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Supervised (Structured) Prediction

» Learning to predict: given training data

{(x®,y®), (x®@,y®), . (x(™ ym)}

learn a predictor x — y that works well on unseen inputs x

» Non-Structured Prediction: outputs y are atomic
» Binary prediction: y € {—1,+1}
» Multiclass prediction: y € {1,2,...,L}

» Structured Prediction: outputs y are structured

» Sequence prediction: y are sequences
» Parsing: y are trees

> ..



Named Entity Recognition

y PER - QNT - - ORG ORG - TIME
x Jim bought 300 shares of Acme Corp. in 2006



Named Entity Recognition

y PER - QNT - - ORG ORG - TIME
x Jim bought 300 shares of Acme Corp. in 2006

y PER  PER - - LoC
x Jack London went to Paris

y PER PER - - LOC
x Paris Hilton went to London



Part-of-speech Tagging

y NNP NNP VBZ NNP
x Ms. Haag plays Elianti



Syntactic Parsing

N /\/\/f\

*  John  saw movie that he  liked today

X are sentences
y are syntactic dependency trees



Machine Translation

(Galley et al 2006)

x are sentences in Chinese
y are sentences in English aligned to x



Object Detection

(image removed)

(Kumar and Hebert 2003)

X are images
y are grids labeled with object types



Today's Goals

» Introduce basic tools for structure prediction
» We will restrict to sequence prediction

» Understand what tools we can use from standard classification

» Understand what tools can we use from grammatical
formalisms



Today's Goals

» Introduce basic tools for structure prediction
» We will restrict to sequence prediction
» Understand what tools we can use from standard classification

» Learning paradigms and algorithms, in essence, work here too
» However, computations behind algorithms are prohibitive

» Understand what tools can we use from grammatical
formalisms

» We will borrow inference algorithms for tractable
computations

» E.g., algorithms for HMMs (Viterbi, forward-backward) will
play a major role in today's methods



Conditional Random Fields

for sequence prediction

y PER PER - - LOC
x Jack London went to Paris



Conditional Random Fields
(Lafferty, McCallum, Pereira 2001)
» Model the conditional distribution:
P(y|x;w)

where
> X =X1X2...X, € X*
>y =y1y2...-yn €Y and Y ={1,...,L}
» w are model parameters

» To predict the best sequence

y = argmax P(y|x)
yey*



Conditional Random Fields
(Lafferty, McCallum, Pereira 2001)
» Model the conditional distribution:
P(y|x;w)

where
> X =X1X2...X, € X*
>y =y1y2...-yn €Y and Y ={1,...,L}
» w are model parameters

» To predict the best sequence

y = argmax P(y|x)
yey*

» Problem: exponentially many y's for a given input x



Compatibility Function

v

Think of a compatibility function
o(x,y;w) = R

that gives high positive scores to compatible (x,y) pairs

v

Using ¢ we define:

exp{o(x,y; W)}

Plylx;w) = > mey- XPLO(X, 2; W) }

v

Predict: y = argmax,y. P(y|x; w)

v

Choose ¢ so that y can be computed efficiently.



Towards Efficient Compatibility Functions

» How can we define ¢(x,y;w)?

» How do we represent a pair (x,y)?

Y PER PER - - LOC
x Jack London went to Paris



Towards Efficient Compatibility Functions

» How can we define ¢(x,y;w)?

» How do we represent a pair (x,y)?

Y PER PER - - LOC
x Jack London went to Paris

» Approach: compute features of x and y. How?

» Look at individual assignments y; (standard classification)
» Look at the full assignment y (unnatural)



Towards Efficient Compatibility Functions

» How can we define ¢(x,y;w)?

» How do we represent a pair (x,y)?

Y PER PER - - LOC
x Jack London went to Paris

» Approach: compute features of x and y. How?

» Look at individual assignments y; (standard classification)
» Look at the full assignment y (unnatural)
» Look at bigrams of outputs labels (y;—1,¥;)

(higher-order n-grams of the output are also possible)



Bigram “Indicator” Features

1 2 3 4 5
y PER PER - - LOC
x Jack London went to Paris

» Indicator features:

1 if x;, ="London” and
fj(Xa 7;7Yi—17Yi) = Yi-1 = PER and Yy = PER
0 otherwise

e.g., fj(x,2, PER,PER) =1, f;(x,3,PER,-) =0



More Bigram “Indicator” Features

1 2 3 4 5
x Jack London went to Paris
y  PER PER - - LOC
y’ PER  LOC - - LOC
y” - - - LOC -
x' My trip to  London
fi(...) =1 iff x, ="London" and y,_1 = PER and y; = PER
f2(...) =1 iff x;, ="London" and y,;,_1 = PER and y; = LOC
f5(...) =1 iff x;—1 ~/(into]at)/ and x; ~/[A-Z]/ and y; = LOC
f,(...) =1 iff y; = LOC and WORLD-CITIES(X;) = 1
f5(...) =1 iff y; = PER and FIRST-NAMES(x;) = 1



Factored Compatibility Functions

» Define f(x,4,y;_1,y:) as a vector of D features:
( fl(xv i) Yi-1, yz)) ey fj(X7 i) Yi-1, yz)) cey fD(X) iv Yi-1, YZ) )

» Let w € R? and f(-,-,-,-) € R, Let yy = NULL.

¢(X7 Yy, W) = Z W f(Xu i? Yi-1, YZ)
=1
n D

= Z Z w;f; (X, 4, yi-1,¥i)

i=1 j=1
» ¢(x,y,w) factors into scores for label bigrams (y;_1,¥:)

» This factorization will allow efficient algorithms
(intuitively, if y # y’ share bigrams, they will share scores)



Conditional Random Fields (CRFs)

» The model form is:

P(ylx;w) = exp {p(x,y,w)}

Z(x,w)
_ exp Do w (x4, v, yi)
Z(x,w)
where
Z(x,w) = Z exp {ZW . f(x,i,zi_l,zi)}
zeY* i=1

» Features f(...) are given (they are problem-dependent)
» w € R? are the parameters of the model

» CRFs are log-linear models on the feature functions



Conditional Random Fields: Three Problems

» Compute the probability of an output sequence y for x
P(ylx; w)
» Decoding: predict the best output sequence for x

argmax P(y|x; w)
yey*

» Parameter estimation: given training data

{(X(l)7 y(l))’ (x(2), y(2))7 o (X('m)’ y('m))} :

learn parameters w



Decoding with CRFs

» Given w, given X, find:

i f ,Yi-1,Yi
argmax P(y|x; W) — exp {Zzzl w .(Xa L,Yi-1,yY )}
yEJJ* Z(X, W)

= exp {ZW . f(X,i, Yi-1, yl)}

=1

= ZW (x4, yi-1,yi)

i=1

» We can use the Viterbi algorithm



Viterbi for CRFs

» Calculate in O(nL?):

y= argmaxz w - f(x,4,yi-1,¥i)
yeyr i

v

Define (score of optimal sequence for x;.; ending with a € ))):

di(a) = max Zw'f(X,jan—lan)
yeViyi=a i

v

Use the following recursions, for all a € Y:

d1(a) = w-f(x,1,yo =NULL,a)
di(a) = I;flayxgi—l(b) +w - f(x,i,b,a)
S

v

The optimal score for x is max,ecy 9, (a)

v

The optimal sequence y can be recovered through pointers



Parameter Estimation in CRFs

» Given a training set

{(X(l)7 y(l))’ (X(2)7 y(2))7 - (X(m)’ y(m))} ’

estimate w
» Define the conditional log-likelihood of the data:

L(w) =) log P(y®|x"); w)

k=1

» L(w) measures how well w explains the data. A good value
for w will give a high value for P(y®|x®);w) for all
k=1...m.

» We want w that maximizes L(w)



Learning the Parameters of a CRF

» Recall first lecture on log-linear / maximum-entropy models

» Find: )
w* = argmax L(w) — = ||w]|?
weRP 2

where
» The first term is the log-likelihood of the data
» The second term is a regularization term, it penalizes
solutions with large norm
» ) is a parameter to control the trade-off between fitting the
data and model complexity



Learning the Parameters of a CRF

» Find \

w* = argmax L(w) — = ||w]||?
weRP 2

» In general there is no analytical solution to this optimization
» We use iterative techniques, i.e. gradient-based optimization

1. Initialize w =0

2. Take derivatives of L(w) — 5||w|[2, compute gradient
3. Move w in steps proportional to the gradient

4. Repeat steps 2 and 3 until convergence



Computing the gradient

OL(w 1 «
= =) £;xP,
awj mzﬂ

= > Plyx®;w) £(x*,y)

k=1 yey*

where
n

y) = Z £5(x,4,yi-1,¥:)
i=1

» First term: observed mean feature value

» Second term: expected feature value under current w



Computing the gradient

» The first term is easy to compute, by counting explicitly
1 k) (k
E Z Z fj(X7 1, yz(—)b Yz( ))
k=1 i
» The second term is more involved,
Z Z P(Y‘X(k)QW) ij(x(k)uia}Ii—MYi)
k=1 yey* i

because it sums over all sequences y € )V*



Computing the gradient

» For an example (x*) y(*)):

Z Y|X Zf 727yi—17yi) =

yeyn
Z Z ¥ (a,b)€;(x®) i, a, b)
i=1 a,be)
where
i (a,b) = > P(y[x®;w)

YEYV™ : yi—1=a, y;=b

» The quantities xF can be computed efficiently in O(nL?)
using the forward-backward algorithm



Forward-Backward for CRFs

» Assume fixed x. Calculate in O(nL?)

pia,b) = Z Plylx;w) ,1<i<n;abe)

YEY™yi—1=a,y;=b

v

Define (forward and backward quantities):
ala) = Y exp{TiLw ExGyiy5))

yeEYiy;=a

Bi(b) = > eXP{Z?;gHW'f(Xai—Fj—l,Yj—LYj)}

yEV (=it iy =b

v

Compute recursively «;(a) and §;(b) (similar to Viterbi)

Z =73, an(a)
pi(a,b) = {a;_1(a) * exp{w - f(x,4,a,b)} * B3;(b) * Z~1}

v

v



Compute the probability of a label sequence

P(Y|X’ W) = Z(Xl W) eXp {ZW : f(Xai>Yi—1>Yi>}

i

where

Z exp {ZW f( X,Z,Zz_l,zz)}

zeYyn

» Compute Z(x;w) efficiently, using the forward algorithm



CRFs: summary so far

» Log-linear models for sequence prediction, P(y|x;w)

v

Computations factorize on label bigrams
Model form:

v

argmaxzw £(x,4,yi-1,¥i)
yEV*

v

Decoding: uses Viterbi (from HMMs)
Parameter estimation:

» Gradient-based methods, in practice L-BFGS
» Computation of gradient uses forward-backward (from
HMMs)

v



CRFs: summary so far

» Log-linear models for sequence prediction, P(y|x;w)

v

Computations factorize on label bigrams
Model form:

v

argmaxzw £(x,4,yi-1,Yi)
yey* ;

v

Decoding: uses Viterbi (from HMMs)
Parameter estimation:

» Gradient-based methods, in practice L-BFGS
» Computation of gradient uses forward-backward (from
HMMs)

Next Question: HMMs or CRFs?

v

v



HMMs for sequence prediction

v

x are the observations, y are the (un)hidden states
HMMs model the joint distributon P(x,y)
Parameters: (assume X ={1,...,k}and Y ={1,...,1})
» 1€ R, 7, = Pr(y; = a)
» T e R Top = Pr(y; = blyi—1 = a)
» O e RIXk, O = Pr(x; = cly; = a)

v

v

» Model form
n
P(x,y) = my, Oy, x, H Ty, 15Oy x;
i=2
» Parameter Estimation: maximum likelihood by counting

events and normalizing



HMMs and CRFs
» In CRFs: y = amaxy, > . w-f(x,4,yi-1,y:)

» In HMMs:
y = amaxy Ty, Oy1,X1 H?:2 TYi*}lv)’iOYiyxi
= amaxy log(my, Oy, x,) + Zi:Z log(Ty,_, y;Oy: x;)

» An HMM can be ported into a CRF by setting:
fj (X> ia Y, y,) ‘ Wj
i=1&y =a log(7,)
i>1&y=a&y =0b|log(T,p)
Yy=a&x;=c log(Oap)

» Hence, HMM parameters C CRF parameters



HMMs and CRFs: main differences

» Representation:
» HMM “features” are tied to the generative process.
» CRF features are very flexible. They can look at the whole
input x paired with a label bigram (y,v’).
» In practice, for prediction tasks, “good” discriminative
features can improve accuracy a lot.

» Parameter estimation:

v

HMMs focus on explaining the data, both x and y.

» CRFs focus on the mapping from x to y.

» A priori, it is hard to say which paradigm is better.
Same dilemma as Naive Bayes vs. Maximum Entropy.

v



Structured Prediction

Perceptron, SVMs, CRFs



Learning Structured Predictors

» Goal: given training data

{(x(l), y ), (x®, y@), o (x0), y(m))}
learn a predictor x — y with small error on unseen inputs

» In a CRF:
i f(x,0,yi-1,yi
argmax P(y|x;w) = exp{d i, W ‘(le7y LYi)}
yey* Z(x;w)
- ZW ' f(X7 Z.a yi—lu Yz)
i=1

» To predict new values, Z(x;w) is not relevant
» Parameter estimation: w is set to maximize likelihood



Learning Structured Predictors

» Goal: given training data

{(x(l), y ), (x®, y@), o (x0), y(m))}
learn a predictor x — y with small error on unseen inputs

» In a CRF:
" . f Vi1 Y
argmax P(y|x;w) = exp{d i, W .(le7y LYi)}
yey* Z(x;w)

= ZW (x4, yi-1,¥i)

=1

» To predict new values, Z(x;w) is not relevant
» Parameter estimation: w is set to maximize likelihood

» Can we learn w more directly, focusing on errors?



The Structured Perceptron
(Collins, 2002)

» Setw=0

» Fort=1...T
» For each training example (x,y)

1. Compute z = argmax, y ., £(x,4,2;_1,2;)
2. fz#y

W W+ Z f(X, ia Yi-1, Yl) - Z f(X, i’ Z;—1, Zi)

K2

» Return w



The Structured Perceptron + Averaging
(Freund and Schapire, 1998)

» Setw=0, w'=0
» Fort=1...T
» For each training example (x,y)

1. Compute z = argmax, y ., £(x,4,2;_1,2;)
2. Ifz#y

W W+ Z f(X, ia Yi-1, Yl) - Z f(X, i’ Z;—1, Zi)

3. w=w?+w

» Return w?/NT', where N is the number of training examples



Properties of the Perceptron

» Online algorithm. Often much more efficient than “batch”
algorithms

» If the data is separable, it will converge to parameter values
with O errors

» Number of errors before convergence is related to a definition
of margin. Can also relate margin to generalization properties
» In practice:
1. Averaging improves performance a lot
2. Typically reaches a good solution after only a few (say 5)

iterations over the training set
3. Often performs nearly as well as CRFs, or SVMs



Averaged Perceptron Convergence

Iteration  Accuracy
90.79
91.20
91.32
91.47
91.58
91.78
91.76
01.82
01.88
91.91
91.92
91.96

N e
SESwovo~ouosrwND R

(results on validation set for a parsing task)



Margin-based Structured Prediction
» Let f(x,y) => 0 f(x,4,yi-1,¥:)
> Model: argmax,cy. w - f(x,y)

» Consider an example ( k) y )
Jy #y® © w-f(x® y®) < w . f(xP)y) = error



Margin-based Structured Prediction
» Let f(x,y) => 0 f(x,4,yi-1,¥:)
> Model: argmax,cy. w - f(x,y)

» Consider an example ( k) y )
Jy #y® © w-f(x® y®) < w . f(xP)y) = error

> Let y' = argmaxycye.y oy W - £(x®y)
Define ~, = (f(x(k) y(k)) — f(X(k), y'))



Margin-based Structured Prediction

» Let f(x,y) => 0 f(x,4,yi-1,¥:)

v

Model: argmax,cy. w - f(x,y)

v

Consider an example ( k) y )
Jy #y® © w-f(x® y®) < w . f(xP)y) = error

v

Let y' = argmaxycye.y oy W - £(x®,y)
Define v, = w - (F(x*, y(k)) —£(x®),y"))

v

The quantity v is a notion of margin on example k:
Yk > 0 <= no mistakes in the example
high ~, <= high confidence



Mistake-augmented Margins
(Taskar et al, 2004)

x(®) " Jack London went to Paris

y*)  PER  PER - - LocC
y PER  LOC - - LOC
y”  PER - - - -
y"” - - PER PER -

> Def: v = ming_. 0 Vhy



Structured Hinge Loss

» Define loss function on example £ as:

Liw,x®,y®) = max (e(y®,y) - w- (Ex®,y®) — £(x,y)))
YEV*

» Leads to an SVM for structured prediction
» Given a training set, find:

m

. A
argmin Z L(w,x® y®) 4 §||WH2
WGRD k=1



Regularized Loss Minimization

> Given a training set {(xM,yM), ..., (x(™ y(m)}
Find:

m A
argmin Z L(w,x® y®) + = |w]®
weRD k=1 2

» Two common loss functions L(w,x®) y*))
» Log-likelihood loss (CRFs)

—log P(y® | x®);w)

» Hinge loss (SVMs)

}{réa)m}g (e(y(k),y) —w- (F(x®,y®) — f(x®), )))



Learning Structure Predictors: summary so far

» Linear models for sequence prediction

argmaxZW f(x,4,yi-1,¥:)
yey* ;

» Computations factorize on label bigrams
» Decoding: using Viterbi
» Marginals: using forward-backward

» Parameter estimation:

» Perceptron, Log-likelihood, SVMs

» Extensions from classification to the structured case
» Optimization methods:

» Stochastic (sub)gradient methods (LeCun et al 98)
(Shalev-Shwartz et al. 07)

» Exponentiated Gradient (Collins et al 08)

» SVM Struct (Tsochantaridis et al. 04)

» Structured MIRA (McDonald et al 05)



Structure Prediction

abstractions



Sequence Prediction, Beyond Bigrams

» |t is easy to extend the scope of features to k-grams

£(X, 4, Yickt1:-1,Yi)

» In general, think of state o; remembering relevant history
» 0; =y;_1 for bigrams
> 0; = Yi—k+1:i—1 for k-grams
» o; can be the state at time ¢ of a deterministic automaton
generating y

» The structured predictor is

argmaxZw f(x,1,0:,¥;)
yeY*

» Viterbi and forward-backward extend naturally, in O(nL")



Dependency Structures

N /\/\/f\

*  John  saw movie  that he  liked today

» Directed arcs represent dependencies between a head word
and a modifier word.

» E.g.
movie modifies saw,
John modifies saw,
today modifies saw



Dependency Parsing: arc-factored models
(McDonald et al. 2005)

NSNS NN

* John  saw a movie that he liked today

» Parse trees decompose into single dependencies (h, m)

argmax Z w - f(x,h,m)

yey(x) (h,m)€ey

» Some features:  fi(x,h,m) = [ "saw” — "movie” |
f5(x, h,m) = [ distance = 42 |

» Tractable inference algorithms exist (tomorrow's lecture)



Linear Structured Prediction

» Sequence prediction (bigram factorization)

argmax Z w (X, 4, yi—1,¥:)
yeV(x)

» Dependency parsing (arc-factored)

argmax Z w - f(x,h,m)

yeY(x) (h,m)€y

» In general, we can enumerate parts r € y

argmax Z w - f(x,7)

yEY(%) rey



Linear Structured Prediction Framework

» Abstract models of structures

» Input domain X, output domain )
» A choice of factorization, r € y
» Features: f(x,r) — RP

» The linear prediction model, with w € R?

argmax Z w - f(x,7)

yEY(%) rey

» Generic algorithms for Perceptron, CRF, SVM
» Require tractable inference algorithms



