
Day 5

Unsupervised Learning

In this class we will address the problem of unsupervised learning of linguistic
structures, namely parts-of-speech. In this setting we are not given any labeled
data. Instead, all we get to see is a set of natural language sentences. The
underlying question is:

Can we learn something from raw text?

This task is particularly challenging since the process by which linguistic
structures are generated is not always clear and even when it is, it is normally
too complex to be formally expressed. Nevertheless, unsupervised learning
has been applied to a wide range of natural language processing tasks, such
as: Part-of-Speech Induction (Schütze, 1995; Merialdo, 1994; Clark, 2003), De-
pendency Grammar Induction (Klein and Manning, 2004; Smith and Eisner,
2006), Constituency Grammar Induction (Klein and Manning, 2004), Statistical
Word Alignments (Brown et al., 1993) and Anaphora Resolution (Charniak and
Elsner, 2009), just to name a few.

Different motivations have pushed research in this area. From both a lin-
guistic and cognitive point of view, unsupervised learning is useful as a tool to
study language acquisition. From a machine learning point of view, unsuper-
vised learning is a fertile ground for testing new learning methods, where sig-
nificant improvements can yet be made. From a more pragmatic perspective,
unsupervised learning is required since annotated corpora is a scarce resource
for different reasons. Independently of the reason, unsupervised learning is an
increasing active field of research.

A first problem with unsupervised learning, since we don’t observe any
labeled data (i.e., the training set is now D = {x1, . . . , xM}), is that most of
the methods studied so far (Perceptron, Mira, SVMs) cannot be used since we
cannot compare the true output with the predicted output. Note also that a
direct minimization of the complete negative log-likelihood of the data, log Pθ(D),

101

is very challenging, since it would require marginalizing out (i.e., summing
over) all possible hidden variables:

log Pθ(D) =
M

∑
m=1

log ∑
y∈Y

Pθ(xm, y). (5.1)

Note also that the objective above is non-convex even for a linear model: hence,
it may have local minima, which makes optimization much more difficult.

Another observation is that normally we are restricted to generative mod-
els, with some remarkable exceptions (Smith and Eisner, 2005a), since the ob-
jective of discriminative models when no labels are observed are meaningless
(∑ym P(ym|xm) = 1); this rules out, for instance, Maximum Entropy classifiers.

The most common optimization method in the presence of hidden (latent)
variables is the Expectation Maximization (EM) algorithm. Note that this al-
gorithm is a generic optimization routine that does not depend on a particular
model. The next section will explain the EM algorithm. On Section 5.2 we will
apply the EM algorithm to the task of part-of-speech induction, where one is
given raw text and a number of clusters and the task is to cluster words that
behave similarly in a grammatical sense.

5.1 Expectation Maximization Algorithm

Given a particular model pθ(x̄, ȳ) and a training corpus X of D sentences x̄1 . . . x̄D,
training seeks model parameters θ that minimize the negative log-likelihood of
the corpus:

Negative Log Likelihood : L(θ) = Ê[− log pθ(x̄)] = Ê[− log ∑̄
y

pθ(x̄, ȳ)],

(5.2)
where Ê[f (x̄)] = 1

D ∑D
i=1 f (x̄i) denotes the empirical average of a function f

over the training corpus.
Because of the hidden variables ȳ, the likelihood term contains a sum over

all possible hidden structures inside of a logarithm, which makes this quantity
hard to compute.

The most common minimization algorithm to fit the model parameters in
the presence of hidden variables is the Expectation Maximization (EM) algo-
rithm.

The EM procedure can be thought of intuitively in the following way. If
we observe the hidden variables’ values for all sentences in the corpus, then
we could easily compute the maximum likelihood value of the parameters as
described in Section 2.2. On the other hand, if we had the model parameters we
could label data using the model, and collect the sufficient statistics described
in Section 2.2. Since we are working in an unsupervised setting, we never

102

get to observe the hidden state sequence. Instead, given a training set X =
{x̄1 . . . x̄D}, we will need to collect sufficient statistics, or expected counts that
represent the expected number of times that each hidden variable is expected to
be used with the current parameters setting. These sufficient statistics will then
be used during learning as fake observations of the hidden variables. Using the
node and edge posterior distributions described in Equations 2.17 and 2.18, the
sufficient statistics can be computed by the following formulas:

Initial Counts : ic(yl) =
D

∑
d=1

γ1(yl); (5.3)

Final Counts : f c(yN , yN−1) =
D

∑
d=1

ξN−1(yl , ym); (5.4)

Transition Counts : tc(yl , ym) =
D

∑
d=1

N−1

∑
i=1

ξi(yl , ym); (5.5)

State Counts : sc(vq, ym) =
D

∑
d=1

N

∑
i=1,xi=vq

γi(ym). (5.6)

Compare the previous Equations with the ones described in Section 2.2 for
the same quantities. The main difference is that while in the presence of su-
pervised data you sum the observed events, when you have no label data you
sum the posterior probabilities of each event. If these probabilities were such
that the probability mass was around single events then both Equations will
produce the same result.

The EM procedure starts with an initial guess for the parameters θ0 at time
t = 0. The algorithm iterates for T iterations until it converges to a local minima
of the negative log likelihood, and each iteration is divided into two steps:

The first step - “E Step” (Expectation) - computes the posteriors for the hid-
den variables pθ(ȳ | x̄), given the current parameter values θt and the
observed variables. In the case of the HMM this requires only to run the
FB algorithm.

The second step - “M step” (Maximization) - uses pθ(ȳ | x̄) to “softly fill in”
the values of the hidden variables ȳ, and collects the sufficient statistics,
initial counts (Eq: 5.3), transition counts (Eq: 5.5) and state counts (Eq:
5.6) and uses those counts to estimate maximum likelihood parameters
θt+1 as described in Section 2.2.

The EM algorithm is guaranteed to converge to a local minimum of L(θ)
under mild conditions. Note that we are not committing to the best assign-
ment of the hidden variables, but summing the occurrences of each parameter
weighed by the posterior probability of all possible assignments. This modular

103

split into two intuitive and straightforward steps accounts for the vast popu-
larity of EM.

More formally, EM minimizes L(θ) via block-coordinate descent on an up-
per bound F(q, θ) using an auxiliary distribution over the latent variables q(ȳ |
x̄):

L(θ) = Ê

[
− log ∑̄

y
pθ(x̄, ȳ)

]
(5.7)

= Ê

[
− log ∑̄

y
q(ȳ | x̄) ∗ pθ(x̄, ȳ)

q(ȳ | x̄)

]
≤ Ê

[
− ∑̄

y
q(ȳ | x̄) log

pθ(x̄, ȳ)
q(ȳ | x̄)

]
(5.8)

= Ê

[
∑̄
y

q(ȳ | x̄) log
q(ȳ | x̄)
pθ(x̄, ȳ)

]
= F(q, θ), (5.9)

where we have multiplied and divided the pθ(x̄, ȳ) by the same quantity q(ȳ |
x̄), and the lower bound comes from applying Jensen Inequality (Equation 5.8).
F(q, θ) is normally referred to as the energy function, which comes from the
physics field and refers to the energy of a given system that we want to mini-
mize.

EM Upper Bound : L(θ) ≤ F(q, θ) = Ê

[
∑̄
y

q(ȳ | x̄) log
q(ȳ | x̄)
pθ(x̄, ȳ)

]
. (5.10)

The alternating E and M steps at iteration t + 1 can be seen as minimizing the
energy function first with respect to q(ȳ | x̄) and then with respect to θ:

E : qt+1(ȳ | x̄) = arg min
q(ȳ|x̄)

F(q, θt) = arg min
q(ȳ|x̄)

KL(q(ȳ | x̄) || pθt(ȳ | x̄)) = pθt(ȳ | x̄);(5.11)

M : θt+1 = arg min
θ

F(qt+1, θ) = arg max
θ

Ê

[
∑̄
y

qt+1(ȳ | x̄) log pθ(x̄, ȳ)

]
; (5.12)

where KL(q||p) = Eq[log q(·)
p(·)] is the Kullback-Leibler divergence. The KL term

in the E-Step results from dropping all terms from the energy function that
are constant for a set θ, in this case the likelihood of the observation sequence
pθ(x̄):

104

∑̄
y

q(ȳ | x̄) log
q(ȳ | x̄)
pθ(x̄, ȳ)

= ∑̄
y

q(ȳ | x̄) log q(ȳ | x̄)− ∑̄
y

q(ȳ | x̄) log pθ(x̄, ȳ)

(5.13)

= ∑̄
y

q(ȳ | x̄) log q(ȳ | x̄)− ∑̄
y

q(ȳ | x̄) log pθ(x̄)pθ(ȳ | x̄)

(5.14)

= ∑̄
y

q(ȳ | x̄) log
q(ȳ | x̄)
pθ(ȳ | x̄)

− log pθ(x̄) (5.15)

= KL(q(ȳ | x̄)||pθ(ȳ | x̄))− log pθ(x̄). (5.16)

Algorithm 13 presents the pseudo code for the EM algorithm. Note that
this algorithm is agnostic of a particular model, it only requires the model to
implement a common interface.

Algorithm 13 EM algorithm.
1: input: dataset D, an initialized model
2: for t = 1 to T do
3: model.clear counts()
4: for seq ∈ D do
5: E-Step:
6: posteriors,likelihood =model.compute posteriors(seq)
7: model.update counts(seq,posteriors)
8: end for
9: M-Step:

10: model.update params(counts)
11: end for

One important thing to note in Algorithm 13 is that for the HMM model
we already have all the model pieces we require. In fact the only method
we don’t have yet implemented from previous classes is the method to up-
date counts(posteriors).

Exercise 5.1 Implement the method update counts(seq,posteriors).

1 def update_counts(self,seq,posteriors):

Use the method you defined previously to check the count tables to check if this
method is correct. Use a corpus with only one sentence to make the test simpler.

1 In []: run readers/pos_corpus.py
In []: posc = PostagCorpus("en",max_sent_len=15,train_sents=1,

dev_sents=0,test_sents=0)

105

3 In []: run sequences/hmm.py
In []: hmm = HMM(posc)

5 In []: hmm.train_supervised(posc.train,smoothing=0.1)
In []: hmm.clear_counts()

7 In []: posteriors,likelihood = hmm.get_posteriors(posc.train.
seq_list[0])

In []: hmm.update_counts(posc.train.seq_list[0],posteriors)
9 In []: hmm.sanity_check_counts(posc.train)

If you pass this test, then you have all the pieces to implement the EM algorithm.
Look at the code for EM algorithm in file sequences/em.py and check it for yourself.

1 def train(self,seq_list,nr_iter=10,smoothing=0,evaluate=
True):
if(evaluate):

3 ### Evaluate accuracy at initial iteration
pred = self.model.viterbi_decode_corpus(seq_list.

seq_list)
5 acc = self.model.evaluate_corpus(seq_list.seq_list,

pred)
for t in xrange(1,nr_iter):

7 #E-Step
total_likelihood = 0

9 self.model.clear_counts(smoothing)
for seq in seq_list.seq_list:

11 posteriors,likelihood = self.model.
get_posteriors(seq)

self.model.update_counts(seq,posteriors)
13 total_likelihood += likelihood

print "Iter: %i - Log Likelihood %f"%(t,-1*math.log
(total_likelihood))

15 #M-Step
self.model.update_params()

17
if(evaluate):

19 ### Evaluate accuracy at this iteration
pred = self.model.viterbi_decode_corpus(

seq_list.seq_list)
21 acc = self.model.evaluate_corpus(seq_list.

seq_list,pred)
print "Iter: %i acc %f"%(t,acc)

106

5.2 Part of Speech Induction

In this section we present the Part-of-Speech induction task. Part-of-Speech
tags are pre-requisite for many text applications. The task of Part-of-Speech
tagging where one is given a labeled training set of words and respective tags
is a well studied task with several methods achieving high prediction quality,
as we saw in Chapters 2 and 3.

On the other hand the task of Part-of-Speech induction where one does not
have access to a labeled corpus is a much harder task with a huge space for
improvement. In this case, we are given only the raw text along with sentence
boundaries and a predefined number of clusters we can use. This problem
can be seen as a clustering problem. We want to cluster words that behave
grammatically in the same way on the same cluster. This is a much harder
problem.

Formally, the problem setting is the following: we are given a training set
X = x̄1 . . . x̄D of D training examples, where each example x̄ = x1 . . . xN is a
sentence of N words, whose values v are taken from a vocabulary V of possible
word types. We are also given the set of clusters Y that we are allowed to
use. The hidden structure ȳ = y1 . . . yN corresponds to a sequence of cluster
assignments for each individual word, such that yn = yl with yl ∈ Y.

Depending on the task at hand we can pick an arbitrary number of clusters.
If the goal is to test how well our method can recover the true pos tags then
we should use the same number of clusters as pos tags. On the other hand, if
the task is to extract features to be used by other methods we can use a much
bigger number of clusters (e.g. 200) to capture correlations not captured by pos
tags, like lexical affinity.

Note, however that nothing is said about the identity of each cluster. The
model has no preference in assigning cluster 1 to nouns vs cluster 2 to nouns.
Given this non-identifiability several metrics have been proposed for evalu-
ation (Reichart and Rappoport, 2009; Haghighi and Klein, 2006; Meilă, 2007;
Rosenberg and Hirschberg, 2007). In this class we will use a common and sim-
ple metric called 1-Many, which maps each cluster to majority pos tag that it
contains (see Figure 5.1 for an example).

Exercise 5.2 Run the EM algorithm for part of speech induction:

In []: run readers/pos_corpus.py
2 In []: posc = PostagCorpus("en",max_sent_len=15,train_sents=

1000,dev_sents=0,test_sents=0)
In []: run sequences/hmm.py

4 In []: hmm = HMM(posc)
In []: hmm.initialize_radom()

6 In []: run sequences/em.py
In []: em = EM(posc,hmm)

8 In []: em.train(posc.train,nr_iter=20)

107

Figure 5.1: Confusion Matrix example. Each cluster is a column. The best
tag in each column is represented under the column (1-many) mapping. Each
color represents a true Pos Tag.

Out []: Init acc 0.335505
10 Out []: Iter: 1 - Log Likelihood 16.071708

Out []: Iter: 1 acc 0.361960
12 Out []: Iter: 2 - Log Likelihood 11.212829

Out []: Iter: 2 acc 0.381000
14 Out []: Iter: 3 - Log Likelihood 11.091918

Out []: Iter: 3 acc 0.387013
16 Out []: Iter: 4 - Log Likelihood 10.751445

Out []: Iter: 4 acc 0.391222
18 Out []: Iter: 5 - Log Likelihood 10.046576

Out []: Iter: 5 acc 0.390420
20 Out []: Iter: 6 - Log Likelihood 9.055178

Out []: Iter: 6 acc 0.391723
22 Out []: Iter: 7 - Log Likelihood 8.109925

Out []: Iter: 7 acc 0.390420
24 Out []: Iter: 8 - Log Likelihood 7.497388

Out []: Iter: 8 acc 0.390520
26 Out []: Iter: 9 - Log Likelihood 7.225907

Out []: Iter: 9 acc 0.393827
28 Out []: Iter: 10 - Log Likelihood 7.127711

Out []: Iter: 10 acc 0.398236
30 Out []: Iter: 11 - Log Likelihood 7.105954

Out []: Iter: 11 acc 0.404449
32 Out []: Iter: 12 - Log Likelihood 7.111193

108

Out []: Iter: 12 acc 0.406654
34 Out []: Iter: 13 - Log Likelihood 7.041794

Out []: Iter: 13 acc 0.411264
36 Out []: Iter: 14 - Log Likelihood 6.958736

Out []: Iter: 14 acc 0.408558
38 Out []: Iter: 15 - Log Likelihood 6.828692

Out []: Iter: 15 acc 0.407656
40 Out []: Iter: 16 - Log Likelihood 6.693052

Out []: Iter: 16 acc 0.403848
42 Out []: Iter: 17 - Log Likelihood 6.670297

Out []: Iter: 17 acc 0.405451
44 Out []: Iter: 18 - Log Likelihood 6.684892

Out []: Iter: 18 acc 0.408658
46 Out []: Iter: 19 - Log Likelihood 6.706640

Out []: Iter: 19 acc 0.412166

Note: your results may not be the same as in this example since we are using a random
start, but the trend should be the same. Also note that in some iterations the likelihood
does not go down because of some rounding errors, however the general trend is that
likelihood decreases over iterations.

In the previous exercise we used an HMM to do Part-of-Speech induction
using 12 clusters (by omission the HMM uses as number of hidden states the
one provided by the corpus). A first observation is that the log-likelihood is
always increasing as expected. Another observation is that the accuracy goes
up from 33% to 41%. Note that normally you will run this algorithm for 200
iterations, we stopped earlier for time constraints. Another observations is that
the accuracy is not monotonic increasing, this is because the likelihood is not
a perfect proxy for the accuracy. In fact all that likelihood is measuring are
co-occurrences of words in the corpus; it has no idea of pos tags. The fact we
are improving derives from the fact that language is not random but follows
some specific hidden patterns. In fact this patterns are what true pos-tags try
to capture. A final observation is that the performance is really bad compared
to the supervised scenario, so there is a lot of space for improvement. The
actual state of the art is around 71% for fully unsupervised (Graça, 2010; Berg-
Kirkpatrick et al., 2010) and 80% (Das and Petrov, 2011) using parallel data and
information from labels in the other language.

Looking at Figure 5.1 shows the confusion matrix for this particular exam-
ple. A first observation is that most clusters are mapped to nouns, verbs or
punctuation. This is a none fact since there are many more nouns and verbs
than any other tags. Since maximum likelihood prefers probabilities to be uni-
form (Imagine two parameters. In one setting both have value 0.5 so the like-
lihood will be 0.5*0.5 = 0.25, while in the other case one as 0.1 and 0.9 so the
maximum likelihood is 0.09). Several approaches have been proposed to ad-
dress this problem under moving towards a Bayesian setting or using Posterior

109

Regularization (Johnson, 2007; Graça et al., 2009) more about this later today.
Part-of-Speech induction is a very active field of research, in fact in the last two
ACL conferences (Association for Computational Linguistics) the short paper
award (2010) and the best paper award (2011) were about this topic (Lamar
et al., 2010; Das and Petrov, 2011).

110

Bibliography

Berg-Kirkpatrick, T., Bouchard-Côté, A., DeNero, J., and Klein, D. (2010). Pain-
less unsupervised learning with features. In Proc. NAACL.

Bertsekas, D., Homer, M., Logan, D., and Patek, S. (1995). Nonlinear program-
ming. Athena Scientific.

Bishop, C. (2006). Pattern recognition and machine learning, volume 4. Springer
New York.

Blitzer, J., Dredze, M., and Pereira, F. (2007). Biographies, bollywood, boom-
boxes and blenders: Domain adaptation for sentiment classification. In An-
nual Meeting-Association For Computational Linguistics, volume 45, page 440.

Bottou, L. (1991). Une Approche Theorique de l’Apprentissage Connexionniste: Ap-
plications a la Reconnaissance de la Parole. PhD thesis.

Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge Univ
Pr.

Brown, P. F., Pietra, S. A. D., Pietra, V. J. D., and Mercer, R. L. (1993). The
mathematics of statistical machine translation: Parameter estimation. Com-
putational linguistics, 19(2):263–311.

Buchholz, S. and Marsi, E. (2006). CoNLL-X shared task on multilingual de-
pendency parsing. In Proc. of CoNLL.

Carreras, X. (2007). Experiments with a higher-order projective dependency
parser. In Proc. of CoNLL.

Charniak, E. (1997). Statistical parsing with a context-free grammar and word
statistics. In Proceedings of the National Conference on Artificial Intelligence,
pages 598–603. Citeseer.

Charniak, E. and Elsner, M. (2009). EM works for pronoun anaphora resolution.
In Proceedings of the 12th Conference of the European Chapter of the Association
for Computational Linguistics, pages 148–156. Association for Computational
Linguistics.

111

Charniak, E., Johnson, M., Elsner, M., Austerweil, J., Ellis, D., Haxton, I., Hill,
C., Shrivaths, R., Moore, J., Pozar, M., et al. (2006). Multilevel coarse-to-fine
pcfg parsing. In Proceedings of the main conference on Human Language Technol-
ogy Conference of the North American Chapter of the Association of Computational
Linguistics, pages 168–175. Association for Computational Linguistics.

Chomsky, N. (1965). Aspects of the Theory of Syntax, volume 119. The MIT press.

Chu, Y. J. and Liu, T. H. (1965). On the shortest arborescence of a directed
graph. Science Sinica, 14:1396–1400.

Clark, A. (2003). Combining distributional and morphological information for
part of speech induction. In Proc. EACL.

Cohen, S., Gimpel, K., and Smith, N. (2008). Logistic normal priors for unsu-
pervised probabilistic grammar induction. In In NIPS. Citeseer.

Collins, M. (1999). Head-driven statistical models for natural language parsing. PhD
thesis, University of Pennsylvania.

Collins, M. (2002). Discriminative training methods for hidden markov mod-
els: Theory and experiments with perceptron algorithms. In Proceedings of the
ACL-02 conference on Empirical methods in natural language processing-Volume
10, pages 1–8. Association for Computational Linguistics.

Cover, T., Thomas, J., Wiley, J., et al. (1991). Elements of information theory, vol-
ume 6. Wiley Online Library.

Covington, M. (1990). Parsing discontinuous constituents in dependency
grammar. Computational Linguistics, 16(4):234–236.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2006).
Online Passive-Aggressive Algorithms. JMLR, 7:551–585.

Crammer, K. and Singer, Y. (2002). On the algorithmic implementation of multi-
class kernel-based vector machines. The Journal of Machine Learning Research,
2:265–292.

Das, D. and Petrov, S. (2011). Unsupervised part-of-speech tagging with bilin-
gual graph-based projections. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, pages
600–609, Portland, Oregon, USA. Association for Computational Linguistics.

Duda, R., Hart, P., and Stork, D. (2001). Pattern classification, volume 2. Wiley
New York.

Edmonds, J. (1967). Optimum branchings. Journal of Research of the National
Bureau of Standards, 71B:233–240.

112

Eisner, J. (1996). Three new probabilistic models for dependency parsing: An
exploration. In Proceedings of the 16th conference on Computational linguistics-
Volume 1, pages 340–345. Association for Computational Linguistics.

Eisner, J. and Satta, G. (1999). Efficient parsing for bilexical context-free gram-
mars and head automaton grammars. In Proc. of ACL.

Finkel, J., Kleeman, A., and Manning, C. (2008). Efficient, feature-based, con-
ditional random field parsing. Proceedings of ACL-08: HLT, pages 959–967.

Graça, J. (2010). Posterior Regularization Framework: Learning Tractable Models
with Intractable Constraints. PhD thesis, Universidade Técnica de Lisboa, In-
stituto Superior Técnico.

Graça, J., Ganchev, K., Pereira, F., and Taskar, B. (2009). Parameter vs. posterior
sparisty in latent variable models. In Proc. NIPS.

Haghighi, A. and Klein, D. (2006). Prototype-driven learning for sequence
models. In Proc. HTL-NAACL. ACL.

Henderson, J. (2003). Inducing history representations for broad coverage sta-
tistical parsing. In Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language
Technology-Volume 1, pages 24–31. Association for Computational Linguis-
tics.

Hopcroft, J., Motwani, R., and Ullman, J. (1979). Introduction to automata theory,
languages, and computation, volume 3. Addison-wesley Reading, MA.

Huang, L. and Sagae, K. (2010). Dynamic programming for linear-time incre-
mental parsing. In Proc. of ACL, pages 1077–1086.

Hudson, R. (1984). Word grammar. Blackwell Oxford.

Jaynes, E. (1982). On the rationale of maximum-entropy methods. Proceedings
of the IEEE, 70(9):939–952.

Joachims, T. (2002). Learning to Classify Text Using Support Vector Machines:
Methods, Theory and Algorithms. Kluwer Academic Publishers.

Johnson, M. (1998). Pcfg models of linguistic tree representations. Computa-
tional Linguistics, 24(4):613–632.

Johnson, M. (2007). Why doesn’t EM find good HMM POS-taggers. In In Proc.
EMNLP-CoNLL.

Klein, D. and Manning, C. (2002). A generative constituent-context model for
improved grammar induction. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pages 128–135. Association for Com-
putational Linguistics.

113

Klein, D. and Manning, C. (2003). Accurate unlexicalized parsing. In Proceed-
ings of the 41st Annual Meeting on Association for Computational Linguistics-
Volume 1, pages 423–430. Association for Computational Linguistics.

Klein, D. and Manning, C. (2004). Corpus-based induction of syntactic struc-
ture: Models of dependency and constituency. In Proc. ACL.

Koo, T. and Collins, M. (2010). Efficient third-order dependency parsers. In
Proc. of ACL, pages 1–11.

Koo, T., Globerson, A., Carreras, X., and Collins, M. (2007). Structured predic-
tion models via the matrix-tree theorem. In Proc. EMNLP.

Koo, T., Rush, A. M., Collins, M., Jaakkola, T., and Sontag, D. (2010). Dual
decomposition for parsing with non-projective head automata. In EMNLP.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Procs. of
ICML, pages 282–289.

Lamar, M., Maron, Y., Johnson, M., and Bienenstock, E. (2010). SVD and clus-
tering for unsupervised POS tagging. In Proceedings of the ACL 2010 Confer-
ence: Short Papers, pages 215–219, Uppsala, Sweden. Association for Compu-
tational Linguistics.

Magerman, D. (1995). Statistical decision-tree models for parsing. In Pro-
ceedings of the 33rd annual meeting on Association for Computational Linguistics,
pages 276–283. Association for Computational Linguistics.

Manning, C., Raghavan, P., and Schütze, H. (2008). Introduction to information
retrieval, volume 1. Cambridge University Press Cambridge, UK.

Manning, C. and Schütze, H. (1999). Foundations of statistical natural language
processing, volume 59. MIT Press.

Marcus, M., Marcinkiewicz, M., and Santorini, B. (1993). Building a large an-
notated corpus of English: The Penn Treebank. Computational linguistics,
19(2):313–330.

Martins, A. F. T., Smith, N. A., and Xing, E. P. (2009). Concise integer linear
programming formulations for dependency parsing. In Proc. of ACL-IJCNLP.

McCallum, A., Freitag, D., and Pereira, F. (2000). Maximum entropy markov
models for information extraction and segmentation. In Proceedings of the
Seventeenth International Conference on Machine Learning, pages 591–598. Cite-
seer.

114

McCallum, A. and Nigam, K. (1998). A comparison of event models for naive
bayes text classification. In AAAI-98 workshop on learning for text categoriza-
tion, volume 752, pages 41–48. Citeseer.

McDonald, R., Lerman, K., and Pereira, F. (2006). Multilingual dependency
analysis with a two-stage discriminative parser. In Proc. of CoNLL.

McDonald, R. and Satta, G. (2007). On the complexity of non-projective data-
driven dependency parsing. In Proc. of IWPT.

McDonald, R. T., Pereira, F., Ribarov, K., and Hajic, J. (2005). Non-projective
dependency parsing using spanning tree algorithms. In Proc. of HLT-EMNLP.

Meilă, M. (2007). Comparing clusterings—an information based distance. J.
Multivar. Anal., 98(5):873–895.

Melčuk, I. (1988). Dependency syntax: theory and practice. State University of
New York Press.

Merialdo, B. (1994). Tagging English text with a probabilistic model. Computa-
tional linguistics, 20(2):155–171.

Mitchell, T. (1997). Machine learning.

Nivre, J. (2009). Non-projective dependency parsing in expected linear time. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of the AFNLP:
Volume 1-Volume 1, pages 351–359. Association for Computational Linguis-
tics.

Nivre, J., Hall, J., Nilsson, J., Eryiǧit, G., and Marinov, S. (2006). Labeled
pseudo-projective dependency parsing with support vector machines. In
Procs. of CoNLL.

Nocedal, J. and Wright, S. (1999). Numerical optimization. Springer verlag.

Pérez, F. and Granger, B. E. (2007). IPython: a System for Interactive Scientific
Computing. Comput. Sci. Eng., 9(3):21–29.

Petrov, S. and Klein, D. (2007). Improved inference for unlexicalized parsing.
In Human Language Technologies 2007: The Conference of the North American
Chapter of the Association for Computational Linguistics; Proceedings of the Main
Conference, pages 404–411, Rochester, New York. Association for Computa-
tional Linguistics.

Petrov, S. and Klein, D. (2008a). Discriminative log-linear grammars with latent
variables. In Platt, J., Koller, D., Singer, Y., and Roweis, S., editors, Advances
in Neural Information Processing Systems 20 (NIPS), pages 1153–1160, Cam-
bridge, MA. MIT Press.

115

Petrov, S. and Klein, D. (2008b). Sparse multi-scale grammars for discrimina-
tive latent variable parsing. In Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, pages 867–876, Honolulu, Hawaii.
Association for Computational Linguistics.

Rabiner, L. (1989). A tutorial on hidden markov models and selected applica-
tions in speech recognition. In Proc. IEEE, 77(2):257–286.

Ratnaparkhi, A. (1999). Learning to parse natural language with maximum
entropy models. Machine Learning, 34(1):151–175.

Reichart, R. and Rappoport, A. (2009). The NVI clustering evaluation measure.
In Proc. CONLL.

Rosenberg, A. and Hirschberg, J. (2007). V-measure: A conditional entropy-
based external cluster evaluation measure. In EMNLP-CoNLL, pages 410–
420.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386.

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels. The MIT Press,
Cambridge, MA.

Schütze, H. (1995). Distributional part-of-speech tagging. In Proceedings of the
seventh conference on European chapter of the Association for Computational Lin-
guistics, pages 141–148. Morgan Kaufmann Publishers Inc.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. (2007). Pegasos: Primal estimated
sub-gradient solver for svm. In ICML.

Shannon, C. (1948). A mathematical theory of communication. Bell Syst. Tech.
Journ., 27(379):623.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis.
CUP.

Smith, D. A. and Eisner, J. (2008). Dependency parsing by belief propagation.
In Proc. of EMNLP.

Smith, D. A. and Smith, N. A. (2007). Probabilistic models of nonprojective
dependency trees. In Proc. EMNLP-CoNLL.

Smith, N. and Eisner, J. (2005a). Contrastive estimation: Training log-linear
models on unlabeled data. In Proc. ACL. ACL.

Smith, N. and Eisner, J. (2005b). Guiding unsupervised grammar induction us-
ing contrastive estimation. In Proc. of IJCAI Workshop on Grammatical Inference
Applications. Citeseer.

116

Smith, N. A. and Eisner, J. (2006). Annealing structural bias in multilingual
weighted grammar induction. In ACL-44: Proceedings of the 21st International
Conference on Computational Linguistics and the 44th annual meeting of the As-
sociation for Computational Linguistics, pages 569–576, Morristown, NJ, USA.
Association for Computational Linguistics.

Surdeanu, M., Johansson, R., Meyers, A., Màrquez, L., and Nivre, J. (2008). The
CoNLL-2008 shared task on joint parsing of syntactic and semantic depen-
dencies. Proc. of CoNLL.

Tarjan, R. (1977). Finding optimum branchings. Networks, 7(1):25–36.

Taskar, B., Klein, D., Collins, M., Koller, D., and Manning, C. (2004). Max-
margin parsing. In Proc. EMNLP, pages 1–8.

Tesnière, L. (1959). Eléments de syntaxe structurale. Libraire C. Klincksieck.

Tutte, W. (1984). Graph Theory. Addison-Wesley, Reading, MA.

Vapnik, N. V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag,
New York.

117

