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@ The study of probability has roots in games of chance (dice, cards, ...)

@ Great names of science: Cardano, Fermat, Pascal, Laplace,
Kolmogorov, Bernoulli, Poisson, Cauchy, Boltzman, de Finetti, ...

o Natural tool to model uncertainty, information, knowledge, belief, ...

@ ...thus also learning, decision making, inference, ...
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What is probability?

Na

o Classical definition: P(A) = N

...with N mutually exclusive equally likely outcomes,
N4 of which result in the occurrence of A. Laplace, 1814

Example: P(randomly drawn card is &) = 13/52.
Example: P(getting 1 in throwing a fair die) = 1/6.
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What is probability?

Na
N

o Classical definition: P(A) =

...with N mutually exclusive equally likely outcomes,
N4 of which result in the occurrence of A. Laplace, 1814

Example: P(randomly drawn card is &) = 13/52.
Example: P(getting 1 in throwing a fair die) = 1/6.

N
o Frequentist definition: P(A) = lim WA
—00

...relative frequency of occurrence of A in infinite number of trials.

@ Subjective probability: P(A) is a degree of belief. de Finetti, 1930s

...gives meaning to P( “tomorrow will rain”).
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Key concepts: Sample space and events

@ Sample space X' = set of possible outcomes of a random experiment.

Examples:
» Tossing two coins: X = {HH, TH,HT, TT}

» Roulette: X ={1,2,...,36}
» Draw a card from a shuffled deck: X = {A, 2k, ..., QO, KO}
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Key concepts: Sample space and events

@ Sample space X' = set of possible outcomes of a random experiment.
Examples:
» Tossing two coins: X = {HH, TH,HT, TT}
» Roulette: X ={1,2,...,36}
» Draw a card from a shuffled deck: X = {A, 2k, ..., QO, KO}

@ An event is a subset of X

Examples:
» ‘“exactly one H in 2-coin toss": A={TH,HT} C {HH, TH,HT, TT}.

» “odd number in the roulette”: B ={1,3,...,35} C {1,2,...,36}.
» “drawn a © card”: C = {AQ,20,.., KO} C {Ad, ..., KO}
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Kolmogorov's Axioms for Probability

@ Probability is a function that maps events A into the interval [0, 1].

Kolmogorov's axioms for probability (1933):
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Kolmogorov's Axioms for Probability
@ Probability is a function that maps events A into the interval [0, 1].
Kolmogorov's axioms for probability (1933):
» Forany AC X, P(A) >0
> P(X) =1
» If A;, A>... C X are disjoint events, then ]P’(U A,-) = Z]P’(A,-)

@ From these axioms, many results can be derived. Examples:

» P(0)=0 ¥
» CcD = P(C)<P(D)

> P(AU B) = P(A) + P(B) — P(AN B)

» P(AUB) <IP(A)+P(B) (union bound)

&
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Conditional Probability and Independence

o IfP(B) > 0, P(A|B) = "ANB)

F(B) (conditional prob. of A given B)
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Conditional Probability and Independence

o IfP(B) > 0, P(A|B) = "ANB)

F(B) (conditional prob. of A given B)

@ ...satisfies all of Kolmogorov's axioms:

» Forany AC X, P(AB) >0

> P(X|B) =1

> If A1, Az, ... C X are disjoint, then

P(U A;

B) = > "B(A/B)
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Conditional Probability and Independence

o IfP(B) > 0, P(A|B) = "ANB)

F(B) (conditional prob. of A given B)

@ ...satisfies all of Kolmogorov's axioms:

» Forany AC X, P(A|B) >0

- P(X|B) =1
» If A;, Ay, ... C X are disjoint, then ‘
P(UA, B) =3 P(AB)

@ Events A, B are independent (A 1L B) < P(AN B) =P(A)P(B).

o Relationship with conditional probabilities:

Al B < P(A|B) = P(A)
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Bayes Theorem

@ Law of total probability: if A1, ..., A, are a partition of X

P(B) = ZP(B\A;)P(A,-)
= ZP(B N A,')
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Bayes Theorem

@ Law of total probability: if A1, ..., A, are a partition of X

= P(B|A)P(A
=> P(BNA)

o Bayes' theorem: if Ay, ..., A, are a partition of X

P(BNA)) _ P(B|A) P(A)
P(B) }:PBmlpA

P(A;|B) =
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Random Variables

@ A (real) random variable (RV) is a function: X : ¥ — R

X .
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» Discrete RV: range of X is countable (e.g., N or {0,1})
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Random Variables

@ A (real) random variable (RV) is a function: X : ¥ — R
X

X

w Xw) &

» Discrete RV: range of X is countable (e.g., N or {0,1})
» Continuous RV: range of X is uncountable (e.g., R or [0, 1])

» Example: number of head in tossing two coins,
X ={HH,HT,TH, TT},
X(HH) =2, X(HT) = X(TH) =1, X(TT) =0.
Range of X = {0,1,2}.
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Random Variables

@ A (real) random variable (RV) is a function: X : ¥ — R
X

X

w Xw) &

» Discrete RV: range of X is countable (e.g., N or {0,1})
» Continuous RV: range of X is uncountable (e.g., R or [0, 1])

» Example: number of head in tossing two coins,
X ={HH,HT,TH, TT},
X(HH) =2, X(HT) = X(TH) =1, X(TT) =0.
Range of X = {0,1,2}.

» Example: distance traveled by a tossed coin; range of X = R,.
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Random Variables: Distribution Function
@ Distribution function: Fx(x) =P({w € X : X(w) < x})
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Random Variables: Distribution Function
@ Distribution function: Fx(x) =P({w € X : X(w) < x})

L Fx(x)
1 ....................................... Pr— fX(,’E)
2y E—
1/2 ...................
1/4 B B I
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Random Variables: Distribution Function
@ Distribution function: Fx(x) =P({w € X : X(w) < x})

L Fx(x)
1 ....................................... Pr— fX (,’E )
2y E—
1/2 ...................
1/4 1/4 ] .................. I
0 1 2 z 0 1 2

@ Probability mass function (discrete RV): fx(x) = P(X = x),

Mario A. T. Figueiredo (IST & IT)

Fx(x) = fx(x).

X <x
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Important Discrete Random Variables
e Uniform: X € {xq,...,xk}, pmf fx(xi) = 1/K.
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Important Discrete Random Variables
e Uniform: X € {xq,...,xk}, pmf fx(xi) = 1/K.

e Bernoulli RV: X € {0,1}, pmf fx(x) = { 1 f b z ii(l)

Can be written compactly as fx(x) = p*(1 — p)*~*.
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Important Discrete Random Variables
e Uniform: X € {xq,...,xk}, pmf fx(xi) = 1/K.

e Bernoulli RV: X € {0,1}, pmf fx(x) = { 1 f b z ii(l)

1—x

Can be written compactly as fx(x) = p*(1 — p)

e Binomial RV: X € {0,1,...,n} (sum on n Bernoulli RVs)

fx(x) = Binomial(x; n, p) = (Z) p* (1 —p)n=>)
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Important Discrete Random Variables
e Uniform: X € {xq,...,xk}, pmf fx(xi) = 1/K.

e Bernoulli RV: X € {0,1}, pmf fx(x) = { 1 f b z ii(l)

1—x

Can be written compactly as fx(x) = p*(1 — p)

e Binomial RV: X € {0,1,...,n} (sum on n Bernoulli RVs)

fx(x) = Binomial(x; n, p) = (Z) p* (1 —p)n=>)

* p=0.5 and n=20
* p=0.7 and n=20
* p=05 and n=40

Binomial coefficients
("n choose x"):
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Random Variables: Distribution Function
e Distribution function: Fx(x) =P({w € X : X(w) < x})
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e Distribution function: Fx(x) =P({w € X : X(w) < x})

ISR

Mario A. T. Figueiredo (IST & IT) LxMLS 2013: Probability Theory July 24, 2013 11 /34



Random Variables: Distribution Function
e Distribution function: Fx(x) =P({w € X : X(w) < x})

3N
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Random Variables: Distribution Function
e Distribution function: Fx(x) =P({w € X : X(w) < x})

3N

@ Probability density function (pdf, continuous RV): fx(x)

/ fX du
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Random Variables: Distribution Function
e Distribution function: Fx(x) =P({w € X : X(w) < x})

3N

@ Probability density function (pdf, continuous RV): fx(x)
d
/ fe(u) du, B(X € [c,d]) = / e (x) d,
C
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Random Variables: Distribution Function
e Distribution function: Fx(x) =P({w € X : X(w) < x})

ISR

@ Probability density function (pdf, continuous RV): fx(x)
d
/ fe(u) du, B(X € [c, d]) :/ fe(x)dx, B(X=x)=0
C
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Important Continuous Random Variables

ﬁ < x€|a, b]

o Uniform: fx(x) = Uniform(x; a, b) :{ 0 <« x¢l[a b]

(previous slide).
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Important Continuous Random Variables
L« xc]Ja, b

. ) o . ) _ b—a 3
e Uniform: fx(x) = Uniform(x; a, b) = { 0 x & [a. b]

(previous slide).

1 _x=pw)?

o Gaussian: fx(x) = N(x;p,0%) = ——e 27
V2mao?

N AN
=0, 0°=02, = ]
=0, 07=1.0, ==
H=0, 0%=50,— |

/ \ H=-2, 0°=05, =

. N

gy
"/ \_ ~
4 3 -2 1 - 1 - -
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Important Continuous Random Variables
L = x¢c]a, b
H . —_ ; . — b—a ’
e Uniform: fx(x) = Uniform(x; a, b) { o < x¢la b
(previous slide).

1 _x=pw)?

o Gaussian: fx(x) = N(x;p,0%) = ——e 207

V2 o?

—r
10 T
=0, 0202, —| ] 1.4 : A=0.5
11=0, 07210, = — )=
p=o. o*50 — 1.2 A=1
H=-2, 0%

.
i / e A=15

\ 1.0
L 1 0.8
04 T i 0.6
3 ) 0.4
3 T 1 02 \
S e e ool —

n
4 8 2 1 T 2

e ™ = x>0
0 < x<0

e Exponential: fx(x) = Exp(x; \) = {
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Expectation of Random Variables

ZX; fx(X;) X e {Xl, ...XK} CR
@ Expectation: E(X) = i

o0
/ x fx(x) dx X continuous

—0o0
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Expectation of Random Variables
ZX; fx(X;) X e {Xl, ...XK} CcR

@ Expectation: E(X) = 00
/ x fx(x) dx X continuous

—0o0

e Example: Bernoulli, fx(x) = p* (1 — p)*~, for x € {0, 1}.
E(X)=0(1-p)+1p=p.
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e Example: Bernoulli, fx(x) = p* (1 — p)*~, for x € {0, 1}.
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Expectation of Random Variables
ZX; fx(X;) X e {Xl, ...XK} CcR

@ Expectation: E(X) = 00
/ x fx(x) dx X continuous
—00

e Example: Bernoulli, fx(x) = p* (1 — p)*~, for x € {0, 1}.
E(X)=0(1-p)+1p=p.

e Example: Binomial, fx(x) = (2)p* (1 — p)"*, for x € {0, ..., n}.
E(X) = np.

e Example: Gaussian, fx(x) = N(x; u,02). E(X) = p.
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Expectation of Random Variables
ZX; fx(X;) X e {Xl, ...XK} CcR

@ Expectation: E(X) = 00
/ x fx(x) dx X continuous
—00

e Example: Bernoulli, fx(x) = p* (1 — p)*~, for x € {0, 1}.
E(X)=0(1-p)+1p=p.

e Example: Binomial, fx(x) = (2)p* (1 — p)"*, for x € {0, ..., n}.
E(X) = np.

e Example: Gaussian, fx(x) = N(x; u,02). E(X) = p.

@ Linearity of expectation:
E(X+Y)=E(X)+E(Y);, E(aX)=aE(X), aeR
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Expectation of Functions of Random Variables
Zg(x,-)fx(x,-) X discrete, g(x;) € R
o E(g(X)) = /ocl;

g(x) fx(x)dx X continuous

—00
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Expectation of Functions of Random Variables
Zg(x,-)fx(x,-) X discrete, g(x;) € R
o E(g(X)) = /ocl;

g(x) fx(x)dx X continuous

—00

@ Example: variance, var(X) = E((X - E(X))2>
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Expectation of Functions of Random Variables
Zg(x,-)fx(x,-) X discrete, g(x;) € R
o E(g(X)) = /oé

g(x) fx(x)dx X continuous

—00

@ Example: variance, var(X) = E((X - E(X))2> = E(X?) - E(X)?

@ Example: Bernoulli variance, E(X?) = E(X) = p
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Expectation of Functions of Random Variables
Zg(x,-)fx(x,-) X discrete, g(x;) € R
o E(g(X)) = /oé

g(x) fx(x)dx X continuous

@ Example: variance, var(X) = E((X - E(X))2> = E(X?) - E(X)?

e Example: Bernoulli variance, E(X?) = E(X) = p , thus var(X) = p(1 — p).
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Expectation of Functions of Random Variables
Zg(x,-)fx(x,-) X discrete, g(x;) € R
o E(g(X)) = /oé

g(x) fx(x)dx X continuous

@ Example: variance, var(X) = E((X - E(X))2> = E(X?) — E(X)?

e Example: Bernoulli variance, E(X?) = E(X) = p , thus var(X) = p(1 — p).

@ Example: Gaussian variance, E((X — p)?) = o2.
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Expectation of Functions of Random Variables
Zg(x,-)fx(x,-) X discrete, g(x;) € R
o E(g(X)) = /oé

g(x) fx(x)dx X continuous

—00

Example: variance, var(X) = E((X - E(X))2> = E(X?) - E(X)?

Example: Bernoulli variance, E(X?) = E(X) = p , thus var(X) = p(1 — p).

Example: Gaussian variance, E((X — p)?) = o°.

1 « xeA
0 « x€A

Probability as expectation of indicator, 14(x) = {

P(X € A) = /A fe(x) dx = /lA(x) e (x) dx = E(14(X))
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Two (or More) Random Variables
o Joint pmf of two discrete RVs:  fx y(x,y) =P(X =x A Y =y).

Extends trivially to more than two RVs.
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Two (or More) Random Variables
e Joint pmf of two discrete RVs:  fx y(x,y) =P(X =x A Y =y).

Extends trivially to more than two RVs.

e Joint pdf of two continuous RVs: fx y(x,y), such that

P(X € A) = // fx.y(x,y) dx dy, A C R?
A

Extends trivially to more than two RVs.

Z fxy(x,y), if X is discrete
e Marginalization: fy(y) = 5

/ fx v(x,y)dx, if X continuous

—00
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Two (or More) Random Variables
e Joint pmf of two discrete RVs:  fx y(x,y) =P(X =x A Y =y).

Extends trivially to more than two RVs.

e Joint pdf of two continuous RVs: fx y(x,y), such that

P(X € A) = // fx.y(x,y) dx dy, A C R?
A

Extends trivially to more than two RVs.

Z fx y(x,y), if X is discrete
e Marginalization: fy(y) = o
/ fx v(x,y)dx, if X continuous

—00

@ Independence:

X LY & fxy(xy)=fx(x)fy(y)
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Two (or More) Random Variables
e Joint pmf of two discrete RVs:  fx y(x,y) =P(X =x A Y =y).

Extends trivially to more than two RVs.

e Joint pdf of two continuous RVs: fx y(x,y), such that

P(X € A) = // fx.y(x,y) dx dy, A C R?
A

Extends trivially to more than two RVs.

Z fx y(x,y), if X is discrete
e Marginalization: fy(y) = o
/ fx v(x,y)dx, if X continuous

—00

@ Independence:

X LY & fxy(xy)=fx(x)fy(y)

=

4~

E(X Y) = E(X)E(Y).
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Conditionals and Bayes' Theorem

e Conditional pmf (discrete RVs):
fxiy(xly) =P(X =x|Y =y) =

PX=xAY=y) fy(xy)
P(Y =y)  fy(y)
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Conditionals and Bayes' Theorem

e Conditional pmf (discrete RVs):

&W@W%ﬂMX:ﬂY:y%:MX:XAY:y)_&y&J)

P(Y =y) ()

fX,Y(X7y)

o Conditional pdf (continuous RVs): fx y(x|y) = 0y
Y

...the meaning is technically delicate.
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Conditionals and Bayes' Theorem

e Conditional pmf (discrete RVs):

&W@W%ﬂMX:ﬂY:y%:MX:XAY:y)_&y&J)

P(Y =y) ()

fX,Y(X7y)

o Conditional pdf (continuous RVs): fx y(x|y) = 0y
Y

...the meaning is technically delicate.

fY|x(Y|X) fx (x)
fy(y)

@ Bayes' theorem: fx|y(x|y) = (pdf or pmf).
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Conditionals and Bayes' Theorem

Conditional pmf (discrete RVs):

&W@W%ﬂMX:ﬂY:y%:MX:XAY:y)_&yky)

P(Y =y) ()

fx,v(x,y)
fy(y)

Conditional pdf (continuous RVs): fx y(x|y) =

...the meaning is technically delicate.

fY|x(Y|X) fx (x)
fy(y)

Bayes' theorem: fx|y(x|y) = (pdf or pmf).

@ Also valid in the mixed case (e.g., X continuous, Y discrete).

Mario A. T. Figueiredo (IST & IT) LxMLS 2013: Probability Theory July 24, 2013 16 / 34



Joint, Marginal, and Conditional Probabilities: An Example
@ A pair of binary variables X, Y € {0, 1}, with joint pmf:

Ixy(z,y) Y=0 T=1
X=0 1/5 2/5
X=1 1/10 3/10
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Joint, Marginal, and Conditional Probabilities: An Example

@ A pair of binary variables X, Y € {0, 1}, with joint pmf:

Ixy(z,y) r=0 =1
X=0 1/5 2/5
X=1 1/10 3/10
. : 1,2 1 4
e Marginals: fx(0) = ¢ + ¢ = %, fx(1)=ﬁ+%= &+,
_ 1 1 _ 3 _ 2,3 _ 1
0 =5+5=1% H1=5+1=r10
o Conditional probabilities:
Ixy(zly) r=0 r=1 fyix (y|a) =0 r=1
X=0 2/3 4/7 X=0 1/3 2/3
X=1 1/3 3/7 X=1 1/4 3/4
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An Important Multivariate RV: Multinomial

e Multinomial: X = (X, ..., Xk), Xi € {0,...,n}, such that ), Xi = n,

n

fx(x1, .., xk) = { (Xl x "'XK) pi Py P = Y ixi=n
o 0 = xi#En

n n!
X1 X2 - XK X1!X2!'-~XK!

Parameters: py, ..., px > 0, such that ) . p; = 1.
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An Important Multivariate RV: Multinomial

e Multinomial: X = (X, ..., Xk), Xi € {0,...,n}, such that ), Xi = n,

n

fx(x1, .., xk) = { (Xl x "'XK) pi Py P = Y ixi=n
o 0 = xi#En

n n!
X1 X2 - XK X1!X2!'-~XK!

Parameters: py, ..., px > 0, such that ) . p; = 1.

@ Generalizes the binomial from binary to K-classes.
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An Important Multivariate RV: Multinomial

e Multinomial: X = (X, ..., Xk), Xi € {0,...,n}, such that ), Xi = n,

n

fx(x1, .., xk) = { (Xl x "'XK) pi Py P = Y ixi=n
o 0 = xi#En

n n!
X1 X2 - XK X1!X2!"~XK!

Parameters: py, ..., px > 0, such that ) . p; = 1.

@ Generalizes the binomial from binary to K-classes.

@ Example: tossing n independent fair dice, p; = --- = pg = 1/6.
xi = number of outcomes with i dots. Of course, > . x; = n.
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An Important Multivariate RV: Gaussian
@ Multivariate Gaussian: X € R”,
1

————————— €X
Jdet@rC) ¥

) = N1, €) = (~36c- 7= )
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An Important Multivariate RV: Gaussian

@ Multivariate Gaussian: X € R”,

() = i ©) = o (=) € )

)= Jdet2n C) 7

o Parameters: vector u € R" and matrix C € R™",
Expected value: E(X) = p. Meaning of C: next slide.
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An Important Multivariate RV: Gaussian

@ Multivariate Gaussian: X € R”,

=) €= )

1
() = Msin €)= o

o Parameters: vector u € R" and matrix C € R™",
Expected value: E(X) = p. Meaning of C: next slide.

Probability Density
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Covariance, Correlation, and all that...

@ Covariance between two RVs:

cov(X,Y) = E[(X ~E(X)) (Y - E(y))} = E(XY) - E(X)E(Y)
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@ Covariance between two RVs:
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@ Relationship with variance: var(X) = cov(X, X).
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Covariance, Correlation, and all that...

@ Covariance between two RVs:

cov(X,Y) = E[(x ~E(X)) (Y - E(y))} = E(XY) - E(X)E(Y)

@ Relationship with variance: var(X) = cov(X, X).

e Correlation: corr(X, Y) = p(X,Y) = \/vacr(();g)\;\\//a)r(y) e[-1,1]
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Covariance, Correlation, and all that...

@ Covariance between two RVs:

cov(X,Y) = E[(x ~E(X)) (Y - E(y))} = E(XY) - E(X)E(Y)

@ Relationship with variance: var(X) = cov(X, X).

e Correlation: corr(X, Y) = p(X,Y) = COV(X.Y) e[-1,1]

Vvar(X)y/var(Y)
o X ILY & fxy(xy)=fx(x)f(y)
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Covariance, Correlation, and all that...

@ Covariance between two RVs:

cov(X,Y) = E[(x ~E(X)) (Y - E(y))} = E(XY) - E(X)E(Y)

@ Relationship with variance: var(X) = cov(X, X).

e Correlation: corr(X, Y) = p(X,Y) = \/vacrc())\;g)\(/’\\//a)r(\/) e[-1,1]
o X LY & fry(xy)=fx(x)f(y) Z cov(X, Y) =0.
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Covariance, Correlation, and all that...

@ Covariance between two RVs:

cov(X, Y) = E[(x ~E(X)) (Y - E(Y))} = E(XY) - E(X)E(Y)

@ Relationship with variance: var(X) = cov(X, X).
e Correlation: corr(X, Y) = p(X,Y) = \/vacrc())\;g)\(/’\\//a)r(\/) e[-1,1]
o X LY & fry(xy)=fx(x)f(y) Z cov(X, Y) =0.

Covariance matrix of multivariate RV, X € R":

cov(X) =E [(X — E(X)) (X — E(X)) T} —EXXT) —EX)EX)T

Mario A. T. Figueiredo (IST & IT) LxMLS 2013: Probability Theory July 24, 2013 20 / 34



Covariance, Correlation, and all that...

@ Covariance between two RVs:

cov(X, Y) = E[(x ~E(X)) (Y - E(y))} = E(XY) - E(X)E(Y)

@ Relationship with variance: var(X) = cov(X, X).
e Correlation: corr(X, Y) = p(X,Y) = \/vacrc();g)\;\\//a)r(\/) e[-1,1]
o X LY & fry(xy)=fx(x)f(y) Z cov(X, Y) =0.

Covariance matrix of multivariate RV, X € R":

cov(X) =E [(X — E(X)) (X — E(X)) T} —EXXT) —EX)EX)T

@ Covariance of Gaussian RV, fx(x) =N (x;u, C) = cov(X)=C
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Statistical Inference

@ Scenario: observed RV Y, depends on unknown variable(s)X.
Goal: given an observation Y =y, infer X.
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Statistical Inference

@ Scenario: observed RV Y, depends on unknown variable(s)X.
Goal: given an observation Y =y, infer X.

@ Two main philosophies:
Frequentist: X = x is fixed (not an RV), but unknown;
Bayesian: X is a random variable with pdf/pmf fx(x) (the prior);
this prior expresses/formalizes knowledge about X.
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Goal: given an observation Y =y, infer X.

@ Two main philosophies:
Frequentist: X = x is fixed (not an RV), but unknown;
Bayesian: X is a random variable with pdf/pmf fx(x) (the prior);
this prior expresses/formalizes knowledge about X.

o In both philosophies, a central object is fy|x(y|x)
several names: likelihood function, observation model,...
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Statistical Inference

@ Scenario: observed RV Y, depends on unknown variable(s)X.
Goal: given an observation Y =y, infer X.

@ Two main philosophies:
Frequentist: X = x is fixed (not an RV), but unknown;
Bayesian: X is a random variable with pdf/pmf fx(x) (the prior);
this prior expresses/formalizes knowledge about X.

o In both philosophies, a central object is fy|x(y|x)
several names: likelihood function, observation model,...

e This in not statistical/machine learning! fy|x(y|x) is assumed known.
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Statistical Inference

@ Scenario: observed RV Y, depends on unknown variable(s)X.
Goal: given an observation Y =y, infer X.

@ Two main philosophies:
Frequentist: X = x is fixed (not an RV), but unknown;
Bayesian: X is a random variable with pdf/pmf fx(x) (the prior);
this prior expresses/formalizes knowledge about X.

In both philosophies, a central object is fyx(y|x)
several names: likelihood function, observation model, ...

e This in not statistical/machine learning! fy|x(y|x) is assumed known.

In the Bayesian philosophy, all the knowledge about X is carried by
fyix(ylx) fx(x) v x(y,x)

fx v (xly) =

fy)  f(y)
...the posterior (or a posteriori) pdf/pmf.

Mario A. T. Figueiredo (IST & IT) LxMLS 2013: Probability Theory July 24, 2013 21/ 34



Statistical Inference

@ The posterior pdf/pmf fx|y(x|y) has all the information /knowledge
about X, given Y = y (conditionality principle).
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Statistical Inference

@ The posterior pdf/pmf fx|y(x|y) has all the information/knowledge
about X, given Y = y (conditionality principle).

@ How to make an optimal “guess” X about X, given this information?
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Statistical Inference

@ The posterior pdf/pmf fx|y(x|y) has all the information/knowledge
about X, given Y = y (conditionality principle).

@ How to make an optimal “guess” X about X, given this information?

@ Need to define “optimal”: loss function: L(X, x) € R, measures
“loss” / "cost” incurred by “guessing” X if truth is x.
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Statistical Inference

@ The posterior pdf/pmf fx|y(x|y) has all the information/knowledge
about X, given Y = y (conditionality principle).

@ How to make an optimal “guess” X about X, given this information?

@ Need to define “optimal”: loss function: L(X, x) € R, measures
“loss” / "cost” incurred by “guessing” X if truth is x.

@ The optimal Bayesian decision minimizes the expected loss:
XBayes = arg min E[L(X, X)|Y = y]
X
where
/L(?, x) fx|y(xly) dx, continuous (estimation)

Z L(x,x) fx)y(x|y),  discrete (classification)
X

E[LG, XY = y] =
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Classical Statistical Inference Criteria

o Consider that X € {1, ..., K} (discrete/classification problem).
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Classical Statistical Inference Criteria

o Consider that X € {1, ..., K} (discrete/classification problem).

@ Adopt the 0/1 loss: L(X,x) =0, if X = x, and 1 otherwise.
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Classical Statistical Inference Criteria

o Consider that X € {1, ..., K} (discrete/classification problem).
@ Adopt the 0/1 loss: L(X,x) =0, if X = x, and 1 otherwise.

@ Optimal Bayesian decision:

K
X = i L(x,x)f
XBayes — alg m,)?'nz (X,X) X|Y(X|y)

x=1

= arg m?in (1 — fx|y(3(\‘y))

= argmax fxiy(Xly) = xmap

MAP = maximum a posteriori criterion.
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Classical Statistical Inference Criteria

o Consider that X € {1, ..., K} (discrete/classification problem).
@ Adopt the 0/1 loss: L(X,x) =0, if X = x, and 1 otherwise.

@ Optimal Bayesian decision:

K
X = i L(x,x)f
XBayes — alg m,)?mz (X,X) X|Y(X‘Y)

x=1

= arg m?in (1 — fx|y(3(\‘y))

= arg max fx|y(X|y) = Xwvap
X
MAP = maximum a posteriori criterion.

@ Same criterion can be derived for continuous X, using
lim:—0 Le(X, x), where L.(X,x) =0, if | X — x| < &, and 1 otherwise.
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Classical Statistical Inference Criteria

o Consider the MAP criterion Xap = arg maxy fx|y (x|y)
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Classical Statistical Inference Criteria
o Consider the MAP criterion Xap = arg maxy fx|y (x|y)

e From Bayes law:

fyix (v[x) fx(x)
fy (y)

~..only need to know posterior fx|y(x|y) up to a normalization factor.

XMAP = arg max = arg max fy|x (y|x) fx(x)
X X
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Classical Statistical Inference Criteria
o Consider the MAP criterion Xap = arg maxy fx|y (x|y)

e From Bayes law:

fyix (v[x) fx(x)
fy (y)

~..only need to know posterior fx|y(x|y) up to a normalization factor.

XMAP = arg max = arg max fy|x (y|x) fx(x)
X X

@ Also common to write: Xyap = arg max, log fy|x(y|x) + log fx(x)
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Classical Statistical Inference Criteria
o Consider the MAP criterion Xap = arg maxy fx|y (x|y)

e From Bayes law:

XMAP = arg max Frixyb) fx() arg max fy | x(y[x) fx(x)
TR e

~..only need to know posterior fx|y(x|y) up to a normalization factor.
@ Also common to write: Xyap = arg max, log fy|x(y|x) + log fx(x)
o If the prior if flat, fx(x) = C, then,

XMAP = arg m;;ax leX(Y‘X) = XML

ML = maximum likelihood criterion.
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Statistical Inference: Example

@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs:
Y = (Yi,..., Y,), with Y; € {0,1}.

Common pmf fy, x(y|x) = x¥(1 — x)*™, where x € [0, 1].
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@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs:
Y = (Yi,..., Y,), with Y; € {0,1}.

Common pmf fy, x(y|x) = x¥(1 — x)*™, where x € [0, 1].

o Likelihood function: fy|x (Y15 ynlx) = ny"(l — X))t

Log-likelihood function:

Zy,

log fy|x (Y1, .- Yn|X) = nlog(1 — x) |og
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Statistical Inference: Example

@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs:
Y = (Yi,..., Y,), with Y; € {0,1}.

Common pmf fy, x(y|x) = x¥(1 — x)*™, where x € [0, 1].

o Likelihood function: fy|x (Y15 ynlx) = ny"(l — X))t

Log-likelihood function:

Zy,

log fy|x (Y1, .- Yn|X) = nlog(1 — x) |og

@ Maximum likelihood: XuL = arg maxy fy|x (ylx) = Zy,
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Statistical Inference: Example

@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs:
Y = (Yi,..., Y,), with Y; € {0,1}.
Common pmf fy, x(y|x) = x¥(1 — x)*™, where x € [0, 1].

o Likelihood function: fy|x (Y15 ynlx) = ny"(l — X))t

Log-likelihood function:

Zy,

log fy|x (Y1, .- Yn|X) = nlog(1 — x) |og

@ Maximum likelihood: XuL = arg maxy fy|x (ylx) = Zy,

e Example: n =10, observed y =(1,1,1,0,1,0,0,1,1,1), xu. = 7/10.
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Statistical Inference: Example (Continuation)
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
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Statistical Inference: Example (Continuation)
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.

@ Likelihood: fyx (yl, ...,y,,|x) = ny"(l — X))t = X2 i (1- X)n_z/‘y"
i=1
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Statistical Inference: Example (Continuation)
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.

@ Likelihood: fy|x(y1, ...,y,,|x) = ny"(l — X))t = X2 i (1- X)n_z/‘y"
i=1

@ How to express knowledge that (e.g.) X is around 1/27 Convenient
choice: conjugate prior. Form of the posterior = form of the prior.

8.0 0.2 0.4 0.6 0.8 1.0
x
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Statistical Inference: Example (Continuation)
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.

@ Likelihood: fy|x(y1, ...,y,,|x) = ny"(l — X))t = X2 i (1- X)n_z/‘y"
i=1

@ How to express knowledge that (e.g.) X is around 1/27 Convenient
choice: conjugate prior. Form of the posterior = form of the prior.

> In our case, the Beta pdf
fix(x) ox x*71(1 = x)P~1 a,8>0

8.0 0.2 0.4 0.6 0.8 1.0
x
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Statistical Inference: Example (Continuation)
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
@ Likelihood: fy|x(y1, ...,y,,|x) = ny"(l — X))t = X2 i (1- X)n_z/‘yi
i1
@ How to express knowledge that (e.g.) X is around 1/27 Convenient

choice: conjugate prior. Form of the posterior = form of the prior.

> In our case, the Beta pdf

2.5[] T
fix(x) ox x*71(1 = x)P~1 a,8>0
» Posterior: N
fX|Y(X|}/) = Xa71+ziy"(1 — X)ﬁ*1+”*z,’}’i = X
\\
0.5 Y, \\
\

8.0 0.2 0.4 0.6 0.8 1.0
x
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Statistical Inference: Example (Continuation)
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.

@ Likelihood: fy|x(y1, ...,yn|x) = ny"(l — X))t = X2 i (1- X)n_z/‘yi
i=1

@ How to express knowledge that (e.g.) X is around 1/27 Convenient
choice: conjugate prior. Form of the posterior = form of the prior.

> In our case, the Beta pdf
fix(x) ox x*71(1 = x)P~1 a,8>0

» Posterior:
fipy (xly) = X~ HHE (1 = x)F-Lhn=E

L o a+2[y;—1
> MAP: Xwap = 5550

0.8 1.0
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Statistical Inference: Example (Continuation)
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
@ Likelihood: fy|x(y1, ...,yn|x) = ny"(l — X))t = X2 i (1- X)n_z/‘yi
i1
@ How to express knowledge that (e.g.) X is around 1/27 Convenient

choice: conjugate prior. Form of the posterior = form of the prior.

> In our case, the Beta pdf
fix(x) ox x*71(1 = x)P~1 a,8>0

» Posterior:
fipy (xly) = X~ HHE (1 = x)F-Lhn=E

S _atd>yi—1
> MAP: Xwap = 5550

» Example: « =4, 8 =4, n=10,
y=(1,1,1,0,1,0,0,1,1,1),

0.8 1.0

S?MAP = 0.625 (recall 5<\|\/||_ = 0.7)
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Another Classical Statistical Inference Criterion

o Consider that X € R (continuous/estimation problem).
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Another Classical Statistical Inference Criterion

e Consider that X € R (continuous/estimation problem).
o Adopt the squared error loss: L(X,x) = (X — x)?
@ Optimal Bayesian decision:
XBayes = arg m?in E[(x — X)2| Y =y]
= argm?in X2 —2XE[X|Y =y]
=E[X|Y =y] = Xumse

MMSE = minimum mean squared error criterion.
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Another Classical Statistical Inference Criterion

e Consider that X € R (continuous/estimation problem).
e Adopt the squared error loss: L(X,x) = (X — x)?
@ Optimal Bayesian decision:
XBayes = arg m?in E[(x — X)2| Y =y]
= argm?in X2 —2XE[X|Y =y]
=E[X|Y =y] = Xuwmse

MMSE = minimum mean squared error criterion.

@ Does not apply to classification problems.
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Back to the Bernoulli Example
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.
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Back to the Bernoulli Example
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.

@ Likelihood: fyx (yl, ...,y,,|x) = ny"(l — X))t = X2 i (1- X)n_z/‘y"
i=1
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Back to the Bernoulli Example
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.

o Likelihood: fy|x (y1, .., yalx) = [ [%(1 = x)' 7 = x=i% (1 — x)" =2
i=1

> In our case, the Beta pdf
fx(x) oc x* 11— %)t a,8>0

%85 0.2 0.4 0.6 0.8 10
x
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Back to the Bernoulli Example
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.

o Likelihood: fy|x (y1, .., yalx) = [ [%(1 = x)' 7 = x=i% (1 — x)" =2
i=1

> In our case, the Beta pdf
fx(x) oc x* 11— %)t a,8>0

» Posterior:
fX|Y(X|y) = Xa—1+2/yf(1 _ X)ﬁ_H‘”_Z;)’i 15 N
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Back to the Bernoulli Example
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.

o Likelihood: fy|x (y1, .., yalx) = [ [%(1 = x)' 7 = x=i% (1 — x)" =2
i=1

> In our case, the Beta pdf
fx(x) oc x* 11— %)t a,8>0

» Posterior:

fx|y(X|y) = Xa_1+ziyf(]_ — X)B_H‘”_Z;)’i 15 N

atsyi &10 /

a+f+n

» MMSE: ;ZMMSE =

%85 0.2 0.4 0.6 0.8 10
x
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Back to the Bernoulli Example
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.

o Likelihood: fy|x (y1, .., yalx) = [ [%(1 = x)' 7 = x=i% (1 — x)" =2
i=1

> In our case, the Beta pdf
fx(x) oc x* 11— %)t a,8>0

» Posterior:
fuiy (xly) = x T (1 )P Ten S

= +) i
» MMSE: XMMSE = %

» Example: a =4, 8 =4, n=10,
y=1(1,1,1,0,1,0,0,1,1,1),

%85 0.2 0.4 0.6 0.8 10
x

Xmmse =~ 0.611 (recall that Xyap = 0.625, Xy = 0.7)
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Back to the Bernoulli Example
@ Observed n i.i.d. (independent identically distributed) Bernoulli RVs.

@ Likelihood: fy|x(y1, ...,yn|x) = ny"(l — X))t = X2 i (1- X)n_z/‘yi
i=1

> In our case, the Beta pdf
fx(x) oc x* 11— %)t a,8>0

» Posterior:
fX|Y(X|Y) — Xa_1+zi}’f(1 — X)ﬂ_1+”_Zfo

= +) i
» MMSE: XMMSE = %

» Example: a =4, 8 =4, n=10,
y=1(1,1,1,0,1,0,0,1,1,1),

0.4 0.6 0.8 10
x

Xmmse =~ 0.611 (recall that Xyap = 0.625, Xy = 0.7)

o Conjugate prior equivalent to “virtual” counts;
often called “smoothing” in NLP and ML.
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The Bernstein-Von Mises Theorem

@ In the previous example, we had
n=10, y=(1,1,1,0,1,0,0,1,1,1), thus > ,yi =7.
With a Beta prior with &« = 4 and 8 = 4, we had

. . 3 i ~
xmL = 0.7, Xmap = % = 0.625, Xumse =

LMNO611
8+n
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The Bernstein-Von Mises Theorem

@ In the previous example, we had
n=10, y=(1,1,1,0,1,0,0,1,1,1), thus ) ;y; =7.
With a Beta prior with &« = 4 and 8 = 4, we had

3+ Vi . 44> yi
— =17 —0.625 = —=17 ~0.611
6+ n . XMMSE 8+ n

e Consider n =100, and ), y; = 70, with the same Beta(4,4) prior

xmL = 0.7, Xmap =

3<\|\/||_ = 0.7, }MAP = ﬁ ~ 0.689, /)?MMSE = m ~ 0.685

... both Bayesian estimates are much closer to the ML.
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The Bernstein-Von Mises Theorem

@ In the previous example, we had
n=10, y=(1,1,1,0,1,0,0,1,1,1), thus ) ;y; =7.
With a Beta prior with &« = 4 and 8 = 4, we had

3+ i . 44> yi
— =17 —0.625 = —=17 ~0.611
6+ n . XMMSE 8+ n

e Consider n =100, and ), y; = 70, with the same Beta(4,4) prior

xmL = 0.7, Xmap =

3<\|\/||_ = 0.7, }MAP = ﬁ ~ 0.689, /)?MMSE = m ~ 0.685

... both Bayesian estimates are much closer to the ML.

@ This illustrates an important result in Bayesian inference: the
Bernstein-Von Mises theorem; under (mild) conditions,

lim Xvap = lim Xumse = XmL
n—o0 n—00

message: if you have a lot of data, priors don’t matter.
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Important Inequalities
e Markov's ineqality: if X > 0 is an RV with expectation E(X), then

P(X>t)§@
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Important Inequalities

e Markov's ineqality: if X > 0 is an RV with expectation E(X), then

P(X>t)§@

Trivial proof:
tP(X > t) = / tfx(x)dx < / x fx(x) dx = E(X)—/Oxfx(x) dx < E(X)

>0
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Important Inequalities
e Markov's ineqality: if X > 0 is an RV with expectation E(X), then
E(X
P(X >t) < ¥

Trivial proof:
tP(X > t) = /Oot fx(x)dx < /Oox fx(x)dx = E(X)—/Oxfx(x) dx < E(X)

>0

o Chebyshev's inequality: u = E(Y) and 02 = var(Y), then

2
o
P(’X—MES)S?

...simple corollary of Markov's inequality, with X = |Y — u|?, t = s
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More Important Inequalities
@ Cauchy-Schwartz's inequality for RVs:

E(IX Y]) <\ E(X?)E(Y?)
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More Important Inequalities
@ Cauchy-Schwartz's inequality for RVs:

E(IX Y]) <\ E(X?)E(Y?)

@ Recall that a real function g is convex if, for any x,y, and a € [0, 1]

glax+ (1 —a)y) < ag(x)+ (1 —a)g(y)

non-convex convex
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More Important Inequalities
@ Cauchy-Schwartz's inequality for RVs:

E(IX Y]) <\ E(X?)E(Y?)

@ Recall that a real function g is convex if, for any x,y, and a € [0, 1]

glax+ (1 —a)y) < ag(x)+ (1 —a)g(y)

non-convex convex

Jensen’s inequality: if g is a real convex function, then

g(E(X)) < E(g(X))
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More Important Inequalities
@ Cauchy-Schwartz's inequality for RVs:

E(IX Y]) <\ E(X?)E(Y?)

@ Recall that a real function g is convex if, for any x,y, and a € [0, 1]

glax+ (1 —a)y) < ag(x)+ (1 —a)g(y)

I I
non-convex convex

Jensen’s inequality: if g is a real convex function, then

g(E(X)) < E(g(X))

Examples: E(X)? < E(X?) = var(X) = E(X?) - E(X)2 > 0.
E(log X) < logE(X), for X a positive RV.
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Entropy and all that...

K
Entropy of a discrete RV X € {1,..., K}: | H(X) = — Z fx(x) log fx(x)

x=1
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Entropy and all that...

K
Entropy of a discrete RV X € {1,..., K}: | H(X) = — Z fx(x) log fx(x)

x=1

e Positivity: H(X) >0;
H(X) =0 < fx(i) =1, for exactly one i € {1, ..., K}.
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Entropy of a discrete RV X € {1,..., K}: | H(X) = — Z fx(x) log fx(x)

x=1

e Positivity: H(X) >0;
H(X) =0 & fx(i) =1, for exactly one i € {1, ..., K}.
e Upper bound: H(X) <logK ;
H(X) =logK < fx(x)=1/k, forall x € {1,...,K}
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e Positivity: H(X) >0;
H(X) =0 & fx(i) =1, for exactly one i € {1, ..., K}.
e Upper bound: H(X) <logK ;
H(X) =logK < fx(x)=1/k, forall x € {1,...,K}

@ Measure of uncertainty/randomness of X

Mario A. T. Figueiredo (IST & IT) LxMLS 2013: Probability Theory July 24, 2013 32 /34



Entropy and all that...

Entropy of a discrete RV X € {1,...,K}:

e Positivity: H(X) >0;
HX)=0 & fx(i)=1,

e Upper bound: H(X) <logK ;

x=1

K
H(X) == fx(x)log fx(x)

for exactly one i € {1,..., K}.

H(X) =logK < fx(x)=1/k, forall x € {1,...,K}

@ Measure of uncertainty/randomness

of X

Continuous RV X, differential entropy:

h(X) = — / fx(x) log fx(x) dx
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Entropy and all that...

Entropy of a discrete RV X € {1,...,K}:

e Positivity: H(X) >0;
H(X)=0 & fx(i)=1,

e Upper bound: H(X) <logK ;

x=1

K
H(X) == fx(x)log fx(x)

for exactly one j € {1, ..., K}.

H(X) =logK < fx(x)=1/k, forall x € {1,...,K}

@ Measure of uncertainty/randomness

of X

Continuous RV X, differential entropy:

h(X) = — / fx(x) log fx(x) dx

@ h(X) can be positive or negative. Example, if
fx(x) = Uniform(x; a, b), h(X) = log(b — a).
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Entropy and all that...

Entropy of a discrete RV X € {1,...,K}:

e Positivity: H(X) >0;
H(X)=0 & fx(i)=1,

e Upper bound: H(X) <logK ;

x=1

K
H(X) == fx(x)log fx(x)

for exactly one j € {1, ..., K}.

H(X) =logK < fx(x)=1/k, forall x € {1,...,K}

@ Measure of uncertainty/randomness

of X

Continuous RV X, differential entropy:

h(X) = — / fx(x) log fx(x) dx

@ h(X) can be positive or negative. Example, if
fx(x) = Uniform(x; a, b), h(X) = log(b — a).

o If fx(x) = N(x; n,0%), then h(X) = } log(2med?).
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Entropy and all that...

K
Entropy of a discrete RV X € {1,..., K}: | H(X) = — Z fx(x) log fx(x)

e Positivity: H(X) >0;

x=1

H(X) =0 & fx(i) =1, for exactly one i € {1, ..., K}.

e Upper bound: H(X) <logK ;

H(X) =logK < fx(x)=1/k, forall x € {1,...,K}

@ Measure of uncertainty/randomness of X

Continuous RV X, differential entropy:

h(X) = — / fx(x) log fx(x) dx

@ h(X) can be positive or negative. E

xample, if

fx(x) = Uniform(x; a, b), h(X) = log(b — a).

1

o If fx(x) = N(x; p,02), then h(X) = 3 log(2med?).

o If var(Y) = o2, then h(Y) < 3 log(
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Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

x(x)
gx(x)

K
D(fxllgx) = fx(x)log
x=1
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Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

- fx (x)
D(fx|lgx) = fx(x) log
(xllgx) x§:1 x (x) 2x (%)
Positivity: D(fx||gx) >0

D(fx”gx) =0 & fx(X) = gx(X), for x € {1,..., K}
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Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

- fx (x)
D(fx|lgx) = fx(x) log
(xllgx) x§:1 x (x) 2x (%)
Positivity: D(fx||gx) >0

D(fx”gx) =0 & fx(X) = gx(X), for x € {].,..., K}

KLD between two pdf:

Dlflx) = [ i) log 0% o
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Kullback-Leibler divergence

Kullback-Leibler divergence (KLD) between two pmf:

- fx (x)
D(fx|lgx) = fx(x) log
(xllgx) x§:1 x(x) 2x (%)
Positivity: D(fx||gx) >0

D(fx”gx) =0 & fx(X) = gx(X), for x € {].,..., K}

KLD between two pdf:

Dlflx) = [ i) log 0% o

Positivity: D(fx||gx) >0

D(fx|lgx) =0 < fx(x) = gx(x), almost everywhere
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Enjoy LxMLS 2013
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