Review of Probability Theory

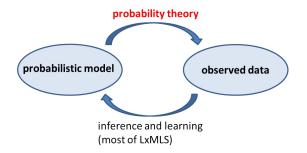
Mário A. T. Figueiredo

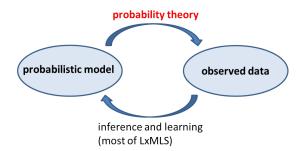
Instituto Superior Técnico & Instituto de Telecomunicações

Lisboa, Portugal

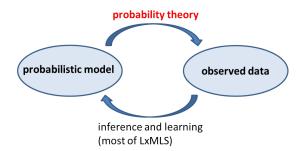
LxMLS: Lisbon Machine Learning School

July 24, 2013

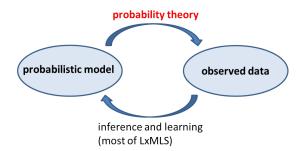




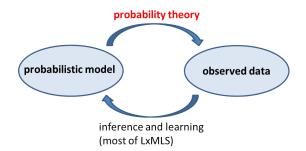
• The study of probability has roots in games of chance (dice, cards, ...)



- The study of probability has roots in games of chance (dice, cards, ...)
- Great names of science: Cardano, Fermat, Pascal, Laplace, Kolmogorov, Bernoulli, Poisson, Cauchy, Boltzman, de Finetti, ...



- The study of probability has roots in games of chance (dice, cards, ...)
- Great names of science: Cardano, Fermat, Pascal, Laplace, Kolmogorov, Bernoulli, Poisson, Cauchy, Boltzman, de Finetti, ...
- Natural tool to model uncertainty, information, knowledge, belief, ...



- The study of probability has roots in games of chance (dice, cards, ...)
- Great names of science: Cardano, Fermat, Pascal, Laplace, Kolmogorov, Bernoulli, Poisson, Cauchy, Boltzman, de Finetti, ...
- Natural tool to model uncertainty, information, knowledge, belief, ...
- ...thus also learning, decision making, inference, ...

What is probability?

• Classical definition:
$$\mathbb{P}(A) = \frac{N_A}{N}$$

...with N mutually exclusive equally likely outcomes, N_A of which result in the occurrence of A. Laplace, 1814

Example: $\mathbb{P}(\text{randomly drawn card is }) = 13/52.$

Example: $\mathbb{P}(\text{getting 1 in throwing a fair die}) = 1/6.$

What is probability?

• Classical definition:
$$\mathbb{P}(A) = \frac{N_A}{N}$$

...with N mutually exclusive equally likely outcomes, N_A of which result in the occurrence of A. Laplace, 1814

Example: $\mathbb{P}(\text{randomly drawn card is }) = 13/52.$ Example: $\mathbb{P}(\text{getting 1 in throwing a fair die}) = 1/6.$

• Frequentist definition:
$$\mathbb{P}(A) = \lim_{N \to \infty} \frac{N_A}{N}$$

 \dots relative frequency of occurrence of A in infinite number of trials.

What is probability?

• Classical definition:
$$\mathbb{P}(A) = \frac{N_A}{N}$$

...with N mutually exclusive equally likely outcomes, N_A of which result in the occurrence of A. Laplace, 1814

Example: $\mathbb{P}(\text{randomly drawn card is }) = 13/52.$ Example: $\mathbb{P}(\text{getting 1 in throwing a fair die}) = 1/6.$

• Frequentist definition: $\mathbb{P}(A) = \lim_{N \to \infty} \frac{N_A}{N}$

 \dots relative frequency of occurrence of A in infinite number of trials.

• Subjective probability: $\mathbb{P}(A)$ is a degree of belief. *de Finetti, 1930s*

...gives meaning to $\mathbb{P}($ "tomorrow will rain").

Key concepts: Sample space and events

- Sample space $\mathcal{X} =$ set of possible outcomes of a random experiment. Examples:
 - Tossing two coins: $\mathcal{X} = \{HH, TH, HT, TT\}$
 - Roulette: $X = \{1, 2, ..., 36\}$
 - ▶ Draw a card from a shuffled deck: $\mathcal{X} = \{A, 2, ..., Q \diamondsuit, K \diamondsuit\}$.

Key concepts: Sample space and events

- Sample space X = set of possible outcomes of a random experiment. Examples:
 - Tossing two coins: $\mathcal{X} = \{HH, TH, HT, TT\}$
 - Roulette: $X = \{1, 2, ..., 36\}$
 - ▶ Draw a card from a shuffled deck: $\mathcal{X} = \{A\clubsuit, 2\clubsuit, ..., Q\diamondsuit, K\diamondsuit\}$.
- An event is a subset of $\mathcal X$

Examples:

- "exactly one H in 2-coin toss": $A = \{TH, HT\} \subset \{HH, TH, HT, TT\}$.
- "odd number in the roulette": $B = \{1, 3, ..., 35\} \subset \{1, 2, ..., 36\}$.
- "drawn a \heartsuit card": $C = \{A\heartsuit, 2\heartsuit, ..., K\heartsuit\} \subset \{A\clubsuit, ..., K\diamondsuit\}$

Probability is a function that maps events A into the interval [0, 1].
 Kolmogorov's axioms for probability (1933):

Probability is a function that maps events A into the interval [0, 1].
 Kolmogorov's axioms for probability (1933):

• For any
$$A \subseteq \mathcal{X}, \ \mathbb{P}(A) \ge 0$$

• Probability is a function that maps events A into the interval [0, 1].

Kolmogorov's axioms for probability (1933):

• For any
$$A \subseteq \mathcal{X}, \ \mathbb{P}(A) \ge 0$$

•
$$\mathbb{P}(\mathcal{X}) = 1$$

• Probability is a function that maps events A into the interval [0, 1].

Kolmogorov's axioms for probability (1933):

• For any
$$A \subseteq \mathcal{X}, \ \mathbb{P}(A) \ge 0$$

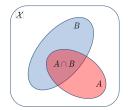
•
$$\mathbb{P}(\mathcal{X}) = 1$$

• If $A_1, A_2 ... \subseteq \mathcal{X}$ are disjoint events, then $\mathbb{P}\left(\bigcup_i A_i\right) = \sum_i \mathbb{P}(A_i)$

Probability is a function that maps events A into the interval [0, 1].
 Kolmogorov's axioms for probability (1933):

• For any $A \subseteq \mathcal{X}, \mathbb{P}(A) \ge 0$

- $\mathbb{P}(\mathcal{X}) = 1$
- ▶ If $A_1, A_2 ... \subseteq \mathcal{X}$ are disjoint events, then $\mathbb{P}(\bigcup A_i) = \sum_i \mathbb{P}(A_i)$
- From these axioms, many results can be derived. Examples:
- $\mathbb{P}(\emptyset) = 0$
- $C \subset D \Rightarrow \mathbb{P}(C) \leq \mathbb{P}(D)$
- $\blacktriangleright \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- $\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$ (union bound)

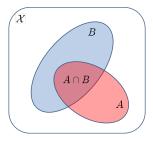


...satisfies all of Kolmogorov's axioms:

• For any
$$A \subseteq \mathcal{X}$$
, $\mathbb{P}(A|B) \ge 0$

• $\mathbb{P}(\mathcal{X}|B) = 1$

• If
$$A_1, A_2, ... \subseteq \mathcal{X}$$
 are disjoint, then
 $\mathbb{P}\left(\bigcup_i A_i \middle| B\right) = \sum_i \mathbb{P}(A_i | B)$

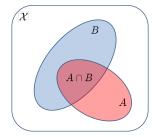


• ...satisfies all of Kolmogorov's axioms:

• For any
$$A \subseteq \mathcal{X}$$
, $\mathbb{P}(A|B) \ge 0$

• $\mathbb{P}(\mathcal{X}|B) = 1$

▶ If
$$A_1, A_2, ... \subseteq \mathcal{X}$$
 are disjoint, then
 $\mathbb{P}\left(\bigcup_i A_i \middle| B\right) = \sum_i \mathbb{P}(A_i | B)$



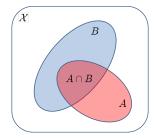
• Events A, B are independent $(A \perp B) \Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

...satisfies all of Kolmogorov's axioms:

• For any
$$A \subseteq \mathcal{X}$$
, $\mathbb{P}(A|B) \ge 0$

• $\mathbb{P}(\mathcal{X}|B) = 1$

• If
$$A_1, A_2, ... \subseteq \mathcal{X}$$
 are disjoint, then
 $\mathbb{P}\left(\bigcup_i A_i \middle| B\right) = \sum_i \mathbb{P}(A_i | B)$



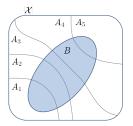
- Events A, B are independent $(A \perp B) \Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.
- Relationship with conditional probabilities:

$$A \perp\!\!\!\perp B \Leftrightarrow \mathbb{P}(A|B) = \mathbb{P}(A)$$

Bayes Theorem

• Law of total probability: if $A_1, ..., A_n$ are a partition of \mathcal{X}

$$\mathbb{P}(B) = \sum_i \mathbb{P}(B|\mathcal{A}_i)\mathbb{P}(\mathcal{A}_i)
onumber \ = \sum_i \mathbb{P}(B\cap \mathcal{A}_i)$$



Bayes Theorem

• Law of total probability: if $A_1, ..., A_n$ are a partition of \mathcal{X}

$$\mathbb{P}(B) = \sum_{i} \mathbb{P}(B|A_{i})\mathbb{P}(A_{i})$$

$$= \sum_{i} \mathbb{P}(B \cap A_{i})$$

$$\mathcal{X}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

$$A_{2}$$

$$A_{3}$$

$$A_{4}$$

$$A_{3}$$

$$A_{4}$$

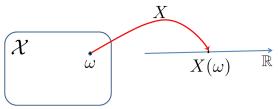
$$A_{4}$$

$$A_{5}$$

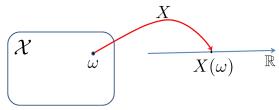
• Bayes' theorem: if $A_1, ..., A_n$ are a partition of \mathcal{X}

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(B \cap A_i)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|A_i) \mathbb{P}(A_i)}{\sum_i \mathbb{P}(B|A_i) \mathbb{P}(A_i)}$$

• A (real) random variable (RV) is a function: $X : \mathcal{X} \to \mathbb{R}$

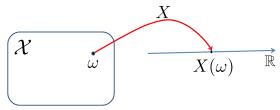


• A (real) random variable (RV) is a function: $X : \mathcal{X} \to \mathbb{R}$



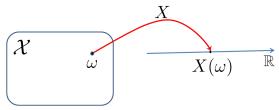
▶ Discrete RV: range of X is countable (e.g., \mathbb{N} or $\{0,1\}$)

• A (real) random variable (RV) is a function: $X : \mathcal{X} \to \mathbb{R}$



- ▶ Discrete RV: range of X is countable (e.g., \mathbb{N} or $\{0,1\}$)
- ▶ Continuous RV: range of X is uncountable (e.g., \mathbb{R} or [0, 1])

• A (real) random variable (RV) is a function: $X : \mathcal{X} \to \mathbb{R}$



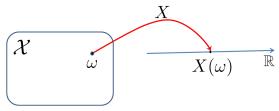
- ▶ Discrete RV: range of X is countable (e.g., \mathbb{N} or $\{0,1\}$)
- ▶ Continuous RV: range of X is uncountable $(e.g., \mathbb{R} \text{ or } [0, 1])$

• Example: number of head in tossing two coins,

$$\mathcal{X} = \{HH, HT, TH, TT\},$$

 $X(HH) = 2, X(HT) = X(TH) = 1, X(TT) = 0.$
Range of $X = \{0, 1, 2\}.$

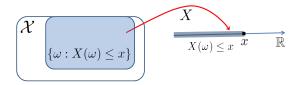
• A (real) random variable (RV) is a function: $X : \mathcal{X} \to \mathbb{R}$

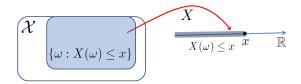


- ▶ Discrete RV: range of X is countable (e.g., \mathbb{N} or $\{0,1\}$)
- ▶ Continuous RV: range of X is uncountable (e.g., \mathbb{R} or [0, 1])

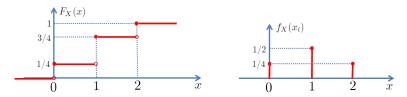
• Example: number of head in tossing two coins, $\mathcal{X} = \{HH, HT, TH, TT\},\$ X(HH) = 2, X(HT) = X(TH) = 1, X(TT) = 0.Range of $X = \{0, 1, 2\}.$

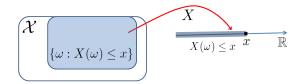
• Example: distance traveled by a tossed coin; range of $X = \mathbb{R}_+$.



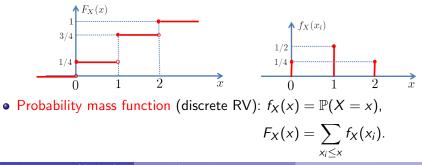


• Example: number of heads in tossing 2 coins; $range(X) = \{0, 1, 2\}$.





• Example: number of heads in tossing 2 coins; $range(X) = \{0, 1, 2\}$.



• Uniform: $X \in \{x_1, ..., x_K\}$, pmf $f_X(x_i) = 1/K$.

- Uniform: $X \in \{x_1, ..., x_K\}$, pmf $f_X(x_i) = 1/K$.
- Bernoulli RV: $X \in \{0,1\}$, pmf $f_X(x) = \begin{cases} p \Leftrightarrow x = 1\\ 1-p \Leftrightarrow x = 0 \end{cases}$

Can be written compactly as $f_X(x) = p^x(1-p)^{1-x}$.

• Uniform: $X \in \{x_1, ..., x_K\}$, pmf $f_X(x_i) = 1/K$.

• Bernoulli RV:
$$X \in \{0,1\}$$
, pmf $f_X(x) = \begin{cases} p \iff x = 1\\ 1-p \iff x = 0 \end{cases}$

Can be written compactly as $f_X(x) = p^x(1-p)^{1-x}$.

• Binomial RV: $X \in \{0, 1, ..., n\}$ (sum on *n* Bernoulli RVs)

$$f_X(x) = \mathsf{Binomial}(x; n, p) = \binom{n}{x} p^x (1-p)^{(n-x)}$$

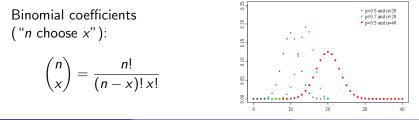
• Uniform: $X \in \{x_1, ..., x_K\}$, pmf $f_X(x_i) = 1/K$.

• Bernoulli RV:
$$X \in \{0,1\}$$
, pmf $f_X(x) = \begin{cases} p \iff x = 1\\ 1-p \iff x = 0 \end{cases}$

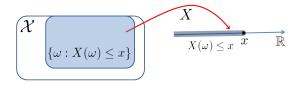
Can be written compactly as $f_X(x) = p^x(1-p)^{1-x}$.

• Binomial RV: $X \in \{0, 1, ..., n\}$ (sum on *n* Bernoulli RVs)

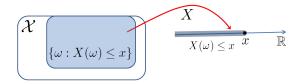
$$f_X(x) = \mathsf{Binomial}(x; n, p) = \binom{n}{x} p^x (1-p)^{(n-x)}$$



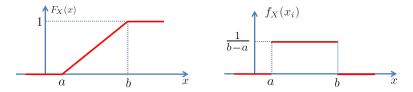
LxMLS 2013: Probability Theory



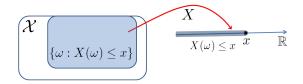
• Distribution function: $F_X(x) = \mathbb{P}(\{\omega \in \mathcal{X} : X(\omega) \le x\})$



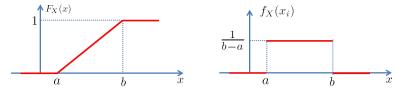
• Example: continuous RV with uniform distribution on [a, b].



• Distribution function: $F_X(x) = \mathbb{P}(\{\omega \in \mathcal{X} : X(\omega) \le x\})$

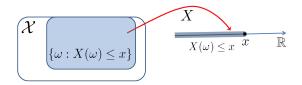


• Example: continuous RV with uniform distribution on [a, b].

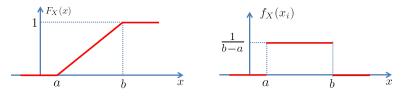


• Probability density function (pdf, continuous RV): $f_X(x)$

• Distribution function: $F_X(x) = \mathbb{P}(\{\omega \in \mathcal{X} : X(\omega) \le x\})$



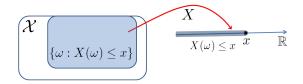
• Example: continuous RV with uniform distribution on [a, b].



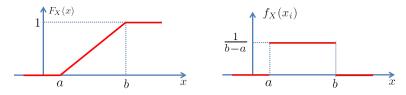
• Probability density function (pdf, continuous RV): $f_X(x)$

$$F_X(x) = \int_{-\infty}^{\infty} f_X(u) \, du,$$

• Distribution function: $F_X(x) = \mathbb{P}(\{\omega \in \mathcal{X} : X(\omega) \le x\})$



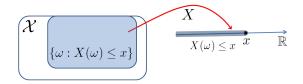
• Example: continuous RV with uniform distribution on [a, b].



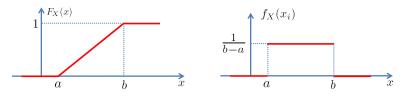
• Probability density function (pdf, continuous RV): $f_X(x)$ $F_X(x) = \int_{-\infty}^{x} f_X(u) \, du, \quad \mathbb{P}(X \in [c, d]) = \int_{c}^{d} f_X(x) \, dx,$

Mário A. T. Figueiredo (IST & IT)

• Distribution function: $F_X(x) = \mathbb{P}(\{\omega \in \mathcal{X} : X(\omega) \le x\})$



• Example: continuous RV with uniform distribution on [a, b].



• Probability density function (pdf, continuous RV): $f_X(x)$ $F_X(x) = \int_{-\infty}^{x} f_X(u) du$, $\mathbb{P}(X \in [c, d]) = \int_{c}^{d} f_X(x) dx$, $\mathbb{P}(X = x) = 0$

Mário A. T. Figueiredo (IST & IT)

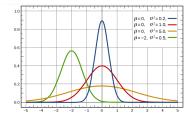
Important Continuous Random Variables

• Uniform: $f_X(x) = \text{Uniform}(x; a, b) = \begin{cases} \frac{1}{b-a} & \Leftarrow & x \in [a, b] \\ 0 & \Leftarrow & x \notin [a, b] \end{cases}$ (previous slide).

Important Continuous Random Variables

• Uniform: $f_X(x) = \text{Uniform}(x; a, b) = \begin{cases} \frac{1}{b-a} & \Leftarrow & x \in [a, b] \\ 0 & \Leftarrow & x \notin [a, b] \end{cases}$ (previous slide).

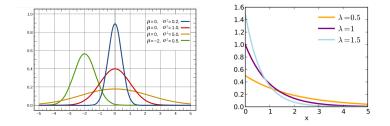
• Gaussian:
$$f_X(x) = \mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2 \pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2 \sigma^2}}$$



Important Continuous Random Variables

• Uniform: $f_X(x) = \text{Uniform}(x; a, b) = \begin{cases} \frac{1}{b-a} & \Leftarrow & x \in [a, b] \\ 0 & \Leftarrow & x \notin [a, b] \end{cases}$ (previous slide).

• Gaussian:
$$f_X(x) = \mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2 \pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2 \sigma^2}}$$



• Exponential: $f_X(x) = \operatorname{Exp}(x; \lambda) = \begin{cases} \lambda e^{-\lambda x} & \Leftarrow x \ge 0 \\ 0 & \Leftarrow x < 0 \end{cases}$

• Expectation:
$$\mathbb{E}(X) = \begin{cases} \sum_{i} x_i f_X(x_i) & X \in \{x_1, ..., x_K\} \subset \mathbb{R} \\ \int_{-\infty}^{\infty} x f_X(x) dx & X \text{ continuous} \end{cases}$$

• Expectation:
$$\mathbb{E}(X) = \begin{cases} \sum_{i} x_i f_X(x_i) & X \in \{x_1, \dots, x_K\} \subset \mathbb{R} \\ \int_{-\infty}^{\infty} x f_X(x) dx & X \text{ continuous} \end{cases}$$

• Example: Bernoulli,
$$f_X(x) = p^x (1-p)^{1-x}$$
, for $x \in \{0, 1\}$.
 $\mathbb{E}(X) = 0 (1-p) + 1 p = p$.

• Expectation:
$$\mathbb{E}(X) = \begin{cases} \sum_{i} x_i f_X(x_i) & X \in \{x_1, \dots, x_K\} \subset \mathbb{R} \\ \int_{-\infty}^{\infty} x f_X(x) dx & X \text{ continuous} \end{cases}$$

• Example: Bernoulli,
$$f_X(x) = p^x (1-p)^{1-x}$$
, for $x \in \{0, 1\}$.
 $\mathbb{E}(X) = 0 (1-p) + 1 p = p$.

• Example: Binomial,
$$f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
, for $x \in \{0, ..., n\}$.
 $\mathbb{E}(X) = n p$.

• Expectation:
$$\mathbb{E}(X) = \begin{cases} \sum_{i} x_i f_X(x_i) & X \in \{x_1, \dots, x_K\} \subset \mathbb{R} \\ \int_{-\infty}^{\infty} x f_X(x) dx & X \text{ continuous} \end{cases}$$

• Example: Bernoulli,
$$f_X(x) = p^x (1-p)^{1-x}$$
, for $x \in \{0, 1\}$.
 $\mathbb{E}(X) = 0 (1-p) + 1 p = p$.

• Example: Binomial,
$$f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
, for $x \in \{0, ..., n\}$.
 $\mathbb{E}(X) = n p$.

• Example: Gaussian, $f_X(x) = \mathcal{N}(x; \mu, \sigma^2)$. $\mathbb{E}(X) = \mu$.

Mário A. T. Figueiredo (IST & IT)

• Expectation:
$$\mathbb{E}(X) = \begin{cases} \sum_{i} x_i f_X(x_i) & X \in \{x_1, \dots, x_K\} \subset \mathbb{R} \\ \int_{-\infty}^{\infty} x f_X(x) dx & X \text{ continuous} \end{cases}$$

• Example: Bernoulli,
$$f_X(x) = p^x (1-p)^{1-x}$$
, for $x \in \{0, 1\}$.
 $\mathbb{E}(X) = 0 (1-p) + 1 p = p$.

• Example: Binomial,
$$f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
, for $x \in \{0, ..., n\}$.
 $\mathbb{E}(X) = n p$.

• Example: Gaussian, $f_X(x) = \mathcal{N}(x; \mu, \sigma^2)$. $\mathbb{E}(X) = \mu$.

• Linearity of expectation: $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y); \quad \mathbb{E}(\alpha X) = \alpha \mathbb{E}(X), \ \alpha \in \mathbb{R}$

Mário A. T. Figueiredo (IST & IT)

LxMLS 2013: Probability Theory

•
$$\mathbb{E}(g(X)) = \begin{cases} \sum_{i} g(x_i) f_X(x_i) & X \text{ discrete, } g(x_i) \in \mathbb{R} \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & X \text{ continuous} \end{cases}$$

•
$$\mathbb{E}(g(X)) = \begin{cases} \sum_{i} g(x_i) f_X(x_i) & X \text{ discrete, } g(x_i) \in \mathbb{R} \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & X \text{ continuous} \end{cases}$$

• Example: variance, $var(X) = \mathbb{E}((X - \mathbb{E}(X))^2)$

•
$$\mathbb{E}(g(X)) = \begin{cases} \sum_{i} g(x_i) f_X(x_i) & X \text{ discrete, } g(x_i) \in \mathbb{R} \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & X \text{ continuous} \end{cases}$$

• Example: variance, $var(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

• Example: Bernoulli variance, $\mathbb{E}(X^2) = \mathbb{E}(X) = p$

•
$$\mathbb{E}(g(X)) = \begin{cases} \sum_{i} g(x_i) f_X(x_i) & X \text{ discrete, } g(x_i) \in \mathbb{R} \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & X \text{ continuous} \end{cases}$$

• Example: variance, $var(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

• Example: Bernoulli variance, $\mathbb{E}(X^2) = \mathbb{E}(X) = p$, thus var(X) = p(1-p).

•
$$\mathbb{E}(g(X)) = \begin{cases} \sum_{i} g(x_i) f_X(x_i) & X \text{ discrete, } g(x_i) \in \mathbb{R} \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & X \text{ continuous} \end{cases}$$

• Example: variance, $var(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

- Example: Bernoulli variance, $\mathbb{E}(X^2) = \mathbb{E}(X) = p$, thus var(X) = p(1-p).
- Example: Gaussian variance, $\mathbb{E}((X \mu)^2) = \sigma^2$.

•
$$\mathbb{E}(g(X)) = \begin{cases} \sum_{i} g(x_i) f_X(x_i) & X \text{ discrete, } g(x_i) \in \mathbb{R} \\ \int_{-\infty}^{\infty} g(x) f_X(x) dx & X \text{ continuous} \end{cases}$$

• Example: variance, $var(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$

- Example: Bernoulli variance, $\mathbb{E}(X^2) = \mathbb{E}(X) = p$, thus var(X) = p(1-p).
- Example: Gaussian variance, $\mathbb{E}((X \mu)^2) = \sigma^2$.

• Probability as expectation of indicator, $\mathbf{1}_A(x) = \begin{cases} 1 & \Leftarrow x \in A \\ 0 & \Leftarrow x \notin A \end{cases}$

$$\mathbb{P}(X \in A) = \int_A f_X(x) \, dx = \int \mathbf{1}_A(x) \, f_X(x) \, dx = \mathbb{E}(\mathbf{1}_A(X))$$

• Joint pmf of two discrete RVs: $f_{X,Y}(x,y) = \mathbb{P}(X = x \land Y = y)$.

Extends trivially to more than two RVs.

- Joint pmf of two discrete RVs: f_{X,Y}(x, y) = ℙ(X = x ∧ Y = y).
 Extends trivially to more than two RVs.
- Joint pdf of two continuous RVs: $f_{X,Y}(x, y)$, such that

$$\mathbb{P}(X \in A) = \iint_A f_{X,Y}(x,y) \, dx \, dy, \qquad A \subset \mathbb{R}^2$$

Extends trivially to more than two RVs.

- Joint pmf of two discrete RVs: f_{X,Y}(x, y) = ℙ(X = x ∧ Y = y).
 Extends trivially to more than two RVs.
- Joint pdf of two continuous RVs: $f_{X,Y}(x, y)$, such that

$$\mathbb{P}(X \in A) = \iint_A f_{X,Y}(x,y) \, dx \, dy, \qquad A \subset \mathbb{R}^2$$

Extends trivially to more than two RVs.

• Marginalization:
$$f_Y(y) = \begin{cases} \sum_{x} f_{X,Y}(x,y), & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx, & \text{if } X \text{ continuous} \end{cases}$$

- Joint pmf of two discrete RVs: f_{X,Y}(x, y) = ℙ(X = x ∧ Y = y).
 Extends trivially to more than two RVs.
- Joint pdf of two continuous RVs: $f_{X,Y}(x, y)$, such that

$$\mathbb{P}(X \in A) = \iint_A f_{X,Y}(x,y) \, dx \, dy, \qquad A \subset \mathbb{R}^2$$

Extends trivially to more than two RVs.

• Marginalization:
$$f_Y(y) = \begin{cases} \sum_{x} f_{X,Y}(x,y), & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx, & \text{if } X \text{ continuous} \end{cases}$$

• Independence:

$$X \perp Y \Leftrightarrow f_{X,Y}(x,y) = f_X(x) f_Y(y)$$

- Joint pmf of two discrete RVs: f_{X,Y}(x, y) = ℙ(X = x ∧ Y = y).
 Extends trivially to more than two RVs.
- Joint pdf of two continuous RVs: $f_{X,Y}(x, y)$, such that

$$\mathbb{P}(X \in A) = \iint_A f_{X,Y}(x,y) \, dx \, dy, \qquad A \subset \mathbb{R}^2$$

Extends trivially to more than two RVs.

• Marginalization:
$$f_Y(y) = \begin{cases} \sum_{x} f_{X,Y}(x,y), & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx, & \text{if } X \text{ continuous} \end{cases}$$

• Independence:

$$X \perp Y \Leftrightarrow f_{X,Y}(x,y) = f_X(x) f_Y(y) \stackrel{\Rightarrow}{\not=} \mathbb{E}(X Y) = \mathbb{E}(X) \mathbb{E}(Y).$$

• Conditional pmf (discrete RVs):

$$f_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{\mathbb{P}(X = x \land Y = y)}{\mathbb{P}(Y = y)} = \frac{f_{X,Y}(x,y)}{f_Y(y)}.$$

- Conditional pmf (discrete RVs): $f_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{\mathbb{P}(X = x \land Y = y)}{\mathbb{P}(Y = y)} = \frac{f_{X,Y}(x,y)}{f_Y(y)}.$
- Conditional pdf (continuous RVs): $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$...the meaning is technically delicate.

- Conditional pmf (discrete RVs): $f_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{\mathbb{P}(X = x \land Y = y)}{\mathbb{P}(Y = y)} = \frac{f_{X,Y}(x,y)}{f_Y(y)}.$
- Conditional pdf (continuous RVs): $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$...the meaning is technically delicate.

• Bayes' theorem:
$$f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x) f_X(x)}{f_Y(y)}$$
 (pdf or pmf).

- Conditional pmf (discrete RVs): $f_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{\mathbb{P}(X = x \land Y = y)}{\mathbb{P}(Y = y)} = \frac{f_{X,Y}(x,y)}{f_Y(y)}.$
- Conditional pdf (continuous RVs): $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$...the meaning is technically delicate.

• Bayes' theorem:
$$f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x) f_X(x)}{f_Y(y)}$$
 (pdf or pmf).

• Also valid in the mixed case (e.g., X continuous, Y discrete).

Joint, Marginal, and Conditional Probabilities: An Example

• A pair of binary variables $X, Y \in \{0, 1\}$, with joint pmf:

$f_{X,Y}(x,y)$	Y = 0	Y = I		
X = 0	1/5	2/5		
X = 1	1/10	3/10		

Joint, Marginal, and Conditional Probabilities: An Example

• A pair of binary variables $X, Y \in \{0, 1\}$, with joint pmf:

$f_{X,Y}(x,y)$	Y = 0	Y = I		
X = 0	1/5	2/5		
X = 1	1/10	3/10		

• Marginals:
$$f_X(0) = \frac{1}{5} + \frac{2}{5} = \frac{3}{5}$$
, $f_X(1) = \frac{1}{10} + \frac{3}{10} = \frac{4}{10}$,
 $f_Y(0) = \frac{1}{5} + \frac{1}{10} = \frac{3}{10}$, $f_Y(1) = \frac{2}{5} + \frac{3}{10} = \frac{7}{10}$.

Joint, Marginal, and Conditional Probabilities: An Example

• A pair of binary variables $X, Y \in \{0, 1\}$, with joint pmf:

$f_{X,Y}(x,y)$	Y = 0	Y = I		
X = 0	1/5	2/5		
X = 1	1/10	3/10		

• Marginals:
$$f_X(0) = \frac{1}{5} + \frac{2}{5} = \frac{3}{5}, \quad f_X(1) = \frac{1}{10} + \frac{3}{10} = \frac{4}{10},$$

 $f_Y(0) = \frac{1}{5} + \frac{1}{10} = \frac{3}{10}, \quad f_Y(1) = \frac{2}{5} + \frac{3}{10} = \frac{7}{10}.$

• Conditional probabilities:

$f_{X Y}(x y)$	Y = 0	Y = I	$f_{Y X}(y x)$	Y = 0	Y = I
X = 0	2/3	4/7	X = 0	1/3	2/3
X = I	1/3	3/7	X = 1	1/4	3/4

An Important Multivariate RV: Multinomial

• Multinomial: $X = (X_1, ..., X_K)$, $X_i \in \{0, ..., n\}$, such that $\sum_i X_i = n$,

$$f_X(x_1,...,x_K) = \begin{cases} \binom{n}{x_1 x_2 \cdots x_K} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_K} & \Leftarrow \sum_i x_i = n \\ 0 & \Leftarrow \sum_i x_i \neq n \end{cases}$$

$$\binom{n}{x_1 \ x_2 \ \cdots \ x_K} = \frac{n!}{x_1! \ x_2! \ \cdots \ x_K!}$$

Parameters: $p_1, ..., p_K \ge 0$, such that $\sum_i p_i = 1$.

An Important Multivariate RV: Multinomial

• Multinomial: $X = (X_1, ..., X_K)$, $X_i \in \{0, ..., n\}$, such that $\sum_i X_i = n$,

$$f_X(x_1,...,x_K) = \begin{cases} \binom{n}{x_1 x_2 \cdots x_K} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_K} & \Leftarrow \sum_i x_i = n \\ 0 & \Leftarrow \sum_i x_i \neq n \end{cases}$$

$$\binom{n}{x_1 \ x_2 \ \cdots \ x_K} = \frac{n!}{x_1! \ x_2! \ \cdots \ x_K!}$$

Parameters: $p_1, ..., p_K \ge 0$, such that $\sum_i p_i = 1$.

• Generalizes the binomial from binary to K-classes.

An Important Multivariate RV: Multinomial

• Multinomial: $X = (X_1, ..., X_K)$, $X_i \in \{0, ..., n\}$, such that $\sum_i X_i = n$,

$$f_X(x_1,...,x_K) = \begin{cases} \binom{n}{x_1 x_2 \cdots x_K} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_K} & \Leftarrow \sum_i x_i = n \\ 0 & \Leftarrow \sum_i x_i \neq n \end{cases}$$

$$\binom{n}{x_1 \ x_2 \ \cdots \ x_K} = \frac{n!}{x_1! \ x_2! \ \cdots \ x_K!}$$

Parameters: $p_1, ..., p_K \ge 0$, such that $\sum_i p_i = 1$.

- Generalizes the binomial from binary to K-classes.
- Example: tossing *n* independent fair dice, $p_1 = \cdots = p_6 = 1/6$. $x_i =$ number of outcomes with *i* dots. Of course, $\sum_i x_i = n$.

An Important Multivariate RV: Gaussian

• Multivariate Gaussian: $X \in \mathbb{R}^n$,

$$f_X(x) = \mathcal{N}(x; \mu, C) = \frac{1}{\sqrt{\det(2 \pi C)}} \exp\left(-\frac{1}{2}(x-\mu)^T C^{-1}(x-\mu)\right)$$

An Important Multivariate RV: Gaussian

• Multivariate Gaussian: $X \in \mathbb{R}^n$,

$$f_X(x) = \mathcal{N}(x; \mu, C) = \frac{1}{\sqrt{\det(2 \pi C)}} \exp\left(-\frac{1}{2}(x-\mu)^T C^{-1}(x-\mu)\right)$$

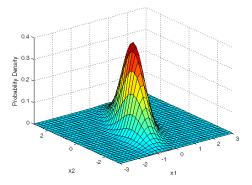
• Parameters: vector $\mu \in \mathbb{R}^n$ and matrix $C \in \mathbb{R}^{n \times n}$. Expected value: $\mathbb{E}(X) = \mu$. Meaning of C: next slide.

An Important Multivariate RV: Gaussian

• Multivariate Gaussian: $X \in \mathbb{R}^n$,

$$f_X(x) = \mathcal{N}(x; \mu, C) = \frac{1}{\sqrt{\det(2 \pi C)}} \exp\left(-\frac{1}{2}(x-\mu)^T C^{-1}(x-\mu)\right)$$

• Parameters: vector $\mu \in \mathbb{R}^n$ and matrix $C \in \mathbb{R}^{n \times n}$. Expected value: $\mathbb{E}(X) = \mu$. Meaning of C: next slide.



LxMLS 2013: Probability Theory

$$\operatorname{cov}(X,Y) = \mathbb{E}\Big[(X - \mathbb{E}(X)) (Y - \mathbb{E}(Y)) \Big] = \mathbb{E}(X Y) - \mathbb{E}(X) \mathbb{E}(Y)$$

• Covariance between two RVs:

$$\operatorname{cov}(X,Y) = \mathbb{E}\Big[(X - \mathbb{E}(X)) (Y - \mathbb{E}(Y)) \Big] = \mathbb{E}(X Y) - \mathbb{E}(X) \mathbb{E}(Y)$$

• Relationship with variance: var(X) = cov(X, X).

$$\operatorname{cov}(X,Y) = \mathbb{E}\Big[(X - \mathbb{E}(X)) (Y - \mathbb{E}(Y)) \Big] = \mathbb{E}(X Y) - \mathbb{E}(X) \mathbb{E}(Y)$$

- Relationship with variance: var(X) = cov(X, X).
- Correlation: $\operatorname{corr}(X, Y) = \rho(X, Y) = \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)}\sqrt{\operatorname{var}(Y)}} \in [-1, 1]$

$$\operatorname{cov}(X,Y) = \mathbb{E}\Big[(X - \mathbb{E}(X)) (Y - \mathbb{E}(Y)) \Big] = \mathbb{E}(X Y) - \mathbb{E}(X) \mathbb{E}(Y)$$

- Relationship with variance: var(X) = cov(X, X).
- Correlation: $\operatorname{corr}(X, Y) = \rho(X, Y) = \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)}\sqrt{\operatorname{var}(Y)}} \in [-1, 1]$

•
$$X \perp Y \Leftrightarrow f_{X,Y}(x,y) = f_X(x) f_Y(y)$$

$$\operatorname{cov}(X,Y) = \mathbb{E}\Big[(X - \mathbb{E}(X)) (Y - \mathbb{E}(Y)) \Big] = \mathbb{E}(X Y) - \mathbb{E}(X) \mathbb{E}(Y)$$

- Relationship with variance: var(X) = cov(X, X).
- Correlation: $\operatorname{corr}(X, Y) = \rho(X, Y) = \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)}\sqrt{\operatorname{var}(Y)}} \in [-1, 1]$ • $X \perp Y \Leftrightarrow f_{X,Y}(x, y) = f_X(x) f_Y(y) \stackrel{\Rightarrow}{\not\leftarrow} \operatorname{cov}(X, Y) = 0.$

• Covariance between two RVs:

$$\operatorname{cov}(X,Y) = \mathbb{E}\Big[(X - \mathbb{E}(X)) (Y - \mathbb{E}(Y)) \Big] = \mathbb{E}(X Y) - \mathbb{E}(X) \mathbb{E}(Y)$$

• Relationship with variance: var(X) = cov(X, X).

• Correlation:
$$\operatorname{corr}(X, Y) = \rho(X, Y) = \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)}\sqrt{\operatorname{var}(Y)}} \in [-1, 1]$$

• $X \perp Y \Leftrightarrow f_{X,Y}(x, y) = f_X(x) f_Y(y) \stackrel{\Rightarrow}{\not=} \operatorname{cov}(X, Y) = 0.$

• Covariance matrix of multivariate RV, $X \in \mathbb{R}^n$:

$$\operatorname{cov}(X) = \mathbb{E}\Big[(X - \mathbb{E}(X)) (X - \mathbb{E}(X))^T \Big] = \mathbb{E}(X X^T) - \mathbb{E}(X) \mathbb{E}(X)^T$$

• Covariance between two RVs:

$$\operatorname{cov}(X,Y) = \mathbb{E}\Big[(X - \mathbb{E}(X)) (Y - \mathbb{E}(Y)) \Big] = \mathbb{E}(X Y) - \mathbb{E}(X) \mathbb{E}(Y)$$

• Relationship with variance: var(X) = cov(X, X).

• Correlation:
$$\operatorname{corr}(X, Y) = \rho(X, Y) = \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)}\sqrt{\operatorname{var}(Y)}} \in [-1, 1]$$

• $X \perp Y \Leftrightarrow f_{X,Y}(x, y) = f_X(x) f_Y(y) \stackrel{\Rightarrow}{\not\leftarrow} \operatorname{cov}(X, Y) = 0.$

• Covariance matrix of multivariate RV, $X \in \mathbb{R}^n$:

$$\operatorname{cov}(X) = \mathbb{E}\Big[(X - \mathbb{E}(X)) (X - \mathbb{E}(X))^T \Big] = \mathbb{E}(X X^T) - \mathbb{E}(X) \mathbb{E}(X)^T$$

• Covariance of Gaussian RV, $f_X(x) = \mathcal{N}(x; \mu, C) \Rightarrow \operatorname{cov}(X) = C$

Scenario: observed RV Y, depends on unknown variable(s)X.
 Goal: given an observation Y = y, infer X.

- Scenario: observed RV Y, depends on unknown variable(s)X.
 Goal: given an observation Y = y, infer X.
- Two main philosophies:
 Frequentist: X = x is fixed (not an RV), but unknown;
 Bayesian: X is a random variable with pdf/pmf f_X(x) (the prior);
 this prior expresses/formalizes knowledge about X.

- Scenario: observed RV Y, depends on unknown variable(s)X.
 Goal: given an observation Y = y, infer X.
- Two main philosophies:
 Frequentist: X = x is fixed (not an RV), but unknown;
 Bayesian: X is a random variable with pdf/pmf f_X(x) (the prior); this prior expresses/formalizes knowledge about X.
- In both philosophies, a central object is $f_{Y|X}(y|x)$ several names: likelihood function, observation model,...

- Scenario: observed RV Y, depends on unknown variable(s)X. Goal: given an observation Y = y, infer X.
- Two main philosophies:
 Frequentist: X = x is fixed (not an RV), but unknown;
 Bayesian: X is a random variable with pdf/pmf f_X(x) (the prior); this prior expresses/formalizes knowledge about X.
- In both philosophies, a central object is $f_{Y|X}(y|x)$ several names: likelihood function, observation model,...
- This in **not** statistical/machine learning! $f_{Y|X}(y|x)$ is assumed known.

- Scenario: observed RV Y, depends on unknown variable(s)X. Goal: given an observation Y = y, infer X.
- Two main philosophies:
 Frequentist: X = x is fixed (not an RV), but unknown;
 Bayesian: X is a random variable with pdf/pmf f_X(x) (the prior); this prior expresses/formalizes knowledge about X.
- In both philosophies, a central object is $f_{Y|X}(y|x)$ several names: likelihood function, observation model,...
- This in **not** statistical/machine learning! $f_{Y|X}(y|x)$ is assumed known.
- In the Bayesian philosophy, all the knowledge about X is carried by

$$f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x) f_X(x)}{f_Y(y)} = \frac{f_{Y,X}(y,x)}{f_Y(y)}$$

...the posterior (or a posteriori) pdf/pmf.

• The posterior pdf/pmf $f_{X|Y}(x|y)$ has all the information/knowledge about X, given Y = y (conditionality principle).

- The posterior pdf/pmf $f_{X|Y}(x|y)$ has all the information/knowledge about X, given Y = y (conditionality principle).
- How to make an optimal "guess" \hat{x} about X, given this information?

- The posterior pdf/pmf $f_{X|Y}(x|y)$ has all the information/knowledge about X, given Y = y (conditionality principle).
- How to make an optimal "guess" \hat{x} about X, given this information?
- Need to define "optimal": loss function: L(x̂, x) ∈ ℝ₊ measures "loss" / "cost" incurred by "guessing" x̂ if truth is x.

- The posterior pdf/pmf $f_{X|Y}(x|y)$ has all the information/knowledge about X, given Y = y (conditionality principle).
- How to make an optimal "guess" \hat{x} about X, given this information?
- Need to define "optimal": loss function: L(x̂, x) ∈ ℝ₊ measures "loss" / "cost" incurred by "guessing" x̂ if truth is x.
- The optimal Bayesian decision minimizes the expected loss:

$$\widehat{x}_{\mathsf{Bayes}} = \arg\min_{\widehat{x}} \mathbb{E}[L(\widehat{x}, X) | Y = y]$$

where

$$\mathbb{E}[L(\widehat{x}, X)|Y = y] = \begin{cases} \int L(\widehat{x}, x) f_{X|Y}(x|y) dx, & \text{continuous (estimation)} \\ \sum_{x} L(\widehat{x}, x) f_{X|Y}(x|y), & \text{discrete (classification)} \end{cases}$$

• Consider that $X \in \{1, ..., K\}$ (discrete/classification problem).

- Consider that $X \in \{1, ..., K\}$ (discrete/classification problem).
- Adopt the 0/1 loss: $L(\hat{x}, x) = 0$, if $\hat{x} = x$, and 1 otherwise.

- Consider that $X \in \{1, ..., K\}$ (discrete/classification problem).
- Adopt the 0/1 loss: $L(\hat{x}, x) = 0$, if $\hat{x} = x$, and 1 otherwise.
- Optimal Bayesian decision:

$$\begin{split} \widehat{x}_{\mathsf{Bayes}} &= \arg\min_{\widehat{x}} \sum_{x=1}^{K} \mathcal{L}(\widehat{x}, x) \, f_{X|Y}(x|y) \\ &= \arg\min_{\widehat{x}} \left(1 - f_{X|Y}(\widehat{x}|y) \right) \\ &= \arg\max_{\widehat{x}} f_{X|Y}(\widehat{x}|y) \; \equiv \; \widehat{x}_{\mathsf{MAP}} \end{split}$$

MAP = maximum a posteriori criterion.

- Consider that $X \in \{1, ..., K\}$ (discrete/classification problem).
- Adopt the 0/1 loss: $L(\hat{x}, x) = 0$, if $\hat{x} = x$, and 1 otherwise.
- Optimal Bayesian decision:

$$\begin{aligned} \widehat{x}_{\text{Bayes}} &= \arg\min_{\widehat{x}} \sum_{x=1}^{K} L(\widehat{x}, x) f_{X|Y}(x|y) \\ &= \arg\min_{\widehat{x}} \left(1 - f_{X|Y}(\widehat{x}|y) \right) \\ &= \arg\max_{\widehat{x}} f_{X|Y}(\widehat{x}|y) \equiv \widehat{x}_{\text{MAP}} \end{aligned}$$

MAP = maximum a posteriori criterion.

 Same criterion can be derived for continuous X, using lim_{ε→0} L_ε(x̂, x), where L_ε(x̂, x) = 0, if |x̂ − x| < ε, and 1 otherwise.

• Consider the MAP criterion $\hat{x}_{MAP} = \arg \max_{x} f_{X|Y}(x|y)$

- Consider the MAP criterion $\widehat{x}_{MAP} = \arg \max_{x} f_{X|Y}(x|y)$
- From Bayes law:

$$\widehat{x}_{\mathsf{MAP}} = \arg \max_{x} \frac{f_{Y|X}(y|x) f_X(x)}{f_Y(y)} = \arg \max_{x} f_{Y|X}(y|x) f_X(x)$$

...only need to know posterior $f_{X|Y}(x|y)$ up to a normalization factor.

- Consider the MAP criterion $\widehat{x}_{MAP} = \arg \max_{x} f_{X|Y}(x|y)$
- From Bayes law:

$$\widehat{x}_{\mathsf{MAP}} = \arg \max_{x} \frac{f_{Y|X}(y|x) f_X(x)}{f_Y(y)} = \arg \max_{x} f_{Y|X}(y|x) f_X(x)$$

...only need to know posterior $f_{X|Y}(x|y)$ up to a normalization factor.

• Also common to write: $\hat{x}_{MAP} = \arg \max_{x} \log f_{Y|X}(y|x) + \log f_{X}(x)$

- Consider the MAP criterion $\widehat{x}_{MAP} = \arg \max_{x} f_{X|Y}(x|y)$
- From Bayes law:

$$\widehat{x}_{\mathsf{MAP}} = \arg \max_{x} \frac{f_{Y|X}(y|x) f_X(x)}{f_Y(y)} = \arg \max_{x} f_{Y|X}(y|x) f_X(x)$$

...only need to know posterior $f_{X|Y}(x|y)$ up to a normalization factor.

- Also common to write: $\hat{x}_{MAP} = \arg \max_{x} \log f_{Y|X}(y|x) + \log f_{X}(x)$
- If the prior if flat, $f_X(x) = C$, then,

$$\widehat{x}_{\mathsf{MAP}} = rg\max_{x} f_{Y|X}(y|x) \equiv \widehat{x}_{\mathsf{ML}}$$

ML = maximum likelihood criterion.

• Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs: $Y = (Y_1, ..., Y_n)$, with $Y_i \in \{0, 1\}$.

Common pmf $f_{Y_i|X}(y|x) = x^y(1-x)^{1-y}$, where $x \in [0, 1]$.

- Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs: $Y = (Y_1, ..., Y_n)$, with $Y_i \in \{0, 1\}$. Common pmf $f_{Y_i|X}(y|x) = x^y(1-x)^{1-y}$, where $x \in [0, 1]$.
- Likelihood function: $f_{Y|X}(y_1, ..., y_n|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i}$ Log-likelihood function:

$$\log f_{Y|X}(y_1, ..., y_n|x) = n \log(1-x) + \log \frac{x}{1-x} \sum_{i=1}^n y_i$$

- Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs: $Y = (Y_1, ..., Y_n)$, with $Y_i \in \{0, 1\}$. Common pmf $f_{Y_i|X}(y|x) = x^y(1-x)^{1-y}$, where $x \in [0, 1]$.
- Likelihood function: $f_{Y|X}(y_1, ..., y_n|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i}$ Log-likelihood function:

$$\log f_{Y|X}(y_1, ..., y_n|x) = n \log(1-x) + \log \frac{x}{1-x} \sum_{i=1}^n y_i$$

• Maximum likelihood: $\widehat{x}_{ML} = \arg \max_{x} f_{Y|X}(y|x) = \frac{1}{n} \sum_{i=1}^{n} y_i$

- Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs: $Y = (Y_1, ..., Y_n)$, with $Y_i \in \{0, 1\}$. Common pmf $f_{Y_i|X}(y|x) = x^y(1-x)^{1-y}$, where $x \in [0, 1]$.
- Likelihood function: $f_{Y|X}(y_1, ..., y_n|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i}$ Log-likelihood function:

$$\log f_{Y|X}(y_1, ..., y_n|x) = n \log(1-x) + \log \frac{x}{1-x} \sum_{i=1}^n y_i$$

- Maximum likelihood: $\widehat{x}_{ML} = \arg \max_{x} f_{Y|X}(y|x) = \frac{1}{n} \sum_{i=1}^{n} y_i$
- Example: n = 10, observed y = (1, 1, 1, 0, 1, 0, 0, 1, 1, 1), $\hat{x}_{ML} = 7/10$.

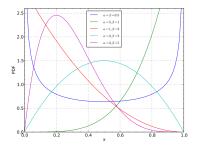
• Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs.

• Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs.

• Likelihood:
$$f_{Y|X}(y_1, ..., y_n|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i} = x^{\sum_i y_i} (1-x)^{n-\sum_i y_i}$$

• Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs.

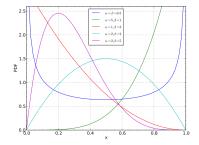
• Likelihood:
$$f_{Y|X}(y_1, ..., y_n|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i} = x^{\sum_i y_i} (1-x)^{n-\sum_i y_i}$$



• Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs.

• Likelihood:
$$f_{Y|X}(y_1, ..., y_n|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i} = x^{\sum_i y_i} (1-x)^{n-\sum_i y_i}$$

In our case, the Beta pdf
$$f_X(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \ \alpha, \beta > 0$$



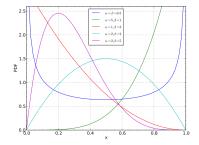
• Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs.

• Likelihood:
$$f_{Y|X}(y_1, ..., y_n|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i} = x^{\sum_i y_i} (1-x)^{n-\sum_i y_i}$$

In our case, the Beta pdf
$$f_X(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \ \alpha, \beta > 0$$

• Posterior:

$$f_{X|Y}(x|y) = x^{\alpha - 1 + \sum_i y_i} (1 - x)^{\beta - 1 + n - \sum_i y_i}$$



• Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs.

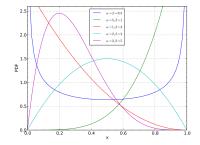
• Likelihood:
$$f_{Y|X}(y_1, ..., y_n|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i} = x^{\sum_i y_i} (1-x)^{n-\sum_i y_i}$$

In our case, the Beta pdf
$$f_X(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \ \alpha, \beta > 0$$

• Posterior:

$$f_{X|Y}(x|y) = x^{\alpha - 1 + \sum_i y_i} (1 - x)^{\beta - 1 + n - \sum_i y_i}$$

• MAP:
$$\hat{x}_{MAP} = \frac{\alpha + \sum_{i} y_i - 1}{\alpha + \beta + n - 2}$$



• Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs.

• Likelihood:
$$f_{Y|X}(y_1, ..., y_n|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i} = x^{\sum_i y_i} (1-x)^{n-\sum_i y_i}$$

In our case, the Beta pdf
$$f_X(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \ \alpha, \beta > 0$$

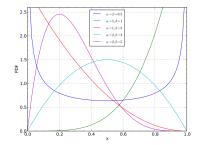
• Posterior:

$$f_{X|Y}(x|y) = x^{\alpha - 1 + \sum_{i} y_i} (1 - x)^{\beta - 1 + n - \sum_{i} y_i}$$

• MAP:
$$\hat{x}_{MAP} = \frac{\alpha + \sum_{i} y_i - 1}{\alpha + \beta + n - 2}$$

• Example:
$$\alpha = 4$$
, $\beta = 4$, $n = 10$, $y = (1, 1, 1, 0, 1, 0, 0, 1, 1, 1)$,

$$\widehat{x}_{MAP} = 0.625 \text{ (recall } \widehat{x}_{ML} = 0.7 \text{)}$$



Another Classical Statistical Inference Criterion

• Consider that $X \in \mathbb{R}$ (continuous/estimation problem).

Another Classical Statistical Inference Criterion

- Consider that $X \in \mathbb{R}$ (continuous/estimation problem).
- Adopt the squared error loss: $L(\widehat{x}, x) = (\widehat{x} x)^2$

Another Classical Statistical Inference Criterion

- Consider that $X \in \mathbb{R}$ (continuous/estimation problem).
- Adopt the squared error loss: $L(\widehat{x}, x) = (\widehat{x} x)^2$
- Optimal Bayesian decision:

$$\begin{split} \widehat{x}_{\mathsf{Bayes}} &= \arg\min_{\widehat{x}} \mathbb{E}[(\widehat{x} - X)^2 | Y = y] \\ &= \arg\min_{\widehat{x}} \ \widehat{x}^2 - 2\,\widehat{x}\,\mathbb{E}[X | Y = y] \\ &= \mathbb{E}[X | Y = y] \ \equiv \ \widehat{x}_{\mathsf{MMSE}} \end{split}$$

MMSE = minimum mean squared error criterion.

Another Classical Statistical Inference Criterion

- Consider that $X \in \mathbb{R}$ (continuous/estimation problem).
- Adopt the squared error loss: $L(\widehat{x}, x) = (\widehat{x} x)^2$
- Optimal Bayesian decision:

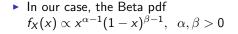
$$\begin{split} \widehat{x}_{\mathsf{Bayes}} &= \arg\min_{\widehat{x}} \mathbb{E}[(\widehat{x} - X)^2 | Y = y] \\ &= \arg\min_{\widehat{x}} \ \widehat{x}^2 - 2\,\widehat{x}\,\mathbb{E}[X | Y = y] \\ &= \mathbb{E}[X | Y = y] \ \equiv \ \widehat{x}_{\mathsf{MMSE}} \end{split}$$

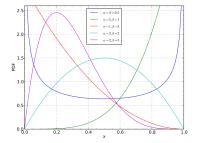
MMSE = minimum mean squared error criterion.

• Does not apply to classification problems.

• Likelihood:
$$f_{Y|X}(y_1, ..., y_n|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i} = x^{\sum_i y_i} (1-x)^{n-\sum_i y_i}$$

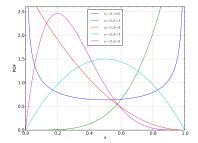
• Likelihood:
$$f_{Y|X}(y_1, ..., y_n|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i} = x^{\sum_i y_i} (1-x)^{n-\sum_i y_i}$$





• Likelihood:
$$f_{Y|X}(y_1, ..., y_n|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i} = x^{\sum_i y_i} (1-x)^{n-\sum_i y_i}$$

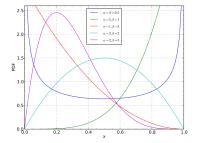
- In our case, the Beta pdf $f_X(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \ \alpha, \beta > 0$
- Posterior: $f_{X|Y}(x|y) = x^{\alpha - 1 + \sum_i y_i} (1 - x)^{\beta - 1 + n - \sum_i y_i}$



• Likelihood:
$$f_{Y|X}(y_1, ..., y_n|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i} = x^{\sum_i y_i} (1-x)^{n-\sum_i y_i}$$

- ► In our case, the Beta pdf $f_X(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \ \alpha, \beta > 0$
- Posterior: $f_{X|Y}(x|y) = x^{\alpha - 1 + \sum_i y_i} (1 - x)^{\beta - 1 + n - \sum_i y_i}$

• MMSE:
$$\widehat{x}_{MMSE} = \frac{\alpha + \sum_{i} y_{i}}{\alpha + \beta + n}$$



• Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs.

• Likelihood:
$$f_{Y|X}(y_1, ..., y_n|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i} = x^{\sum_i y_i} (1-x)^{n-\sum_i y_i}$$

- ► In our case, the Beta pdf $f_X(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \ \alpha, \beta > 0$
- Posterior: $f_{X|Y}(x|y) = x^{\alpha - 1 + \sum_i y_i} (1 - x)^{\beta - 1 + n - \sum_i y_i}$

• MMSE:
$$\widehat{x}_{\text{MMSE}} = \frac{\alpha + \sum_{i} y_{i}}{\alpha + \beta + n}$$

• Example:
$$\alpha = 4$$
, $\beta = 4$, $n = 10$, $y = (1, 1, 1, 0, 1, 0, 0, 1, 1, 1)$,

 $\widehat{x}_{MMSE} \simeq 0.611$ (recall that $\widehat{x}_{MAP} = 0.625$, $\widehat{x}_{ML} = 0.7$)

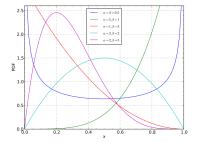
• Observed *n* i.i.d. (independent identically distributed) Bernoulli RVs.

• Likelihood:
$$f_{Y|X}(y_1, ..., y_n|x) = \prod_{i=1}^n x^{y_i} (1-x)^{1-y_i} = x^{\sum_i y_i} (1-x)^{n-\sum_i y_i}$$

- ▶ In our case, the Beta pdf $f_X(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, \ \alpha, \beta > 0$
- Posterior: $f_{X|Y}(x|y) = x^{\alpha-1+\sum_i y_i} (1-x)^{\beta-1+n-\sum_i y_i}$

• MMSE:
$$\hat{x}_{\text{MMSE}} = \frac{\alpha + \sum_{i} y_{i}}{\alpha + \beta + n}$$

• Example:
$$\alpha = 4$$
, $\beta = 4$, $n = 10$, $y = (1, 1, 1, 0, 1, 0, 0, 1, 1, 1)$,



 $\widehat{x}_{\mathsf{MMSE}} \simeq 0.611 \ (\text{recall that} \ \widehat{x}_{\mathsf{MAP}} = 0.625, \ \widehat{x}_{\mathsf{ML}} = 0.7)$

• Conjugate prior equivalent to "virtual" counts; often called "smoothing" in NLP and ML.

Mário A. T. Figueiredo (IST & IT)

LxMLS 2013: Probability Theory

The Bernstein-Von Mises Theorem

• In the previous example, we had n = 10, y = (1, 1, 1, 0, 1, 0, 0, 1, 1, 1), thus $\sum_i y_i = 7$. With a Beta prior with $\alpha = 4$ and $\beta = 4$, we had

$$\widehat{x}_{\mathsf{ML}} = 0.7, \quad \widehat{x}_{\mathsf{MAP}} = \frac{3 + \sum_{i} y_{i}}{6 + n} = 0.625, \quad \widehat{x}_{\mathsf{MMSE}} = \frac{4 + \sum_{i} y_{i}}{8 + n} \simeq 0.611$$

The Bernstein-Von Mises Theorem

• In the previous example, we had n = 10, y = (1, 1, 1, 0, 1, 0, 0, 1, 1, 1), thus $\sum_i y_i = 7$. With a Beta prior with $\alpha = 4$ and $\beta = 4$, we had

$$\widehat{x}_{\mathsf{ML}} = 0.7, \quad \widehat{x}_{\mathsf{MAP}} = \frac{3 + \sum_{i} y_{i}}{6 + n} = 0.625, \quad \widehat{x}_{\mathsf{MMSE}} = \frac{4 + \sum_{i} y_{i}}{8 + n} \simeq 0.611$$

• Consider n = 100, and $\sum_{i} y_i = 70$, with the same Beta(4,4) prior

$$\widehat{x}_{\mathsf{ML}} = 0.7, \quad \widehat{x}_{\mathsf{MAP}} = \frac{73}{106} \simeq 0.689, \quad \widehat{x}_{\mathsf{MMSE}} = \frac{74}{108} \simeq 0.685$$

... both Bayesian estimates are much closer to the ML.

The Bernstein-Von Mises Theorem

• In the previous example, we had n = 10, y = (1, 1, 1, 0, 1, 0, 0, 1, 1, 1), thus $\sum_{i} y_i = 7$. With a Beta prior with $\alpha = 4$ and $\beta = 4$, we had

$$\widehat{x}_{\mathsf{ML}} = 0.7, \quad \widehat{x}_{\mathsf{MAP}} = \frac{3 + \sum_{i} y_{i}}{6 + n} = 0.625, \quad \widehat{x}_{\mathsf{MMSE}} = \frac{4 + \sum_{i} y_{i}}{8 + n} \simeq 0.611$$

• Consider n = 100, and $\sum_{i} y_i = 70$, with the same Beta(4,4) prior

$$\widehat{x}_{\mathsf{ML}} = 0.7, \quad \widehat{x}_{\mathsf{MAP}} = \frac{73}{106} \simeq 0.689, \quad \widehat{x}_{\mathsf{MMSE}} = \frac{74}{108} \simeq 0.685$$

... both Bayesian estimates are much closer to the ML.

• This illustrates an important result in Bayesian inference: the Bernstein-Von Mises theorem; under (mild) conditions,

$$\lim_{n \to \infty} \widehat{x}_{MAP} = \lim_{n \to \infty} \widehat{x}_{MMSE} = \widehat{x}_{ML}$$

message: if you have a lot of data, priors don't matter.

Important Inequalities

• Markov's ineqality: if $X \ge 0$ is an RV with expectation $\mathbb{E}(X)$, then

$$\mathbb{P}(X > t) \leq rac{\mathbb{E}(X)}{t}$$

Important Inequalities

• Markov's ineqality: if $X \ge 0$ is an RV with expectation $\mathbb{E}(X)$, then

$$\mathbb{P}(X > t) \leq \frac{\mathbb{E}(X)}{t}$$

Trivial proof:

$$t \mathbb{P}(X > t) = \int_t^\infty t f_X(x) dx \le \int_t^\infty x f_X(x) dx = \mathbb{E}(X) - \underbrace{\int_0^t x f_X(x) dx}_{>0} \le \mathbb{E}(X)$$

Important Inequalities

• Markov's ineqality: if $X \ge 0$ is an RV with expectation $\mathbb{E}(X)$, then

$$\mathbb{P}(X > t) \leq rac{\mathbb{E}(X)}{t}$$

Trivial proof:

$$t \mathbb{P}(X > t) = \int_t^\infty t f_X(x) dx \le \int_t^\infty x f_X(x) dx = \mathbb{E}(X) - \underbrace{\int_0^t x f_X(x) dx}_{\ge 0} \le \mathbb{E}(X)$$

• Chebyshev's inequality: $\mu = \mathbb{E}(Y)$ and $\sigma^2 = \operatorname{var}(Y)$, then

$$\mathbb{P}(|X-\mu| \ge s) \le \frac{\sigma^2}{s^2}$$

...simple corollary of Markov's inequality, with $X = |Y - \mu|^2$, $t = s^2$

• Cauchy-Schwartz's inequality for RVs:

$$\mathbb{E}(|X|Y|) \leq \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}$$

• Cauchy-Schwartz's inequality for RVs:

$$\mathbb{E}(|X|Y|) \leq \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}$$

• Recall that a real function g is convex if, for any x, y, and $\alpha \in [0, 1]$

$$g(\alpha x + (1 - \alpha)y) \le \alpha g(x) + (1 - \alpha)g(y)$$

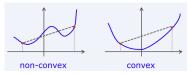


• Cauchy-Schwartz's inequality for RVs:

$$\mathbb{E}(|X|Y|) \leq \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}$$

• Recall that a real function g is convex if, for any x, y, and $\alpha \in [0, 1]$

$$g(\alpha x + (1 - \alpha)y) \le \alpha g(x) + (1 - \alpha)g(y)$$



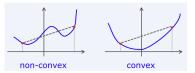
Jensen's inequality: if g is a real convex function, then $g(\mathbb{E}(X)) \leq \mathbb{E}(g(X))$

• Cauchy-Schwartz's inequality for RVs:

$$\mathbb{E}(|X|Y|) \leq \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}$$

• Recall that a real function g is convex if, for any x, y, and $\alpha \in [0, 1]$

$$g(\alpha x + (1 - \alpha)y) \le \alpha g(x) + (1 - \alpha)g(y)$$



Jensen's inequality: if g is a real convex function, then $g(\mathbb{E}(X)) \leq \mathbb{E}(g(X))$

 $\begin{array}{ll} \text{Examples:} \ \mathbb{E}(X)^2 \leq \mathbb{E}(X^2) \ \Rightarrow \ \text{var}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 \geq 0.\\ \mathbb{E}(\log X) \leq \log \mathbb{E}(X), \ \text{ for } X \text{ a positive RV}. \end{array}$

Mário A. T. Figueiredo (IST & IT)

Entropy of a discrete RV
$$X \in \{1, ..., K\}$$
:
$$H(X) = -\sum_{x=1}^{K} f_X(x) \log f_X(x)$$

Entropy of a discrete RV $X \in \{1, ..., K\}$: $H(X) = -\sum_{x=1}^{K} f_X(x) \log f_X(x)$

• Positivity: $H(X) \ge 0$; $H(X) = 0 \iff f_X(i) = 1$, for exactly one $i \in \{1, ..., K\}$.

Entropy of a discrete RV $X \in \{1, ..., K\}$: $H(X) = -\sum_{x=1}^{n} f_X(x) \log f_X(x)$

• Positivity: $H(X) \ge 0$; $H(X) = 0 \iff f_X(i) = 1$, for exactly one $i \in \{1, ..., K\}$.

• Upper bound: $H(X) \le \log K$; $H(X) = \log K \Leftrightarrow f_X(x) = 1/k$, for all $x \in \{1, ..., K\}$

Entropy of a discrete RV $X \in \{1, ..., K\}$: $H(X) = -\sum_{x=1}^{K} f_X(x) \log f_X(x)$

• Positivity: $H(X) \ge 0$; $H(X) = 0 \iff f_X(i) = 1$, for exactly one $i \in \{1, ..., K\}$.

• Upper bound:
$$H(X) \le \log K$$
;
 $H(X) = \log K \Leftrightarrow f_X(x) = 1/k$, for all $x \in \{1, ..., K\}$

• Measure of uncertainty/randomness of X

Entropy of a discrete RV $X \in \{1, ..., K\}$: $H(X) = -\sum_{x=1}^{K} f_X(x) \log f_X(x)$

• Positivity: $H(X) \ge 0$; $H(X) = 0 \iff f_X(i) = 1$, for exactly one $i \in \{1, ..., K\}$.

• Upper bound:
$$H(X) \le \log K$$
;
 $H(X) = \log K \Leftrightarrow f_X(x) = 1/k$, for all $x \in \{1, ..., K\}$

• Measure of uncertainty/randomness of X

Continuous RV X, differential entropy: $h(X) = -\int f_X(x) \log f_X(x) dx$

Entropy of a discrete RV $X \in \{1, ..., K\}$: $H(X) = -\sum_{x=1}^{K} f_X(x) \log f_X(x)$

• Positivity: $H(X) \ge 0$; $H(X) = 0 \iff f_X(i) = 1$, for exactly one $i \in \{1, ..., K\}$.

• Upper bound:
$$H(X) \le \log K$$
;
 $H(X) = \log K \Leftrightarrow f_X(x) = 1/k$, for all $x \in \{1, ..., K\}$

• Measure of uncertainty/randomness of X

Continuous RV X, differential entropy:
$$h(X) = -\int f_X(x) \log f_X(x) dx$$

• h(X) can be positive or negative. Example, if $f_X(x) = \text{Uniform}(x; a, b), h(X) = \log(b - a).$

Entropy of a discrete RV $X \in \{1, ..., K\}$: $H(X) = -\sum_{x=1}^{K} f_X(x) \log f_X(x)$

• Positivity: $H(X) \ge 0$; $H(X) = 0 \iff f_X(i) = 1$, for exactly one $i \in \{1, ..., K\}$.

• Upper bound:
$$H(X) \le \log K$$
;
 $H(X) = \log K \Leftrightarrow f_X(x) = 1/k$, for all $x \in \{1, ..., K\}$

• Measure of uncertainty/randomness of X

Continuous RV X, differential entropy:
$$h(X) = -\int f_X(x) \log f_X(x) dx$$

• h(X) can be positive or negative. Example, if $f_X(x) = \text{Uniform}(x; a, b), \ h(X) = \log(b - a).$

• If $f_X(x) = \mathcal{N}(x; \mu, \sigma^2)$, then $h(X) = \frac{1}{2}\log(2\pi e\sigma^2)$.

Entropy of a discrete RV $X \in \{1, ..., K\}$: $H(X) = -\sum_{x=1}^{K} f_X(x) \log f_X(x)$

• Positivity: $H(X) \ge 0$; $H(X) = 0 \iff f_X(i) = 1$, for exactly one $i \in \{1, ..., K\}$.

• Upper bound:
$$H(X) \le \log K$$
;
 $H(X) = \log K \Leftrightarrow f_X(x) = 1/k$, for all $x \in \{1, ..., K\}$

• Measure of uncertainty/randomness of X

Continuous RV X, differential entropy:
$$h(X) = -\int f_X(x) \log f_X(x) dx$$

• h(X) can be positive or negative. Example, if $f_X(x) = \text{Uniform}(x; a, b), \ h(X) = \log(b - a).$

• If
$$f_X(x) = \mathcal{N}(x; \mu, \sigma^2)$$
, then $h(X) = \frac{1}{2}\log(2\pi e\sigma^2)$.

• If
$$var(Y) = \sigma^2$$
, then $h(Y) \leq \frac{1}{2}\log(2\pi e\sigma^2)$

Mário A. T. Figueiredo (IST & IT)

Kullback-Leibler divergence (KLD) between two pmf:

$$D(f_X || g_X) = \sum_{x=1}^{K} f_X(x) \log \frac{f_X(x)}{g_X(x)}$$

Kullback-Leibler divergence (KLD) between two pmf:

$$D(f_X || g_X) = \sum_{x=1}^{K} f_X(x) \log \frac{f_X(x)}{g_X(x)}$$

Positivity: $D(f_X || g_X) \ge 0$ $D(f_X || g_X) = 0 \iff f_X(x) = g_X(x), \text{ for } x \in \{1, ..., K\}$

Kullback-Leibler divergence (KLD) between two pmf:

$$D(f_X || g_X) = \sum_{x=1}^{K} f_X(x) \log \frac{f_X(x)}{g_X(x)}$$

Positivity:
$$D(f_X || g_X) \ge 0$$

 $D(f_X || g_X) = 0 \iff f_X(x) = g_X(x), \text{ for } x \in \{1, ..., K\}$

KLD between two pdf:

$$D(f_X || g_X) = \int f_X(x) \log \frac{f_X(x)}{g_X(x)} dx$$

Kullback-Leibler divergence (KLD) between two pmf:

$$D(f_X || g_X) = \sum_{x=1}^{K} f_X(x) \log \frac{f_X(x)}{g_X(x)}$$

Positivity:
$$D(f_X || g_X) \ge 0$$

 $D(f_X || g_X) = 0 \iff f_X(x) = g_X(x), \text{ for } x \in \{1, ..., K\}$

KLD between two pdf:

$$D(f_X || g_X) = \int f_X(x) \log \frac{f_X(x)}{g_X(x)} dx$$

Positivity: $D(f_X || g_X) \ge 0$ $D(f_X || g_X) = 0 \iff f_X(x) = g_X(x)$, almost everywhere

Enjoy LxMLS 2013