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Agenda

I Probability Theory

I Linear Algebra

I Optimization
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Probability

I A language for quantifying - uncertainity, belief in the world,
common sense etc.,

I Sample space X is the set of all possible outcomes of a
conceptual, physical, repeatable experiment

I Eg., 2-Coin toss: X = {HH,TH,HT ,TT}
I Eg., Possible nucleotides at a DNA site: X = {A,T ,C ,G}
I Eg., Parts of speech: X = {NN,PP,NNP,DT , . . .}.

I Event is any subset of X
I Eg., The event of getting heads on only one coin.

(A ⊂ X ) = {TH,HT}
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Probability: Kolmogorov Axioms

I Probability is a function that maps events A into the interval
[0, 1]: P : A→ [0, 1]

I 0 ≤ P(A) ≤ 1

I P(X ) = 1

I P(φ) = 0

I For two events A and B, P(A∪B) = P(A) +P(B)−P(A∩B)
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Random Variable

I A random variable (RV) is a function that associates a unique
numerical value X (ω) with every outcome ω ⊂ X of an
experiment.

I X (ω) may be finite ({0, 1}), or infinite (R)

I X (ω) may be discrete (N) or continuous (R)

I X (ω) may have one or several variables (Rd random vectors)
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Discrete Probability Distribution

I In the discrete case, a probability distribution P on X is an
assignment of a non-negative real number P(x) to each
x ∈ X such that

I 0 ≤ P(X = x) ≤ 1 and

I
∑

x P(X = x) = 1

I Example: Bernoulli distribution with parameter θ

P(x) =

{
1− θ x = 0
θ x = 1
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Continuous Probability Distribution

I A continuous random variable, X can assume any value in an
interval on the real line or in a region in high dimensional
space.

I We talk about the probability of the variable assuming a value
in a given interval P(X ∈ [x1, x2])

I The probability of the RV in a given interval [x1, x2] is defined
to be the area under the graph of the probability density
function

I Probability mass: P(X ∈ [x1, x2]) =
x2∫
x1

p(x)dx

I Cumulative distribution function(CDF):

F (x) = P(X ≤ x) =
x∫
−∞

p(x
′
)dx

′

I Probability density function (PDF): p(x) = d
dx F (x)
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Continuous Distributions

I Uniform PDF: p(x) =

{
1

b−a a ≤ x ≤ b

0 elsewhere

I Normal (Gaussian) PDF: p(x) ∼ N (µ, σ) = 1√
2πσ

e−(x−µ)2/2σ2
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Statistical Characterizations of RVs

I Expectation: The centre of mass, mean value, first moment

E(X ) =


∑
x
xp(x) discrete

∞∫
−∞

xp(x)dx continuous

I Variance: The spread

Var(X ) =


∑
x

[x − E(x)]2p(x) discrete

∞∫
−∞

[x − E(x)]2p(x)dx continuous

I Useful formula: Var(X ) = E[X 2]− E[X ]2
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Example: Bernoulli Distribution
I X ∼ Bernoulli(θ), hence

X = {0, 1};P(X = 1) = θ,P(X = 0) = 1− θ
I The expectation of X is

E[X ] =
∑

i={0,1}

iP(X = i)

E[X ] = 0 ∗ (1− θ) + 1 ∗ θ
E[X ] = θ

I The variance of X is

Var [X ] =
∑

i={0,1}

i2P(X = i)−

 ∑
i={0,1}

iP(X = i)

2

Var [X ] = 02 ∗ (1− θ) + 12 ∗ θ − θ2

Var [X ] = θ(1− θ)
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Joint Probability

I A joint probability distribution for a set of RVs gives the
probability of every atomic event (sample point)

I Eg., Joint probability P(X ,Y ) = P(X = true ∧ Y = true)

I Marginal probability of RV X , P(X ) =
∑
j∈X

P(X ∧ Y = yj)
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Independence

I Events A and B are independent if P(A ∩ B) = P(A) ∗ P(B)

I Random variables X and Y are independent (X ⊥ Y ) if and
only if their joint probability, PX ,Y is the product of their
marginal probabilities: PX ,Y = PXPY

I if X and Y are independent
Cov(X ,Y ) = E[XY ]− E[X ]E[Y ] = 0

I Corollary: RVs X1, . . . ,Xn are independent iff

PX1,...,Xn =
n∏

i=1

PXi
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Conditional Probability

I Probability of event A conditioned on event B having occured:

if P(B) > 0,P(A|B) = P(A∩B)
P(B)

I Corollary: Chain Rule:
P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A)

I If A and B are independent, P(A|B) = P(A)

I If RVs (X ,Y ) and Y have PDF p(X ,Y ) and pY , then PX |Y is

the corresponding PDF: pX |Y =
p(X ,Y )

pY
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Bayes Rule

I For events A and B, joint probability P(A,B) can be written
as P(A)P(B|A) or P(B)P(A|B), rearranging,

P(A|B) = P(B|A)P(A)
P(B) (Bayes Rule)

I Bayes rule for statistical inference
I X is a random variable that is observed
I Θ is a random variable denoting the parameter(s)
I Goal: given observed data X , find the best guess for Θ

I Bayes rule : PΘ|Y (θ|y) =
PY |Θ(y |θ)PΘ(θ)∫
PY |Θ(y |θ)PΘ(θ)dθ

posterior = likelihood × prior
joint probability
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Estimators

Under independent and identically distributed (iid) assumptions
likelihood of the data, given a model is

L(x1, . . . , xn|θ) =
n∏

i=1

f (xi |θ) (1)

I Maximum Likelihood Estimate : θML = argmaxθPY |Θ(y |θ).

I Maximum a posteriori Estimate : θMAP = argmaxθPΘ|Y (θ|y).

Conjugate priors: Choosing a conjugate prior ensures that the
posterior distribution is the same family of distributions as the
likelihood. Ex: exponential family; bernoulli vs. beta etc.,
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Example: Bernoulli model
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MLE: Bernoulli model
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Example: MLE: Univariate Normal Distribution
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Agenda

I Probability Theory X

I Linear Algebra

I Optimization
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Linear Algebra

I Linear Algebra provides a compact way of representing and
operating on sets

4x1 −5x2 = −13

−2x1 +3x2 = 9

I This is a system of linear equations in 2 variables. In matrix
notation we can write the system more compactly as

Ax = b

with

A =

[
4 5
−2 3

]
, b =

[
−13

9

]
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Notation

I A ∈ Rm×n is a matrix with m rows and n columns.

I x ∈ Rn is a vector with n entries.

I A vector can also be thought of as a matrix with n rows and 1
column, known as a column vector.

I A row vector a matrix with 1 row and n columns is denoted
as xT , the transpose of x.

I The ith element of a vector x is denoted xi

x =


x1

x2
...
xn

 .
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Inner/ Outer Products of vectors

I Given vectors x , y ∈ Rn the inner product xT y , or dot
product:

xT y ∈ R =
[
x1 x2 . . . xn

]


y1

y2
...
yn

 =
n∑

i=1

xiyi .

I Given vectors x ∈ Rm and y ∈ Rn, the outer product
xyT ∈ Rm×n is given by xyT ∈ Rm×n =


x1

x2
...
xn

 [ y1 y2 . . . yn
]

=


x1y1 x1y2 . . . x1yn
x2y1 x2y2 . . . x2yn

...
...

. . .
...

xmy1 xmy2 . . . xmyn

 .
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Norms of vectors

I The norm of a vector is informally the measure of the
“length” of the vector. The commonly used Euclidean or `2

norm is given by

‖x‖2 =

√√√√ n∑
i=1

x2
i .

I More generally, the `p norm of a vector x ∈ Rn, where p ≥ 1
is defined as

‖x‖p =

(
n∑

i=1

|xi |p
)1/p

.

Note:

`1 norm : ‖x‖1 =
n∑

i=1
|xi | `∞ norm : ‖x‖∞ = maxi |xi | .
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Vector spaces

A set of vectors S is a vector space if it is closed under

I Addition

I Multiplication by a scalar

A subspace A is a subset of vector space S that is also closed
under the above operations.
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Matrix Operations

I Product of two matrices A ∈ Rm×n and B ∈ Rn×p is the
matrix C = AB ∈ Rm×p, where

Cij =
n∑

k=1

AikBkj .

I Matrix multiplication is associative: (AB)C = A(BC ).
I Matrix multiplication is distributive: A(B + C ) = AB + AC .
I Matrix multiplication is (generally) not commutative :

AB 6= BA.

I The transpose of a matrix results from “’flipping” the rows
and columns. Given a matrix A ∈ Rm×n, the transpose
AT ∈ Rn×m is the n ×m matrix whose entries are given by
(AT )ij = Aji .
Also,
(AT )T = A; (AB)T = BTAT ; (A + B)T = AT + BT
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Special Matrices

I The identity matrix, denoted I ∈ Rn×n, is a square matrix
with ones on the diagonal and zeros everywhere else. That is,

Iij =

{
1 i = j
0 i 6= j

It has the property that for all A ∈ Rm×n, AI = A = IA.

I A diagonal matrix is a matrix where all non-diagonal
elements are 0.

I A square matrix A ∈ Rn×n is symmetric if A = AT .
I The trace of a square matrix A ∈ Rn×n is the sum of the

diagonal elements, tr(A) =
n∑

i=1

Aii
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Linear Independence and Rank

I A set of vectors {x1, x2, . . . , xn} ⊂ Rm is said to be (linearly)
independent if no vector can be represented as a linear
combination of the remaining vectors.

I The rank of a matrix is the number of linearly independent
columns.

I For A ∈ Rm×n, rank(A) ≤ min(m, n). If rank(A) =min(m, n),
then A is said to be full rank.

I For A ∈ Rm×n, rank(A)=rank(AT ).
I For A ∈ Rm×n, B ∈ Rn×p, rank(AB) ≤ min(rank(A),rank(B)).
I For A,B ∈ Rm×n, rank(A + B) ≤ rank(A) + rank(B).
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Orthogonal Matrix

I Two vectors x , y ∈ Rn orthogonal if xT y = 0. A square
matrix U ∈ Rn×n is orthogonal if all its columns are
orthogonal to each other and are normalized (‖x‖2 = 1), It
follows that

UTU = I = UUT .
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Determinant of a Matrix

I The determinant of a square matrix A ∈ Rn×n, is a function
det: Rn×n → R, denoted |A|. The absolute value of the
determinant is a measure of the “volume” of the restricted
span S of set of column vectors.

I For A ∈ Rn×n, |A| = |AT |.
I For A,B ∈ Rn×n, |AB| = |A||B|.
I For A ∈ Rn×n, |A| = 0 if and only if A is singular (i.e.,

non-invertible).
I For A ∈ Rn×n and A is non-singular, |A−1| = 1/|A|.
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Inverse of a matrix

I The inverse of a square matrix A ∈ Rn×n is denoted by A−1,
and is a unique matrix such that A−1A = I = AA−1. Only
some square matrices have inverses, and these are also
referred to as invertible or non-singular matrices. For A−1 to
exist, A must be full rank.

I (A−1)−1 = A
I (AB)−1 = B−1A−1

I (A−1)T = (AT )−1.
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Positive Semi-definite matrices

Given a square matrix A ∈ Rn×n and a vector x ∈ Rn, the scalar
value xTAx is called a quadratic form.

xTAx =
n∑

i=1

xi (Ax)i =
n∑

i=1

n∑
j=1

Aijxixj .

I A symmetric matrix A ∈ Rn×n is positive
semi-definite(PSD) if for all non-zero vectors x ∈ Rn,
xTAx ≥ 0. If strictly, xTAx > 0, A is positive definite (PD).

I All positive-definite and negative-definite matrices are full
rank, hence are invertible.
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Matrix Factorizations
Important to find inverses, bases and solutions to equations

I Singular Value Decomposition (SVD) : A = UDV T

I A = LU for diagonally dominant matrices

I Symmetric Semi-definite matrices: A = UTU
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Gradient of a f : Rm×n → R
The Gradient: Suppose that f : Rm×n → R is a function that
takes as input, a matrix A of size m × n and returns a real value.
Then the gradient of f (with respect to A ∈ Rm×n) is the matrix
of partial derivatives, defined as:

∇Af (A) ∈ Rm×n =


∂f (A)
∂A11

∂f (A)
∂A12

. . . ∂f (A)
∂A1n

∂f (A)
∂A21

∂f (A)
∂A22

. . . ∂f (A)
∂A2n

...
...

. . .
...

∂f (A)
∂Am1

∂f (A)
∂Am2

. . . ∂f (A)
∂Amn

 .

I ∇x(f (x) + g(x)) = ∇x f (x) +∇xg(x).

I For t ∈ R, ∇x(tf (x)) = t∇x f (x).

I Let f : Rm → R be the function defined by f (z) = zT z ,
∇z f (z) = 2z .
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The Hessian Matrix

The Hessian: Suppose that f : Rn → R is a function that takes a
vector in Rn and returns a real number, then the Hessian matrix
with respect to x , written ∇2

x f (x) (or H) is the n × n matrix of
partial derivatives,

∇2
x f (x) ∈ Rn×n =


∂2f (x)
∂x2

1

∂2f (x)
∂x1∂x2

. . . ∂2f (x)
∂x1∂xn

∂2f (x)
∂x2∂x1

∂2f (x)
∂x2

2
. . . ∂2f (x)

∂x2∂xn
...

...
. . .

...
∂2f (x)
∂xn∂x1

∂2f (x)
∂xn∂x2

. . . ∂2f (x)
∂x2

n

 .
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Least Squares
(Least squares) Given a full rank matrix A ∈ Rm×n and a vector
b ∈ m such that b /∈ R(A), where R(A) is the vector space of the
columns of matrix A. In this case, it is not possible to find a vector
x ∈ Rn, such that Ax = b. So, instead we want to find a vector x
such that Ax is as close as possible to b, as measured by the L2

norm ‖Ax − b‖2
2.

Using the fact that ‖x‖2
2 = xT x , we have

‖Ax − b‖2
2 = (Ax − b)T (Ax − b)

= xTATAx − 2bTAx + bTb

Taking gradient with respect to x, we have

∇x(xTATAx − 2bTAx + bTb) = ∇xx
TATAx −∇x2bTAx +∇xb

Tb

= 2ATAx − 2ATb

Setting this last expression to zero and solving for x , gives the
normal equations for the least-squares problem:

x = (ATA)−1ATb
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Agenda

I Probability Theory X

I Linear Algebra X

I Optimization
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Minimizing a function

Goal: find the minimum/minimizer of f : Rd → R

Existence of a mimimum ?

I f
′

= 0

I f
′′

is positive.

If f : Rm×n → R, conditions for minimum :

I Hessian matrix f
′′

is positive semi-definite.

Are these global minima ?

I No, (local minima, saddle points, . . . )
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Iterative descent methods
Goal: find the minimum/minimizer of f : Rd → R

I Proceed in small steps in the optimal direction till a
stopping criterion is met.

I Gradient descent: updates of the form:
x (t+1) ← x (t) − η(t)∇f (x (t))

Figure: Illustration of gradient descent.The blue circles correspond to
the function values at different points, while the red lines correspond to
steps taken in the negative gradient direction.
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Convex functions

Pro: Guarantee of a global minima X

Figure: Illustration of a convex function. The line segment between any
two points on the graph lies entirely above the curve.
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Non-Convex functions

Pro: No guarantee of a global minima 7

Figure: Illustration of a non-convex function. Note the line segment
intersecting the curve.
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Agenda

I Probability Theory X

I Linear Algebra X

I Optimization X

All the Best!
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