
Day 3

Learning Structured
Predictors

In this class, we will continue to focus on sequence classification, but instead of
following a generative approach (like in the previous chapter) we move towards
discriminative approaches.

Table 3.1 shows how the models for classification have counterparts in se-
quential classification. In fact, in the last chapter we discussed the Hidden
Markov model, which can be seen as a generalization of the Naı̈ve Bayes model
for sequences. In this chapter, we will see a generalization of the Perceptron
algorithm for sequence problems (yielding the Structured Perceptron, Collins
2002) and a generalization of Maximum Entropy model for sequences (yielding
Conditional Random Fields, Lafferty et al. 2001). Note that both these gener-
alizations are not specific for sequences and can be applied to a wide range of
models (we will see in tomorrow’s lecture how these methods can be applied
to parsing). Although we will not cover all the methods described in Chap-
ter 1, bear in mind that all of those have a structured counterpart. It should
be intuitive after this lecture how those methods could be extended to struc-
tured problems, given the perceptron example. Before we explain the partic-
ular methods, the next section will talk a bit about feature representation for

Classification Sequences
Generative

Naı̈ve Bayes 1.2 Hidden Markov Models 2.1
Discriminative

Perceptron 1.4.1 Structured Perceptron 3.2
Maximum Entropy 1.5.1 Conditional Random Fields 3.3

Table 3.1: Summary of the methods that we will be covering this lecture.

74

Condition Name
yi = l & t = 0 Initial State
yi = l & yi−1 = m Transition Features
yi = l & yi−1 = m & t = N Final Transition Features
x̄i = a & yi = l Observation Features

Table 3.2: IDFeatures feature set. This set replicates the features used by the
HMM model.

sequences.

arg max
ȳ

= pθ(ȳ|x̄) = θ · f (x̄, ȳ) (3.1)

As in the previous section, ȳ is a sequence so the maximization is over an
exponential number of objects, making it intractable. Again we will assume a
first order markov independence assumption, and so the features will decom-
pose as the model. So Equation 3.1 can be written as:

arg max
ȳ

= ∑
N

∑̄
y

θ · f (n, yn, x̄n) + ∑
N

∑
yn∈Y

θ · f (n, yn, yn−1, x̄n) (3.2)

3.1 Feature Extraction

In this section we will define two simple feature sets. The first one will only use
identity features, and will mimic the features used by the HMM model from
the previous section. This will allow to directly compare the performance of a
generative vs a discriminative approach. Note that although not required, all
the features we will use in this section are binary features (0-1), indicating the
presence or absence of a given condition.

Example 3.1 Simple ID Feature set containing the same features as an HMM model.

0 Ms./NOUN NF: id:Ms.::NOUN init_tag:NOUN
2 1 Haag/NOUN NF: id:Haag::NOUN EF: prev_tag:NOUN::NOUN
2 plays/VERB NF: id:plays::VERB EF: prev_tag:NOUN::VERB

4 3 Elianti/NOUN NF: id:Elianti::NOUN EF: prev_tag:VERB::NOUN
4 ./. NF: id:.::. EF: last_prev_tag:NOUN::.

Table 3.2 depicts the features that are implicit in the HMM, which was the
subject of the previous chapter. These features are indicators of initial, final,
observation and transition events. The fact that we were using a generative

75

Condition Name
yi = l & t = 0 Initial State
yi = l & yi−1 = m Transition Features
yi = l & yi−1 = m & t = N Final Transition Features
x̄i = a & yi = l Observation Features
x̄i = a & a is uppercased & yi = l Uppercase Features
x̄i = a & a contains digit & yi = l Digit Features
x̄i = a & a contains hyphen & yi = l Hyphen Features
x̄i = a & a[0..i]∀i ∈ [1, 2, 3] yi = l Prefix Features
x̄i = a & a[N−i..N]∀i ∈ [1, 2, 3] & yi = l Suffix Features

Table 3.3: Extended feature set. Some features in this set could not be included
in the HMM model.

model has forced us (in some sense) to make strong independence assump-
tions. However, since we now move to a discriminative approach, where we
model P(ȳ|x̄) rather than P(x̄, ȳ), we are not tied anymore to some of these
assumptions. In particular:

• We may use “overlapping” features, e.g., features that fire simultaneously
for many instances. For example, we can use a feature for a word and
another for prefixes and suffixes of that word. This would lead to an
awkward model if we wanted to insist on a generative approach.

• We may use features that depend arbitrarily on the entire input sequence
x̄. On the other hand, we still need to resort to “local” features with re-
spect to the outputs (e.g. looking only at consecutive state pairs), other-
wise decoding algorithms will become more expensive.

Table 3.3 shows examples of features that are traditionally used in POS tagging
with discriminative models. Of course, we could have much more complex
features, looking arbitrarily to the input sequence. We are not going to have
them in this exercise only for performance reasons (to have less features and
smaller caches).

Example 3.2
1 0 Ms./NOUN NF: id:Ms.::NOUN uppercased::NOUN suffix:.::NOUN

suffix:s.::NOUN prefix:M::NOUN prefix:Ms::NOUN init_tag:NOUN
1 Haag/NOUN NF: id:Haag::NOUN uppercased::NOUN suffix:g::NOUN

suffix:ag::NOUN suffix:aag::NOUN prefix:H::NOUN prefix:Ha::
NOUN prefix:Haa::NOUN rare::NOUN EF: prev_tag:NOUN::NOUN

3 2 plays/VERB NF: id:plays::VERB EF: prev_tag:NOUN::VERB
3 Elianti/NOUN NF: id:Elianti::NOUN uppercased::NOUN suffix:i::

NOUN suffix:ti::NOUN suffix:nti::NOUN prefix:E::NOUN prefix:
El::NOUN prefix:Eli::NOUN rare::NOUN EF: prev_tag:VERB::NOUN

5 4 ./. NF: id:.::. EF: last_prev_tag:NOUN::.

76

We consider two kinds of features: node features, which form a vector f N(x̄, yi),
and edge features, which form a vector f E(x̄, yi, yi−1).1 These feature vectors will
receive parameter vectors θN and θE. Similarly as in the previous chapter, we
consider:

• Node Potentials. These are scores for a state at a particular position. They
are given by

ψV(x̄, yi) = exp(θV · f V(x̄, yi)). (3.3)

• Edge Potentials. These are scores for the transitions. They are given by

ψE(x̄, yi, yi−1) = exp(θE · f E(x̄, yi, yi−1)). (3.4)

Let θ = (θN , θE). The conditional probability P(ȳ|x̄) is then defined as
follows:

P(ȳ|x̄) =
1

Z(θ, x̄)
exp

(
∑

i
θV · f V(x̄i, yi) + ∑

i
θE · f E(x̄i, yi, yi−1)

)
(3.5)

=
1

Z(θ, x) ∏
i

ψV(x̄i, yi)ψE(x̄i, yi, yi−1), (3.6)

where

Z(θ, x) = ∑
y∈Y

∏
i

ψV(x̄i, yi)ψE(x̄i, yi, yi−1) (3.7)

is the partition function.
There are three important problems that need to be solved:

1. Given x̄, computing the most likely output sequence ȳ (the one which
maximizes P(ȳ|x̄).

2. Compute the posterior marginals P(yi|x̄) at each position i.

3. Compute the partition function.

Interestingly, all these problems can be solved by using the same algorithms
(just changing the potentials) that were already implemented for HMMs: the
Viterbi algorithm (for 1) and the forward-backward algorithm (for 2–3).

1To make things simpler, we will assume later on that edge features do not depend on the input
x̄—but they could, without changing at all the decoding algorithm.

77

Algorithm 10 Averaged Structured perceptron
1: input: dataset D, number of rounds T
2: initialize w1 = 0
3: for t = 1 to T do
4: choose m = m(t) randomly
5: take training pair (x̄m, ȳm) and predict using the current model:

ˆ̄y← arg max
ȳ′

wt · f (x̄m, ȳ′)

6: update the model: wt+1 ← wt + f (x̄m, ȳm)− f (x̄m, ˆ̄y)
7: end for
8: output: the averaged model ŵ← 1

T ∑T
t=1 wt

3.2 Structured Perceptron

The structured perceptron (Collins, 2002), namely its averaged version is a very
simple algorithm that relies on Viterbi decoding and very simple additive up-
dates. In practice this algorithm is very easy to implement and behaves re-
markably well in a variety of problems. These two characteristics make the
structured perceptron algorithm a natural first choice to try and test a new
problem or a new feature set.

Recall what you learned from §1.4.1 on the perceptron algorithm and com-
pare it against the structured perceptron (Algorithm 10).

There are only two differences:

• Instead of finding arg maxy′∈Y for a given variable, it finds the arg maxȳ,
the best sequence. We can do this by using the Viterbi algorithm with the
node and edge potentials (actually, the log of those potentials) defined in
Eqs. 3.3–3.4, along with the assumption that the features decompose as
the model, as explained in the previous section.

• Instead of updating the features for the entire y′ (in this case ȳ) we update
the features only at the positions were the labels are different.

Exercise 3.1 In this exercise you will test the structured perceptron algorithm using
different feature sets for Part-of-Speech Tagging.

Start by loading the corpus and creating an IDFeature class. Next initialize the
perceptron and train the algorithm.

1 import sys
sys.path.append("readers/")

3 sys.path.append("sequences/")

5 import pos_corpus as pcc

78

import id_feature as idfc
7
import structured_perceptron as spc

9

11 posc = pcc.PostagCorpus("en",max_sent_len=15,train_sents=1000,
dev_sents=200,test_sents=200)

id_f = idfc.IDFeatures(posc)
13 id_f.build_features()

sp = spc.StructuredPercetron(posc,id_f)
15 sp.nr_rounds = 20

sp.train_supervised(posc.train.seq_list)
17

Epoch: 0 Accuracy: 0.617797
19 Epoch: 1 Accuracy: 0.797775

Epoch: 2 Accuracy: 0.864115
21 Epoch: 3 Accuracy: 0.901794

Epoch: 4 Accuracy: 0.925644
23 Epoch: 5 Accuracy: 0.932659

Epoch: 6 Accuracy: 0.938872
25 Epoch: 7 Accuracy: 0.946087

Epoch: 8 Accuracy: 0.949193
27 Epoch: 9 Accuracy: 0.950696

Epoch: 10 Accuracy: 0.952701
29 Epoch: 11 Accuracy: 0.952600

Epoch: 12 Accuracy: 0.956910
31 Epoch: 13 Accuracy: 0.956108

Epoch: 14 Accuracy: 0.956408
33 Epoch: 15 Accuracy: 0.958413

Epoch: 16 Accuracy: 0.957110
35 Epoch: 17 Accuracy: 0.959014

Epoch: 18 Accuracy: 0.959315
37 Epoch: 19 Accuracy: 0.960216

Now evaluate the learned model on both the development and test set.

1 pred_train = sp.viterbi_decode_corpus(posc.train.seq_list)
pred_dev = sp.viterbi_decode_corpus(posc.dev.seq_list)

3 pred_test = sp.viterbi_decode_corpus(posc.test.seq_list)
eval_train = sp.evaluate_corpus(posc.train.seq_list,pred_train)

5 eval_dev = sp.evaluate_corpus(posc.dev.seq_list,pred_dev)
eval_test = sp.evaluate_corpus(posc.test.seq_list,pred_test)

7 print "Structured Percetron - ID Features Accuracy Train: %.3f
Dev: %.3f Test: %.3f"%(eval_train,eval_dev,eval_test)

9 Out[]: Structured Percetron - ID Features Accuracy Train: 0.867
Dev: 0.831 Test: 0.790

79

Compare with the results achieved with the HMM model.

1 Best Smoothing 1.000000 -- Test Set Accuracy: Posterior Decode
0.809, Viterbi Decode: 0.777

Even using a similar feature set the perceptron yields better results. Per-
form some error analysis and figure out what are the main errors the percep-
tron is making. Compare them with the errors made by the HMM model.
(Hint: use the methods developed in the previous lecture to help you with
the error analysis).

Exercise 3.2 Repeat the previous exercise using the extended feature set. Compare the
results.

1 import extended_feature as exfc

3 ex_f = exfc.ExtendedFeatures(posc)
ex_f.build_features()

5 sp = spc.StructuredPercetron(posc,ex_f)
sp.nr_rounds = 20

7 sp.train_supervised(posc.train.seq_list)

9 Epoch: 0 Accuracy: 0.638741
Epoch: 1 Accuracy: 0.807596

11 Epoch: 2 Accuracy: 0.876541
Epoch: 3 Accuracy: 0.907406

13 Epoch: 4 Accuracy: 0.921836
Epoch: 5 Accuracy: 0.939974

15 Epoch: 6 Accuracy: 0.940575
Epoch: 7 Accuracy: 0.948893

17 Epoch: 8 Accuracy: 0.948893
Epoch: 9 Accuracy: 0.950095

19 Epoch: 10 Accuracy: 0.954404
Epoch: 11 Accuracy: 0.957110

21 Epoch: 12 Accuracy: 0.954605
Epoch: 13 Accuracy: 0.956910

23 Epoch: 14 Accuracy: 0.956509
Epoch: 15 Accuracy: 0.956609

25 Epoch: 16 Accuracy: 0.958012
Epoch: 17 Accuracy: 0.959014

27 Epoch: 18 Accuracy: 0.957411
Epoch: 19 Accuracy: 0.958413

29
pred_train = sp.viterbi_decode_corpus(posc.train.seq_list)

31 pred_dev = sp.viterbi_decode_corpus(posc.dev.seq_list)
pred_test = sp.viterbi_decode_corpus(posc.test.seq_list)

33

80

eval_train = sp.evaluate_corpus(posc.train.seq_list,pred_train)
35 eval_dev = sp.evaluate_corpus(posc.dev.seq_list,pred_dev)

eval_test = sp.evaluate_corpus(posc.test.seq_list,pred_test)
37

print "Structured Percetron - Extended Features Accuracy Train:
%.3f Dev: %.3f Test: %.3f"%(eval_train,eval_dev,

eval_test)
39

Structured Percetron - Extended Features Accuracy Train: 0.946
Dev: 0.868 Test: 0.840

Compare the errors obtained with the two different feature sets. Perform some
feature analysis, what errors were correct by using more features? Can you think of
other features to use to solve the errors found?

3.3 Conditional Random Fields

Conditional Random Fields (CRF) (Lafferty et al., 2001) can be seen as an ex-
tension of the Maximum Entropy (ME) models to structured problems.2

CRFs are globally normalized models: the probability of a given sentence is
given by Equation 3.5. Going from a maximum entropy model (in multi-class
classification) to a CRF mimics the transition discussed above from perceptron
to structured perceptron:

• Instead of finding the posterior marginal P(y′|x) for a given variable, it
finds the posterior marginals for all factors (nodes and edges), P(ȳi|x̄)
and P(ȳi, ȳi−1|x̄). We can compute this quantities by using the forward-
backward algorithm with the node and edge potentials defined in Eqs. 3.3–
3.4, along with the assumption that the features decompose as the model,
as explained in the previous section.

• The features are updated factor wise (i.e., for each node and edge).

Algorithm 11 shows the pseudo code to optimize a CRF with a batch gra-
dient method (in the exercise, we will use a quasi-Newton method, L-BFGS).
Again, we can also take an online approach to optimization, but here we will
stick with the batch one.

Exercise 3.3 Repeat Exercises 3.1–3.2 using a CRF model instead of the perceptron
algorithm. Report the results.

Here is the code for the simple feature set:
2An earlier, less successful, attempt to perform such an extension was via Maximum Entropy

Markov models (MEMM) (McCallum et al., 2000). There each factor (a node or edge) is a locally
normalized maximum entropy model. A shortcoming of MEMMs is its so-called labeling bias (Bot-
tou, 1991), which makes them biased towards states with few successor states (see Lafferty et al.
(2001) for more information).

81

Algorithm 11 Batch Gradient Descent for Conditional Random Fields
1: input: D, λ, number of rounds T, learning rate sequence (ηt)t=1,...,T
2: initialize θ1 = 0
3: for t = 1 to T do
4: for m = 1 to M do
5: take training pair (xm, ym) and compute conditional probabilities us-

ing the current model, for each ȳ:

Pθt(ȳ|x̄) =
1

Z(θt, x̄)
exp

(
∑

i
θt

V · f V(x̄, yi) + ∑
i

θt
E · f E(x̄, yi, yi−1)

)

6: compute the feature vector expectation:

Eθt [f (x̄m, ȳm)] = ∑̄
y

Pθt(ȳm|x̄m) f (x̄m, ȳm)

7: end for
8: choose the stepsize ηt using, e.g., Armijo’s rule
9: update the model:

θt+1 ← (1− ληt)θ
t + ηt M−1

M

∑
m=1

(
f (x̄m, ȳm)− Eθt [f (x̄m, ȳm)]

)
10: end for
11: output: θ̂← θT+1

1 import crf_batch as crfc
posc = pcc.PostagCorpus("en",max_sent_len=15,train_sents=1000,

dev_sents=200,test_sents=200)
3 id_f = idfc.IDFeatures(posc)
id_f.build_features()

5

7 crf = crfc.CRF_batch(posc,id_f)
crf.train_supervised(posc.train.seq_list)

9
pred_train = crf.viterbi_decode_corpus(posc.train.seq_list)

11 pred_dev = crf.viterbi_decode_corpus(posc.dev.seq_list)
pred_test = crf.viterbi_decode_corpus(posc.test.seq_list)

13
eval_train = crf.evaluate_corpus(posc.train.seq_list,pred_train

)
15 eval_dev = crf.evaluate_corpus(posc.dev.seq_list,pred_dev)

eval_test = crf.evaluate_corpus(posc.test.seq_list,pred_test)
17

82

print "CRF - ID Features Accuracy Train: %.3f Dev: %.3f Test:
%.3f"%(eval_train,eval_dev,eval_test)

19 Out[]: CRF - ID Features Accuracy Train: 0.920 Dev: 0.863 Test:
0.830

Here is the code for the extended feature set:

1
posc = pcc.PostagCorpus("en",max_sent_len=15,train_sents=1000,

dev_sents=200,test_sents=200)
3 ex_f = exfc.ExtendedFeatures(posc)
ex_f.build_features()

5

7 crf = crfc.CRF_batch(posc,ex_f)
crf.train_supervised(posc.train.seq_list)

9
pred_train = crf.viterbi_decode_corpus(posc.train.seq_list)

11 pred_dev = crf.viterbi_decode_corpus(posc.dev.seq_list)
pred_test = crf.viterbi_decode_corpus(posc.test.seq_list)

13
eval_train = crf.evaluate_corpus(posc.train.seq_list,pred_train

)
15 eval_dev = crf.evaluate_corpus(posc.dev.seq_list,pred_dev)

eval_test = crf.evaluate_corpus(posc.test.seq_list,pred_test)
17

print "CRF - Extended Features Accuracy Train: %.3f Dev: %.3f
Test: %.3f"%(eval_train,eval_dev,eval_test)

19
Out[]: CRF - Extended Features Accuracy Train: 0.924 Dev: 0.872

Test: 0.831

83

