi)× Pemiss(xi+1|yi+1)× backward(i + 1, yi+1) returns
the same for all paths containing the edge from yi to yi+1.

As a practical example, given that the person performs the sequence of actions “walk walk shop clean”,
we want to know the probability of having been raining in the second day. The state posterior probability for
this event can be seen as the probability that the sequence of actions above was generated by a sequence of
weathers and where it was raining in the second day. In this case, the possible sequences would be all the
sequences which have rainy in the second position.

Using the state posteriors, we are ready to perform posterior decoding. The strategy is to compute the state
posteriors for each position i ∈ {1, . . . , N} and each state ck ∈ Λ, and then pick the arg-max at each position:

ŷi := arg max
yi∈Λ

P(Yi = yi|X = x). (2.38)

Exercise 2.6 Compute the node posteriors for the first training sequence (use the provided compute posteriors func-
tion), and look at the output. Note that the state posteriors are a proper probability distribution (the lines of the result
sum to 1).

>>> initial_scores, transition_scores, final_scores, emission_scores = hmm.compute_scores
(simple.train.seq_list[0])

>>> state_posteriors, _, _ = hmm.compute_posteriors(initial_scores,
transition_scores,
final_scores,
emission_scores)

>>> print state_posteriors
[[ 0.95738152 0.04261848]
[ 0.75281282 0.24718718]
[ 0.26184794 0.73815206]
[ 0. 1. ]]

Exercise 2.7 Run the posterior decode on the first test sequence, and evaluate it.

>>> y_pred = hmm.posterior_decode(simple.test.seq_list[0])
>>> print "Prediction test 0:", y_pred
walk/rainy walk/rainy shop/sunny clean/sunny
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>>> print "Truth test 0:", simple.test.seq_list[0]
walk/rainy walk/sunny shop/sunny clean/sunny

Do the same for the second test sequence:

>>> y_pred = hmm.posterior_decode(simple.test.seq_list[1])
>>> print "Prediction test 1:", y_pred
clean/rainy walk/rainy tennis/rainy walk/rainy
>>> print "Truth test 1:", simple.test.seq_list[1]
clean/sunny walk/sunny tennis/sunny walk/sunny

What is wrong? Note the observations for the second test sequence: the observation tennis was never seen at
training time, so the probability for it will be zero (no matter what state). This will make all possible state sequences have
zero probability. As seen in the previous lecture, this is a problem with generative models, which can be corrected using
smoothing (among other options).

Change the train supervised method to add smoothing:

def train_supervised(self,sequence_list, smoothing):

Try, for example, adding 0.1 to all the counts, and repeating this exercise with that smoothing. What do you observe?

>>> hmm.train_supervised(simple.train, smoothing=0.1)
>>> y_pred = hmm.posterior_decode(simple.test.seq_list[0])
>>> print "Prediction test 0 with smoothing:", y_pred
walk/rainy walk/rainy shop/sunny clean/sunny
>>> print "Truth test 0:", simple.test.seq_list[0]
walk/rainy walk/sunny shop/sunny clean/sunny
>>> y_pred = hmm.posterior_decode(simple.test.seq_list[1])
>>> print "Prediction test 1 with smoothing:", y_pred
clean/sunny walk/sunny tennis/sunny walk/sunny
>>> print "Truth test 1:", simple.test.seq_list[1]
clean/sunny walk/sunny tennis/sunny walk/sunny

2.4.3 Viterbi Decoding

Viterbi decoding consists in picking the best global hidden state sequence ŷ as follows:

ŷ = arg max
y∈ΛN

P(Y = y|X = x) = arg max
y∈ΛN

P(X = x, Y = y). (2.39)

The Viterbi algorithm is very similar to the forward procedure of the FB algorithm, making use of the same
trellis structure to efficiently represent the exponential number of sequences without prohibitive computation
costs. In fact, the only difference from the forward-backward algorithm is in the recursion 2.27 where instead
of summing over all possible hidden states, we take their maximum.

Viterbi viterbi(i, yi) = max
y1...yi−1

P(Y1 = y1, . . . Yi = yi, X1 = x1, . . . , Xi = xi) (2.40)

The Viterbi trellis represents the path with maximum probability in position i when we are in state Yi = yi
and that we have observed x1, . . . , xi up to that position. The Viterbi algorithm is defined by the following
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Algorithm 8 Viterbi algorithm
1: input: sequence x1, . . . , xN , scores Pinit, Ptrans, Pfinal, Pemiss
2: Forward pass: Compute the best paths for every end state
3: Initialization
4: for ck ∈ Λ do
5: viterbi(1, ck) = Pinit(ck|start)× Pemiss(x1|ck)
6: end for
7: for i = 2 to N do
8: for ck ∈ Λ do

9: viterbi(i, ck) =

(
max
cl∈Λ

Ptrans(ck|cl)× viterbi(i− 1, cl)

)
× Pemiss(xi|ck)

10: backtrack(i, ck) =

(
arg max

cl∈Λ
Ptrans(ck|cl)× viterbi(i− 1, cl)

)
11: end for
12: end for
13: maxy∈ΛN P(X = x, Y = y) := maxcl∈Λ Pfinal(stop|cl)× viterbi(N, cl)
14:
15: Backward pass: backtrack to obtain the most likely path
16: ŷN = arg maxcl∈Λ Pfinal(stop|cl)× viterbi(N, cl)

17: for i = N − 1 to 1 do
18: ŷi = backtrack(i + 1, ŷi+1)
19: end for
20: output: the viterbi path ŷ.

recurrence:

viterbi(1, ck) = Pinit(ck|start)× Pemiss(x1|ck) (2.41)

viterbi(i, ck) =

(
max
cl∈Λ

Ptrans(ck|cl)× viterbi(i− 1, cl)

)
× Pemiss(xi|ck) (2.42)

backtrack(i, ck) =

(
arg max

cl∈Λ
Ptrans(ck|cl)× viterbi(i− 1, cl)

)
(2.43)

viterbi(N + 1,stop) = max
cl∈Λ

Pfinal(stop|cl)× viterbi(N, cl) (2.44)

backtrack(N + 1,stop) = arg max
cl∈Λ

Pfinal(stop|cl)× viterbi(N, cl). (2.45)

Algorithm 8 shows the pseudo code for the Viterbi algorithm. Note the similarity with the forward algo-
rithm. The only differences are:

• Maximizing instead of summing;

• Keeping the argmax’s to backtrack.

2.5 Assignment

With the previous theoretical background, you have the necessary tools to solve today’s assignment.

Exercise 2.8 Implement a method for performing Viterbi decoding in file sequence classification decoder.py.

def run_viterbi(self, initial_scores, transition_scores, final_scores,
emission_scores):

Hint: look at the implementation of run forward. Also check the help for the numpy methods max and argmax.
This method will be called by
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def viterbi_decode(self, sequence)

in the module sequence classifier.py.
Test your method on both test sequences and compare the results with the ones given.

>>> hmm.train_supervised(simple.train, smoothing=0.1)
>>> y_pred, score = hmm.viterbi_decode(simple.test.seq_list[0])
>>> print "Viterbi decoding Prediction test 0 with smoothing:", y_pred, score
walk/rainy walk/rainy shop/sunny clean/sunny -6.02050124698
>>> print "Truth test 0:", simple.test.seq_list[0]
walk/rainy walk/sunny shop/sunny clean/sunny
>>> y_pred, score = hmm.viterbi_decode(simple.test.seq_list[1])
>>> print "Viterbi decoding Prediction test 1 with
smoothing:", y_pred, score
clean/sunny walk/sunny tennis/sunny walk/sunny -11.713974074
>>> print "Truth test 1:", simple.test.seq_list[1]
clean/sunny walk/sunny tennis/sunny walk/sunny

Note: since we didn’t run the train supervised method again, we are still using the result of the training using
smoothing. Therefore, you should compare these results to the ones of posterior decoding with smoothing.

2.6 Part-of-Speech Tagging (POS)

Part-of-Speech (PoS) tagging is one of the most important NLP tasks. The task is to assign each word a gram-
matical category, or Part-of-Speech, i.e. noun, verb, adjective,... Recalling the defined notation, Σ is a vocabu-
lary of word types, and Λ is the set of Part-of-Speech tags.

In English, using the Penn Treebank (PTB) corpus (Marcus et al., 1993), the current state of the art for part
of speech tagging is around 97% for a variety of methods.

In the rest of this class we will use a subset of the PTB corpus, but instead of using the original 45 tags we
will use a reduced tag set of 12 tags, to make the algorithms faster for the class. In this task, x is a sentence (i.e.,
a sequence of word tokens) and y is the sequence of possible PoS tags.

The first step is to load the corpus. We will start by loading 1000 sentences for training and 1000 sentences
both for development and testing. Then we train the HMM model by maximum likelihood estimation.

>>> import lxmls.readers.pos_corpus as pcc
>>> corpus = pcc.PostagCorpus()
>>> train_seq = corpus.read_sequence_list_conll("data/train-02-21.conll",max_sent_len=15,

max_nr_sent=1000)
>>> test_seq = corpus.read_sequence_list_conll("data/test-23.conll",max_sent_len=15,

max_nr_sent=1000)
>>> dev_seq = corpus.read_sequence_list_conll("data/dev-22.conll",max_sent_len=15,

max_nr_sent=1000)
>>> hmm = hmmc.HMM(corpus.word_dict, corpus.tag_dict)
>>> hmm.train_supervised(train_seq)
>>> hmm.print_transition_matrix()

Look at the transition probabilities of the trained model (see Figure 2.4), and see if they match your intuition
about the English language (e.g. adjectives tend to come before nouns).

Exercise 2.9 Test the model using both posterior decoding and Viterbi decoding on both the train and test set, using the
methods in class HMM:

>>> viterbi_pred_train = hmm.viterbi_decode_corpus(train_seq)
>>> posterior_pred_train = hmm.posterior_decode_corpus(train_seq)
>>> eval_viterbi_train = hmm.evaluate_corpus(train_seq, viterbi_pred_train)
>>> eval_posterior_train = hmm.evaluate_corpus(train_seq, posterior_pred_train)
>>> print "Train Set Accuracy: Posterior Decode \%.3f, Viterbi Decode: \%.3f"\%(

eval_posterior_train,eval_viterbi_train)
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Figure 2.4: Transition probabilities of the trained model. Each column is the previous state and row is the
current state. Note the high probability of having Noun after Determinant or Adjective, or of having Verb after
Nouns or Pronouns, as expected.

Train Set Accuracy: Posterior Decode 0.985, Viterbi Decode: 0.985
>>> viterbi_pred_test = hmm.viterbi_decode_corpus(test_seq)
>>> posterior_pred_test = hmm.posterior_decode_corpus(test_seq)
>>> eval_viterbi_test = hmm.evaluate_corpus(test_seq,viterbi_pred_test)
>>> eval_posterior_test = hmm.evaluate_corpus(test_seq,posterior_pred_test)
>>> print "Test Set Accuracy: Posterior Decode \%.3f, Viterbi Decode: \%.3f"\%(

eval_posterior_test,eval_viterbi_test)
Test Set Accuracy: Posterior Decode 0.350, Viterbi Decode: 0.509

What do you observe? Remake the previous exercise but now train the HMM using smoothing. Try different values
(0,0.1,0.01,1) and report the results on the train and development set. (Use function pick best smoothing).

>>> best_smoothing = hmm.pick_best_smoothing(train_seq, dev_seq, [10,1,0.1,0])
Smoothing 10.000000 -- Train Set Accuracy: Posterior Decode 0.731, Viterbi Decode: 0.691
Smoothing 10.000000 -- Test Set Accuracy: Posterior Decode 0.712, Viterbi Decode: 0.675
Smoothing 1.000000 -- Train Set Accuracy: Posterior Decode 0.887, Viterbi Decode: 0.865
Smoothing 1.000000 -- Test Set Accuracy: Posterior Decode 0.818, Viterbi Decode: 0.792
Smoothing 0.100000 -- Train Set Accuracy: Posterior Decode 0.968, Viterbi Decode: 0.965
Smoothing 0.100000 -- Test Set Accuracy: Posterior Decode 0.851, Viterbi Decode: 0.842
Smoothing 0.000000 -- Train Set Accuracy: Posterior Decode 0.985, Viterbi Decode: 0.985
Smoothing 0.000000 -- Test Set Accuracy: Posterior Decode 0.370, Viterbi Decode: 0.526
>>> hmm.train_supervised(train_seq, smoothing=best_smoothing)
>>> viterbi_pred_test = hmm.viterbi_decode_corpus(test_seq)
>>> posterior_pred_test = hmm.posterior_decode_corpus(test_seq)
>>> eval_viterbi_test = hmm.evaluate_corpus(test_seq, viterbi_pred_test)
>>> eval_posterior_test = hmm.evaluate_corpus(test_seq, posterior_pred_test)
>>> print "Best Smoothing \%f -- Test Set Accuracy: Posterior Decode \%.3f, Viterbi

Decode: \%.3f"%(best_smoothing,eval_posterior_test,eval_viterbi_test)
Best Smoothing 0.100000 -- Test Set Accuracy: Posterior Decode 0.837, Viterbi Decode: 0.

827

Perform some error analysis to understand were the errors are coming from. You can start by visualizing the confusion
matrix (true tags vs predicted tags). You should get something like what is shown in Figure 2.5.

>>> import lxmls.sequences.confusion_matrix as cm
>>> import matplotlib.pyplot as plt
>>> confusion_matrix = cm.build_confusion_matrix(test_seq.seq_list, viterbi_pred_test,

len(corpus.tag_dict), hmm.get_num_states())
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>>> cm.plot_confusion_bar_graph(confusion_matrix, corpus.tag_dict, xrange(hmm.
get_num_states()), 'Confusion matrix')

>>> plt.show()

Figure 2.5: Confusion Matrix for the previous example. Predicted tags are columns and the true tags corre-
sponds to the constituents of each column.

2.7 Unsupervised Learning of HMMs

We next address the problem of unsupervised learning. In this setting, we are not given any labeled data; all we
get to see is a set of natural language sentences. The underlying question is:

Can we learn something from raw text?

This task is challenging, since the process by which linguistic structures are generated is not always clear; and
even when it is, it is typically too complex to be formally expressed. Nevertheless, unsupervised learning
has been applied to a wide range of NLP tasks, such as: Part-of-Speech Induction (Schütze, 1995; Merialdo,
1994; Clark, 2003), Dependency Grammar Induction (Klein and Manning, 2004; Smith and Eisner, 2006), Con-
stituency Grammar Induction (Klein and Manning, 2004), Statistical Word Alignments (Brown et al., 1993) and
Anaphora Resolution (Charniak and Elsner, 2009), just to name a few.

Different motivations have pushed research in this area. From both a linguistic and cognitive point of view,
unsupervised learning is useful as a tool to study language acquisition. From a machine learning point of view,
unsupervised learning is a fertile ground for testing new learning methods, where significant improvements
can yet be made. From a more pragmatic perspective, unsupervised learning is required since annotated
corpora is a scarce resource for different reasons. Independently of the reason, unsupervised learning is an
increasingly active field of research.

A first problem with unsupervised learning, since we don’t observe any labeled data (i.e., the training set is
now DU = {x1, . . . , xM}), is that most of the methods studied so far (e.g., Perceptron, MIRA, SVMs) cannot be
used since we cannot compare the true output with the predicted output. Note also that a direct minimization
of the complete negative log-likelihood of the data, log Pθ(X1 = x1, . . . , XM = xm), is very challenging, since it
would require marginalizing out (i.e., summing over) all possible hidden variables:

log Pθ(X1 = x1, . . . , XM = xm) =
M

∑
m=1

log ∑
y∈Λ

Pθ(X = xm, Y = y). (2.46)

Note also that the objective above is non-convex even for a linear model: hence, it may have local minima,
which makes optimization much more difficult.

The most common optimization method in the presence of hidden (latent) variables is the Expectation
Maximization (EM) algorithm, described in the next section. Note that this algorithm is a generic optimization
routine that does not depend on a particular model. Later, in Section 2.7.2 we will apply the EM algorithm to
the task of part-of-speech induction, where one is given raw text and a number of clusters and the task is to
cluster words that behave similarly in a grammatical sense.
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2.7.1 Expectation Maximization Algorithm

Given the training corpus DU := {x1, . . . , xM}, training seeks model parameters θ that minimize the negative
log-likelihood of the corpus:

Negative Log Likelihood : L(θ) = Ê[− log Pθ(X)] = − 1
M

M

∑
m=1

log

(
∑

ym∈Λ
Pθ(X = xm, Y = ym)

)
, (2.47)

where Ê[ f (X)] := 1
M ∑M

m=1 f (xm) denotes the empirical average of a function f over the training corpus. Be-
cause of the hidden variables y1, . . . , yM, the likelihood term contains a sum over all possible hidden structures
inside of a logarithm, which makes this quantity hard to compute.

The most common minimization algorithm to fit the model parameters in the presence of hidden variables
is the Expectation-Maximization (EM) algorithm. The EM procedure can be thought of intuitively in the fol-
lowing way. If we observe the hidden variables’ values for all sentences in the corpus, then we could easily
compute the maximum likelihood value of the parameters as described in Section 2.3. On the other hand,
if we had the model parameters we could label data using the model, and collect the sufficient statistics de-
scribed in Section 2.3. However, since we are working in an unsupervised setting, we never get to observe
the hidden state sequence. Instead, given the training set DU = {x1 . . . xM}, we will need to collect expected
sufficient statistics (in this case, expected counts) that represent the number of times that each hidden variable is
expected to be used with the current parameters setting. These expected sufficient statistics will then be used
during learning as “fake” observations of the hidden variables. Using the node and edge posterior distribu-
tions described in Equations 2.22 and 2.23, the expected sufficient statistics can be computed by the following
formulas:

Initial Counts : Cinit(ck) =
M

∑
m=1

Pθ(Ym
1 = ck | Xm = xm); (2.48)

Transition Counts : Ctrans(ck, cl) =
M

∑
m=1

N

∑
i=2

Pθ(Ym
i = ck ∧Ym

i−1 = cl | Xm = xm); (2.49)

Final Counts : Cfinal(ck) =
M

∑
m=1

Pθ(Ym
N = ck | Xm = xm); (2.50)

Emission Counts : Cemiss(wj, ck) =
M

∑
m=1

N

∑
i=1

1(xm
i = wj)Pθ(Ym

i = ck | Xm = xm); (2.51)

Compare the previous equations with the ones described in Section 2.3 for the same quantities (Eqs. 2.4–
2.7). The main difference is that while in the presence of supervised data you sum the observed events, when
you have no label data you sum the posterior probabilities of each event. If these probabilities were such that
the probability mass was around single events then both equations will produce the same result.

The EM procedure starts with an initial guess for the parameters θ0 at time t = 0. The algorithm keeps
iterating until it converges to a local minima of the negative log likelihood. Each iteration is divided into two
steps:

• The E-Step (Expectation) computes the posteriors for the hidden variables Pθt(Y|X = xm) given the
current parameter values θt and the observed variables X = xm for the m-th sentence. For an HMM, this
can be done through the Forward-Backward algorithm described in the previous sections.

• The M-step (Maximization) uses those posteriors Pθt(Y|X = xm) to “softly fill in” the values of the
hidden variables Ym, and collects the sufficient statistics: initial counts (Eq: 2.48), transition counts (Eq:
2.49), final counts (Eq: 2.50), and emission counts (Eq: 2.51). These counts are then used to estimate
maximum likelihood parameters θt+1, as described in Section 2.3.

The EM algorithm is guaranteed to converge to a local minimum of the negative log-likelihood L(θ), under
mild conditions. Note that we are not committing to the best assignment of the hidden variables, but summing
the occurrences of each parameter weighed by the posterior probability of all possible assignments. This
modular split into two intuitive and straightforward steps accounts for the vast popularity of EM.6

6More formally, EM minimizes an upper bound of L(θ) via block-coordinate descent. See Neal and Hinton (1998) for details. Also, even
though we are presenting EM in the context of HMMs, this algorithm can be more broadly applied to any probabilistic model with latent
variables.
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Algorithm 9 presents the pseudo code for the EM algorithm.

Algorithm 9 EM algorithm.
1: input: dataset DU , initial model θ
2: for t = 1 to T do
3:
4: E-Step:
5: Clear counts: Cinit(.) = Ctrans(., .) = Cfinal(.) = Cemiss(., .) = 0
6: for xm ∈ DU do
7: Compute posterior expectations Pθ(Yi|X = xm) and Pθ(Yi, Yi+1|X = xm) using the current model θ
8: Update counts as shown in Eqs. 2.48–2.51.
9: end for

10:
11: M-Step:
12: Update the model parameters θ based on the counts.
13: end for

One important thing to note in Algorithm 9 is that for the HMM model we already have all the model pieces
we require. In fact the only method we don’t have yet implemented from previous classes is the method to
update the counts given the posteriors.

Exercise 2.10 Implement the method to update the counts given the state and transition posteriors.

def update_counts(self, sequence, state_posteriors, transition_posteriors):

You now have all the pieces to implement the EM algorithm. Look at the code for EM algorithm in file sequences/hmm.py
and check it for yourself.

def train_EM(self, dataset, smoothing=0, num_epochs=10, evaluate=True):
self.initialize_random()

if evaluate:
acc = self.evaluate_EM(dataset)
print "Initial accuracy: %f"%(acc)

for t in xrange(1, num_epochs):
#E-Step
total_log_likelihood = 0.0
self.clear_counts(smoothing)
for sequence in dataset.seq_list:

# Compute scores given the observation sequence.
initial_scores, transition_scores, final_scores, emission_scores = \

self.compute_scores(sequence)

state_posteriors, transition_posteriors, log_likelihood = \
self.compute_posteriors(initial_scores,

transition_scores,
final_scores,
emission_scores)

self.update_counts(sequence, state_posteriors, transition_posteriors)
total_log_likelihood += log_likelihood

print "Iter: %i Log Likelihood: %f"%(t, total_log_likelihood)
#M-Step
self.compute_parameters()
if evaluate:

### Evaluate accuracy at this iteration
acc = self.evaluate_EM(dataset)
print "Iter: %i Accuracy: %f"%(t,acc)
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2.7.2 Part of Speech Induction

In this section we present the Part-of-Speech induction task. Part-of-Speech tags are pre-requisite for many
text applications. The task of Part-of-Speech tagging where one is given a labeled training set of words and
respective tags is a well studied task with several methods achieving high prediction quality, as we saw in the
first part of this chapter.

On the other hand the task of Part-of-Speech induction where one does not have access to a labeled corpus
is a much harder task with a huge space for improvement. In this case, we are given only the raw text along
with sentence boundaries and a predefined number of clusters we can use. This problem can be seen as a
clustering problem. We want to cluster words that behave grammatically in the same way on the same cluster.
This is a much harder problem.

Depending on the task at hand we can pick an arbitrary number of clusters. If the goal is to test how well
our method can recover the true POS tags then we should use the same number of clusters as POS tags. On
the other hand, if the task is to extract features to be used by other methods we can use a much bigger number
of clusters (e.g., 200) to capture correlations not captured by POS tags, like lexical affinity.

Note, however that nothing is said about the identity of each cluster. The model has no preference in
assigning cluster 1 to nouns vs cluster 2 to nouns. Given this non-identifiability several metrics have been
proposed for evaluation (Reichart and Rappoport, 2009; Haghighi and Klein, 2006; Meilă, 2007; Rosenberg and
Hirschberg, 2007). In this class we will use a common and simple metric called 1-Many, which maps each
cluster to majority pos tag that it contains (see Figure 2.6 for an example).

Figure 2.6: Confusion Matrix example. Each cluster is a column. The best tag in each column is represented
under the column (1-many) mapping. Each color represents a true Pos Tag.

Exercise 2.11 Run 20 epochs of the EM algorithm for part of speech induction:

>>> hmm.train_EM(train_seq, 0.1, 20, evaluate=True)
>>> viterbi_pred_test = hmm.viterbi_decode_corpus(test_seq)
>>> posterior_pred_test = hmm.posterior_decode_corpus(test_seq)
>>> eval_viterbi_test = hmm.evaluate_corpus(test_seq, viterbi_pred_test)
>>> eval_posterior_test = hmm.evaluate_corpus(test_seq, posterior_pred_test)

Initial accuracy: 0.303638
Iter: 1 Log Likelihood: -101824.763927
Iter: 1 Accuracy: 0.305441
Iter: 2 Log Likelihood: -78057.108346
Iter: 2 Accuracy: 0.321976
Iter: 3 Log Likelihood: -77813.725501
Iter: 3 Accuracy: 0.357451
Iter: 4 Log Likelihood: -77192.947674
Iter: 4 Accuracy: 0.385109
Iter: 5 Log Likelihood: -76191.800849
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Iter: 5 Accuracy: 0.392123
Iter: 6 Log Likelihood: -75242.572729
Iter: 6 Accuracy: 0.391121
Iter: 7 Log Likelihood: -74392.892496
Iter: 7 Accuracy: 0.404249
Iter: 8 Log Likelihood: -73357.542833
Iter: 8 Accuracy: 0.399940
Iter: 9 Log Likelihood: -72135.182778
Iter: 9 Accuracy: 0.399238
Iter: 10 Log Likelihood: -70924.246230
Iter: 10 Accuracy: 0.395430
Iter: 11 Log Likelihood: -69906.561800
Iter: 11 Accuracy: 0.394328
Iter: 12 Log Likelihood: -69140.228623
Iter: 12 Accuracy: 0.390821
Iter: 13 Log Likelihood: -68541.416423
Iter: 13 Accuracy: 0.391522
Iter: 14 Log Likelihood: -68053.456865
Iter: 14 Accuracy: 0.389117
Iter: 15 Log Likelihood: -67667.318961
Iter: 15 Accuracy: 0.386411
Iter: 16 Log Likelihood: -67337.685686
Iter: 16 Accuracy: 0.385409
Iter: 17 Log Likelihood: -67054.571821
Iter: 17 Accuracy: 0.385409
Iter: 18 Log Likelihood: -66769.973881
Iter: 18 Accuracy: 0.385409
Iter: 19 Log Likelihood: -66442.608458
Iter: 19 Accuracy: 0.385409

>>> confusion_matrix = cm.build_confusion_matrix(test_seq.seq_list, viterbi_pred_test,
len(corpus.tag_dict), hmm.get_num_states())

>>> cm.plot_confusion_bar_graph(confusion_matrix, corpus.tag_dict,
xrange(hmm.get_num_states()), 'Confusion matrix')

Note: your results may not be the same as in this example since we are using a random start, but the trend should be the
same, with log-likelihood increasing at every iteration.

In the previous exercise we used an HMM to do Part-of-Speech induction using 12 clusters (by omission
the HMM uses as number of hidden states the one provided by the corpus). A first observation is that the
log-likelihood is always increasing as expected. Another observation is that the accuracy goes up from 32% to
38%. Note that normally you will run this algorithm for 200 iterations, we stopped earlier for time constraints.
Another observation is that the accuracy is not monotonic increasing, this is because the likelihood is not a
perfect proxy for the accuracy. In fact all that the likelihood is measuring are co-occurrences of words in the
corpus; it has no idea of pos tags. The fact that we are improving derives from the fact that language is not
random but follows some specific hidden patterns. In fact this patterns are what true pos-tags try to capture.
A final observation is that the performance is really bad compared to the supervised scenario, so there is a
lot of space for improvement. The actual state of the art is around 71% for fully unsupervised (Graça, 2010;
Berg-Kirkpatrick et al., 2010) and 80% (Das and Petrov, 2011) using parallel data and information from labels
in the other language.

Looking at Figure 2.6, it shows the confusion matrix for this particular example. A first observation is that
most clusters are mapped to nouns, verbs or punctuation. This is a known fact since there are many more
nouns and verbs than any other tags. Since maximum likelihood prefers probabilities to be uniform (imagine
two parameters: in one setting both have value 0.5 so the likelihood will be 0.5*0.5 = 0.25, while in the other
case one as 0.1 and 0.9 so the maximum likelihood is 0.09). Several approaches have been proposed to address
this problem, moving towards a Bayesian setting (Johnson, 2007), or using Posterior Regularization (Graça
et al., 2009).
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Day 3

Learning Structured Predictors

In this class, we will continue to focus on sequence classification, but instead of following a generative ap-
proach (like in the previous chapter) we move towards discriminative approaches. Recall that the difference
between these approaches is that generative approaches attempt to model the probability distribution of the
data, P(X, Y), whereas discriminative ones only model the conditional probability of the sequence, given the
observed data, P(Y|X).

Today’s Assignment

The assignment of today’s class is to implement the structured version of the perceptron algorithm.

3.1 Classification vs Sequential Classification

Table 3.1 shows how the models for classification have counterparts in sequential classification. In fact, in the
last chapter we discussed the Hidden Markov model, which can be seen as a generalization of the Naı̈ve Bayes
model for sequences. In this chapter, we will see a generalization of the Perceptron algorithm for sequence
problems (yielding the Structured Perceptron, Collins 2002) and a generalization of Maximum Entropy model
for sequences (yielding Conditional Random Fields, Lafferty et al. 2001). Note that both these generalizations
are not specific for sequences and can be applied to a wide range of models (we will see in tomorrow’s lecture
how these methods can be applied to parsing). Although we will not cover all the methods described in
Chapter 1, bear in mind that all of those have a structured counterpart. It should be intuitive after this lecture
how those methods could be extended to structured problems, given the perceptron example.

Classification Sequences
Generative

Naı̈ve Bayes (Sec. 1.2) Hidden Markov Models (Sec. 2.2)
Discriminative

Perceptron (Sec. 1.4.3) Structured Perceptron (Sec. 3.5)
Maximum Entropy (Sec. 1.4.4) Conditional Random Fields (Sec. 3.4)

Table 3.1: Summary of the methods used for classification and sequential classification covered in this guide.

Throughout this chapter, we will be searching for the solution of

arg max
y∈ΛN

P(Y = y|X = x) = arg max
y∈ΛN

w · f (x, y). (3.1)

where w is a weight vector, and f (x, y) is a feature vector. We will see that this sort of linear models are more
flexible than HMMs, in the sense that they may incorporate more general features while being able to reuse
the same decoders (based on the Viterbi and forward-backward algorithms). In fact, the exercises in this lab will
not touch the decoders that have been developed in the previous lab. Only the training algorithms and the function
that compute the scores will change.

As in the previous section, y = y1 . . . yN is a sequence so the maximization is over an exponential number
of objects, making it intractable for brute force methods. Again we will make an assumption analogous to the
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“first order Markov independence property,” so that the features may decompose as a sum over nodes and
edges in a trellis. This is done by assuming that expression 3.1 can be written as:

arg max
y∈ΛN

N

∑
i=1

w · f emiss(i, x, yi)︸ ︷︷ ︸
scoreemiss

+w · f init(x, y1)︸ ︷︷ ︸
scoreinit

+
N−1

∑
i=1

w · f trans(i, x, yi, yi+1)︸ ︷︷ ︸
scoretrans

+w · f final(x, yN)︸ ︷︷ ︸
scorefinal

(3.2)

In other words, the scores scoreemiss, scoreinit, scoretrans and scorefinal are now computed as inner products
between weight vectors and feature vectors rather than log-probabilities. The feature vectors depend locally
on the output variable (i.e., they only look at a single yi or a pair yi, yi+1); however they may depend globally
on the observed input x = x1, . . . , xN .

3.2 Features

In this section we will define two simple feature sets.1 The first feature set will only use identity features,
and will mimic the features used by the HMM model from the previous section. This will allow us to directly
compare the performance of a generative vs a discriminative approach. Table 3.2 depicts the features that are
implicit in the HMM, which was the subject of the previous chapter. These features are indicators of initial,
transition, final, and emission events.

Condition Name
yi = ck & i = 0 Initial Features
yi = ck & yi−1 = cl Transition Features
yi = ck & i = N Final Features
xi = wj & yi = ck Emission Features

Table 3.2: IDFeatures feature set. This set replicates the features used by the HMM model.

Note that the fact that we were using a generative model has forced us (in some sense) to make strong
independence assumptions. However, since we now move to a discriminative approach, where we model
P(Y|X) rather than P(X, Y), we are not tied anymore to some of these assumptions. In particular:

• We may use “overlapping” features, e.g., features that fire simultaneously for many instances. For exam-
ple, we can use a feature for a word, such as a feature which fires for the word ”brilliantly”, and another
for prefixes and suffixes of that word, such as one which fires if the last two letters of the word are ”ly”.
This would lead to an awkward model if we wanted to insist on a generative approach.

• We may use features that depend arbitrarily on the entire input sequence x. On the other hand, we still
need to resort to “local” features with respect to the outputs (e.g. looking only at consecutive state pairs),
otherwise decoding algorithms will become more expensive.

This leads us to the second feature set, composed of features that are traditionally used in POS tagging
with discriminative models. See Table 3.3 for some examples. Of course, we could have much more complex
features, looking arbitrarily to the input sequence. We are not going to have them in this exercise only for
performance reasons (to have less features and smaller caches). State-of-the-art sequence classifiers can easily
reach over one million features!

Our features subdivide into two groups: f emiss, f init, and f final are all instances of node features, depending
only on a single position in the state sequence (a node in the trellis); f trans are edge features, depending on two
consecutive positions in the state sequence (an edge in the trellis). Similarly as in the previous chapter, we
have the following scores (also called log-potentials in the literature on CRFs and graphical models):

• Initial scores. These are scores for the initial state. They are given by

scoreinit(x, y1) = w · f init(x, y1). (3.3)

• Transition scores. These are scores for two consecutive states at a particular position. They are given by

scoretrans(i, x, yi, yi+1) = w · f trans(i, x, yi, yi+1). (3.4)

1Although not required, all the features we will use are binary features, indicating whether a given condition is satisfied or not.
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Condition Name
yi = ck & i = 0 Initial Features
yi = ck & yi−1 = cl Transition Features
yi = ck & i = N Final Features
xi = wj & yi = ck Basic Emission Features
xi = wj & wj is uppercased & yi = ck Uppercase Features
xi = wj & wj contains digit & yi = ck Digit Features
xi = wj & wj contains hyphen & yi = ck Hyphen Features
xi = wj & wj[0..i]∀i ∈ [1, 2, 3] & yi = ck Prefix Features
xi = wj & wj[|wj| − i..|wj|]∀i ∈ [1, 2, 3] & yi = ck Suffix Features

Table 3.3: Extended feature set. Some features in this set could not be included in the HMM model. The fea-
tures included in the bottom row are all considered emission features for the purpose of our implementation,
since they all depend on i, x and yi.

• Final scores. These are scores for the final state. They are given by

scorefinal(x, yN) = w · f final(x, yN). (3.5)

• Emission scores. These are scores for a state at a particular position. They are given by

scoreemiss(i, x, yi) = w · f emiss(i, x, yi). (3.6)

3.3 Discriminative Sequential Classifiers

Given a weight vector w, the conditional probability Pw(Y = y|X = x) is then defined as follows:

Pw(Y = y|X = x) =

1
Z(w, x)

exp

(
w · f init(x, y1) +

N−1

∑
i=1

w · f trans(i, x, yi, yi+1) + w · f final(x, yN) +
N

∑
i=1

w · f emiss(i, x, yi)

)
(3.7)

where the normalizing factor Z(w, x) is called the partition function:

Z(w, x) =

∑
y∈ΛN

exp

(
w · f init(x, y1) +

N−1

∑
i=1

w · f trans(i, x, yi, yi+1) + w · f final(x, yN) +
N

∑
i=1

w · f emiss(i, x, yi)

)
.(3.8)

3.3.1 Training

For training, the important problem is that of obtaining the weight vector w that lead to an accurate classifier.
We will discuss two possible strategies:

1. Maximizing conditional log-likelihood from a set of labeled data {(xm, ym)}M
m=1, yielding conditional

random fields. This corresponds to the following optimization problem:

ŵ = arg max
w

M

∑
m=1

log Pw(Y = ym|X = xm). (3.9)

To avoid overfitting, it is common to regularize with the Euclidean norm function, which is equivalent
to considering a zero-mean Gaussian prior on the weight vector. The problem becomes:

ŵ = arg max
w

M

∑
m=1

log Pw(Y = ym|X = xm)− λ

2
‖w‖2. (3.10)

This is precisely the structured variant of the logistic regression method discussed in Chapter 1. Un-
like HMMs, this problem does not have a closed form solution and has to be solved with numerical
optimization.
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2. Alternatively, running the structured perceptron algorithm to obtain a weight vector w that accurately
classifies the training data. We will see that this simple strategy achieves results which are competitive
with conditional log-likelihood maximization.

3.3.2 Decoding

For decoding, there are three important problems that need to be solved:

1. Given X = x, compute the most likely output sequence ŷ (the one which maximizes Pw(Y = y|X = x)).

2. Compute the posterior marginals Pw(Yi = yi|X = x) at each position i.

3. Evaluate the partition function Z(w, x).

Interestingly, all these problems can be solved by using the very same algorithms that were already imple-
mented for HMMs: the Viterbi algorithm (for 1) and the forward-backward algorithm (for 2–3). All that
changes is the way the scores are computed.

3.4 Conditional Random Fields

Conditional Random Fields (CRF) (Lafferty et al., 2001) can be seen as an extension of the Maximum Entropy
(ME) models to structured problems.2 They are globally normalized models: the probability of a given sentence
is given by Equation 3.7. There are only two differences with respect to the standard ME model described a
couple of days ago for multi-class classification:

• Instead of computing the posterior marginals P(Y = y|X = x) for all possible configurations of the
output variables (which are exponentially many), it assumes the model decompose into “parts” (in this
case, nodes and edges), and it computes only the posterior marginals for those parts, P(Yi = yi|X = x)
and P(Yi = yi, Yi+1 = yi+1|X = x). Crucially, we can compute these quantities by using the very same
forward-backward algorithm that we have described for HMMs.

• Instead of updating the features for all possible outputs y′ ∈ ΛN , we again exploit the decomposition
into parts above and update only “local features” at the nodes and edges.

Algorithm 10 shows the pseudo code to optimize a CRF with the stochastic gradient descent (SGD) al-
gorithm (our toolkit also includes an implementation of a quasi-Newton method, L-BFGS, which converges
faster, but for the purpose of this exercise, we will stick with SGD).

Exercise 3.1 In this exercise you will train a CRF using different feature sets for Part-of-Speech Tagging. Start with the
code below, which uses the ID feature set from table 3.2.

import lxmls.sequences.crf_online as crfo
import lxmls.sequences.structured_perceptron as spc
import lxmls.readers.pos_corpus as pcc
import lxmls.sequences.id_feature as idfc
import lxmls.sequences.extended_feature as exfc

print "CRF Exercise"

corpus = pcc.PostagCorpus()
train_seq = corpus.read_sequence_list_conll("data/train-02-21.conll",max_sent_len=10,

max_nr_sent=1000)
test_seq = corpus.read_sequence_list_conll("data/test-23.conll",max_sent_len=10,

max_nr_sent=1000)
dev_seq = corpus.read_sequence_list_conll("data/dev-22.conll",max_sent_len=10,max_nr_sent

=1000)
feature_mapper = idfc.IDFeatures(train_seq)
feature_mapper.build_features()

2An earlier, less successful, attempt to perform such an extension was via Maximum Entropy Markov models (MEMM) (McCallum
et al., 2000). There each factor (a node or edge) is a locally normalized maximum entropy model. A shortcoming of MEMMs is its so-
called labeling bias (Bottou, 1991), which makes them biased towards states with few successor states (see Lafferty et al. (2001) for more
information).
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Algorithm 10 SGD for Conditional Random Fields
1: input: D, λ, number of rounds T, learning rate sequence (ηt)t=1,...,T
2: initialize w1 = 0
3: for t = 1 to T do
4: choose m = m(t) randomly
5: take training pair (xm, ym) and compute the probability Pw(Y = ym|X = xm) using the current model w

and Eq. 3.7.
6: for every i, y′i, and y′i+1, compute marginal probabilities P(Yi = y′i|X = x) and P(Yi = y′i, Yi+1 =

y′i+1|X = xm) using the current model w, for each node and edge, through the forward-backward algo-
rithm.

7: compute the feature vector expectation:

Ewt [ f (xm, Y)] = ∑
y1

P(y1|xm) f init(xm, y1) +

N−1

∑
i=1

∑
yi ,yi+1

P(yi, yi+1|xm) f trans(i, xm, yi, yi+1) +

∑
yN

P(yN |xm) f final(xm, yN) +

N

∑
i=1

∑
yi

P(yi|xm) f emiss(i, xm, yi). (3.11)

8: update the model:
wt+1 ← (1− ληt)wt + ηt ( f (xm, ym)− Ewt [ f (xm, Y)])

9: end for
10: output: ŵ← wT+1

crf_online = crfo.CRFOnline(corpus.word_dict, corpus.tag_dict, feature_mapper)
crf_online.num_epochs = 20
crf_online.train_supervised(train_seq)

Epoch: 0 Objective value: -5.779018
Epoch: 1 Objective value: -3.192724
Epoch: 2 Objective value: -2.717537
Epoch: 3 Objective value: -2.436614
Epoch: 4 Objective value: -2.240491
Epoch: 5 Objective value: -2.091833
Epoch: 6 Objective value: -1.973353
Epoch: 7 Objective value: -1.875643
Epoch: 8 Objective value: -1.793034
Epoch: 9 Objective value: -1.721857
Epoch: 10 Objective value: -1.659605
Epoch: 11 Objective value: -1.604499
Epoch: 12 Objective value: -1.555229
Epoch: 13 Objective value: -1.510806
Epoch: 14 Objective value: -1.470468
Epoch: 15 Objective value: -1.433612
Epoch: 16 Objective value: -1.399759
Epoch: 17 Objective value: -1.368518
Epoch: 18 Objective value: -1.339566
Epoch: 19 Objective value: -1.312636

You will receive feedback when each epoch is finished, note that running the 20 epochs might take a while.
After training is done, evaluate the learned model on the training, development and test sets.

pred_train = crf_online.viterbi_decode_corpus(train_seq)
pred_dev = crf_online.viterbi_decode_corpus(dev_seq)
pred_test = crf_online.viterbi_decode_corpus(test_seq)
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eval_train = crf_online.evaluate_corpus(train_seq, pred_train)
eval_dev = crf_online.evaluate_corpus(dev_seq, pred_dev)
eval_test = crf_online.evaluate_corpus(test_seq, pred_test)

print "CRF - ID Features Accuracy Train: %.3f Dev: %.3f Test: %.3f"%(eval_train,eval_dev,
eval_test)

You should get values similar to these:

Out[]: CRF -
ID Features Accuracy Train: 0.949 Dev: 0.846 Test: 0.858

Compare with the results achieved with the HMM model (0.837 on the test set, from the previous lecture).
Even using a similar feature set a CRF yields better results than the HMM from the previous lecture. Perform
some error analysis and figure out what are the main errors the tagger is making. Compare them with the
errors made by the HMM model. (Hint: use the methods developed in the previous lecture to help you with
the error analysis).

Exercise 3.2 Repeat the previous exercise using the extended feature set. Compare the results.

feature_mapper = exfc.ExtendedFeatures(train_seq)
feature_mapper.build_features()

crf_online = crfo.CRFOnline(corpus.word_dict, corpus.tag_dict, feature_mapper)
crf_online.num_epochs = 20
crf_online.train_supervised(train_seq)

Epoch: 0 Objective value: -7.141596
Epoch: 1 Objective value: -1.807511
Epoch: 2 Objective value: -1.218877
Epoch: 3 Objective value: -0.955739
Epoch: 4 Objective value: -0.807821
Epoch: 5 Objective value: -0.712858
Epoch: 6 Objective value: -0.647382
Epoch: 7 Objective value: -0.599442
Epoch: 8 Objective value: -0.562584
Epoch: 9 Objective value: -0.533411
Epoch: 10 Objective value: -0.509885
Epoch: 11 Objective value: -0.490548
Epoch: 12 Objective value: -0.474318
Epoch: 13 Objective value: -0.460438
Epoch: 14 Objective value: -0.448389
Epoch: 15 Objective value: -0.437800
Epoch: 16 Objective value: -0.428402
Epoch: 17 Objective value: -0.419990
Epoch: 18 Objective value: -0.412406
Epoch: 19 Objective value: -0.405524

pred_train = crf_online.viterbi_decode_corpus(train_seq)
pred_dev = crf_online.viterbi_decode_corpus(dev_seq)
pred_test = crf_online.viterbi_decode_corpus(test_seq)

eval_train = crf_online.evaluate_corpus(train_seq, pred_train)
eval_dev = crf_online.evaluate_corpus(dev_seq, pred_dev)
eval_test = crf_online.evaluate_corpus(test_seq, pred_test)

print "CRF - Extended Features Accuracy Train: %.3f Dev: %.3f Test: %.3f"%(eval_train,
eval_dev,eval_test)

You should get values close to the following:
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CRF - Extended Features Accuracy Train: 0.984 Dev: 0.899 Test: 0.894

Compare the errors obtained with the two different feature sets. Do some error analysis: what errors were correct by
using more features? Can you think of other features to use to solve the errors found?

The main lesson to learn from this exercise is that, usually, if you are not satisfied by the accuracy of your
algorithm, you can perform some error analysis and find out which errors your algorithm is making. You can
then add more features which attempt to improve those specific errors (this is known as feature engineering).
This can lead to two problems:

• More features will make training and decoding more expensive. For example, if you add features that
depend on the current word and the previous word, the number of new features is the square of the
number of different words, which is quite large. For example, the Penn Treebank has around 40000
different words, so you are adding a lot of new features, even though not all pairs of words will ever
occur. Features that depend on three words (previous, current, and next) are even more numerous.

• If features are very specific, such as the (previous word, current word, next word) one just mentioned,
they might occur very rarely in the training set, which leads to overfit problems. Some of these problems
(not all) can be mitigated with techniques such as smoothing, which you already learned about.

3.5 Structured Perceptron

The structured perceptron (Collins, 2002), namely its averaged version, is a very simple algorithm that relies on
Viterbi decoding and very simple additive updates. In practice this algorithm is very easy to implement and
behaves remarkably well in a variety of problems. These two characteristics make the structured perceptron
algorithm a natural first choice to try and test a new problem or a new feature set.

Recall what you learned about the perceptron algorithm (Section 1.4.3) and compare it against the struc-
tured perceptron (Algorithm 11).

Algorithm 11 Averaged Structured perceptron
1: input: D, number of rounds T
2: initialize w1 = 0
3: for t = 1 to T do
4: choose m = m(t) randomly
5: take training pair (xm, ym) and predict using the current model w, through the Viterbi algorithm:

ŷ← arg max
y′∈ΛN

wt · f (xm, y′)

6: update the model: wt+1 ← wt + f (xm, ym)− f (xm, ŷ)
7: end for
8: output: the averaged model ŵ← 1

T ∑T
t=1 wt

There are only two differences, which mimic the ones already seen for the comparison between CRFs and
multi-class ME models:

• Instead of explicitly enumerating all possible output configurations (exponentially many of them) to
compute ŷ := arg maxy′∈Y w · f (xm, y′), it finds the best sequence through the Viterbi algorithm.

• Instead of updating the features for the entire ŷ, it updates only the node and edge features at the posi-
tions where the labels are different—i.e., where mistakes are made.

3.6 Assignment

Exercise 3.3 Implement the structured perceptron algorithm.
To do this, edit file sequences/structured perceptron.py and implement the function
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def perceptron_update(self, sequence):
pass

This function should apply one round of the perceptron algorithm, updating the weights for a given sequence, and return-
ing the number of predicted labels (which equals the sequence length) and the number of mistaken labels.

Hint: adapt the function

def gradient_update(self, sequence, eta):

defined in file sequences/crf online.py. You will need to replace the computation of posterior marginals by the
Viterbi algorithm, and to change the parameter updates according to Algorithm 11. Note the role of the functions

self.feature_mapper.get_*_features()

in providing the indices for the features obtained for f (xm, ym) or f (xm, ŷ)

Exercise 3.4 Repeat Exercises 3.1–3.2 using the structured perceptron algorithm instead of a CRF. Report the results.
Here is the code for the simple feature set:

feature_mapper = idfc.IDFeatures(train_seq)
feature_mapper.build_features()

print "Perceptron Exercise"

sp = spc.StructuredPerceptron(corpus.word_dict, corpus.tag_dict, feature_mapper)
sp.num_epochs = 20
sp.train_supervised(train_seq)

Epoch: 0 Accuracy: 0.656806
Epoch: 1 Accuracy: 0.820898
Epoch: 2 Accuracy: 0.879176
Epoch: 3 Accuracy: 0.907432
Epoch: 4 Accuracy: 0.925239
Epoch: 5 Accuracy: 0.939956
Epoch: 6 Accuracy: 0.946284
Epoch: 7 Accuracy: 0.953790
Epoch: 8 Accuracy: 0.958499
Epoch: 9 Accuracy: 0.955114
Epoch: 10 Accuracy: 0.959235
Epoch: 11 Accuracy: 0.968065
Epoch: 12 Accuracy: 0.968212
Epoch: 13 Accuracy: 0.966740
Epoch: 14 Accuracy: 0.971302
Epoch: 15 Accuracy: 0.968653
Epoch: 16 Accuracy: 0.970419
Epoch: 17 Accuracy: 0.971891
Epoch: 18 Accuracy: 0.971744
Epoch: 19 Accuracy: 0.973510

pred_train = sp.viterbi_decode_corpus(train_seq)
pred_dev = sp.viterbi_decode_corpus(dev_seq)
pred_test = sp.viterbi_decode_corpus(test_seq)

eval_train = sp.evaluate_corpus(train_seq, pred_train)
eval_dev = sp.evaluate_corpus(dev_seq, pred_dev)
eval_test = sp.evaluate_corpus(test_seq, pred_test)

print "Structured Perceptron - ID Features Accuracy Train: %.3f Dev: %.3f Test: %.3f"%(
eval_train,eval_dev,eval_test)
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Structured Perceptron - ID Features Accuracy Train: 0.984 Dev: 0.835 Test: 0.840

Here is the code for the extended feature set:

feature_mapper = exfc.ExtendedFeatures(train_seq)
feature_mapper.build_features()
sp = spc.StructuredPerceptron(corpus.word_dict, corpus.tag_dict, feature_mapper)
sp.num_epochs = 20
sp.train_supervised(train_seq)

Epoch: 0 Accuracy: 0.764386
Epoch: 1 Accuracy: 0.872701
Epoch: 2 Accuracy: 0.903458
Epoch: 3 Accuracy: 0.927594
Epoch: 4 Accuracy: 0.938484
Epoch: 5 Accuracy: 0.951141
Epoch: 6 Accuracy: 0.949816
Epoch: 7 Accuracy: 0.959529
Epoch: 8 Accuracy: 0.957616
Epoch: 9 Accuracy: 0.962325
Epoch: 10 Accuracy: 0.961148
Epoch: 11 Accuracy: 0.970567
Epoch: 12 Accuracy: 0.968212
Epoch: 13 Accuracy: 0.973216
Epoch: 14 Accuracy: 0.974393
Epoch: 15 Accuracy: 0.973951
Epoch: 16 Accuracy: 0.976600
Epoch: 17 Accuracy: 0.977483
Epoch: 18 Accuracy: 0.974834
Epoch: 19 Accuracy: 0.977042

pred_train = sp.viterbi_decode_corpus(train_seq)
pred_dev = sp.viterbi_decode_corpus(dev_seq)
pred_test = sp.viterbi_decode_corpus(test_seq)

eval_train = sp.evaluate_corpus(train_seq, pred_train)
eval_dev = sp.evaluate_corpus(dev_seq, pred_dev)
eval_test = sp.evaluate_corpus(test_seq, pred_test)

print "Structured Perceptron - Extended Features Accuracy Train: %.3f Dev: %.3f Test: %.
3f"%(eval_train,eval_dev,eval_test)

And here are the expected results:

Structured Perceptron - Extended Features Accuracy Train: 0.984 Dev: 0.888 Test: 0.890
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Day 4

Syntax and Parsing

In this lab we will implement some exercises related with parsing.

4.1 Phrase-based Parsing

4.1.1 Context Free Grammars

Let T be an alphabet (i.e., a finite set of symbols), and denote by T∗ its Kleene closure, i.e., the infinite set of
strings produced with those symbols:

T∗ = ∅∪ T ∪ T2 ∪ . . .

A language L is a subset of T∗. The “complexity” of a language L can be loosely defined by how hard it is to
construct a machine (an automaton) capable of distinguishing the words in L from the elements of T∗ which
are not in L.1 If L is finite, a very simple automaton can be built which just memorizes the strings in L. The
next simplest case is that of regular languages, which are recognizable by finite state machines. These are the
languages that can be expressed by regular expressions. An example (where T = {a, b}) is the language
L = {abnaan | n ∈ N}, which corresponds to the regular expression ab ∗ a+. Hidden Markov models (studied in
previous lectures) can be seen as a stochastic version of finite state machines.

A step higher in the hierarchy of languages leads to context-free languages, which are more complex than
regular languages. These are languages that are generated by context-free grammars, and recognizable by push-
down automata (which are slightly more complex than finite state machines). In this section we describe context-
free grammars and how they can be made probabilistic. This will yield models that are more powerful than
hidden Markov models, and are specially amenable for modeling the syntax of natural languages.2

A context-free grammar (CFG) is a tuple G = 〈N,T,R,S〉 where:

1. N is a finite set of non-terminal symbols. Elements of N are denoted by upper case letters (A, B, C, . . .).
Each non-terminal symbol is a syntactic category: it represents a different type of phrase or clause in the
sentence.

2. T is a finite set of terminal symbols (disjoint from N). Elements of T are denoted by lower case letters
(a, b, c, . . .). Each terminal symbol is a surface word: terminal symbols make up the actual content of
sentences. The set T is called the alphabet of the language defined by the grammar G.

3. R is a set of production rules, i.e., a finite relation from N to (N ∪ T)∗. G is said to be in Chomsky normal
form (CNF) if production rules in R are either of the form A→ BC or A→ a.

4. S is a start symbol, used to represent the whole sentence. It must be an element of N.

Any CFG can be transformed to be in CNF without loosing any expressive power in terms of the language
it generates. Hence, we henceforth assume that G is in CNF without loss of generality.

To see how CFGs can model the syntax of natural languages, consider the following sentence,
1We recommend the classic book by Hopcroft et al. (1979) for a thorough introduction on the subject of automata theory and formal

languages.
2This does not mean that natural languages are context free. There is an immense body of work on grammar formalisms that relax

the “context-free” assumption, and those formalisms have been endowed with a probabilistic framework as well. Examples are: lex-
ical functional grammars, head-driven phrase structured grammars, combinatorial categorial grammars, tree adjoining grammars, etc.
Some of these formalisms are mildly context sensitive, a relaxation of the “context-free” assumption which still allows polynomial parsing
algorithms. There is also equivalence in expressive power among several of these formalisms.
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She enjoys the Summer school.

along with a grammar (in CNF) with the following production rules:

S --> NP VP
NP --> Det N
NP --> She
VP --> V NP
V --> enjoys
Det --> the
Nbar --> N N
N --> Summer
N --> school

With this grammar, we may derive the following parse tree:
S

NP

She

VP

V

enjoys

NP

Det

the

Nbar

N

Summer

N

school

4.1.2 Ambiguity

A fundamental characteristic of natural languages is ambiguity. For example, consider the sentence

The man sees the boy in the park with a telescope.

for which all the following parse trees are plausible interpretations:

1. The boy is in a park and he has a telescope:

S

NP

Det

The

N

man

VP

V

sees

NP

NP

NP

Det

the

N

boy

PP

P

in

NP

Det

the

N

park

PP

P

with

NP

Det

a

N

telescope

2. The boy is in a park, and the man sees him using a telescope as an instrument:
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S

NP

Det

The

N

man

VP

V

sees

NP

NP

Det

the

N

boy

PP

P

in

NP

Det

the

N

park

PP

P

with

NP

Det

a

N

telescope

3. The man is in the park and he has a telescope, through which he sees a boy somewhere:

S

NP

Det

The

N

man

VP

V

sees

NP

Det

the

N

boy

PP

P

in

NP

Det

the

N

park

PP

P

with

NP

Det

a

N

telescope

The ambiguity is caused by the several places to each the prepositional phrase could be attached. This kind
of syntactical ambiguity (PP-attachment) is one of the most frequent in natural language.

4.1.3 Probabilistic Context-Free Grammars

A probabilistic context-free grammar is a tuple Gθ = 〈N,T,R,S, θ〉, where 〈N,T,R,S〉 is a CFG and θ is a vector
of parameters, one per each production rule in R. Assuming that the grammar is in CNF, each rule of the kind
Z → XY is endowed a conditional probability

θZ→XY = Pθ(XY|Z),

and each unary rule of the kind Z → w is endowed with a conditional probability

θZ→w = Pθ(w|Z).

For these conditional probabilities to be well defined, the entries of θ must be non-negative and need to nor-
malize properly for each Z ∈ N:

∑
X,Y∈N

θZ→XY + ∑
w∈T

θZ→w = 1.

Let s be a string and t a parse tree derivation for s. For each r ∈ R, let nr(t, s) be the number of times production
rule r appears in the derivation. According to this generative model, the joint probability of t and s factors as
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the product of the conditional probabilities above:

P(t, s) = ∏
r∈R

θ
nr(t,s)
r .

For example, for the sentence above (She enjoys the Summer school) this probability would be

P(t, s) = P(NP VP|S)× P(She|NP)× P(V NP|VP)× P(enjoys|V)
×P(Det Nbar|NP)× P(the|Det)× P(N N|Nbar)
×P(Summer|N)× P(school|N). (4.1)

When a sentence is ambiguous, the most likely parse tree can be obtained by maximizing the conditional
probability P(t|s); this quantity is proportional to P(t, s) and therefore the latter quantity can be maximized.
The number of possible parse trees, however, grows exponentially with the sentence length, rendering a direct
maximization intractable. Fortunately, a generalization of the Viterbi algorithm exists which uses dynamic
programming to carry out this computation. This is the subject of the next section.

4.1.4 The CKY Parsing Algorithm

Algorithm 12 CKY algorithm
1: input: probabilistic CFG Gθ in CNF, and sentence s = w1 . . . wN (each wi is a word)
2:
3: {We’ll fill the CKY table bottom-up with partial probabilities δ and backtrack pointers ψ. This is similar to

the Viterbi algorithm but it works for parse trees rather than sequences.}
4:
5: {Initialization}
6: for i = 1 to N do
7: for each production rule r ∈ R of the form Z → wi do
8: δ(i, i, Z) = θZ→wi
9: end for

10: end for
11:
12: {Induction}
13: for i = 2 to N do {i is length of span}
14: for j = 1 to N − i + 1 do {j is start of span}
15: for each non-terminal Z ∈ N do
16: Set partial probability:

δ(j, j + i− 1, Z) = max
X,Y

j<k<j+i

δ(j, k− 1, X)× δ(k, j + i− 2, Y)× θZ→XY

17: Store backpointer:

ψ(j, j + i− 1, Z) = arg max
X,Y

j<k<j+i

δ(j, k− 1, X)× δ(k, j + i− 2, Y)× θZ→XY

18: end for
19: end for
20: end for
21:
22: {Termination}
23: P(s, t̂) = δ(1, N,S)
24: Backtrack through ψ to obtain most likely parse tree t̂

One of the most widely known algorithm for parsing natural language sentences is the Cocke-Kasami-
Younger (CKY) algorithm. Given a grammar in CNF with |R| production rules, its runtime complexity for
parsing a sentence of length N is O(N3|R|). We present here a simple extension of the CKY algorithm that
obtains the most likely parse tree of a sentence, along with its probability.Given a sequence of words wi in a
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sentence s = w1, . . . , wN , we want to learn probability for each possible non-terminal rule Z ∈ R, and take the
most probable parsing tree that generates the sentence. 3 This is displayed in Alg. 12.

This algorithm assigns a probability δ(i, j, Z), for every possible subtree of the sentence, starting from word
j and spanning k words (wj, wj+1, . . . , wj+k), which are generated by rule Z. The process goes from spanning
sequences of length one to n and for each size partitioning the subtree into two parts X, and Y to compute the
probability that each production rule Z → X, Y generates the subsequence. Those of length one correspond
to the set of terminal rules Z → wi, to which it is assign a conditional probability δ(i, i, Z) = θZ→wi . At each
step the most probable rule Z → X, Y is stored in ψ(i, j, Z). Once the process is completed, the sentence is
recognized by the grammar if the subsequence containing the entire sentence is matched by the start symbol,
and the most probable parse tree t̂ can be recovered by iterating backwards through the stored rules.

Exercise 4.1 In this simple exercise, you will see the CKY algorithm in action. There is a Javascript applet that illustrates
how CKY works (in its non-probabilistic form). Go to http://www.diotavelli.net/people/void/demos/
cky.html, and observe carefully the several steps taken by the algorithm. Write down a small grammar in CNF that
yields multiple parses for the ambiguous sentence The man saw the boy in the park with a telescope, and run the
demo for this particular sentence. What would happen in the probabilistic form of CKY?

4.1.5 Learning the Grammar

There is an immense body of work on grammar induction using probabilistic models (see e.g., Manning and
Schütze (1999) and the references therein, as well as the most recent works of Klein and Manning (2002); Smith
and Eisner (2005); Cohen et al. (2008)): this is the problem of learning the parameters of a grammar from
plain sentences only. This can be done in an EM fashion (like in sequence models), except that the forward-
backward algorithm is replaced by inside-outside. Unfortunately, the performance of unsupervised parsers
is far from good, at present days. Much better results have been produced by supervised systems, which,
however, require expensive annotation in the form of treebanks: this is a corpus of sentences annotated with
their corresponding syntactic trees. The following is an example of an annotated sentence in one of the most
widely used treebanks, the Penn Treebank (http://www.cis.upenn.edu/˜treebank/):

( (S
(NP-SBJ (NNP BELL) (NNP INDUSTRIES) (NNP Inc.) )
(VP (VBD increased)

(NP (PRP$ its) (NN quarterly) )
(PP-DIR (TO to)

(NP (CD 10) (NNS cents) ))
(PP-DIR (IN from)

(NP
(NP (CD seven) (NNS cents) )
(NP-ADV (DT a) (NN share) ))))

(. .) ))

Exercise 4.2 This exercise will show you that real-world sentences can have complicated syntactic structures. There is a
parse tree visualizer in http://www.ark.cs.cmu.edu/treeviz/. Go to your local data/treebanks folder
and open the file PTB excerpt.txt. Copy a few trees from the file, one at a time, and examine their parse trees in the
visualizer.

A treebank makes possible to learn a parser in a supervised fashion. The simplest way is via a generative
approach. Instead of counting transition and observation events of an HMM (as we did for sequence models),
we now need to count production rules and symbol occurrences to estimate the parameters of a probabilistic
context-free grammar. While performance would be much better than that of unsupervised parsers, it would
still be rather poor. The reason is that the model we have described so far is oversimplistic: it makes too strong
independence assumptions. In this case, the Markovian assumptions are:

1. Each terminal symbol w in some position i is independent of everything else given that it was derived
by the rule Z → w (i.e., given its parent Z);

2. Each pair of non-terminal symbols X and Y spanning positions i to j, with split point k, is independent
of everything else given that they were derived by the rule Z → XY (i.e., given their parent Z).

3Similarly, the forward-backward algorithm for computing posterior marginals in sequence models can be extended for context-free
parsing. It takes the name inside-outside algorithm. See Manning and Schütze (1999) for details.
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The next section describes some model refinements that complicate the problem of parameter estimation,
but usually allow for a dramatic improvement on the quality of the parser.

4.1.6 Model Refinements

A number of refinements has been made that yield more accurate parsers. We mention just a few:

Parent annotation. This strategy splits each non-terminal symbol in the grammar (e.g. Z) by annotating it with
all its possible parents (e.g. creates nodes ZX , ZY, . . . every time production rules like X → Z·, X → ·Z,
or Y → Z·, Y → ·Z exist in the original grammar). This increases the vertical Markovian length of the
model, hence weakening the independence assumptions. Parent annotation was initiated by Johnson
(1998) and carried on in the unlexicalized parsers of Klein and Manning (2003) and follow-up works.

Lexicalization. A particular weakness of PCFGs is that they ignore word context for interior nodes in the
parse tree. Yet, this context is relevant in determining the production rules that should be invoked in
the derivation. A way of overcoming this limitation is by lexicalizing parse trees, i.e., annotating each
phrase node with the lexical item (word) which governs that phrase: this is called the head word of the
phrase. Fig. 4.1 shows an example of a lexicalized parse tree. To account for lexicalization, each non-
terminal symbol in the grammar (e.g. Z) is split into many symbols, each annotated with a word that
may govern that phrase (e.g. Zw1 , Zw2 , . . .). This greatly increases the size of the grammar, but it has a
significant impact in performance. A string of work involving lexicalized PCFGs includes Magerman
(1995); Charniak (1997); Collins (1999).

Discriminative models. Similarly as in sequence models (where it was shown how to move from an HMM
to a CRF), we may abandon our generative model and consider a discriminative one. An advantage of
doing that is that it becomes much easier to adopt non-local input features (i.e., features that depend
arbitrarily on the surface string), for example the kind of features obtained via lexicalization, and much
more. The CKY parsing algorithm can still be used for decoding, provided the feature vector decompose
according to non-terminal symbols and production rules. In this case, productions and non-terminals will
have a score which does not correspond to a log-probability; the partition function and the posterior
marginals can be computed with the inside-outside algorithm. See Taskar et al. (2004) for an application
of structured SVMs to parsing, and Finkel et al. (2008) for an application of CRFs.

Latent variables. Splitting the variables in the grammar by introducing latent variables appears as an alterna-
tive to lexicalization and parent annotation. There is a string of work concerning latent variable gram-
mars, either for the generative and discriminative cases: Petrov and Klein (2007, 2008a,b). Some related
work also considers coarse-to-fine parsing, which iteratively applies more and more refined models:
Charniak et al. (2006).

History-based parsers. Finally, there is a totally different line of work which models parsers as a sequence of
greedy shift-reduce decisions made by a push-down automaton (Ratnaparkhi, 1999; Henderson, 2003).
When discriminative models are used, arbitrary conditioning can be done on past decisions made by the
automaton, allowing to include features that are difficult to handle by the other parsers. This comes at
the price of greediness in the decisions taken, which implies suboptimality in maximizing the desired
objective function.

4.2 Dependency Parsing

4.2.1 Motivation

Consider again the sentence

She enjoys the Summer school.

along with the lexicalized parse tree displayed in Fig. 4.1. If we drop the phrase constituents and keep only
the head words, the parse tree would become:

enjoys

she school

the Summer
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S (enjoys)

NP (she)

She

VP (enjoys)

V (enjoys)

enjoys

NP (school)

Det (the)

the

Nbar (school)

N (Summer)

Summer

N (school)

school

Figure 4.1: A lexicalized parse tree for the sentence She enjoys the Summer school.

This representation is called a dependency tree; it can be alternatively represented as shown in Fig. 4.2. De-
pendency trees retain the lexical relationships involved in lexicalized phrase-based parse trees. However, they
drop phrasal constituents, which render non-terminal nodes unnecessary. This has computational advantages
(no grammar constant is involved in the complexity of the parsing algorithms) as well as design advantages
(no grammar is necessary, and treebank annotations are way simpler, since no internal constituents need to
be annotated). It also shifts the focus from internal syntactic structures and generative grammars (Chomsky,
1965) to lexical and transformational grammars (Tesnière, 1959; Hudson, 1984; Melčuk, 1988; Covington, 1990).
Arcs connecting words are called dependency links or dependency arcs. In an arc 〈h, m〉, the source word h is called
the head and the target word m is called the modifier.

 * She enjoys the Summer school

Figure 4.2: A dependency tree for the sentence She enjoys the Summer school. Note the additional dummy root
symbol (*) which is included for convenience.

4.2.2 Projective and Non-projective Parsing

Dependency trees constructed using the method just described (i.e., lexicalization of context-free phrase-based
trees) always satisfy the following properties:

1. Each word (excluding the dummy root symbol) has exactly one parent.

2. The dummy root symbol has no parents.

3. There are no cycles.

4. The dummy root symbol has exactly one child.

5. All arcs are projective. This means that for any arc 〈h, m〉, all words in its span (i.e., all words lying between
h and m) are descendents from h (i.e. there is a directed path of dependency links from h to such word).

Conditions 1–3 ensure that the set of dependency links form a well-formed tree, rooted in the dummy
symbol, which spans all the words of the sentence. Condition 4 requires that there is a single link departing
from the root. Finally, a tree satisfying condition 5 is said projective: it implies that arcs cannot cross (e.g., we
cannot have arcs 〈h, m〉 and 〈h′, m′〉 such that the word positions are ordered as h < h′ < m < m′).

In many languages (e.g., those which have free-order) we would like to relax the assumption that all trees
must be projective. Even in languages which have fixed word order (such as English) there are syntactic
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 * We learned a lesson in 1987 about volatility

Figure 4.3: A non-projective parse tree.

phenomena which are awkward to characterize using projective trees arising from the context-free assumption.
Usually, such phenomena are characterized with additional linguistic artifacts (e.g., traces, Wh-movement,
etc.). An example is the sentence (extracted from the Penn Treebank)

We learned a lesson in 1987 about volatility.

There, the prepositional phrase in 1987 should be attached to the verb phrase headed by learned (since this
is when we learned the lesson), but the other prepositional phrase about volatility should be attached to the
noun phrase headed by lesson (since the lesson was about volatility). To explain such phenomenon, context-free
grammars need to use additional machinery which allows words to be scrambled (in this case, via a movement
transformation and the consequent insertion of a trace). In the dependency-based formalism, we can get rid of
all those artifacts altogether by allowing non-projective parse trees. These are trees that satisfy conditions 1–3
above, but not necessarily conditions 4 or 5.4 The dependency tree in Fig. 4.3 is non-projective: note that the
arc 〈lesson, about〉 is not projective.

We end this section by mentioning that dependency trees can have their arcs labeled, to provide more
detailed syntactic information. For example, the arc 〈enjoys, She〉 could be labeled as SUBJ to denote that
the modifier She has a subject function, and the arc 〈enjoys, school〉 could be labeled as OBJ to denote that
the modifier school has an object function. For simplicity, we resort to unlabeled trees, which just convey the
backbone structure. To cope with the labels, one can use either a joint model that infers the backbone and
labels altogether, or to have a two-stage approach that first gets the backbone structure, and then the arc labels.

4.2.3 Algorithms for Projective Dependency Parsing

We now turn our attention to algorithms for obtaining a dependency parse tree. We start by considering a
simple kind of models which are called arc-factored. These models assign a score sθ(h, m) to each possible
arc 〈h, m〉 connecting a pair of words; they then score a particular dependency tree t by summing over the
individual scores of the arcs that are present in the tree:

scoreθ(t) = ∑
〈h,m〉∈t

sθ(h, m).

As usual, from the point of view of the parsing algorithm, it does not matter whether the scores come from
a generative or discriminative approach, and which features were used to compute the scores. The three
important inference tasks are:

1. Obtain the tree with the largest score,

t̂ = arg max
t

scoreθ(t).

2. Compute the partition function (for a log-linear model),

Z(sθ) = ∑
t

exp(scoreθ(t)),

where sθ is short-hand notation for the set of all the sθ(h, m) coefficients.

4It is also common to impose conditions 1–4, in which case the tree need not be projective, but it must have a single link departing from
the root. The algorithms to be described below can be adapted for this case.
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3. Compute the posterior marginals for all the possible arcs (which for a log-linear model is the gradient of
the log-partition function),

Pθ(〈h, m〉 ∈ t) =
∂ log Z(sθ)

∂sθ(h, m)
.

As explained in this morning’s lecture, in projective dependency parsing using arc-factored models, the
three tasks above can be solved in time O(N3), through Eisner’s algorithm (Eisner, 1996), which is represented
as Algorithm 13. Eisner’s algorithm is related with the CKY algorithm in the sense that it also parses a sentence
in a bottom-up fashion, building larger spans from smaller spans. In fact, the CKY algorithm can be adapted in
a naı̈ve manner to perform projective dependency parsing by dropping the constituent symbols and keeping
track of the head positions of each span. This naı̈ve strategy, however, would force us to manipulate five
indices when combining two spans to form a larger span (the start and end points of the large span, the mid
point, and the head positions for the two spans being combined), which would increase the complexity of the
algorithm to O(N5). Eisner’s algorithm uses the notion of complete and incomplete spans (in which all the right
modifiers and all the left modifiers of a given head are all built separately) to reduce the complexity back to
O(N3). By replacing maximizations with summations, the same dynamic programming algorithm can be used
to compute the partition function and the posterior marginals.

Algorithm 13 Eisner’s algorithm for first-order projective dependency parsing
1: input: Arc scores sθ(h, m), for h ∈ {0, . . . , N}, m ∈ {1, . . . , N}, and h 6= m, associated with a sentence

s = w1 . . . wN .
2: {Initialization}
3: for i = 0 to N do
4: {Initialize incomplete spans.}
5: incomplete[i, i,←] := 0.0
6: incomplete[i, i,→] := 0.0
7:
8: {Initialize complete spans.}
9: complete[i, i,←] := 0.0

10: complete[i, i,→] := 0.0
11: end for
12:
13: {Induction}
14: for k = 1 to N do {k is length of span}
15: for s = 1 to N − k do {s is start of span}
16: Set t := s + k {t is end of span}
17:
18: {First, create incomplete spans.}
19: incomplete[s, t,←] := maxs≤r<t(complete[s][r][→] + complete[r + 1][t][←] + sθ(t, s))
20: incomplete[s, t,→] := maxs≤r<t(complete[s][r][→] + complete[r + 1][t][←] + sθ(s, t))
21:
22: {Then, create complete spans.}
23: complete[s, t,←] := maxs≤r<t(complete[s][r][←] + incomplete[r][t][←]
24: complete[s, t,→] := maxs<r≤t(incomplete[s][r][→] + complete[r][t][→])
25: end for
26: end for
27:
28: {Termination}
29: Backtrack to obtain the actual tree, whose score is complete[0, N,→].

4.2.4 Algorithms for Non-Projective Dependency Parsing

We turn our attention to non-projective dependency parsing. In that case, efficient solutions also exist for the
three problems above; interestingly, they are based in combinatorial algorithms which are not related at all
with dynamic programming:

• The first problem corresponds to finding the maximum weighted directed spanning tree in a directed graph.
This problem is well known in combinatorics and can be solved in O(N3) using Chu-Liu-Edmonds’
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algorithm (Chu and Liu, 1965; Edmonds, 1967).5 This has first been noted by McDonald et al. (2005).

• The second and third problems can be solved by invoking another important result in combinatorics, the
matrix-tree theorem (Tutte, 1984). This fact has been noticed independently by Smith and Smith (2007);
Koo et al. (2007); McDonald and Satta (2007). The cost is that of computing a determinant and inverting
a matrix, which can be done in time O(N3). The procedure is as follows. We first consider the directed
weighted graph formed by including all the possible dependency links 〈h, m〉 (including the ones de-
parting from the dummy root symbol, for which h = 0 by convention), along with weights given by
exp(sθ(h, m)), and compute its (N + 1)-by-(N + 1) Laplacian matrix L whose entries are:

Lhm =

{
∑N

h′=0 exp(sθ(h′, m)), if h = m,
− exp(sθ(h, m))), otherwise.

(4.2)

Denote by L̂ the (0, 0)-minor of L, i.e., the matrix obtained from L by removing the first row and column.
Consider its determinant det L̂ and its inverse L̂−1. Then:

– the partition function is given by
Z(sθ) = det L̂; (4.3)

– the posterior marginals are given by

Pθ(〈h, m〉 ∈ t) =
{

exp(sθ(h, m)) · ([L̂−1]mm − [L̂−1]mh) if h 6= 0
exp(sθ(0, m)) · [L̂−1]mm otherwise.

(4.4)

Exercise 4.3 In this exercise you are going to experiment with arc-factored non-projective dependency parsers.
The CoNLL-X and CoNLL 2008 shared task datasets (Buchholz and Marsi, 2006; Surdeanu et al., 2008) contain

dependency treebanks for 14 languages. In this lab, we are going to experiment with the Portuguese and English datasets.
We preprocessed those datasets to exclude all sentences with more than 15 words; this yielded the files:

• data/deppars/portuguese train.conll,

• data/deppars/portuguese test.conll,

• data/deppars/english train.conll,

• data/deppars/english test.conll.

1. After importing all the necessary libraries, load the Portuguese dataset:

import sys
sys.path.append('.' )

import lxmls.parsing.dependency_parser as depp

dp = depp.DependencyParser()
dp.read_data("portuguese")

Observe the statistics which are shown. How many features are there in total?

2. We will now have a close look on the features that can be used in the parser. Examine the file:

code/parsing/dependency features.py.

The following method takes a sentence and computes a vector of features for each possible arc 〈h, m〉:

def create_arc_features(self, instance, h, m, add=False):
'''Creates features for arc h-->m.'''

We grouped the features in several subsets, so that we can conduct some ablation experiments:

5There is a asymptotically faster algorithm by Tarjan (1977) which solves the same problem in O(N2).
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• Basic features that look only at the parts-of-speech of the words that can be connected by an arc;

• Lexical features that also look at these words themselves;

• Distance features that look at the length and direction of the dependency link (i.e., distance between the two
words);

• Contextual features that look at the context (part-of-speech tags) of the words surrounding h and m.

In the default configuration, only the basic features are enabled. The total number of features is the quantity
observed in the previous question. With this configuration, train the parser by running 10 epochs of the structured
perceptron algorithm:

dp.train_perceptron(10)
dp.test()

What is the accuracy obtained in the test set? (Note: the shown accuracy is the fraction of words whose parent was
correctly predicted.)

3. Repeat the previous exercise by subsequently enabling the lexical, distance and contextual features:

dp.features.use_lexical = True
dp.read_data("portuguese")
dp.train_perceptron(10)
dp.test()

dp.features.use_distance = True
dp.read_data("portuguese")
dp.train_perceptron(10)
dp.test()

dp.features.use_contextual = True
dp.read_data("portuguese")
dp.train_perceptron(10)
dp.test()

For each configuration, write down the number of features and test set accuracies. Observe the improvements
obtained when more features were added.
Feel free to engineer new features!

4. Which of the three important inference tasks discussed above (computing the most likely tree, computing the parti-
tion function, and computing the marginals) need to be performed in the structured perceptron algorithm? What
about a maximum entropy classifier, with stochastic gradient descent? Check your answers by looking at the fol-
lowing two methods in code/dependency parser.py:

def train_perceptron(self, n_epochs):
...

def train_crf_sgd(self, n_epochs, sigma, eta0 = 0.001):
...

Repeat the last exercise by training a maximum entropy classifier, with stochastic gradient descent, using λ = 0.01
and a initial stepsize of η0 = 0.1:

dp.train_crf_sgd(10, 0.01, 0.1)
dp.test()
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Compare the results with those obtained by the perceptron algorithm.

5. Train a parser for English using your favourite learning algorithm:

dp.read_data("english")
dp.train_perceptron(10)
dp.test()

The predicted trees are placed in the file data/deppars/english test.conll.pred. To get a sense of
which errors are being made, you can check the sentences that differ from the gold standard (see the data in
data/deppars/english test.conll) and visualize those sentences, e.g., in http://www.ark.cs.
cmu.edu/treeviz/.

6. (Optional.) Implement Eisner’s algorithm for projective dependency parsing. The pseudo-code is shown as Algo-
rithm 13. Implement this algorithm as the function

def parse_proj(self, scores):
'''
Parse using Eisner's algorithm.
'''

in file dependency decoder.py. The input is a matrix of arc scores, whose dimension is (N + 1)-by-(N + 1),
and whose (h, m) entry contains the score sθ(h, m). In particular, the first row contains the scores for the arcs that
depart from the root, and the first column’s values, along with the main diagonal, are to be ignored (since no arcs
point to the root, and there are no self-pointing arcs). To make your job easier, we provide an implementation of the
backtracking part:

def backtrack_eisner(self, incomplete_backtrack, complete_backtrack, s, t,
direction, complete, heads):

so you just need to build complete/incomplete spans and their backtrack pointers and then call

heads = -np.ones(N+1, dtype=int)
self.backtrack_eisner(incomplete_backtrack, complete_backtrack, 0, N, 1, 1,

heads)
return heads

to obtain the final parse.

To test the algorithm, retrain the parser on the English data (where the trees are actually all projective) by setting
the flag dp.projective to True:

dp = depp.DependencyParser()
dp.features.use_lexical = True
dp.features.use_distance = True
dp.features.use_contextual = True
dp.read_data("english")
dp.projective = True
dp.train_perceptron(10)
dp.test()

You should get the following results:
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Number of sentences: 8044
Number of tokens: 80504
Number of words: 12202
Number of pos: 48
Number of features: 338014
Epoch 1
Training accuracy: 0.835637168541
Epoch 2
Training accuracy: 0.922426254687
Epoch 3
Training accuracy: 0.947621628947
Epoch 4
Training accuracy: 0.960326602521
Epoch 5
Training accuracy: 0.967689840538
Epoch 6
Training accuracy: 0.97263631025
Epoch 7
Training accuracy: 0.97619370285
Epoch 8
Training accuracy: 0.979209016579
Epoch 9
Training accuracy: 0.98127569228
Epoch 10
Training accuracy: 0.981320865519
Test accuracy (509 test instances): 0.886732599366

4.2.5 Model Refinements

A number of refinements has been made that yield more accurate dependency parsers. We mention just a few:

Sibling and grandparent features. The arc-factored assumption fails to capture correlations between pairs of
arcs. The dynamic programming algorithms for the projective case can be extended (at some additional
cost) to handle features that look at consecutive sibling arcs on the same side of the head (i.e., pairs of arcs
of the form 〈h, m〉 and 〈h, s〉 with h < m < s or h > m > s, such that no arc 〈h, r〉 exists with r between m
and s. This has been done by Eisner and Satta (1999). Similarly, grandparents can also be accommodated
with similar extensions (Carreras, 2007). These are called “second-order models.”

For the non-projective case, however, any extension beyond the arc-factored model becomes NP-hard
(McDonald and Satta, 2007). Yet, approximate algorithms have been proposed to handle “second-order
models” that seem to work well: a greedy method (McDonald et al., 2006), loopy belief propagation
(Smith and Eisner, 2008), a linear programming relaxation (Martins et al., 2009), and a dual decomposi-
tion method (Koo et al., 2010).

Third-order models. For the projective case, third order models have also been considered (Koo and Collins,
2010). This was extended to the non-projective case by Martins et al. (2013).

Transition-based parsers. Like in the phrase-based case, there is a totally different line of work which models
parsers as a sequence of greedy shift-reduce decisions (Nivre et al., 2006; Huang and Sagae, 2010). These
parsers seem to be very fast (expected linear time) and only slightly less accurate than the state-of-the-art.
Solutions have been worked out for the non-projective case also (Nivre, 2009).

4.2.6 External Links

If you want to check a demo of a parser that use some of the extensions above, you can do so at

http://demo.ark.cs.cmu.edu/parse

This demo uses TurboParser (http://www.ark.cs.cmu.edu/TurboParser), a free software implementa-
tion of a fast and accurate dependency parser that can parse thousands of tokens per second with state-of-the-
art accuracies (way faster than the Python implementation that you have used at the labs). Feel free to try it at
home!
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Other well-known software toolkits that implement dependency parsers are:

• MSTParser (http://www.seas.upenn.edu/˜strctlrn/MSTParser/MSTParser.html), a graph-
based dependency parser;

• MaltParser (http://www.maltparser.org/), a transition-based parser;

• DPO3 (http://groups.csail.mit.edu/nlp/dpo3/), a third-order projective parser;

• Linear-time dynamic programming parser (http://acl.cs.qc.edu/˜lhuang/), a fast transition-
based parser.

82

http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html
http://www.maltparser.org/
http://groups.csail.mit.edu/nlp/dpo3/
http://acl.cs.qc.edu/~lhuang/


Day 5

Big Data I: Introduction

In this lab (and tomorrow), we will work with Amazon.com’s Web Services (AWS)1, a cloud based solution
to run some simple analyses. Then, in the next lab, we will build on these tools to construct a larger learning
system.

We will only look at small problems, such that you can run them both locally and on AWS quickly. This way,
you can learn how to use them within the limited time of these lab sessions. Unfortunately, this also means
that you will not be dealing with truly large-scale problems where AWS is faster than local computations. You
should consider these last two days as a proof-of-concept giving you the knowledge necessary to run things
on AWS, which you can apply to your own large-scale problems after this summer school.

Connecting to Amazon WebServices

In these two lab days, you will use three machines:

1. Your local machine, which may be your personal laptop or one of the computers at IST. From this machine,
you will use SSH to login to:

2. Your AWS machine, which is a regular Linux box which runs on the cloud and is private to you. You
should use this machine to edit the code and test it.

3. The Elastic MapReduce cluster machines. You cannot directly login to them, but will use automated tools
to submit jobs and get back the results.

Running at Home

After the summer school is over, you can run the same code on your local machine or your own AWS machine.
For this, you will need to get an Amazon account for yourself. Then, you will receive AWS credentials which
will give you full permissions to run it in multiple modes.

Today’s Assignment

Today we will show you how to solve a simple problem (counting words in documents) in a distributed
manner. We will then ask you to implement a distributed solution for a problem you already know (Naı̈ve
Bayes classification).

5.1 Introduction

AWS is a set of services of different types. We will focus on the Elastic Compute Cluster, EC2.2

In this lab, we will be logging in to Linux-based machines using a command line interface. If you are not
familiar with the command line, don’t worry – we will tell you everything you need regarding the command
line, and your exercises only involve Python, just like the previous days.

1http://aws.amazon.com/
2http://aws.amazon.com/ec2/

83



5.2 Using your AWS machine

You should have received a piece of paper with the following two pieces of information:

1. A host name

2. A password

Your hostname will be something like ec2-54-234-117-69.compute-1.amazonaws.com and you
should be able to log in with username ubuntu and the password you were given. This is your personal
server running on Amazon’s infrastructure!

If you are using the command line, you can just type:

ssh ubuntu@ec2-54-234-117-69.compute-1.amazonaws.com

(accept the RSA key and log in with the password we provided you).
The machine has all of the necessary Python packages for you to work. It also has a standard collection of

editors and other tools, including emacs and vi. If you’re not used to the command line, you should probably
use nano which is a very simple text editor. To open a file, type in the terminal

nano your_filename

From within nano, use CTRL-O to save a file and CTRL-X to exit (you will be asked to save any modified
files). Use CTRL-K to cut an entire line and CTRL-U to paste it back (to copy instead of cut, use cut, then paste
in the original location, then paste in the other desired location).

This machine is an Ubuntu based installation and you can access super user powers with sudo (if you’re
not familiar with Unix-based environments, you might not understand this last sentence – don’t worry about
it for now).

5.3 MapReduce for Word Count

The initial idea of MapReduce was an implementation by Google3, but very soon Hadoop appeared as an
open-source implementation of the same paradigm.4

The basic idea is to take your original problem, whichever it may be, and tackle it in two steps:

1. Map step: Divide the data into several parts and send each part to a different computer. Each computer
does some computation using only that part of the data, and returns some output.5 It comes from the
functional programming world, and is actually present in Python as a builtin function, map.

2. Reduce step: Collect all the outputs from all the different computers and compute the final solution from
those outputs. Again, this name comes from the functional programming and it is present in Python as
the builtin reduce. However, as we will see the reduce step in MapReduce is a bit more inteligent than
the tradtional reduce.

The classic example of application of MapReduce is the word count problem:

• You have a collection of documents, there are many of them.

• You want to count how many times each word appears in the whole collection.

If the text corpus is small, this is trivial to do on a single machine. However, for big corpora, one computer
alone would take a long time. For example, the whole English Wikipedia is about 10 GB compressed, and
several times that when uncompressed. It would take a considerable amount of time to count the occurrence
of each word on the whole dataset using only one computer.

However, this problem is quite easy to parallelize using the MapReduce framework:

1. You process each document by itself, counting how many times each word appears. This is the map step.
Notice that each document can be processed in parallel by different machines. The result for each file is
a dictionary of a count for each word.

2. You sum up the counts for each word to get the final count. This is the reduce step. Notice that you can
now parallelize over words.

3http://research.google.com/archive/mapreduce.html
4http://hadoop.apache.org/
5The name ”map” is completely unrelated to maximum a posteriori (MAP) inference which was introduced in day 1.
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5.3.1 Keys, Values, and the MRJob package

In fact, what we stated above is a bit of an over-simplification. In MapReduce, the map step actually outputs
zero or more pairs of the form (key, value). Let’s suppose that you want to run the wordcount example in the
following document which contains only two sentences:

the center of Lisbon is the best part of the city
the campus of IST is located near Alameda

Suppose that you send each sentence to a separate worker. The output of the first worker (which is pro-
cessing the first sentence) would be:

Key Value
“the” 3

“center” 1
“of” 2

...
...

and the output of the second worker (which is processing the second sentence) would be:

Key Value
“the” 1

“campus” 1
“of” 1

...
...

Keys can be anything you want: when counting words, it makes sense to have each worker use words as
keys, and values as the counts of those words in the text that was passed onto that worker.

In the reduce step, the reducer will receive these key/value pairs and do something with them. In word
counting, the natural operation for the reduce step is to sum the counts with the same key, in order to produce
this:

Key Value
“the” 4

“center” 1
“campus” 1

“of” 3
...

...

Note that the reduce step also produces key/value pairs. As you can see, this last table is the correct output
of the Word Count algorithm.

In this tutorial, we will be using the package MrJob6. In MRJob, you should define mapper and reducer
functions which implement the map and reduce steps. Whenever you are ready to produce a key/value
pair, you should use the Python instruction yield key, value, where key and value are the variables
containing the key and value.7

5.3.2 Running Word Count on one machine

Here is an implementation of the Word Count algorithm in Python, using MRJob:

6MrJob was developed by Yelp, the company behind the epinomious website; it is available as open source, under the Apache license
– see http://pythonhosted.org/mrjob/

7Without going into too much detail, the yield instruction in Python is used for generators, which are list-like objects which are more
memory efficient. Instead of storing all the values in memory like a list, a generator simply knows how to produce the next element in
a sequence. For example, range(5) produces a list with the values 0 to 4. xrange(5) produces a generator which knows that its first
value is 0 and that following values get incremented by 1 each time, up to and including 4, but these values are never stored together in
memory. If you want to learn more about generators in Python, visit http://docs.python.org/2/tutorial/classes.html – but you probably
don’t need to read that for this lesson.
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# Import the necessary libraries:
from mrjob.job import MRJob

class WordCount(MRJob):
def mapper(self, _, doc):

c = {}
# Process the document
for w in doc.split():

if w in c:
c[w] += 1

else:
c[w] = 1

# Now, output the results
for w,c in c.items():

yield w,c

def reducer(self, key, cs):
yield key, sum(cs)

wc = WordCount()
wc.run()

This file already exists as wordcount.py (inside the wordcount folder). You will first run it without
using Amazon EC2. To do that, ssh your machine

ssh <username>@<prefix>.compute.amazonaws.com

authenticating with the credentials provided in this lab. Then, navigate to the wordcount folder and type this
into a terminal:

python wordcount.py en_perline001.txt > results.txt

Open the results.txt file in your favorite text editor. Each line of this file contains a word and the
corresponding count.

Here are a few important points which you need to remember for the exercise of this session:

1. By default, MRJob splits the input (the en perline001.txt file) by lines. This means that each line
may be sent to a different worker. We have taken care of this detail for you, but when you use MRJob
for your own projects, remember that the input is split by lines unless you configure it differently. In the
future, when we say that we ”split the input into documents”, we will be referring to this split by lines.

2. You must create a class and make it inherit from the MRJob class, as we did in the line

class WordCount(MRJob):

3. You should create functions with the special names mapper and reducer. These functions always have
three inputs: self, which all class functions have, key, and value. In our case, the mapper’s input is
just text which doesn’t have a key; in Python, it is common to use an underscore, , to denote unused
input/output arguments.

4. The mapper function takes the input text (the doc argument), splits it into words using the command
doc.split(), and then counts the words in that text.

5. The reducer function has a key argument which is just a string containing a word. It also has a cs
argument, which is a generator object. For most purposes, you can treat this argument as a list of all the
counts in all the documents of the word in the key argument. This sum is, naturally, the output of the
Word Count algorithm for this word.

We suggest that you spend a few minutes studying this simple code. Try putting the Python line import
pdb; pdb.set trace() at multiple places within the code to see what is contained in each variable.
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5.3.3 Running Word Count on Amazon EC2

We will now run the algorithm on your own private cluster.
One of the advantages of MRJob is that you can use the exact same Python code as before, but changing

a few arguments in the command line will run the Word Count on Amazon’s computers instead of on the
computer where the file is. This is what Amazon calls Elastic Map Reduce (EMR).

To run the exact same code as before using EMR, type the following into the command line.

python wordcount.py -r emr en_perline001.txt > results2.txt

Since the two files don’t have to have the same order for the words, it’s hard to compare them visually. Try
these two commands in the terminal, which will check how often you counted the word will:

grep will results.txt
grep will results2.txt

You should see that the word ”will” appears 2151 times on the English file, with both commands.
The file we used on the previous exercises is not very big (it contains around 0.1% of the text from the

English Wikipedia), but running on a cluster of machines allows us to scale up enough to use larger files as
input. For example, let’s run the same on 10% of the Portuguese Wikipedia, using a file which is present on
Amazon’s S3 storage service:

python wordcount.py \
-r emr \
s3://lxmls-labs/pt_perline10.txt > results_PT.txt

This should take about 3 minutes.

5.4 Using Naı̈ve Bayes for Language Detection

Language detection is surprisingly easy if you have enough data to train your system. In our case, we’re
going to use triplets of characters (or ”trimers”) as features. For example, if your whole training corpus is a
sentence in English which reads ”I love Lisbon” (length: 13 characters) and a sentence in Portuguese which
reads ”Adoro Lisboa” (length: 12 characters), you would say that you saw the following features: ”I l”, ” lo”,
”lov”, ”ove”, ”ve ”, and so on in the English data, and ”Ado”, ”dor”, ”oro”, ”ro ”, and so on in the Portuguese
data. Note the presence of whitespace on some of these trimers.

You can now use the exact same Naı̈ve Bayes algorithm which you used for sentiment analysis on Day 1.
Instead of classifying text into two classes (positive and negative) we’re going to classify text into two other
classes (Portuguese and English). Our training data will be parts of the Portuguese and English Wikipedias.8

The implementation of distributed Naı̈ve Bayes is very similar to counting words:

1. The map step takes the whole training data of the Portuguese language and splits it into documents. The
mapper function computes the frequency of each trimer on one document.

2. The reduce step compiles the information from all the documents and sums the counts of every Por-
tuguese document.

3. The previous two steps are repeated for the English training data.

4. After the MapReduce part, a post-processing step uses these counts with similar formulas as in Day 1 to
classify new unseen text into the two classes: English or Portuguese. For convenience, we repeat these
formulas below.

Once you have the counts of trimer occurrences on each language, you need to estimate:

• The prior probability of each language appearing at test time, P̂(PT) and P̂(EN). For simplicity, instead of
using Maximum Likelihood estimation, let’s assume that the users of your language detector are equally
likely to try English and Portuguese sentences. Thus, P̂(PT) = P̂(EN) = 1

2 .9

8We will use 10% of the Portuguese Wikipedia and 1% of the English Wikipedia to ensure that you can complete this exercise in the
time of this lab session. However, Amazon’s infrastructure is easily capable of handling the whole Wikipedia.

9You could also assume, as in Day 1, that the probability of a given language appearing at test time is proportional to the size of the
training data of that language. Each assumption makes sense in different contexts.
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• The probability of each feature (trimer) given the class, P̂(tj|c). We will again use Maximum Likelihood
estimation, which means that the probability of trimer t given language c is equal to the number of
times t occurred in documents of language c, divided by the total number of trimers in language c.
Mathematically:

P̂(tj|PT) =
n(tj, PT)

∑j n(tj, PT)
, (5.1)

where n(tj, PT) is the number of times the trimer tj occurred in your Portuguese training corpus. A
similar formula is used for P̂(tj|EN).

Then, given a test sentence x, we can compute the following argmax for the two classes c = PT and c = EN:

arg max
c

P̂(c|x) = arg maxc P̂(c)P̂(x|c)

= arg maxc P̂(c)∏j P̂(c|tj)

= arg maxc ∏j P̂(c|tj)

= arg maxc ∑j log(P̂(c|tj)) (5.2)

In the first equality we used Bayes’ Theorem. In the second one we used the assumption of conditional in-
dependence of features given the class, which is at the core of Naı̈ve Bayes. In the third one, we used that
P̂(PT) = P̂(EN) = 1

2 , thus the prior does not affect the argmax. In the last equation, we used the fact that
the argmax is not affected by the application of a logarithm. Logarithms will prevent your program from
encountering underflow errors when multiplying many numbers which are very small.

5.5 Assignment

Using the Word Count example we’ve given you above, implement the Naı̈ve Bayes language detector de-
scribed above. You should do this in two parts:

• Steps 1 to 3 (counting occurrences of trimers in train data, for both languages), should be run on EC2.

• Step 4 should be run on your AWS server (it is quite fast even with just one computer). It should imple-
ment the formula given in equation (5.2).

You must run two jobs, one on a selection of the Portuguese Wikipedia (1%) and another on the English
Wikipedia (only 0.1% as this is much larger). These files already exist on the LXMLS Toolkit as pt perline01.txt
and en perline001.txt. They are small enough to run on your AWS machine only, and should already pro-
duce a decent language detector.

Steps 1-3 are very similar to the word count code which we gave you. The main difference is that you are
splitting the document into trimers instead of words. Remember to use the syntax > en.counts.txt and >
pt.counts.txt when you run the two jobs, to output the results to appropriate files.

If your code is in file trimercount.py, inside the big data folder, the two commands you need to type
into the terminal to run things in your AWS machine are:

python trimercount.py en_perline001.txt > en.counts.txt

python trimercount.py pt_perline01.txt > pt.counts.txt

Step 4 should use the two files en.counts.txt and pt.counts.txt to implement the language detector.
This is all run on your AWS machine only – you don’t need to use MRJob and you can use plain Python as
you did in the previous lab sessions. If you don’t have time to implement this part, you can use our own
implementation in file postprocess.py.

After you’ve managed to get things working on one machine only, you can easily run steps 1-3 on AWS:

python trimercount.py -r emr en_perline001.txt > en.counts.txt

python trimercount.py -r emr pt_perline01.txt > pt.counts.txt

To check if things worked, try the command
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grep acc en.counts.txt

which should tell you that the trimer acc appeared 3448 times in the English file.
To test your language detector, see if it classifies correctly some sentences which you make up. If you do

not know Portuguese, here are a few sentences you can use to test (from the Portuguese Wikipedia):

• Esperamos que estejam a gostar desta Escola.

• Se tiverem qualquer comentário a fazer, por favor enviem-nos um email.

• Os organizadores gostariam de agradecer aos monitores das aulas práticas pela grande ajuda na elaboração
desta aula.
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Day 6

Big Data II: Distributed EM

Today’s Assignment

In the previous lesson, you learned the fundamentals of MapReduce and applied it to a simple classification
problem (language detection, using the Naı̈ve Bayes classifier).

Today, we’re going to use MapReduce again to solve a trickier problem: using EM to perform unsupervised
POS induction.

Use the same login information you used yesterday to access your Amazon machine.

6.1 Distributed EM

Before you read this section, if you haven’t already, please read section 2.7 about the non-distributed version
of EM. If necessary, review that part of the guide, especially the pseudocode in Algorithm 9.

EM is an iterative method: for T iterations, we have to alternate between the E-Step and the M-Step. Both
steps can be done in a distributed manner; in this lesson, we’re going to focus on a simple way to distribute
the E-Step; the M-Step will be non-distributed (at first). To see how to distribute both steps in various config-
urations see, e.g., Wolfe et al. (2008).

How can we distribute the E-Step? Recall from equations (2.48)–(2.51) that the E-Step involves summing
over m, where m indexes each datum in your dataset. In POS induction, m indexes every sentence. The
important factor to understand is that each sequence can be processed completely independently of each other
(these are the inner expressions) given the previous iterations’ θt. This will correspond to a map step. The sums
over m will be the reduce step.

In the last lesson, you already saw the Word Count and Naı̈ve Bayes algorithms. In these two examples, we
counted something in the Map step and then summed them in the Reduce step. That is the intuition behind
what we will do today: we will distribute our data to several workers in the map step, count things separately,
then sum those counts in the reduce step. Everything else will be exactly the same as in section 2.7.

The most important concepts that you should get out of today’s tutorial are:

1. Since we can process each sequence independently, this is naturally a map step.

2. A full Map/Reduce call will correspond to a single iteration of the algorithm.

3. To run multiple iterations, you will need to run multiple MapReduce calls.

4. For each call after the first, you will need to pass in the results of the previous call.

This is a step up from yesterday’s mode of working where a single Map/Reduce call would solve your
problem.

The structure of this lab tutorial is as follows:

1. You will first look at the code we already provide for you.

2. Based on it, we will run a version that is not distributed.

3. We will convert this to a distributed version that is naı̈ve and very inefficient.

4. We will then improve this version to be more efficient.
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5. Finally, we will run this code on a large dataset.

This is a rather large set of exercises – we decided to push you harder on this last day. Don’t feel discouraged
if you cannot complete everything.

6.2 First MapReduce Version

In your Amazon machine you will find the directory distributed em. In it you will find a few data and
code files:

• sequences200.txt contains the first 200 sequences.

• word_tag_dict.pkl is an auxiliary file containing the dictionaries of words and tags.

• emstep.py contains a skeleton of the code we will be writing.

• A few other files we will use below (ignore them for the moment).

We recommend that leave the file emstep.py alone and experiment with the code snippets we provide
below in a separate script until you get to section 6.2.3.

6.2.1 Loading data

The datafiles are in a different format from what was used in the previous EM tutorial because the simplest way
to use Hadoop (which is the underlying framework of Amazon EC2) is make each mapper receive a single line of the file.

To load a single line of the input file, we have provided in file emstep.py a function

def load_sequence(line, word_dict, tag_dict):
'''
seq = load_sequence(s, word_dict, tag_dict)

Load a sequence from a single line

word_dict & tag_dict should be loaded from the file ``word_tag_dict.pkl``

Parameters
----------
s : str
word_dict : dict
tag_dict : dict

Returns
-------
seq : Sequence object
'''

which takes the input data and the metadata in the auxiliary file. Here is how you would use it to just count
the number of tokens in the dataset:

import pickle
from emstep import load_sequence
word_dict, tag_dict = pickle.load(open('word_tag_dict.pkl'))

n = 0
for line in open('sequences200.txt'):

s = load_sequence(line, word_dict, tag_dict)
n += len(s)

print 'Nr of tokens: ', n

The format of s is the same as Day 2. If you need to refresh your memory, try placing a line with import
pdb; pdb.set trace() after the call to the function to see the format of s.
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6.2.2 Processing a single sequence

We have also provided code for you to compute the statistics for a single sequence in the function

def predict_sequence(sequence, hmm):
'''
log_likelihood, initial_counts, transition_counts, final_counts,\

emission_counts = predict_sequence(seq, hmm)

Run forward-backward on a single sentence.

Parameters
----------
seq : Sequence object
hmm: HMM object

Returns
-------
log_likelihood : float
initial_counts : np.ndarray
transition_counts : ndarray
final_counts : ndarray
emission_counts : ndarray
'''

Here is how you could use it. First we need to initialize an HMM object:

import lxmls.sequences.hmm as hmmc
import pickle
word_dict, tag_dict = pickle.load(open('word_tag_dict.pkl'))
hmm = hmmc.HMM(word_dict, tag_dict)
hmm.initialize_random()

Here we also made use of the word_tag_dict.pkl file to get the dictionaries. Then, we initialized the
HMM with a random initialization.

Now, we can use the predict_sequence function:

from emstep import load_sequence,predict_sequence

for line in open('sequences200.txt'):
seq = load_sequence(line, word_dict, tag_dict)
statistics = predict_sequence(seq, hmm)

print statistics

It is important to note that predict_sequence is a pure function! It does not change its inputs. This means
that if you call it in a different order or in different machines, you will always get the same results.

This also explains why we need to have the word dictionaries precomputed: if we built them as we go,
then the order in which the sequences are processed would make a difference. Thus, we could not process
the sequences in parallel. We will comment on this later when we see an alternative (more sophisticated
implementation). In our case, we were able to compute the dictionaries using a simple Python script, but if the
data was truly large, we could have written another MapReduce job to discover all the words in the dataset.

If you look back to equations (2.48)–(2.51) you can see that predict_sequence is computing the value
inside the outer sums.

6.2.3 Combining Partial Results

At this point, you should understand the code we provided.
The goal of the next exercise is to write a function called combine_partials that can take all the sequence

statistics and output the final statistics.
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import lxmls.sequences.hmm as hmmc
import pickle
from emstep import load_sequence,predict_sequence,combine_partials

word_dict, tag_dict = pickle.load(open('word_tag_dict.pkl'))
hmm = hmmc.HMM(word_dict, tag_dict)
hmm.initialize_random()
statistics = []
for line in open('sequences200.txt'):

seq = load_sequence(line, word_dict, tag_dict)
statistics.append(predict_sequence(seq, hmm))

final = combine_partials(statistics, hmm)

Exercise 6.1 Write the function combine_partials. This function should take a list of all the statistics and an
HMM object. It should modify the HMM object to reflect the results of all the sequences.

Your function should perform some computations and then assign to the hmm object:

def combine_partials(statistics, hmm):
hmm.log_likelihood = ...
hmm.initial_counts = ...

A template is provided in emstep.py.

Note that this separation into sequence statistics and combination does not really correspond to the expec-
tation and maximisation steps.

6.2.4 Using MapReduce

The previous exercise resulted in code that was not distributed, but already had the map/reduce structure we
needed to make it work. For now, the reduce step is not distributed and will run on a single machine (this will
be improved on in the next exercises).

We will perform a complete mapreduce run for each iteration of EM that we compute. In order to run
multiple iterations, we will run mapreduce repeatedly.

In what follows, we will save our output to a file called hmm.pkl on each iteration and then load it from
there on the next iteration. Naturally, the first iteration needs to be a special case and we initialize randomly
that time.

We will also output a Python object from our reduce method. For this, we need a bit of magic (which is
filled in the template we provide and now explain):

class EMStep(MRJob):
INTERNAL_PROTOCOL = PickleProtocol
OUTPUT_PROTOCOL = PickleValueProtocol

def reducer(self, _, partials):
...
yield 'result', a_python_object

By declaring our output protocol to be PickleValueProtocol, this means that we can emit a Python
object in the reduce as the final output and it will be properly serialized to the output.

Exercise 6.2 Based on your function combine_partials and the code we provided you, fill in the map and reduce
steps.

For the moment, your reduce function should have a single emission of the form yield ’result’, hmm. Later,
we will see more sophisticated methods.

You may want to read the next few paragraphs before you start.
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In order to test this code on the cluster, you need to run it with the following flags (we are also directing
the output to the file next_iteration.pkl):

python emstep.py \
-r local \
--file=word_tag_dict.pkl\
sequences200.txt > next_iteration.pkl

The first flag (-r local) makes the code run on the present machine (the AWS machine), the second
(--file=word_tag_dict.pkl) declares that the file word_tag_dict.pkl is needed to run the job.

In order to run multiple iterations, you need to save the results of the previous iteration to a file, which can
be loaded at startup.

So, once you have run the code the first time, rename the output file by typing this into the terminal:

mv next_iteration.pkl hmm.pkl

Notice that in the __init__ function we check whether the file hmm.pkl exists and load it if so:

from os import path
if path.exists('hmm.pkl'):

hmm = pickle.load(open('hmm.pkl').read().decode('string-escape'))
else:

hmm = hmmc.HMM(word_dict, tag_dict)
hmm.initialize_random()

We needed to be careful with the string escapes in the above code, but otherwise were able to just rely on
Python pickle to load the results.

And you can now call it again (passing the hmm.pkl file on the command line!):

python emstep.py \
-r local \
--file=word_tag_dict.pkl \
--file=hmm.pkl \
sequences200.txt > next_iteration.pkl

Pitfall: Be careful to not over-write your HMM file! You need to perform two steps:

1. Run the code, outputing to a temporary file.

2. Rename the temporary file.

The following is a mistake!

python emstep.py \
-r local \
--file=word_tag_dict.pkl \
--file=hmm.pkl \
sequences200.txt > hmm.pkl

This is a mistake because the hmm.pkl is now removed (to make space for the new output) before your
program has a chance to read it!

6.2.5 Running it on the cluster

When you are happy with your code, you can now run it on the cluster:

python emstep.py \
-r emr \
--file=word_tag_dict.pkl \
sequences200.txt

The -r emr flags runs the code on Elastic MapReduce now. Run it multiple times using --file=hmm.pkl
to get the next iteration.

This will take a few minutes per iteration, so do not run many iterations. We will be working on making the code
faster before you can do so.
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A note on dependencies

This code depends on packages such as numpy or the lxmls package (which contains the implementation of
the HMM we are using and which you helped write on the lab tutorial of day 2).

On the cluster we provide you, they are already installed, and you can just use them without any special
effort. If you are attempting to use your own computer or reproduce the steps at home; please note that
these packages need to be installed before hand. Check the documentation of mrjob on how to install python
packages on the Elastic MapReduce cluster if you want to run it on your own Amazon account.

6.2.6 Introducing mapper final

While the code you wrote in the last exercise works correctly, it is horribly inefficient. The problem is that we
output several matrices for each sequence. This results in too much communication between processes and the
reduce step needs to load all these large matrices.

In order to address this problem we need to introduce a new operation, the mapper_final. This is called,
for each mapper, when all the input has been processed.

You can perhaps understand this by imagining that mrjob is running the following loop (in Python pseudo-
code):

for key,value in input:
job.mapper(key,value)

job.mapper_final()

You can delay emission of partial results until the mapper_final step and then emit the partial output of
every sequence this job processed.

For example, here is how WordCount can be performed using mapper_final:

class WordCount(MRJob):
def __(init)__:

self.counts = {}

def mapper(self, _, values):
for word in values.split():

if word in self.counts:
self.counts[word] += 1

else:
self.counts[word] = 1

def mapper_final(self):
for k in self.counts:

yield k, self.counts[k]

def reducer(self, key, values):
yield key, sum(values)

Note that the reduce method is still necessary: although each map job will emit the final result for all
the documents it saw, we still need to combine the results from different map jobs (which run on different
machines and processed different documents).

By only emitting results in the mapper_final method, we have converted the implementation to use a
batch system: the dataset is partioned into a block for each processor, each processor works on that whole
block, and the reduction is only made to combine the results of different processors.

This cuts down the communication overhead drastically and also makes the reduce function be faster and
less resource intensive. Now, it only needs to work with a single set of statistics per compute node instead
of one for each input sequence. Resource usage for reduction now only depends on the number of machines
used and not the size of the input.

Exercise 6.3 Use mapper_final to improve your MapReduce implementation. Initialize the matrices and log likeli-
hood to zero in the __init__ constructor and update partial sums in the map function. Emit only in the mapper_final
method.
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The reduce function should not need to be changed at all.
Use the previous naı̈ve version as a benchmark. The results should not change beyond a rounding error (they may

change slightly).

The implementation that you have now can now be run on a larger dataset. As we did for yesterday’s lab,
we have put the full datasets on S3 (you can read back on S3 on yesterday’s guide). You can now test you code
on the cluster using the full dataset:

python emstep.py \
-r emr \
--file=word_tag_dict.pkl \
s3://lxmls-labs/all-sequences-for-em.txt

If you try this with your previous version, which did not use the mapper final optimization; you will
simply wait a long time before running out of resources. With this new version, it runs to completion. It might
still take too long for you to be able to run many iterations before the lab is over, but now you can see that you
could run this on a million sequences in a few hours if you had enough machines. See also the note on Hadoop
latency and Big Data at the end of this chapter.

6.2.7 Parallelizing Reduce*

If you ran out of time to complete this next section, don’t worry, this section is an advanced module and you have already
seen the major take-home points of the tutorial with the previous exercise.

Our code can still be improved in two ways: (1) there is a single reduce call, which does not take advantage
of the fact that we have a cluster of machines; and (2) since the emission matrices are sparse, we are emitting
large matrices with many zeros.

The previous code also had reduce use resources that grow with the number of processes. This may still be
too much if you use a thousand of machines. We will also avoid this problem.

In order to parallelize reduce, we need to start emitting partial results at a more fine grained level. Here are
the types of emissions we want to consider:

1. The initial counts: this is per state.

2. The final counts: this is per state again.

3. The transition counts: this is for each pair of states (transition from A to B).

4. The emission counts: this is for each pair of state and word.

5. The log likelihood.

In order to distinguish all of these, we will emit them as numbers with different keys. For example, the
log likelihood will simply have the key “log likelihood”, while the matrices will have keys which identify the
matrix and the cell.

The code below exemplifies how we could emit the log likelihood and the vector of final counts:

yield 'log likelihood', log_likelihood

for i in xrange(len(counts)):
name = hmm.get_state_name(i)
yield 'final '+name, counts[i]

Note how we included the name of the state in the key. For the transition counts and emission counts, we
will need a nested for loop:

for i in xrange(transition.shape[0]):
for j in xrange(transition.shape[1]):

if transition[i,j]: # <----- IGNORE ZEROS
name_i = hmm.get_state_name(i)
name_j = hmm.get_state_name(j)
yield 'transition %s %s' % (name_i, name_j), transition[i,j]
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Again, we are including the names of the states in the key. The check for zeros is important as it is useless
to output zero counts. If the universe of words is large, then those matrices will be sparse and we avoid useless
computation and communication.

Exercise 6.4 Look in the file emission_snippets.py. This contains the for loops above and more.
Use these to improve your mapper_final function. Write the corresponding reduce function. Do not change the

keys used for the emission as they are needed below (see the next paragraph after this exercise).
Important: Now you should remove the OUTPUT_PROTOCOL declaration! See the note on section 6.2.4 on what

this means.

The resulting output is no longer a single HMM object which we can load from Python, but a text file
which encodes all the matrices. If you have used our snippets exactly, you can also use the code in the function
parse_hmm_from_output to parse this file and generate a new HMM object.

Note that with this output method, we do not need to have the word dictionaries precomputed. Whereas
previously, we relied on matrix indeces to keep our words apart, now we output the actual word and therefore,
we could just process each sequence as it comes.

6.2.8 A Note on Hadoop Overhead and Big Data

As you probably noticed, Hadoop has a lot of overhead and each iteration takes a long time to start computing
and finish running. In our case, this is a very significant part of the time it takes to run an iteration.

Hadoop is heavy machinery: it takes a while to move, but then can be very powerful. The advantages
are in the scaling: if we had a trillion sequences which would take thousands of computing hours to process,
then the minute or so that it takes to start up would not matter and we would reap the benefits of working
with hundreds, even thousands, of machines. We can say that Hadoop has high latency but can have high
throughput as well. Thus, it is not very appropriate for small problems, but can scale to huge ones.

Unfortunately, we only had a few hours in which you could work: including understanding the task,
writing the code, debugging it and running it. Therefore, it was unfeasible to ask you to work on a problem
with a million sequences which could only be tackled with the heavy machinery of Hadoop. We could not
really work on very large problems. This was only a demo of what Big Data really is.

However, the code you wrote at the end of the chapter is now perfectly scalable to any size project you
want to tackle. The skills you learned can be applied to any web-scale problem.
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