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Agenda

» Probability Theory
» Linear Algebra

» Optimization
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Probability

» A language for quantifying - uncertainity, belief in the world,
common sense etc.,

» Sample space X is the set of all possible outcomes of a
conceptual, physical, repeatable experiment
» Eg., 2-Coin toss: X = {HH, TH,HT, TT}
» Eg., Possible nucleotides at a DNA site: X = {A, T,C,G}
» Eg., Parts of speech: X = {NN, PP, NNP,DT,...}.

» Event is any subset of X

» Eg., The event of getting heads on only one coin.
(ACcX)={TH,HT}
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Probability: Kolmogorov Axioms

» Probability is a function that maps events A into the interval
[0,1]: P: A—[0,1]

v

v

v

0< P(A)<1

P(X)=1

P(6) = 0

For two events A and B, P(AUB) = P(A)+ P(B) — P(AN B)

Sample space

X

W
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Random Variable

» A random variable (RV) is a function that associates a unique
numerical value X(w) with every outcome w C X of an
experiment.

» X(w) may be finite ({0,1}), or infinite (R)
» X(w) may be discrete (N) or continuous (R)

» X(w) may have one or several variables (R random vectors)
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Discrete Probability Distribution

> In the discrete case, a probability distribution P on X is an
assignment of a non-negative real number P(x) to each
X € X such that

» 0<P(X=x)<1and
» Y PX=x)=1
» Example: Bernoulli distribution with parameter 0

{1—9 x=0

P(x) = 0 x=1

6
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Continuous Probability Distribution

» A continuous random variable, X can assume any value in an
interval on the real line or in a region in high dimensional
space.

» We talk about the probability of the variable assuming a value
in a given interval P(X € [x1, x2])

» The probability of the RV in a given interval [xi, x] is defined
to be the area under the graph of the probability density
function

X2
» Probability mass: P(X € [x1,x]) = [ p(x)dx

» Cumulative distribution function(CDF):
F(x) = P(X < x) f p(x

» Probability density function (PDF): p(x) = %F(X)



Continuous Distributions

1 < x <
» Uniform PDF: p(x) :{ b6a aels_ev)\jh;r:

» Normal (Gaussian) PDF: p(x) ~ N (p,0) =

_1

2mo

o (x—p)?/20?
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Statistical Characterizations of RVs

» Expectation: The centre of mass, mean value, first moment

> xp(x) discrete
E(X)={ o
%) | xp(x)dx continuous

—00

» Variance: The spread

;[X - E(X)]2P(X) discrete
i 770 [x — E(x)]?p(x)dx continuous

» Useful formula: Var(X) = E[X?] — E[X]?



Example: Bernoulli Distribution
» X ~ Bernoulli(6), hence
X={0,1P(X=1)=0,P(X=0)=1—-10

» The expectation of X is

EX] = > iP(X=1i)
i={0,1}

E[X] = 0%(1—60)+1x6
E[X] = 6

» The variance of X is

Var[X] = ) PP(X=1i)- ( > iP(Xi))

i={0,1} i={0,1}
Var[X] = 0%%(1—0)+12%0 — 6?
Var[X] = 60(1-0)
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Joint Probability

» A joint probability distribution for a set of RVs gives the
probability of every atomic event (sample point)

» Eg., Joint probability P(X,Y) = P(X = true A Y = true)

» Marginal probability of RV X, P(X) = > P(XAY =y;)
JjeX
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Independence

» Events A and B are independent if P(AN B) = P(A) x P(B)

ey

» Random variables X and Y are independent (X L Y) if and
only if their joint probability, Px y is the product of their
marginal probabilities: Px y = PxPy

» if X and Y are independent
Cov(X,Y)=E[XY] - E[X]E[Y] =0

» Corollary: RVs Xi, ..., X, are independent iff
n
Px,..x, = I Px;

i=1
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Conditional Probability

» Probability of event A conditioned on event B having occured:

if P(B) >0, P(A|B) = P52

» Corollary: Chain Rule:
P(AN B) = P(AIB)P(B) = P(B|A)P(A)
» If A and B are independent, P(A|B) = P(A)

» If RVs (X, Y) and Y have PDF p(x y) and py, then Px|y is

the corresponding PDF: px |y = M
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Bayes Rule

» For events A and B, joint probability P(A, B) can be written
as P(A)P(BJ|A) or P(B)P(A|B), rearranging,
P(A|B) = % (Bayes Rule)
» Bayes rule for statistical inference

» X is a random variable that is observed
» O is a random variable denoting the parameter(s)
» Goal: given observed data X, find the best guess for ©

P 0)Po(6
> Bayes rule : Pgy(fly) = fpyylf((;/”g))PS((e))de

likelihood X prior

posterior = joint probability
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Estimators

Under independent and identically distributed (iid) assumptions
likelihood of the data, given a model is

L(x1,....xn|0) =[] f(xil0) (1)
i=1

» Maximum Likelihood Estimate : 0y = argmaxyPy e(y|0).
» Maximum a posteriori Estimate : Opap = argmaxgPo|y (0]y).
Conjugate priors: Choosing a conjugate prior ensures that the

posterior distribution is the same family of distributions as the
likelihood. Ex: exponential family; bernoulli vs. beta etc.,
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Example: Bernoulli model

e Data:
e We observed Niid coin tossing: 0={1,0,1, ..., 0}

e Model:

P(x) = 1-0 forx=0 . -
0= 0 forx=1 = P()=6"1-6)

¢ How to write the likelihood of a single observation x;?
P(x)=0"(1-0)""
e The likelihood of dataset D = {x,, ... x}:

L(O) = P(x,, % 0) = ] [ PUx,50) =] (0% 1-0) )

N
X,

_ HZ} a 73)§1_X‘ _ H#hend(l 79)#“”:
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MLE: Bernoulli model

Objective function:

#(0) = logL(0) =log0™ (1-0)" =n, logf+ (N —n, )log(1—0)

We need to maximize this w.r.t. 8

e Take derivatives wrt 8

of _my N-m_ 5 n, - 1
00 0 1-0 =0 = Oie :ﬁ or 8, =§2x1

i

Frequency as
sample mean

o Sufficient statistics
e Thecounts, n,, where n, = Z,xi, are sufficient statistics of data O
i
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Example: MLE: Univariate Normal Distribution

e Data:
e We observed Miid real samples:
0={-0.1,10,1,-5.2, ..., 3}

 Model: P(x)= (271'0'2)_h2 exp{— (X—y)Z/ZO'Z} 0= (o)
e Log likelihood:
N N —
£(8) = log L(6) = TTP(x,) = — N log(2n6?) —izw
i=1 2 245 o
¢ MLE: take derivative and set to zero:
o ., B _1
a—‘u—(I/O’ )Z”(Xn ,U) I:> Haie Nan“
ot N 1 2 : 1 _ul ¥
07 207 Voot En ) Oz =y 2 )
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Agenda

> ProbabilityTheery v/
» Linear Algebra

» Optimization
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Linear Algebra

> Linear Algebra provides a compact way of representing and
operating on sets

4X1 —5X2 =-13
—2x1 +3x2 =9

» This is a system of linear equations in 2 variables. In matrix
notation we can write the system more compactly as

Ax = b

with
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Notation

v

A € R™X" is 3 matrix with m rows and n columns.

» x € R" is a vector with n entries.

v

A vector can also be thought of as a matrix with n rows and 1
column, known as a column vector.

» A row vector a matrix with 1 row and n columns is denoted
as x T, the transpose of x.

v

The ith element of a vector x is denoted x;

X1
X2

Xn
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Inner/ Outer Products of vectors

» Given vectors x,y € R" the inner product xy, or dot

product:
7
¥2 4
xTyE]R:[xl X2 ... x,,} : :Zx,-y,-.
: i=1
Yn

» Given vectors x € R™ and y € R”, the outer product
xyT € R™*" is given by xyT € R™M*" =

X1 Xy Xiy2 ... Xi¥n

X2 X2y1  X2Y2 ... X2Yn
oy o= .

Xn XmY1T XmY2 -.- XmyYn



Norms of vectors

» The norm of a vector is informally the measure of the
“length” of the vector. The commonly used Euclidean or ¢,
norm is given by

» More generally, the £, norm of a vector x € R", where p > 1
is defined as
n 1/p
Ixllp = (Z |Xi|p> :
i=1

n
/1 norm : ||x||1 = > |xi] lso norm : ||x||eo = max;|x;| .
i=1

Note:
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Vector spaces

A set of vectors S is a vector space if it is closed under
> Addition

» Multiplication by a scalar

A subspace A is a subset of vector space S that is also closed
under the above operations.
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Matrix Operations

» Product of two matrices A € R™*" and B € R"™P is the
matrix C = AB € R™*P, where

Cj = Z AiByj.
k=1

» Matrix multiplication is associative: (AB)C = A(BC).
» Matrix multiplication is distributive: A(B + C) = AB + AC.
» Matrix multiplication is (generally) not commutative :

AB # BA.

» The transpose of a matrix results from “'flipping” the rows
and columns. Given a matrix A € R™*" the transpose
AT € R™™ is the n x m matrix whose entries are given by
(AT)j = Aji.
Also,
(AT =A;,  (AB)T=BTAT; (A+B)T=AT+BT
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Special Matrices

» The identity matrix, denoted / € R"*", is a square matrix
with ones on the diagonal and zeros everywhere else. That is,

[ 1 i=j
PV 0 i#)
It has the property that for all A € R™*" Al = A= IA.

» A diagonal matrix is a matrix where all non-diagonal
elements are 0.
» A square matrix A € R"™" is symmetric if A= AT.
» The trace of a square matrix A € R"*" is the sum of the
n

diagonal elements, tr(A) = 3" Aj
i=1

26
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Linear Independence and Rank

» A set of vectors {x1,x2,...,x,} C R™ is said to be (linearly)
independent if no vector can be represented as a linear
combination of the remaining vectors.

» The rank of a matrix is the number of linearly independent
columns.

» For A€ R™*", rank(A) < min(m, n). If rank(A) =min(m, n),
then A is said to be full rank.
» For A€ R™", rank(A)=rank(AT).

» For Ac R™*" B e R"™P, rank(AB) < min(rank(A),rank(B)).

» For A,B € R™*", rank(A + B) < rank(A) + rank(B).

27 /41



Orthogonal Matrix

» Two vectors x, y € R" orthogonal if x"y = 0. A square
matrix U € R"™" is orthogonal if all its columns are
orthogonal to each other and are normalized (||x||2 = 1), It

follows that
utu=1=uu'.
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Determinant of a Matrix

» The determinant of a square matrix A € R"™" is a function
det: R"™" — R, denoted |A|. The absolute value of the
determinant is a measure of the “volume” of the restricted
span S of set of column vectors.

» For A R™", |Al = |AT].

» For A, B € R™", |AB| = |A||B|.

» For A R™" |A| =0 if and only if A is singular (i.e.,
non-invertible).

» For A€ R"™" and A is non-singular, [A~1| = 1/|A|.
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Inverse of a matrix

» The inverse of a square matrix A € R"*" is denoted by A%,
and is a unique matrix such that A=A =/ = AA~L1. Only
some square matrices have inverses, and these are also
referred to as invertible or non-singular matrices. For A1 to
exist, A must be full rank.

» (A=A
> (AB)—1 B—lA—1
> (AT =(AT)

30/41



Positive Semi-definite matrices

Given a square matrix A € R"™*" and a vector x € R", the scalar
value xT Ax is called a quadratic form.

n

xTAx = Zx,(Ax ;= ZZAUX,XJ

i=1 i=1 j=1

» A symmetric matrix A € R"*" is positive
semi-definite(PSD) if for all non-zero vectors x € R”,

xTAx > 0. If strictly, xT Ax > 0, A is positive definite (PD).

» All positive-definite and negative-definite matrices are full
rank, hence are invertible.
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Matrix Factorizations

Important to find inverses, bases and solutions to equations
» Singular Value Decomposition (SVD) : A= UDV'T

Tm1

myy

X
Z12
T22

mXn

my;
My,

Mz

my;

Z1in

Tmn

my3
My

M3

my;3

my Uy Wz Uy
Myy 0 uy upy

Uiy
Uzn
Uap

U

» Symmetric Semi-definite matrices: A= UTU

Srr

VT

V11 Vin

Ur1
TXn
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Gradient of a f : R™" - R

The Gradient: Suppose that f : R™*" — R is a function that
takes as input, a matrix A of size m x n and returns a real value.
Then the gradient of f (with respect to A € R™*") is the matrix
of partial derivatives, defined as:

OF(A)  f(A) O (A)

8A11 8A1 e 8A1n

Of(A)  Of(A) O (A)

VAf(A) c R™XN — 0A21 0Ax» """ OAz,
Of(A)  Of(A) Of(A)

8Aml aAmZ o 8Amn

> Vi(f(x) +&(x)) = Vif(x) + Vg (x).
» For t € R, V,(tf(x)) = tVf(x).

» Let f : R™ — R be the function defined by f(z) = z" z,
V.f(z) =2z
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The Hessian Matrix

The Hessian: Suppose that f : R” — R is a function that takes a
vector in R"” and returns a real number, then the Hessian matrix
with respect to x, written V2f(x) (or H) is the n x n matrix of

partial derivatives,

Vif(x) e R™" =

0?f(x)
8X12
2f(x)
szaxl

02F(x)
anaxl

8%f(x)
0x10x2
8%f(x)

2
0x;

82f(x)
8)(,,8)(2

8f(x) 7
Ox10xn
8%f(x)
Ox00xp

£(x)

2
oxz
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Least Squares

(Least squares) Given a full rank matrix A € R™*" and a vector
b € > such that b ¢ R(A), where R(A) is the vector space of the
columns of matrix A. In this case, it is not possible to find a vector
x € R", such that Ax = b. So, instead we want to find a vector x
such that Ax is as close as possible to b, as measured by the Ly
norm ||Ax — b||3.
Using the fact that ||x||3 = x " x, we have

|Ax — b||3 = (Ax — b)"(Ax — b)

xTATAx —2bTAx+ b7 b
Taking gradient with respect to x, we have
VixTATAx —2bTAx+ b"b) = V,x"ATAx —V,2b" Ax +V,b"b
= 2ATAx—2ATb
Setting this last expression to zero and solving for x, gives the
normal equations for the least-squares problem:
x=(ATA)1ATH
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Agenda

> ProbabilityTheory v/
> Linear-Algebra v/

» Optimization
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Minimizing a function

Goal: find the minimum/minimizer of f : RY — R

Existence of a mimimum ?
» f =0

"o, ..
> f s positive.

If f:R™" 5 R, conditions for minimum :

» Hessian matrix f~ is positive semi-definite.

Are these global minima ?

» No, (local minima, saddle points, ...)
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lterative descent methods
Goal: find the minimum/minimizer of f : RY — R
» Proceed in small steps in the optimal direction till a
stopping criterion is met.

» Gradient descent: updates of the form:
x(t+1) o x(t) — n(t)Vf(x(t))

Figure: lllustration of gradient descent.The blue circles correspond to
the function values at different points, while the red lines correspond to

steps taken in the negative gradient direction. NS



Convex functions

Pro: Guarantee of a global minima v/

(@, (@) -

Figure: lllustration of a convex function. The line segment between any
two points on the graph lies entirely above the curve.
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Non-Convex functions

Pro: No guarantee of a global minima X

\‘ //’
| f@)

e N ()

/

/

4
.

xT

Figure: lllustration of a non-convex function. Note the line segment
intersecting the curve.

40 /41



Agenda

> ProbabilityFheery v/
> Linear-Algebra v

All the Best!
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