
Day 2

Sequence Models

In this class, we relax the assumption that datapoints are independently and
identically distributed (i.i.d.) by moving to a scenario of structured prediction,
where the inputs are assumed to have temporal or spacial dependencies. We
start by considering sequential models, which correspond to a chain structure:
for instance, the words in a sentence. In this lecture, we will use part-of-speech
tagging as our example task.

The problem setting is the following: let X = {x̄1, . . . , x̄D} be a training set
of independent and identically-distributed random variables. In this work x̄d

(for notation simplicity we will drop the superscript d when considering an iso-
lated example) corresponds to a sentence in natural language and decomposes
as a sequence of observations of length N: x̄ = x1 . . . xN . Each xn is a discrete
random variable (a word), taking a value v from a finite vocabulary V. Each x̄
has an unknown hidden structure ȳ that we want to predict. The structures are
sequences ȳ = y1 . . . yN of the same length N as the observations. Each hidden
state yn is a discrete random variable and can take a value y from a discrete
vocabulary Y.

We focus on the well known Hidden Markov Model (HMM) on section
2.1, where we describe how to estimate its parameters from labeled data 2.2.
We will then move to how to find the most likely hidden sequence (decod-
ing) given an observation sequence and a parameter set 2.3. This section will
explain the required inference algorithms (Viterbi and Forward-Backward) for
sequence models. These inference algorithms will be fundamental for the rest
of this lecture, as well as for the next lecture on discriminative training of se-
quence models. Finally, section 2.4 will describe the task of part-of-speech tag-
ging, and how HMM are suitable for this task.

53

Notation
X training set
D number of training examples
x̄ = x1 . . . xN observation sequence
N size of the observation sequence
xi observation at position i in the sequence
V observation values set
|V| number of distinct observation types
vi particular observation, i ∈ |V|
ȳ = y1 . . . yN hidden state sequence
yi hidden state at position i in the sequence
Y hidden states value set
|Y| number of distinct hidden value types
yi particular hidden value, i ∈ |Y|

Table 2.1: General notation used in this class

2.1 Hidden Markov Models

The Hidden Markov Model (HMM) is one of the most common sequence prob-
abilistic models, and has been applied to a wide variety of tasks. More gener-
ally, an HMM is a particular instance of a chain directed probabilistic graphical
model, or a Bayesian network. In a Bayesian network, every random variable is
represented as a node in a graph, and the edges in the graph are directed and
represent probabilistic dependencies between the random variables. For an
HMM, the random variables are divided into two sets, the observed variables,
in our case x, and the hidden variables, in our case y. In the HMM terminol-
ogy, the observed variables are called observations, and the hidden variables are
called states.

As you may find out in today’s lab session, implementing the inference
routines of the HMM can be challenging, and debugging can become hard in
large datasets. We thus start with a small and very simple (very unrealistic!)
example. The idea is that you may compute the desired quantities by hand and
check if your implementation yields the correct result.

Example 2.1 Consider a person, which is only interested in four activities:

• walking in the park (w);

• shopping (s);

• cleaning his apartment (c);

• playing tennis (t).

54

The choice of what to do on a given day is determined exclusively by the weather at that
day. The weather can be either rainy (r) or sunny (s). Now, suppose that we observe
what the person did on a sequence of days; can we use that information to predict the
weather each of those days? To tackle this problem, we assume that the weather behaves
as a discrete Markov Chain: the weather on a given day is independent of everything
else given the weather on the previous day. The entire system is that of a hidden
Markov model (HMM).

Assume we are asked to predict what was the weather on two different sequences of
days given the following observations: “walk walk shop clean” and “clean walk tennis
walk”. This will be our test set.

To train our model, we will be given access to three different sequences of days,
containing both the activities and the weather on those days, namely: “walk/rainy
walk/sunny shop/sunny clean/sunny”, “walk/rainy walk/rainy shop/rainy clean/rainy
” and “shop/rainy walk/rainy shop/rainy clean/rainy”. This will be our training set.

Figure 2.1 show the HMM model the first sequence of our simple example
(the notation is summarized in Table 2.2).

HMM Example
x̄ observed sentence “w w s c”
N = 4 observation length
i, j positions in the sentence: i, j ∈ {1 . . . N}
V = {w, s, c, t} observation vocabulary
p, q indexes into the vocabulary p, q ∈ |V|
xi = vq, xj = vp observation at position xi (xj) has value vq (vp)
Y = {r, s} hidden values vocabulary
l, m indexes into the hidden values vocabulary
yi = yl , yj = ym state at position yi (yj) has hidden value yl (ym)

Table 2.2: HMM notation for the running example.

A first order HMM model has the following independence assumptions
over the joint distribution pθ(x̄, ȳ):

• Independence of previous states. The probability of being in a given
state yl at position yi only depends on the state ym of the previous posi-
tion yi−1, that is pθ(yi = yl | yi−1 = ym, yi−2 . . . y1) = pθ(yi = yl | yi−1 =
ym), defining a first order Markov chain.1

• Homogeneous transition. The probability of making a transition from
state yl to state ym is independent of the particular position in the sen-

1The order of the Markov chain depends on the number of previous positions taken into ac-
count. The remainder of the exposition can be easily extend to higher order HMM, giving the
model more expressiveness, but making inference harder.

55

r s s s

w w s c

Figure 2.1: HMM structure, for the simple running example.

tence, for all i, j ∈ {1, . . . , N}: pθ(yi = yl | yi−1 = ym) = pθ(yj = yl |
yj−1 = ym), so pθ(yi = yl | yi−1 = ym) = pθ(yl | ym).

• Observation independence. The probability of observing vq at position
i is fully determined by the state at that position, that is pθ(xi = vq | yi =
yl), and this probability is independent of the particular position, that is
pθ(xi = vq | yi = yl) = pθ(vq | yl).

These conditional independence assumptions are crucial to allow efficient in-
ference, as will be described. We also need to define a start probability, the
probability of starting at state yl . Furthermore, when dealing with text, it is
usual to break the homogeneous transition for the last position, and model the
final transitions as independent parameters. The four probability distributions
that define the HMM model are summarized in Table 2.3. For each one of them
we will use a short notation to simplify the exposition.

HMM distributions
Name probability distribution short notation
initial probability pθ(y1 = yl) πl
final probability pθ(yT = yl | yT−1 = ym) fm,l
transition probability pθ(yi = yl | yi−1 = ym) am,l
observation probability pθ(xi = vq | yi = yl) bl(xi)

Table 2.3: HMM probability distributions.

The joint distribution can be expressed as:

pθ(x̄, ȳ) = πy1 by1(x1)[
N−1

∏
i=2

ayi−1,yi byi (xi)] fyN−1,yN byN (xN), (2.1)

56

short notation probability distribution —parameters— constraint
πj pθ(y1 = yj) |Y| - 1 ∑y∈Y πj = 1;

al,m pθ(yi = yl | yi−1 = ym) (|Y| − 1)2 ∑yl∈Y am,l = 1;
fl,m pθ(yN = yl | yN−1 = ym) (|Y| − 1)2 ∑yl∈Y tm,l = 1;

bq(l) pθ(xi = vq | yi = yl) (|V| − 1)|Y| ∑vq∈V bq(l) = 1.

Table 2.4: Multinomial parametrization of the HMM distributions.

which for the example from Figure 2.1 is:

pθ(x̄, ȳ) = πrbr(”w”)ar,sbs(”w”)as,sbs(”s”) fs,sbs(”c”). (2.2)

In the next section we turn our attention to estimating the different proba-
bilities distributions of the model πl , am,l , fm,l and bl(xi).

Exercise 2.1 Load the simple sequence dataset: From the ipython command line (Note
start ipython from the code directory), create a simple sequence object and look at the
training and test set.

1 In[]: run readers/simple_sequence.py
In[]: simple = SimpleSequence()

3 In[]: simple.train
Out[]: [w/r w/s s/s c/s , w/r w/r s/r c/s , w/s s/s s/s c/s]

5 In[]: simple.test
Out[]: [w/r w/s s/s c/s , c/s w/s t/s w/s]

2.2 Finding the Maximum Likelihood Parameters

So far we have not committed to any form for the probability distributions, πl ,
am,l , fm,l and bl(xi). In both applications addressed in this class, both the obser-
vations and the hidden variables are discrete. The most common approach is
to model each of these probability distributions as multinomial distributions,
summarized in Table 2.4.

We will refer to the set of all parameters as θ. The HMM model is trained
to maximize the Log Likelihood of the data. Given a dataset D the objective
being optimized is:

arg max
θ

∑
x̄,ȳ∈D

log pθ(x̄, ȳ) (2.3)

Multinomial distributions are attractive for several reasons: first of all they
are easy to implement; secondly the estimation of the maximum likelihood

57

parameters has a simple closed form. They are just normalized counts of events
that occur in the corpus (the same as the Naı̈ve Bayes from previous class).

Given a labeled corpus the estimation process consists in counting how
many times each event occurs in the corpus and normalize the counts to form
proper probability distributions. Let us define the following quantities, called
sufficient statistics, that represent the counts of each event in the corpus:

Initial Counts : ic(yl) = ∑
x̄,ȳ∈D

1(y1 = yj); (2.4)

Final Counts : f c(yl , ym) = ∑
x̄,ȳ∈D

1(yN = yl | yN−1 = ym); (2.5)

Transition Counts : tc(yl , ym) = ∑
x̄,ȳ∈D

N−1

∑
i=1

1(yi = yl | yi−1 = ym); (2.6)

State Counts : sc(vq, yl) = ∑
x̄,ȳ∈D

N

∑
i=1

1(xi = vq | yi = yl) (2.7)

Note that 1 is an indicator function that has the value one when the par-
ticular event happens, and zero otherwise. In words the previous equations
amount to do a pass over the training corpus and count how many times each
even occurs: e.g. the word “w” appears with state “s”, or state “s” follows
another state “s”, or state “s” begins the sentence.

After computing the counts, one can perform some sanity checks to make
sure the implementation is correct. Summing over all entries of each count
table we should observe the following:

• Initial Counts: - Should sum to the number of sentences.

• Final Counts: - Should sum to the number of sentences.

• Transition Counts: - Should sum to the number of tokens minus 2 times
the number of sentences. Note that there are N-1 edges for each sentence,
and the last edge is being accounted by the final transitions. So this leaves
us with N-2 edges per sentence, where N is the number of tokens in that
sentence.

• Observation Counts: - Should sum to the number of tokens.

Exercise 2.2 Convince yourself of the sanity check described above.
Implement a method to sanity check the counts table.

def sanity_check_counts(self,seq_list):

58

Collect the counts from a supervised corpus using method collect counts from corpus(self,sequence list)
and make sure your sanity check method is correct.

1 In []: run sequences/hmm.py
In []: hmm = HMM(simple)

3 In []: hmm.collect_counts_from_corpus(simple)
In []: hmm.sanity_check_counts(simple)

5 Init Counts match
Final Counts match

7 Transition Counts match
Observations Counts match

Using the sufficient statistics (counts) the parameter estimates are:

π̂l =
ic(yl)

∑ym∈Y ic(ym)
(2.8)

f̂l,m =
f c(yl , ym)

∑ym∈Y f c(yl , ym)
(2.9)

âl,m =
tc(yl , ym)

∑ym∈Y tc(yl , ym)
(2.10)

b̂l(vq = o) =
sc(vq, yl)

∑vp∈V sc(vp, yl)
(2.11)

Exercise 2.3 Implement a function that estimates the maximum likelihood estimates
for the parameters given the corpus in the class HMM. The function header is in the
hmm.py file.

def train_supervised(self,sequence_list):

Run this function given the simple dataset and compare the results with ones given (If
the results are the same then you are ready to go).

1 In[]: run sequences/hmm.py
In[]: hmm = HMM(simple)

3 In[]: hmm.train_supervised(simple.train)
In []: hmm.init_probs

5 Out[]:
array([[0.66666667],

7 [0.33333333]])
In []: hmm.transition_probs

9 Out[]:
array([[0.66666667, 0.],

11 [0.33333333, 1.]])

59

In []: hmm.final_probs
13 Out[]:

array([[0., 0.],
15 [1., 1.]])

In []: hmm.observation_probs
17 Out[]:

array([[0.75 , 0.25],
19 [0.25 , 0.375],

[0. , 0.375],
21 [0. , 0.]])

2.3 Finding the most likely sequence - Decoding

Given the learned parameters and an observation x̄ we want to find the best
hidden state sequence ȳ∗. There are several ways to define what we mean by
the best ȳ∗, for instance, the best assignment to each hidden variable yi and
the best assignment to the sequence ȳ as a whole. The first way, normally
called Posterior decoding consists in picking the highest state posterior for
each position in the sequence:

ȳ∗ = arg max
y1 ...yN

γi(yi), (2.12)

where γi(yi) is the posterior probability P(yi|x̄). This method does not guar-
antee that the sequence ȳ∗ is a valid sequence of the model. For instance there
might be a transition probability between two of the best node posteriors with
probability zero.

The second approach called Viterbi decoding consists in picking the best
global hidden state sequence ȳ.

ȳ∗ = arg max
ȳ

pθ(x̄, ȳ). (2.13)

Both approaches rely on dynamic programming making use of the inde-
pendence assumptions of the HMM model over an alternative representation
of the HMM called a Trellis (Figure 2.2).

This representation unfolds all possible states for each position and makes
explicit the independence assumption, each position only depends on the pre-
vious position. Figure 2.2 shows the trellis for the particular example in Figure
2.1.

Each column represents a position, in the sentence as is associated with its
observation, and each row represents a possible state. For the algorithms de-
scribed in the following section it would be useful to define a new re-parametrization

60

r

s

r

s

r

s

r

s

Figure 2.2: Trellis representation of the HMM in Figure 2.1, for the observation
sequence “w w s c”, where each hidden variable can take the values r, s.

of the model, in terms of node potentials φn(l) (the value of the boxes in Figure
2.2) and edge potentials φn(l, m) (the value of the links in Figure 2.2). There is
a direct mapping from the HMM parameters to this new representation:

• Edge Potentials - correspond to the transition parameters, with the excep-
tion of the edges into the last position that correspond to the final transi-
tion parameters.

• Node Potentials - correspond to the observation parameters for a given
state and the observation at that position. The first position is the excep-
tion and corresponds to the product between the observation parameters
for that state and the observation in that position with the initial param-
eters for that state.

Although this re-parametrization simplifies the exposition, and will be used
in this lectures, it is not necessarily very practical since we will be reproducing
several values (for instance the transition parameters for each position). Given
the node potentials and edge potentials the probability of the sequence form
the example is:

pθ(x̄, ȳ) = φ1(r)φ1(r, s)φ2(s)φ2(s, s)φ3(s)φ3(s, s)φ4(s). (2.14)

Exercise 2.4 Convince yourself that the Equation 2.14 is equivalent to equation 2.2
Implement a function that builds the node and edge potentials for a given sequence.

The function head is in the hmm.py file:

1 def build_potentials(self,sequence):

Run this function for the first training sequence from the simple dataset and com-
pare the results given (If the results are the same then you are ready to go).

1 In[]: run sequences/hmm.py

61

In[]: hmm = HMM(simple)
3 In[]: hmm.train_supervised(simple.train)
In[]: node_potentials,edge_potentials = hmm.build_potentials(

simple.train.seq_list[0])
5 In []: node_potentials
Out[]:

7 array([[0.5 , 0.75 , 0.25 , 0.],
[0.08333333, 0.25 , 0.375 , 0.375]])

9
In []: edge_potentials

11 Out[]:
array([[[0.66666667, 0.66666667, 0.],

13 [0.33333333, 0.33333333, 1.]],

15 [[0. , 0. , 0.],
[1. , 1. , 1.]]])

2.3.1 Posterior Decoding

Posterior decoding consists in picking the highest state posterior for each posi-
tion in the sequence:

ȳ∗ = arg max
y1 ...yN

γi(yi). (2.15)

For a given sequence, the sequence posterior distribution is the probability
of a particular hidden state sequence given that we have observed a particular
sentence. Moreover, we will be interested in two other posteriors distributions:
the state posterior distribution, corresponding to the probability of being in a
given state in a certain position given the observed sentence; the transition
posterior distribution, which is the probability of making a particular transi-
tion, from position i to i + 1 given the observed sentence.

Sequence Posterior : pθ(ȳ | x̄) =
pθ(x̄, ȳ)
pθ(x̄)

; (2.16)

State Posterior : γi(yl) = pθ(yi = yl | x̄); (2.17)

Transition Posterior : ξi(yl , ym) = pθ(yi = yl , yi+1 = ym | x̄). (2.18)

To compute the posteriors a first step is to be able to compute the likelihood
of the sequence pθ(x̄), which corresponds to summing the probability of all
possible hidden state sequences.

Likelihood : pθ(x̄) = ∑̄
y

pθ(x̄, ȳ). (2.19)

62

r

s

r

s

r

s

r

s

r

s

r

s

r

s

r

s

Figure 2.3: Forward trellis for the first sentence of the training data at position
1 (left) and at position 2 (right)

The number of possible hidden state sequences is exponential in the length of
the sentence (|Y|N), which makes summing over all of them hard. In this partic-
ular small example there are 24 = 16 such paths and we can actually enumerate
them explicitly and calculate their probability using Equation 2.14. But this is
as far as it goes, for part-of-speech induction with a small tagset of 12 tags and
a medium size sentence of length 10, there are 1210 = 61917364224 such paths.
Yet, we must be able to compute this sum (sum over ȳ) to compute the above
likelihood formula, this is called the inference problem. For sequence models ,
there is a well know dynamic programming algorithm, the Forward Backward
algorithm (FB), that allows the computation to be performed in linear time, by
making use of the independence assumptions.

The FB algorithm relies on the independence of previous states assumption,
which is illustrated in the trellis view by only having arrows between consec-
utive states. The FB algorithm defines two auxiliary probabilities, the forward
probability and the backward probability.

Forward Probability : αi(yl) = pθ(yi = yl , x1 . . . xi) (2.20)

The forward probability represents the probability that in position i we are in
state yi = yl and that we have observed x̄ up to that position. The forward
probability is defined by the following recurrence (we will use the marginals
parametrization of the model):

α1(yl) = φ1(l) (2.21)

αi(yl) =

[
∑

ym∈Y
φ(i−1)(m, l)αi−1(ym)

]
φi(l) (2.22)

At position 1, the probability of being in state “r” corresponding to being
in state “r” and observing word “w” is just the node marginal for that position
φ1(r) = α1(r) (see Figure 2.3 left). At position 2 the probability of being in
state “s” and observing the sequence of words “w w” corresponds to the sum
of all possible ways of reaching position 2 in state “s” namely: “rs” or “ss”
(see Figure 2.3 right). The probability of the first is φ1(r)φ1(r, s)φ2(s) and the

63

second is φ1(s)φ1(s, s)φ2(s), so:

α2(s) = φ1(r)φ1(r, s)φ2(s) + φ1(s)φ1(s, s)φ2(s)

α2(s) = [φ1(r)φ1(r, s)φ2(s) + φ1(s)φ1(s, s)] φ2(s)

α2(s) = ∑
y∈Y

[φ1(y)φ1(y, s)φ2(s)]

α2(s) = ∑
y∈Y

[α1(y)φ1(y, s)φ2(s)]

Using the forward trellis one can compute the likelihood by summing over
all possible hidden states for the last position.

pθ(x̄) = ∑̄
y

pθ(x̄, ȳ) = ∑
y∈Y

αN(y). (2.23)

Although the forward probability is enough to calculate the likelihood of
a given sequence, we will also need the backward probability to calculate the
node and edge posteriors. The backward probability, represents the probability
of observing x̄ from position i+ 1 up to N, given that at position i we are at state
yi = yl :

Backward Probability : βi(yl) = pθ(xi+1...xN |yi = yl). (2.24)

The backward recurrence is given by:

βN(yl) = 1 (2.25)

βi(yl) = ∑
ym∈Y

φi(l, m)φi+1(m)βi+1(ym). (2.26)

The backward probability is similar to the forward probability, but operates
in the inverse direction. At position N there are no more observations, and
the backward probability is set to 1. At position i the probability of having
observed the future and being in state yl , is given by the sum for all possible
states of the probability of having transitioned from position i in state yl to
position i + 1 with state ym and observed xi+1 at time i + 1 and the future given
by βi+1(yi+1 = ym).

With the FB probability one can compute the likelihood of a given sentence
using any position in the sentence.

pθ(x̄) = ∑̄
y

pθ(x̄, ȳ) = ∀i ∑
y∈Y

αi(y)βi(y). (2.27)

Note that for time N, βN(y) = 1 and we get back to equation 2.23. Although
redundant, this fact is useful when implementing an HMM as a sanity check
that the computations are being performed correctly, since one can compare the

64

Algorithm 7 Forward Backward algorithm
1: input: sentence x̄, parameters θ
2: Forward pass: Compute the forward probabilities
3: Initialization
4: for yl ∈ Y do
5: α1(yl) = φ1(yl)
6: end for
7: for i = 2 to N do
8: for yl ∈ Y do

9: αi(yl) =

[
∑

m∈Y
φ(i−1)(m, l)αi−1(ym)

]
φi(l)

10: end for
11: end for
12: Backward pass: Compute the backward probabilities
13: Initialization
14: for yl ∈ Y do
15: βN(yl) = 1
16: end for
17: for i = N − 1 to 1 do
18: βi(yl) = ∑

ym∈Y
φi(l, m)φi+1(m)βi+1(ym).

19: end for
20: output: The forward and backward probabilities α and β

likelihood at each position that should be the same. The FB algorithm may fail
for long sequences since the nested multiplication of numbers smaller than 1
may easily become smaller than the machine precision. To avoid that problem,
Rabiner (1989) presents a scaled version of the FB algorithm that avoids this
problem.

Algorithm 7 shows the pseudo code for the forward backward algorithm.

Exercise 2.5 Given the implementation of the forward pass of the forward backward
algorithm in the file forward backward.py implement the backward pass.

1
def forward_backward(node_potentials,edge_potentials):

3 H,N = node_potentials.shape
forward = np.zeros([H,N],dtype=float)

5 backward = np.zeros([H,N],dtype=float)
forward[:,0] = node_potentials[:,0]

7 ## Forward loop
for pos in xrange(1,N):

9 for current_state in xrange(H):
for prev_state in xrange(H):

11 forward_v = forward[prev_state,pos-1]

65

trans_v = edge_potentials[prev_state,
current_state,pos-1]

13 prob = forward_v*trans_v
forward[current_state,pos] += prob

15 forward[current_state,pos] *= node_potentials[
current_state,pos]

Backward loop
17 ## Your code

return forward,backward

Use the provided function that makes use of Equation 2.27 to make sure your im-
plementation is correct:

1 In[]: run sequences/hmm.py
In[]: hmm = HMM(simple)

3 In[]: hmm.train_supervised(simple.train)
In[]: forward,backward = hmm.forward_backward(simple.train.

seq_list[0])
5 In []: sanity_check_forward_backward(forward,backward)
Out[]:

7 array([[0.03613281],
[0.03613281],

9 [0.03613281],
[0.03613281]])

Moreover, given the forward and backward probabilities one can compute
both the state and transition posteriors.

State Posterior : γi(yl) = pθ(yi = yl | x̄) =
αi(yl)βi(yl)

pθ(x̄)
; (2.28)

Transition Posterior : ξi(yl , ym) = pθ(yi = yl , yi+1 = ym | x̄)

=
αi(yl)φi(l, m)φi+1(m)βi+1(ym)

pθ(x̄)
. (2.29)

A graphical representation of these posteriors is illustrated in figure 2.4. On
the left it is shown that αi(yl)βi(yl) returns the sum of all paths that contain the
state yi, weighted by pθ(x̄, ȳ), and on the right we can see that αi(yl)φi(l, m)φi+1(m)βi+1(ym)
returns the same for all paths containing the edge from yl to ym. Thus, these
posteriors can be seen as the ratio of the number of paths that contain the given
state or transition (weighted by pθ(x̄, ȳ)) and the number of possible paths in
the graph pθ(x̄). As an practical example, given that the person perform the
sequence of actions “w w s c”, we want to know the probability of having been

66

r

s

r

s

r

s

r

s

αi(yl) βi(ym)

r

s

r

s

r

s

r

s

φi(l,m) φi+1(m)αi(yl) βi+1(ym)

Figure 2.4: A graphical representation of the components in the state and tran-
sition posteriors.

Algorithm 8 Posterior Decoding algorithm
1: input: The forward and backward probabilities α and β.
2: Compute Likelihood: Compute the likelihood of the sentence
3: L = 0
4: for yl ∈ Y do
5: pθ(x̄) = pθ(x̄) + αN(yl)
6: end for
7: ˆ̄y = []
8: for i = 1 to N do
9: max = 0

10: for yl ∈ Y do
11: γi(yl) =

αi(yl)βi(yl)
pθ(x̄)

12: if γi(yl) > max then
13: max = γi(yl)
14: ŷi = yl
15: end if
16: end for
17: end for
18: output: the posterior path ˆ̄y

raining in the second day. The state posterior probability for this event can be
seen as the probability that the sequence of actions “walk walk shop clean” was
generated by a sequence of weathers and where it was raining in the second
day. In this case, the possible sequences would be ”r r r r”, ”s r r r”, ”r r s r”, ”r
r r s”, ”s r s r”, ”s r r s”, ”r r s s”, and ”s r s s”.

Using the node posteriors we are ready to perform posterior decoding. Al-
gorithm 8 shown the posterior decoding algorithm.

Exercise 2.6 Given the node and edge posterior formulas 2.17,2.18 and the forward
and backward formulas 2.20,2.24 convince yourself that formulas 2.28,2.29 are correct.

Compute the node posteriors for the first training sentence, and look at the output.
Can you come up with a sanity check for calculating the posteriors (Hint: Note that
the node posteriors are a proper probability distribution).

67

In[]: run sequences/hmm.py
2 In[]: hmm = HMM(simple)
In[]: hmm.train_supervised(simple.train)

4 In [15]: node_posteriors = hmm.get_node_posteriors(simple.train
.seq_list[0])

6 In [16]: node_posteriors
Out[16]:

8 array([[0.91891892, 0.75675676, 0.43243243, 0.],
[0.08108108, 0.24324324, 0.56756757, 1.]])

Implement the posterior decode method using the method you tried previously.

1 def posterior_decode(self,seq):

Run the posterior decode on the first test sequence, and evaluate it.

1 In[]: run sequences/hmm.py
In[]: hmm = HMM(simple)

3 In[]: hmm.train_supervised(simple.train)
In [19]: y_pred = hmm.posterior_decode(simple.test.seq_list[0])

5 In [20]: w/r w/r s/s c/s
Out[20]: array([0, 0, 1, 1])

7 In [21]: simple.test.seq_list[0]
Out[21]: w/r w/s s/s c/s

Do the same for the second test sentence:

In [22]: y_pred = hmm.posterior_decode(simple.test.seq_list[1])
2 In [23]: y_pred
Out[23]: c/r w/r t/r w/r

4 In [24]: simple.test.seq_list[1]
Out[24]: c/s w/s t/s w/s

What is wrong? Observe the observations for that sentence. In fact the observation
t was never seen at training time, so the probability for it will be zero (no matter what
state) and make all possible state sequences have zero probability (the value 0 is just
the default. As seen in the previous lecture, this is a problem with generative models,
that can be corrected using smoothing (there are other options).

Change your train method to add smoothing:

1 def train_supervised(self,sequence_list, smoothing):

68

Repeat the last exercise with the new parameters. What do you observe?

Note that if you use smoothing when training you need to account for that
in the counts sanity checks you did in the previous exercise.

Exercise 2.7 Change the function you just created def sanity check counts(self,seq list):
to account for smoothing. Make sure it works properly.

1 In []: run sequences/hmm.py
In []: hmm = HMM(posc)

3 In []: hmm.collect_counts_from_corpus(posc.train,smoothing=0.1)
In []: hmm.sanity_check_counts(posc.train,smoothing=0.1)

5 Init Counts match
Final Counts match

7 Transition Counts match
Observations Counts match

2.3.2 Viterbi Decoding

Viterbi decoding consists in picking the best global hidden state sequence ȳ.

ȳ∗ = arg max
ȳ

pθ(x̄, ȳ). (2.30)

The viterbi algorithm is very similar to the forward procedure of the FB
algorithm, making use of the same trellis structure to efficiently represent and
use all the exponential number of sequences. In fact the only difference from
the forward algorithm is in the recursion 2.22 where instead of summing over
all possible hidden states, we take their maximum.

Viterbi δi(yl) = arg max
y1...yi

pθ(yi = yl , x1 . . . xi) (2.31)

The viterbi trellis represents the path with maximum probability in position i
when we are in state yi = yl and that we have observed x̄ up to that position.
The viterbi algorithm is defined by the following recurrence (we will use the
marginals parametrization of the model):

δ1(yl) = φ1(l) (2.32)

δi(yl) =

[
max
y1...yi

φ(i−1)(m, l)δi−1(ym)

]
φi(l) (2.33)

ψi(yl) =

[
arg max

y1...yi

]
(2.34)

Algorithm 9 shows the pseudo code for the Viterbi algorithm.

69

Algorithm 9 Viterbi algorithm
1: input: sentence x̄, parameters θ
2: Forward pass: compute the maximum paths for every end state
3: Initialization
4: for yl ∈ Y do
5: δ1(yl) = φ1(yl)
6: end for
7: for i = 2 to N do
8: for yl ∈ Y do

9: δi(yl) =

[
max
m∈Y

φ(i−1)(m, l)δi−1(ym)

]
φi(l)

10: ψi(yl) = m
11: end for
12: end for
13: Backward pass: Build the most likely path
14: ˆ̄y = []
15: ŷN = arg max

ym∈|Y|
δN(yl)

16: for i = N to 2 do
17: ŷi = ψi+1(yi+1)
18: end for
19: output: the viterbi path ˆ̄y

Exercise 2.8 Implement a method for performing viterbi decoding.

def viterbi_decode(self,seq):

Test your method on both test sentences and compare the results with the ones
given.

1 In []: y_pred = hmm.viterbi_decode(simple.test.seq_list[0])
In []: y_pred

3 Out[]: w/r w/r s/r c/s
In []: y_pred = hmm.viterbi_decode(simple.test.seq_list[1])

5 In []: y_pred
Out[]: c/r w/r t/r w/r

2.4 Part-of-Speech Tagging (POS)

Part of speech tagging is probably one the most common NLP tasks. The task
is to assign each word with a grammatical category, i.e Noun, Verb, Adjective,

70

... . In English, using the Penn Treebank (ptb) (Marcus et al., 1993) the current
state of the art for part of speech tagging is around the 97% for a variety of
methods 2.

In the rest of this class we will use a subset of the ptb corpus, but instead of
using the original 45 tags we will use a reduced tag set of 12 tags, to make the
algorithms faster for the class. In this task, x̄ is a sentence and ȳ is the sequence
of possible PoS tags.

The first step is to load the pos corpus, we will start by loading 1000 sen-
tences for training and 200 sentences both for development and testing, and
train the HMM model.

In []: run readers/pos_corpus.py
2 In []: posc = PostagCorpus("en",max_sent_len=15,train_sents=

1000,dev_sents=200,test_sents=200)
In []: hmm = HMM(posc)

4 In []: hmm.train_supervised(posc.train)
Warning: invalid value encountered in divide

Note the warning “Warning: invalid value encountered in divide“ again
due to the lack of smoothing. This is because we are trying to estimate the
probability of words that were never seen during training, so the counts are
zero and we are trying to do 0/0.

Look at the transitions probabilities of the trained model (see Figure 2.5)
and see if they match your intuition about the English language (e.g. adjectives
tend to come before nouns).

Exercise 2.9 Test the model using both posterior decoding and viterbi decoding on
both the train and test set, using the methods in class HMM:

1 viterbi_decode_corpus(self,seq_list)
posterior_decode_corpus(self,seq_list)

3 evaluate(self,seq_list,predictions)

What do you observe. Remake the previous exercise but now train the HMM using
smoothing. Try different values and report the results on the train and development set
(1,0.1,0.001,0.0001). (Use function pick best smoothing).

1 In []: hmm.pick_best_smoothing(posc.train,posc.dev,[0,0.1,0.01,
1])

Warning: invalid value encountered in divide
3 Smoothing 0.000000 -- Train Set Accuracy: Posterior Decode 0.

985, Viterbi Decode: 0.985

2See ACL state of the art wiki

71

Figure 2.5: Transition probabilities of the trained model. Each column is pre-
vious state and row is current state. Note the high probability of having Noun
after Adjective, as expected.

Smoothing 0.000000 -- Test Set Accuracy: Posterior Decode 0.177
, Viterbi Decode: 0.381

5 Smoothing 0.100000 -- Train Set Accuracy: Posterior Decode 0.
971, Viterbi Decode: 0.967

Smoothing 0.100000 -- Test Set Accuracy: Posterior Decode 0.852
, Viterbi Decode: 0.836

7 Smoothing 0.010000 -- Train Set Accuracy: Posterior Decode 0.
983, Viterbi Decode: 0.982

Smoothing 0.010000 -- Test Set Accuracy: Posterior Decode 0.816
, Viterbi Decode: 0.809

9 Smoothing 1.000000 -- Train Set Accuracy: Posterior Decode 0.
890, Viterbi Decode: 0.876

Smoothing 1.000000 -- Test Set Accuracy: Posterior Decode 0.857
, Viterbi Decode: 0.829

Using the best smoothing value evaluate the accuracy on the test set.

In []: run readers/pos_corpus.py
2 In []: posc = PostagCorpus("en",max_sent_len=15,train_sents=

1000,dev_sents=200,test_sents=200)
In []: hmm = HMM(posc)

4 In []: hmm.train_supervised(posc.train,smoothing=1)
In []: pred = hmm.viterbi_decode_corpus(posc.test.seq_list)

72

Figure 2.6: Confusion Matrix for the previous example. Predict tags are
columns and the true tags corresponds to the constituents of each column.

6 In []: eval_test = hmm.evaluate_corpus(posc.test.seq_list,pred)
In []: eval_test

8 Out[]: 0.77711397058823528

Perform some error analysis to understand were the errors are coming from. You
can start visualizing the confusion matrix (true tags vs predicted tags).

In []: run sequences/confusion_matrix.py
2 In []: cm = build_confusion_matrix(posc.test.seq_list,pred,len(

posc.int_to_pos),hmm.nr_states)

Another option to look at is to the error for words with different number of occur-
rences, rare words vs commons words.

Exercise 2.10 Implement a function that produces the accuracy for rare words vs com-
mon words. Use you own definition of rare word.

Can you come up with other error analysis methods? Which?

Exercise 2.11 So far we have only worked with a limited dataset of 1000 words. In
this exercise you will test the accuracy of the HMM model for different training sizes
(1000,5000,10000,50000). What do you observe?

73

