
Learning Structured Predictors

Xavier Carreras

Universitat Politècnica de Catalunya

thanks to: M. Collins, A. Globerson, T. Koo, A. Quattoni

Supervised (Structured) Prediction

◮ Learning to predict: given training data
{

(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))
}

learn a predictor x→ y that works well on unseen inputs x

◮ Non-Structured Prediction: outputs y are atomic
◮ Binary prediction: y ∈ {−1,+1}
◮ Multiclass prediction: y ∈ {1, 2, . . . , L}

◮ Structured Prediction: outputs y are structured
◮ Sequence prediction: y are sequences
◮ Parsing: y are trees
◮ . . .

Named Entity Recognition

y per - qnt - - org org - time

x Jim bought 300 shares of Acme Corp. in 2006

Named Entity Recognition

y per - qnt - - org org - time

x Jim bought 300 shares of Acme Corp. in 2006

y per per - - loc

x Jack London went to Paris

y per per - - loc

x Paris Hilton went to London

Part-of-speech Tagging

y NNP NNP VBZ NNP .

x Ms. Haag plays Elianti .

Syntactic Parsing

liked today* John saw a movie that he

x are sentences
y are syntactic dependency trees

Machine Translation

!" #! $%& ''()' ''&

'&

''($%*

!""# $%& ' ' ()

" ! ' (* $ &)

!

!"#$%"&

"

!"&

"

!"&

#

#"&

$%&

!"'$&

'

!"&

'

!"&

(

!"%$("&

)

!")

#%"

*"&

'&

$%&

!"'$&

'&

(

!"%$+("&

&&

'%(

!"%$("&

$&

'%(

!"*$("&

'&

'%&

!"*$&

$&

!%&

!"#$&

(

#%)

!

!! "#$ %& '() *+ , "

"#$%$ &$'&($)*+(,-$.%/0'*.,/% +'1)*2 30'1 40.*+$ +

+

5

-

(Galley et al 2006)

x are sentences in Chinese
y are sentences in English aligned to x

Object Detection

(image removed)

(Kumar and Hebert 2003)

x are images
y are grids labeled with object types

Today’s Goals

◮ Introduce basic tools for structure prediction
◮ We will restrict to sequence prediction

◮ Understand what tools we can use from standard classification
◮ Learning paradigms and algorithms, in essence, work here too
◮ However, computations behind algorithms are prohibitive

◮ Understand what tools can we use from grammatical
formalisms

◮ We will borrow inference algorithms for tractable
computations

◮ E.g., algorithms for HMMs (Viterbi, forward-backward) will
play a major role in today’s methods

Today’s Goals

◮ Introduce basic tools for structure prediction
◮ We will restrict to sequence prediction

◮ Understand what tools we can use from standard classification
◮ Learning paradigms and algorithms, in essence, work here too
◮ However, computations behind algorithms are prohibitive

◮ Understand what tools can we use from grammatical
formalisms

◮ We will borrow inference algorithms for tractable
computations

◮ E.g., algorithms for HMMs (Viterbi, forward-backward) will
play a major role in today’s methods

Conditional Random Fields

for sequence prediction

y per per - - loc

x Jack London went to Paris

Conditional Random Fields

(Lafferty, McCallum, Pereira 2001)

◮ Model the conditional distribution:

P (y|x;w)

where
◮ x = x1x2 . . .xn ∈ X

∗

◮ y = y1y2 . . .yn ∈ Y
∗ and Y = {1, . . . , L}

◮ w are model parameters

◮ To predict the best sequence

ŷ = argmax
y∈Y∗

P (y|x)

Conditional Random Fields

(Lafferty, McCallum, Pereira 2001)

◮ Model the conditional distribution:

P (y|x;w)

where
◮ x = x1x2 . . .xn ∈ X

∗

◮ y = y1y2 . . .yn ∈ Y
∗ and Y = {1, . . . , L}

◮ w are model parameters

◮ To predict the best sequence

ŷ = argmax
y∈Y∗

P (y|x)

◮ Problem: exponentially many y’s for a given input x

Compatibility Function

◮ Think of a compatibility function

φ(x,y;w)→ R

that gives high positive scores to compatible (x,y) pairs

◮ Using φ we define:

P (y|x;w) =
exp{φ(x,y;w)}

∑

z∈Y∗ exp{φ(x, z;w)}

◮ Predict: ŷ = argmax
y∈Y∗ P (y|x;w)

◮ Choose φ so that ŷ can be computed efficiently.

Towards Efficient Compatibility Functions

◮ How can we define φ(x,y;w)?

◮ How do we represent a pair 〈x,y〉?

y per per - - loc

x Jack London went to Paris

◮ Approach: compute features of x and y. How?
◮ Look at individual assignments yi (standard classification)
◮ Look at the full assignment y (unnatural)
◮ Look at bigrams of outputs labels (yi−1,yi)

(higher-order n-grams of the output are also possible)

Towards Efficient Compatibility Functions

◮ How can we define φ(x,y;w)?

◮ How do we represent a pair 〈x,y〉?

y per per - - loc

x Jack London went to Paris

◮ Approach: compute features of x and y. How?
◮ Look at individual assignments yi (standard classification)
◮ Look at the full assignment y (unnatural)
◮ Look at bigrams of outputs labels (yi−1,yi)

(higher-order n-grams of the output are also possible)

Towards Efficient Compatibility Functions

◮ How can we define φ(x,y;w)?

◮ How do we represent a pair 〈x,y〉?

y per per - - loc

x Jack London went to Paris

◮ Approach: compute features of x and y. How?
◮ Look at individual assignments yi (standard classification)
◮ Look at the full assignment y (unnatural)
◮ Look at bigrams of outputs labels (yi−1,yi)

(higher-order n-grams of the output are also possible)

Bigram “Indicator” Features

1 2 3 4 5
y per per - - loc

x Jack London went to Paris

◮ Indicator features:

fj(x, i,yi−1,yi) =







1 if xi =”London” and
yi−1 = per and yi = per

0 otherwise

e.g., fj(x, 2, per, per) = 1, fj(x, 3, per, -) = 0

More Bigram “Indicator” Features

1 2 3 4 5
x Jack London went to Paris

y per per - - loc

y′ per loc - - loc

y′′ - - - loc -

x′ My trip to London . . .

f1(. . .) = 1 iff xi =”London” and yi−1 = per and yi = per

f2(. . .) = 1 iff xi =”London” and yi−1 = per and yi = loc

f3(. . .) = 1 iff xi−1 ∼/(in|to|at)/ and xi ∼/[A-Z]/ and yi = loc

f4(. . .) = 1 iff yi = loc and world-cities(xi) = 1

f5(. . .) = 1 iff yi = per and first-names(xi) = 1

Factored Compatibility Functions

◮ Define f(x, i,yi−1,yi) as a vector of D features:

(f1(x, i,yi−1,yi), . . . , fj(x, i,yi−1,yi), . . . , fD(x, i,yi−1,yi))

◮ Let w ∈ R
D and f(·, ·, ·, ·) ∈ R

D. Let y0 = null.

φ(x,y,w) =

n
∑

i=1

w · f(x, i,yi−1,yi)

=

n
∑

i=1

D
∑

j=1

wjfj(x, i,yi−1,yi)

◮ φ(x,y,w) factors into scores for label bigrams (yi−1,yi)

◮ This factorization will allow efficient algorithms
(intuitively, if y 6= y′ share bigrams, they will share scores)

Conditional Random Fields (CRFs)

◮ The model form is:

P (y|x;w) =
exp {φ(x,y,w)}

Z(x,w)

=
exp {

∑n

i=1w · f(x, i,yi−1,yi)}

Z(x,w)
where

Z(x,w) =
∑

z∈Y∗

exp

{

n
∑

i=1

w · f(x, i, zi−1, zi)

}

◮ Features f(. . .) are given (they are problem-dependent)

◮ w ∈ R
D are the parameters of the model

◮ CRFs are log-linear models on the feature functions

Conditional Random Fields: Three Problems

◮ Compute the probability of an output sequence y for x

P (y|x;w)

◮ Decoding: predict the best output sequence for x

argmax
y∈Y∗

P (y|x;w)

◮ Parameter estimation: given training data

{

(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))
}

,

learn parameters w

Decoding with CRFs

◮ Given w, given x, find:

argmax
y∈Y∗

P (y|x;w) =
exp {

∑n

i=1w · f(x, i,yi−1,yi)}

Z(x;w)

= exp

{

n
∑

i=1

w · f(x, i,yi−1,yi)

}

=
n

∑

i=1

w · f(x, i,yi−1,yi)

◮ We can use the Viterbi algorithm

Viterbi for CRFs

◮ Calculate in O(nL2):

ŷ = argmax
y∈Yn

n
∑

i=1

w · f(x, i,yi−1,yi)

◮ Define (score of optimal sequence for x1:i ending with a ∈ Y):

δi(a) = max
y∈Yi:yi=a

i
∑

j=1

w · f(x, j,yj−1,yj)

◮ Use the following recursions, for all a ∈ Y :

δ1(a) = w · f(x, 1,y0 = null, a)

δi(a) = max
b∈Y

δi−1(b) +w · f(x, i, b, a)

◮ The optimal score for x is maxa∈Y δn(a)

◮ The optimal sequence ŷ can be recovered through pointers

Parameter Estimation in CRFs

◮ Given a training set

{

(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))
}

,

estimate w

◮ Define the conditional log-likelihood of the data:

L(w) =
m
∑

k=1

logP (y(k)|x(k);w)

◮ L(w) measures how well w explains the data. A good value
for w will give a high value for P (y(k)|x(k);w) for all
k = 1 . . .m.

◮ We want w that maximizes L(w)

Learning the Parameters of a CRF

◮ Recall first lecture on log-linear / maximum-entropy models

◮ Find:

w∗ = argmax
w∈RD

L(w)−
λ

2
||w||2

where
◮ The first term is the log-likelihood of the data
◮ The second term is a regularization term, it penalizes

solutions with large norm
◮ λ is a parameter to control the trade-off between fitting the

data and model complexity

Learning the Parameters of a CRF

◮ Find

w∗ = argmax
w∈RD

L(w)−
λ

2
||w||2

◮ In general there is no analytical solution to this optimization

◮ We use iterative techniques, i.e. gradient-based optimization

1. Initialize w = 0

2. Take derivatives of L(w)− λ
2 ||w||

2, compute gradient
3. Move w in steps proportional to the gradient
4. Repeat steps 2 and 3 until convergence

Computing the gradient

∂L(w)

∂wj

=
1

m

m
∑

k=1

fj(x
(k),y(k))

−
m
∑

k=1

∑

y∈Y∗

P (y|x(k);w) fj(x
(k),y)

where

f(x,y) =
n

∑

i=1

fj(x, i,yi−1,yi)

◮ First term: observed mean feature value

◮ Second term: expected feature value under current w

Computing the gradient

◮ The first term is easy to compute, by counting explicitly

1

m

m
∑

k=1

∑

i

fj(x, i,y
(k)
i−1,y

(k)
i)

◮ The second term is more involved,

m
∑

k=1

∑

y∈Y∗

P (y|x(k);w)
∑

i

fj(x
(k), i,yi−1,yi)

because it sums over all sequences y ∈ Y∗

Computing the gradient

◮ For an example (x(k),y(k)):

∑

y∈Yn

P (y|x(k);w)
n

∑

i=1

fj(x
(k), i,yi−1,yi) =

n
∑

i=1

∑

a,b∈Y

µk
i (a, b)fj(x

(k), i, a, b)

where

µk
i (a, b) =

∑

y∈Yn : yi−1=a, yi=b

P (y|x(k);w)

◮ The quantities µk
i can be computed efficiently in O(nL2)

using the forward-backward algorithm

Forward-Backward for CRFs

◮ Assume fixed x. Calculate in O(nL2)

µi(a, b) =
∑

y∈Yn:yi−1=a,yi=b

P (y|x;w) , 1 ≤ i ≤ n; a, b ∈ Y

◮ Define (forward and backward quantities):

αi(a) =
∑

y∈Yi:yi=a

exp
{

∑i
j=1w · f(x, j,yj−1,yj)

}

βi(b) =
∑

y∈Y(n−i+1):y1=b

exp
{

∑n−i+1
j=2 w · f(x, i+j−1,yj−1,yj)

}

◮ Compute recursively αi(a) and βi(b) (similar to Viterbi)

◮ Z =
∑

a αn(a)

◮ µi(a, b) = {αi−1(a) ∗ exp{w · f(x, i, a, b)} ∗ βi(b) ∗ Z
−1}

Compute the probability of a label sequence

P (y|x,w) =
1

Z(x;w)
exp

{

∑

i

w · f(x, i,yi−1,yi)

}

where

Z(x;w) =
∑

z∈Yn

exp

{

∑

i

w · f(x, i, zi−1, zi)

}

◮ Compute Z(x;w) efficiently, using the forward algorithm

CRFs: summary so far

◮ Log-linear models for sequence prediction, P (y|x;w)

◮ Computations factorize on label bigrams

◮ Model form:

argmax
y∈Y∗

∑

i

w · f(x, i,yi−1,yi)

◮ Decoding: uses Viterbi (from HMMs)

◮ Parameter estimation:
◮ Gradient-based methods, in practice L-BFGS
◮ Computation of gradient uses forward-backward (from

HMMs)

CRFs: summary so far

◮ Log-linear models for sequence prediction, P (y|x;w)

◮ Computations factorize on label bigrams

◮ Model form:

argmax
y∈Y∗

∑

i

w · f(x, i,yi−1,yi)

◮ Decoding: uses Viterbi (from HMMs)

◮ Parameter estimation:
◮ Gradient-based methods, in practice L-BFGS
◮ Computation of gradient uses forward-backward (from

HMMs)

◮ Next Question: HMMs or CRFs?

HMMs for sequence prediction

◮ x are the observations, y are the (un)hidden states

◮ HMMs model the joint distributon P (x,y)

◮ Parameters: (assume X = {1, . . . , k} and Y = {1, . . . , l})
◮ π ∈ R

l, πa = Pr(y1 = a)
◮ T ∈ R

l×l, Ta,b = Pr(yi = b|yi−1 = a)
◮ O ∈ R

l×k, Oa,c = Pr(xi = c|yi = a)

◮ Model form

P (x,y) = πy1Oy1,x1

n
∏

i=2

Tyi−1,yi
Oyi,xi

◮ Parameter Estimation: maximum likelihood by counting
events and normalizing

HMMs and CRFs

◮ In CRFs: ŷ = amaxy
∑

iw · f(x, i,yi−1,yi)

◮ In HMMs:
ŷ = amaxy πy1Oy1,x1

∏n

i=2 Tyi−1,yi
Oyi,xi

= amaxy log(πy1Oy1,x1) +
∑n

i=2 log(Tyi−1,yi
Oyi,xi

)

◮ An HMM can be ported into a CRF by setting:

fj(x, i, y, y
′) wj

i = 1 & y′ = a log(πa)
i > 1 & y = a & y′ = b log(Ta,b)

y′ = a & xi = c log(Oa,b)

◮ Hence, HMM parameters ⊂ CRF parameters

HMMs and CRFs: main differences

◮ Representation:
◮ HMM “features” are tied to the generative process.
◮ CRF features are very flexible. They can look at the whole

input x paired with a label bigram (y, y′).
◮ In practice, for prediction tasks, “good” discriminative

features can improve accuracy a lot.

◮ Parameter estimation:
◮ HMMs focus on explaining the data, both x and y.
◮ CRFs focus on the mapping from x to y.
◮ A priori, it is hard to say which paradigm is better.
◮ Same dilemma as Naive Bayes vs. Maximum Entropy.

Structured Prediction

Perceptron, SVMs, CRFs

Learning Structured Predictors

◮ Goal: given training data
{

(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))
}

learn a predictor x→ y with small error on unseen inputs

◮ In a CRF:

argmax
y∈Y∗

P (y|x;w) =
exp {

∑n

i=1w · f(x, i,yi−1,yi)}

Z(x;w)

=
n

∑

i=1

w · f(x, i,yi−1,yi)

◮ To predict new values, Z(x;w) is not relevant
◮ Parameter estimation: w is set to maximize likelihood

◮ Can we learn w more directly, focusing on errors?

Learning Structured Predictors

◮ Goal: given training data
{

(x(1),y(1)), (x(2),y(2)), . . . , (x(m),y(m))
}

learn a predictor x→ y with small error on unseen inputs

◮ In a CRF:

argmax
y∈Y∗

P (y|x;w) =
exp {

∑n

i=1w · f(x, i,yi−1,yi)}

Z(x;w)

=
n

∑

i=1

w · f(x, i,yi−1,yi)

◮ To predict new values, Z(x;w) is not relevant
◮ Parameter estimation: w is set to maximize likelihood

◮ Can we learn w more directly, focusing on errors?

The Structured Perceptron

(Collins, 2002)

◮ Set w = 0

◮ For t = 1 . . . T
◮ For each training example (x,y)

1. Compute z = argmax
z

∑

n

i=1
f(x, i, zi−1, zi)

2. If z 6= y

w← w +
∑

i

f(x, i,yi−1,yi)−
∑

i

f(x, i, zi−1, zi)

◮ Return w

The Structured Perceptron + Averaging

(Freund and Schapire, 1998)

◮ Set w = 0, wa = 0

◮ For t = 1 . . . T
◮ For each training example (x,y)

1. Compute z = argmax
z

∑

n

i=1
f(x, i, zi−1, zi)

2. If z 6= y

w← w +
∑

i

f(x, i,yi−1,yi)−
∑

i

f(x, i, zi−1, zi)

3. wa = wa +w

◮ Return wa/NT , where N is the number of training examples

Properties of the Perceptron

◮ Online algorithm. Often much more efficient than “batch”
algorithms

◮ If the data is separable, it will converge to parameter values
with 0 errors

◮ Number of errors before convergence is related to a definition
of margin. Can also relate margin to generalization properties

◮ In practice:

1. Averaging improves performance a lot

2. Typically reaches a good solution after only a few (say 5)
iterations over the training set

3. Often performs nearly as well as CRFs, or SVMs

Averaged Perceptron Convergence

Iteration Accuracy

1 90.79
2 91.20
3 91.32
4 91.47
5 91.58
6 91.78
7 91.76
8 91.82
9 91.88
10 91.91
11 91.92
12 91.96
. . .

(results on validation set for a parsing task)

Margin-based Structured Prediction

◮ Let f(x,y) =
∑n

i=1 f(x, i,yi−1,yi)

◮ Model: argmax
y∈Y∗ w · f(x,y)

◮ Consider an example (x(k),y(k)):
∃y 6= y(k) : w · f(x(k),y(k)) < w · f(x(k),y) =⇒ error

◮ Let y′ = argmax
y∈Y∗:y 6=y(k) w · f(x(k),y)

Define γk = w · (f(x(k),y(k))− f(x(k),y′))

◮ The quantity γk is a notion of margin on example k:
γk > 0⇐⇒ no mistakes in the example
high γk ⇐⇒ high confidence

Margin-based Structured Prediction

◮ Let f(x,y) =
∑n

i=1 f(x, i,yi−1,yi)

◮ Model: argmax
y∈Y∗ w · f(x,y)

◮ Consider an example (x(k),y(k)):
∃y 6= y(k) : w · f(x(k),y(k)) < w · f(x(k),y) =⇒ error

◮ Let y′ = argmax
y∈Y∗:y 6=y(k) w · f(x(k),y)

Define γk = w · (f(x(k),y(k))− f(x(k),y′))

◮ The quantity γk is a notion of margin on example k:
γk > 0⇐⇒ no mistakes in the example
high γk ⇐⇒ high confidence

Margin-based Structured Prediction

◮ Let f(x,y) =
∑n

i=1 f(x, i,yi−1,yi)

◮ Model: argmax
y∈Y∗ w · f(x,y)

◮ Consider an example (x(k),y(k)):
∃y 6= y(k) : w · f(x(k),y(k)) < w · f(x(k),y) =⇒ error

◮ Let y′ = argmax
y∈Y∗:y 6=y(k) w · f(x(k),y)

Define γk = w · (f(x(k),y(k))− f(x(k),y′))

◮ The quantity γk is a notion of margin on example k:
γk > 0⇐⇒ no mistakes in the example
high γk ⇐⇒ high confidence

Mistake-augmented Margins

(Taskar et al, 2004)

x(k) Jack London went to Paris

y(k) per per - - loc

y′ per loc - - loc

y′′ per - - - -

y′′′ - - per per -

◮ Def: e(y,y′) =
∑n

i=1[yi 6= y′
i]

e.g., e(y(k),y(k))=0, e(y(k),y′)=1, e(y(k),y′′′)=5

◮ Def: γk,y = w · (f(x(k),y(k))− f(x(k),y))− e(y(k),y)

◮ Def: γk = min
y 6=y(k) γk,y

Structured Hinge Loss

◮ Define loss function on example k as:

L(w,x(k),y(k)) = max
y∈Y∗

(

e(y(k),y) −w · (f(x(k),y(k))− f(x(k),y))
)

◮ Leads to an SVM for structured prediction

◮ Given a training set, find:

argmin
w∈RD

m
∑

k=1

L(w,x(k),y(k)) +
λ

2
‖w‖2

Regularized Loss Minimization

◮ Given a training set
{

(x(1),y(1)), . . . , (x(m),y(m))
}

.
Find:

argmin
w∈RD

m
∑

k=1

L(w,x(k),y(k)) +
λ

2
‖w‖2

◮ Two common loss functions L(w,x(k),y(k)) :
◮ Log-likelihood loss (CRFs)

− logP (y(k) | x(k);w)

◮ Hinge loss (SVMs)

max
y∈Y∗

(

e(y(k),y) −w · (f(x(k),y(k))− f(x(k),y))
)

Learning Structure Predictors: summary so far
◮ Linear models for sequence prediction

argmax
y∈Y∗

∑

i

w · f(x, i,yi−1,yi)

◮ Computations factorize on label bigrams
◮ Decoding: using Viterbi
◮ Marginals: using forward-backward

◮ Parameter estimation:
◮ Perceptron, Log-likelihood, SVMs
◮ Extensions from classification to the structured case
◮ Optimization methods:

◮ Stochastic (sub)gradient methods (LeCun et al 98)
(Shalev-Shwartz et al. 07)

◮ Exponentiated Gradient (Collins et al 08)
◮ SVM Struct (Tsochantaridis et al. 04)
◮ Structured MIRA (McDonald et al 05)

Structure Prediction

abstractions

Sequence Prediction, Beyond Bigrams

◮ It is easy to extend the scope of features to k-grams

f(x, i,yi−k+1:i−1,yi)

◮ In general, think of state σi remembering relevant history
◮ σi = yi−1 for bigrams
◮ σi = yi−k+1:i−1 for k-grams
◮ σi can be the state at time i of a deterministic automaton

generating y

◮ The structured predictor is

argmax
y∈Y∗

∑

i

w · f(x, i, σi,yi)

◮ Viterbi and forward-backward extend naturally, in O(nLk)

Dependency Structures

liked today* John saw a movie that he

◮ Directed arcs represent dependencies between a head word
and a modifier word.

◮ E.g.:

movie modifies saw,
John modifies saw,
today modifies saw

Dependency Parsing: arc-factored models

(McDonald et al. 2005)

liked today* John saw a movie that he

◮ Parse trees decompose into single dependencies 〈h,m〉

argmax
y∈Y(x)

∑

〈h,m〉∈y

w · f(x, h,m)

◮ Some features: f1(x, h,m) = [”saw” → ”movie”]
f2(x, h,m) = [distance = +2]

◮ Tractable inference algorithms exist (tomorrow’s lecture)

Linear Structured Prediction

◮ Sequence prediction (bigram factorization)

argmax
y∈Y(x)

∑

i

w · f(x, i,yi−1,yi)

◮ Dependency parsing (arc-factored)

argmax
y∈Y(x)

∑

〈h,m〉∈y

w · f(x, h,m)

◮ In general, we can enumerate parts r ∈ y

argmax
y∈Y(x)

∑

r∈y

w · f(x, r)

Linear Structured Prediction Framework

◮ Abstract models of structures
◮ Input domain X , output domain Y
◮ A choice of factorization, r ∈ y
◮ Features: f(x, r)→ R

D

◮ The linear prediction model, with w ∈ R
D

argmax
y∈Y(x)

∑

r∈y

w · f(x, r)

◮ Generic algorithms for Perceptron, CRF, SVM
◮ Require tractable inference algorithms

